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THE COMBINED EFFECT OF GRAVITY GRADIENT AND AERODYNAMIC
TORQUES ON THE ATTITUDE CONTROL OF THE APOLLO/S—IVB
IN A CIRCULAR ORBIT ABOUT THE EARTH

SUMMARY

An analysis of the combined effect of aerodynamic and gravity gra-
dient torques on the attitude control of the Apollo/S—IVB configuration
during the earth-parking-orbit phase of a lunar landing mission is de-
scribed. The parking orbit is assumed to be circular above the surface
of a spherical earth of homogeneous mass distribution. Aerodynamic
torques are determined by means of free-molecule impact theory, commonly
referred to as specular reflection.

The equations utilized in the analysis were programed on the IBM 709k
computer using an assumed orbit altitude of 100 nautical miles. -The ef-
fects of the disturbance torques on the limit-cycle characteristics of the
vehicle were determined using the S-IVB attitude control system to main-
tain the vehicle at various pitch, yaw, and roll attitudes relative to the
local horizontal within specified deadbands. Pure pitch attitudes (pitch
axis normal to orbit plane, zero roll and yaw) of O, 45, and 90 degrees.
relative to the local horizontal were simulated using specified deadbands
varying from £0.5 degrees to £5 degrees. At all commanded attitudes, the
vehicle damped to a steady-state limit cycle on one side of the pitch
deadband instead of traversing the entire deadband as desired. The fre-
quencies of these limit cycles were considerably higher than those which
would exist in the absence of disturbing torques, resulting in increased
control system fuel consumption.

A combined maneuver in which the vehicle was commanded to maintain
simultaneously a pitch and yaw attitude relative to the local horizontal
of 30 degrees each within a *5 degree specified deadband about each axis
was also simulated. The limit-cycles about both the pitch and yaw axes
exhibited a similar behavior to the pure pitch command described above,
although the amplitudes and frequencies were different in pitch from
those in yaw.

INTRODUCTION

A satellite in earth orbit is acted upon by numerous environmental
disturbance torques which affect its angular motion. These include
torques resulting from gravity gradient, solar pressure, electric and
magnetic fields, meteorites, and aerodynamics. Rough estimates given by



Roberson in reference 1 indicate that the most significant of these
torques for a low-altitude orbit result from gravity gradient and aero-
dynamics. The effect of gravity gradient on the angular motions of an
earth satellite has been analyzed by various authors such as Doolin
(ref. 2). The effect of aerodynamics on the angular motions of certain
satellite configurations at low altitudes has been studied by DeBra
(ref. 3).

The present study investigates the combined effect of gravity gra-
dient and aerodynamics on the attitude control of the Apollo/S—IVB in a
circular orbit about the earth. According to present plans, the Apollo/
S5-IVB configuration will be maintained at some specified attitude rela-
tive to the local vertical within predetermined deadbands in pitch, yaw,
and roll by means of reaction jets during the earth orbital phase of the
lunar landing mission. This requirement arises from the need to orient
communications equipment on board the vehicle to earth-based flight moni-
tors, as well as to orient an onboard sextant for star and landmark
sightings to establish vehicle position. The S-IVB control system will
be the primery means of attitude control and the Apollo service module
control system may be used as a backup.

The mathematical model employed to analyze the combined effect of
aerodynamic and gravity gradient torques on the attitude control of the
vehicle, as well as results obtained using the S-IVB attitude control
system to maintain various attitudes relative to the local vertical, is
herein presented. : '

The author wishes to acknowledge the assistance of Mr. James L. Long
of the Computation and Data Reduction Division, NASA Manned Spacecraft
Center, who programed and checked the digital computer mechanization of
the equations used in this study.

SYMBOLS
A Length of cone removed to form cone frustum (fig. A-L),
ft
a Distance from vehicle center of mass to elemental mass
in vehicle, ft
C Aerodynamic force component along x-axis, 1b
C Normal force coefficient, dimensionless



l) 2)

c.p.

cyl

3

Constants used to determine control torque direction
about the x-, y-, and z- axes, respectively, (equatlons 60
to 65), dimensionless

Diameter of cylinder used to represent Saturn S-IVB
booster, ft

Diameter of cylinder used to represent service module
plus LEM shroud

Differential operator, dimensionless

Cone center of pressure distance from apex along
x-axis, ft

Command module center of pressure distance from nose
along x-axis, ft

Combined center of pressure distance from combined
center of mass along x-axis, ft

Cylinder center of pressure distance from front along
x-axis, ft

Cone frustum center of pressure distance from small end
along x-axis, ft

Large cone center of pressure location used to determine
cone frustum center of pressure location (appendix A), ft

-Bmall cone center of pressure used to determine cone

frustum center of pressure (appendix A), ft
Service module plus lunar excursion module shroud center
of pressure distance from front of service module along

x-axis, ft

Saturn S-IVB center of pressure distance from front
along x-axis, ft

Resultant tofque acting on vehicle, ft-1b

Control torque about x-, y-, and z-axes, respectively,
ft-1b

Magnitude of control torque about X-, y-, and z-axes,
respectively, ft-1b
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el

=

cyl

R

Méss of vehicle, slugs

Aerodynamic normal force acting on vehicle, 1b

Unit vector perpendicular to an elemental area on surface
of vehicle, dimensionless

Dynamic pressure, lb/ft

Vector distance from earth center of mass to vehicle
center of mass, ft

Radius of cone intermediate cross-section (fig. A-3), ft

Radius of cylinder cross-section (fig. A-5)

Vector distance from earth center of mass to elemental
mass in vehicle, £t :

Cross-sectional area of S-IVB, nDz/h, 8

Orthogonal matrix transformation from the X s yo, and
zo—axis system to the x, y, and z-axis system, dimen-

sionless
time, sec

Velocity of vehicle relative to the atmosphere (equal to
inertial velocity in present analysis), ft/sec

Vehicle body axes having origin at combined center of
mass with x-axis positive forward through command module
nose, y- and z-axes completing right-handed system

Cone body axes having origin at apex with xc-axis

positive rearward, Yom and, zc_axes completing right-handed

system (fig. A-2)

Axes parallel to X" and z ,~axes, respectively, with
origin at center of elemental area on surface of cone
(fig. A-2)



Distance along x-axis from nose of command module to
vehicle combined center of mass, ft

Distance along x-axis from nose of command module to
vehicle cc ibined center of pressure, ft

yl—aXlS
yl—axes completing

Cylinder body axes having origin at end with X,
positive rearward, ycyl— and zc
right-handed system (fig. A-5)

Inertial cartesian axis system having origin at center
of spherical earth with yo~axis normal to orbit plane,

X~ and zo—axes completing right-handed system (fig. 2)

Cartesian coordinate system having origin at center of
spherical earth’with’xr—axis parallel to local hori-
zontal (positive in direction of motion) yr—axis
normal to orbit plane and z_-axis along R (positive
outward from center of earth)

Combined angle of attack, or angle between x-axis and'
V, -degrees

Angle in Yo zc-plane between yc—axis and line from
xc—axis to projection on Yo zc—plane of point on sur-

face of cone (fig. A-2), degrees

Values of Bl corresponding to points on line along

cone surface separating portion of surface exposedvto
alr flow from portion shielded from air flow, degrees

Angle related to cone frustum corresponding to Bl
for cone, degrees

Angle related to cone frustum corresponding to Bl

for cone, degrees u
Angle related to c¢cylinder corresponding to Bl for
cone, degrees u

Fot, Angle in orbit plane between zo-axis and zr-axis,

" degrees



T

Constant orbital angular rate, or angular rate of
X ~, ¥ -, and z_-axes relative to x -,-y -, and z -axes,
r r r o o o

rad/sec

Semi-apex angle of cone used to represent command
module, degrees

Semi-apex angle of cone frustum used to represent
adapter between LEM shroud and S-IVB, degrees

Angle between V and line of intersection between cone
surface and plane containing V and x -axis (fig. A-1),
degrees

Angle between v and line normal to cone surface in
plane containing V and xc—axis (fig. Arl), degrees

Euler angles defining orientation of xyz-triad relative
to xoyozo-triad, degrees

Fuler angles defining orientation of xyz~triad relative
to Xryrzr—triad,degrees

Commanded values of 6., ¥ , and ¢f’ respectively,
degrees r

Atmospheric density, slugs/ft5

Width (duration) of attitude control jet pulses about
x-, y-, and z-axes, respectively, seconds

Time between attitude control jet pulses about x-, y-,
and z-axes, respectively, seconds

Aerodynamic roll-angle, or angle between ﬂg and y-axis
in yz-plane, degrees '

Resultant angular rate of vehicle in inertial space,
rad/sec

Subscripts

Adapter between service module plus LEM shroud and
S-IVB



a

C.

E_ E&, E,

F

Fa

I-IXl, Hyl, Hzl
Hie, Hyg, H22
I Iy, I,

i, 3, k
ic: Jc) kc
K

Kl, KB’ K5
KE’ K’-l-’ K6_
L

Ll

L2

L

3

Aerodynamic
Cone

Error functions used to command control torques about
the x-, y-, and z-axes, respectively, dimensionless

Resultant aerodynamic force acting on vehicle, 1b

Inverse~square-law gravitational force acting on
vehicle due to earth, 1b

Lower (negative) deadbands about the x-, y-, and z-axes
respectively, radians

Upper (positive) deadbands about the x-, y-, and
z-axes, respectively, radians

Moments of inertia about the x-, y-, and z-axes,
respectively, slug—ft2

Unit vectors along the x-, y-, and z-axes, réspectively,
dimensionless ’

Unit vectors along the X" Yoo and zc—axes,
respectively

Geocentric gravitational constant of the earth,
1.407656 x 1010 £t /sec?

Rate gains 1n attitude control system, rad/fad/sec
Attitude gains in attitude control system, rad/rad

Length ofbcylinder used to represent S-IVB booster, ft

Length of cone used to represent command module, ft

Length of cylinder used to represent service module
plus LEM shroud, f+t

Length of cone frustum used to represent adapter be-
tween the service module plus LEM shroud and the

© 5-IVB booster, ft



lA Adapter center of pressure distance from front along
x-axis, ft
M Command module
cyl Cylinder
f Cone frustum
G Gravity gradient
L Large éone |
8 Small cone
SM/LEM Service module plus lunar excursion module shroud
S5~IVB Saturn booster used for translunar orbit injection
T Total or resultant
X, ¥, 2 Components along x~, y-, and z-axes, respectively

X Z
) yO’

o Components along X Yoo and z -axes, respectively

¢]

In addition, a (') over a symbol represents a derivative with respect to
time and a (—) over a symbol represents a vector.

ANATLYSTS

Equations of Motion

The mathematical model employed for this investigation was a rigid
vehicle moving in a circular orbit about a spherical, homogeneous, non-
rotating earth. A block diagram of the mathematical model is shown in
figure 1. The coordinate systems used are shown in figure 2 and the
geometry of the vehicle is shown in figure 3. The body axes of the ve=-
hicle are assumed to be principal axes and the moments of inertia of the
vehicle are assumed to be constant. Under these conditions, the rota-
tional equations of motion are, from reference L,

2, = [MXG + MXJ -9, 9, (1, - IY)J /IX (1)



6 =M +M +M -0 o (T -1)|/I (2)
¥ v,  ¥e ¥y x'z x 7z %

0 =M +M +M -9 o (I -1)] /I
z i z, 2 Z 1 Xy ( ¥ x?ﬁ Tz (3)

The effect of attitude control jet and aerodynamic forces on the
orbit parameters are assumed to be negligible for the length of time
during which the vehicle remains in earth orbit, that is, the velocity
and altitude of the vehicle are constrained to remain constant, the
plane of the orbit being fixed in inertial space. Consequently, the
translational equations of motion are not included in this study.

Inertial Attitude

The attitude of the vehicle relative to inertial space can be de-
termined by use of Buler angles. From figure L, the components of angular
velocity about the body axes in terms of Euler angles and Euler angular
rates are seen to be

9, = ¢ +8 sin v (%)
o = ¥ sin § + 6 cos ¥ cos @ (5)
a, = ¥ cos @ - 6 cos ¥ sin @ (6)

Solving equations (4), (5), and (6) simultaneously to obtain the -
Euler angular rates,

A
L]

o, - 0 sin ¥ (7)

<.
1i

Qy sin ¢ + 0, cos @ (8)

[Qy cos § - Q, sin ¢] /COS ¥ (9)

Equations (7), (8), and (9) can then be integrated numerically with
respect to time to obtain the attitude of the vehicle relative to inertial
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space, that is, the orientation of the xyz-triad relative to the
xoyozoatriad.

Attitude Relative to Local Vertical

The attitude of the vehicle relative to the local vertical can be
determined by use of Buler angles by superimposing a fourth angle to
represent the rotation of the local vertical relative to inertial space,
as shown in figure 5. As can be seen from figure 5,

8 = (T + 8,) sinvy_ + §_ (10)
Qy = (T +3 ) cos ¥ cos ¢r + @r sin ¢r (11)
Q, = &r'cos ¢r - (f + er) cos ¥, sin ¢r (12)

Solving equations (10), (11), and (12) simultaneously to obtain the
‘relative Euler angular rates,

ﬁr =Q_ - (T + er) sin ¥ (13)
&r = Qy sin ¢r + QZ cos ¢r (1)
ér = E%V cos ¢r - QZ sin ¢r - T cos WrJ //cos Wr (15)

Equations (13), (14), and (15) can then be integrated numerically
with respect to time to obtain the attitude of the vehicle relative to

the local vertiecal, that is, the orientation of the xyz-triad relstive
to the xryrzr—triad.

Coordinate Transformations

The components of vehicle position and velocity along the x -, y -,
and z_-axes are, from figure 2, ©°.°°

R =RsinT (16)
X

o
R =0 .
- (17)
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R, =RcosT (18)

o

and,

V =7Vcos D (19)

%o
v =0 (20)

Yo
V, =-Vsin r (21)

o

The components of orbital angular rate along the X~ Yoo and
z -axes are, from figure 5,

r =0 (22)
X .
O
P =T (23)
yO
T, =0 (2k)
Q

The matrix transformation from the x yozo_triad to the xyz-triad is,
from figure &4, ©

-kcos ¥ cos 9) (sin ¥) '(—sin 0 cos V)
(sin @ sin © (cos @ cos ¥) (sin & sin ¥ cos @
[él} = |- sin ¥ cos B cos @) + sin @ cos 8) .(25)
(sin ¥ cos @sin @ (-sin @ cos ¥) (cos @ cos 8
.f sin gcos @) -sin ¢ sin 6 sin V)

The components of vehicle position and velocity along the x-, y-,
and z-axes are then '
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R | S
X X
(@)
R =|T R 26
AR Y 20
R R
Z Z
- -~ o O--
and
] 7
Y vV
X X
(o]
vV = |T v 2
; [ 1} - (27)
VZ VZ
. - - O._

r I
X X
[0]
. r . (28)
r | =] r
o
r r
Z V4
N B B o)

Aerodyhamic Torque

The configuration shown in figure 3 is assumed to represent the
Apollo/S—IVB for the purpose of aerodynamic calculations.

As shown, the command module is represented by a right circular
cone, the service module/LEM shroud and Saturn S-IVB by right circular
cylinders and the S-IVB adapter by a right circular cone frustum.

The total normal force coefficient for this configuration is

determined by summing the normal force coefficients of the individual
components, that is,
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c. =0, +0 +C. +C (29)
I o Tsm/tem YA Vs1ve

where all coefficients are based on a common reference area and shielding
of wvarious components by upstream components are assumed to be negligible.
The coefficients for the individual components are derived in Appendix A.
The resulting expressions are listed below, each based on the cross-

, 2
sectional area of the S-IVB, #D /4. For the command module,

2
: Dl 2
C =2 <-> cos™ B, sin 2a when a < § (30)
N “\D 1 -1
M
2
D
2 1 1 i . .
CNCM == (D > cot 61 > (Blu + §> sin 2a sin 281

+ cos Bl [2 cos2 a sin2 81 - 12'— sin 2a s'ir;l_;z@l sin Bl
u ' u

+ 2 Sim2 a cos2 ) s:‘Ln2 B. + 2 when o > & (31)
3 1 1 1 A

where, from figure O,

. =1
a = tan 7 (32)

and, from Appendix A,

.2 2
_l*\/tana—- tan 81

Bl - co8 tan a (33)
u
For the service module/LEM shroud,
L. D
2 271 .2
c = Z= 5= sin” a (3k)

Yem/ren % b
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For the S5-IVB adapter,

(@}
]

N 2 [1 - (Dl/D>2] cos® 8, sin 20 when q'g 8, (35)

2 211 T\ s o o
CNA == cot 82 [l - (Dl/D)] {2 (Bgu + 2>Sll’l 2a sin 282

+ cos 82 [2 cosgoc sin2 S5, - L sin 20 sin 282 sin ;32

2 2
u u
+ 2 sin2 a 0052 3 sin® B, + 2\|\ when o >5_ (36)
3 2 Eu 2
where, replacing B8 and 5. by B and 8, respectively, in equation
1. 1 2 2
(55): u u
1 _\/tangoc - tan282
Bau = cos tan o (57)

For the Saturn S-IVEB,

32 (L . 2
C = <=|=)sin a (38)
Nsrvp O™ <D>

From figure 3, the resultant aerodynamic moment about the nose of
the command module,

D2

M s e 1 +c ,
®NOSE o |:NCM M N/ (T + Lo /L)

+C, (L. +1L,+1,) +¢C L. +L, +L, +1
N, vt 2 T NS_IVB(l 2 T s s-ms)]

(39)
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~ But, from Appendix A4,

2 "
t =30 (ho)
o 1
Tow/um = 3 te ()
L.(D, + 2D)"
1
WTF(H, ¥ D (k2)
| 1. .
lsmwe~2" (43)

Substitutlng equations (40) through (43) into equation (39) and simpliv
fying,

o
D _ :

M =g~ {L [(gf3) ¢, +¢C # C + Co
SNOSE k B ]: Sou  Vowmmvw Y Vso1vs

[(1/2). c Moy + GNA + CNS-.»IVB]’ + (1/2) L CNS-—IVZB |
[(D +2D) ¢ /3 (D, +D) +¢ . ] (44)
S=IVB
The resultant normal force on the vehicle
NT = CN qﬂDz/h {45)

M

The distance of the resultant center of pressure from the nose of
the command module is then determined by the ratio of resultant moment
about the nose to resultant normal force, that is,

= M N :
Fepo Moy /10 (46)
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Substituting equations (44%) and (45) into equstion (Hﬁy‘and'redueimg,;

X = {L, |[(2/3) ¢ +C +C. + 0O
c.p, 1[ N NSM/LEM U mS_‘IVBJA

+ L, | (1/2) ¢ + C_ + Q. + (1/2) 1¢c
2 Vem/iem Ma Nsmm] | Ns.1ve

+ L5 (Dl + 2D) CNA /5 (Dl + D) + Cy

b

(47)

The distance of the resultant center of pressure from the resultant
center of mass

lc.p. = Xc.m. - Xc.p. ,(48}

The resultant aerodynamic moment aboyt the center of mass

M, = Cy oS L (49)

“a, NT

and acts about an axis normal to the plane containiné‘the x~axie and the
resultant velocity vector, &< shown .n figure 6. The components about
each of the hody axes are ‘

.D-

an =0 (50)
M&é = M_ cos ¢b ’ (51)
Mza = M_ sin ¢b (52)

where, from figure 6,

o V.
g, = tan™t <‘7§> (53)
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Gravity Gradient Torque

The torque produced by gravity gradient on a vehicle in an inverse-
square force field is treated in Appendix B, Expressions are developed
to determine the components of this torque about an arbitrary set of
orthogonal body axes of an arbitrary vehicle. Since the body axes of
the Apollo/S-IVB are assumed to be principel axes in the present analysis,
the components of gravity gradient torque about these axes are (see
Appendix B), '

MXG = EB-Ry R, (I, - Iy) (54)
.M&G =5 R R, (I -1T) (55)
XK om (1 - ~
MéG = 5 R, Ry (_Iy IX) (56)

Attitude Control System

The attitude control system.employed in the present analysisbcon-
sists of constant magnitude jets mounted on the vehicle to produce torque
about each of the body axes.

The jets producing control torque about each of the body axes are
fired at constant frequency and constant width (duration) as commanded by
the control logic for each axis. The system is assumed to be ideal,
that 1s, the pulses are rectangular and no hysteresis or time delays
exist.

The error signals used to command control torques about the x-, y#,
and z-axes. respectively are:

E =K (2 - fX) + K, (B, - ¢rc) (57)
B, =K, (o, -T) +K (8 - erc) (58)
E, = K5 (0, - T,) +Xg (¥, - ¥, ) (59)

c
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The quantities fx’ f&, and I, in equations (57), (58), and (59),

respeétively, remove the angular rate of the xryrzr—triad relative to

inertial space so that the error functions E , B, and E are
X Z

analogous to a familiar inertial attitude command system rate
feedback.

The control torques about the x-, y-, and z-axes, respectively,

are:.

- where

MX =0 M (60)
J
Moo= C, M, (61)
J
M =C 2
27 5 M5 (62)
(1 for T seconds, then O for T seconds R

1

and repeat if E < H
X X

1
-1 for T 'seconds, then O for T seconds, and repeat if >(65)
. l .
E >H
LOif H <E <H y
Xy x X5
r A
1 for Ty seconds, then O for Ty seconds, and repeat
1
if Ey < H&
t (6
< -1 for Ty seconds, then O for Ty seconds, and repeat if
1
E >H
Y2
Qif H < H J
~ Yy Yo
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. D

1l for T, seconds, then Q for 'TZ seconds, and repeat
1

if B <H

zZ z4
05 = < -1 for 7, seconds, then O for T, seconds, and repeat ? (65)

1

if EZ > Hig

< <

TEST PROCEDURE

All attitude command maneuvers simulated corresponded to a circular
orbit at an altitude of 100 nautical miles above the surface of the
earth. The vehicle and orbital parameters for all maneuvers were:

A = 18.833 ft

D =21.667 £t

D, =12.833 ft

I, = 8.62 x_lou slug—ft2

I, =9.15x 10 slug-ft°

IZ = 9.75 X 106 slug~ft2

K = 1.4075 x 10t £t [sec”

]

K) =K3 =K =5 rad/rad/sec

K2 = K& #.K6 =1 rad/fad
L = 43,625 rt

L = 11.583 ft
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L, = 32.700 ft
= 12.
L5 12.917 £t
My = 3.489 x 10° £t-1b
Mé = 3,702 X lO5 ft-1b
M5 = 8.476 x 107 £t-1b
' = 2.15115 x 10/ £t
7 = 2.5579 X 10" 't /sec
Xc.m. = 75.10 7t
r = 6.812468 x 1072 deg/sec
51 = 33,06 deg
5, = 18.85 deg
P = 9.67 x 10712 slugs/ft5
T =1T_ =T = 0.05 seconds
X ¥y A
Te =T =T = 0.95 seconds

A series of pitch command maneuvers were simulated requiring the
initial conditions listed below:

voo=0
g =0
v, =0
g, =0
¥ =0
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r
cC

Q = 0

X
a, =T = 6.812468 x 1072 deg/sec
o =0

Z

r =0

Commanded pitch attitudes (er ) of 0, 45, and 90 degrees were
: c
simulated. At each attitude, results were obtained for desired deadbands

ranging from +0.5 degrees to +5 degrees.

A combined pitch and yaw maneuver was simulated wherein the initial
conditions listed above were applicable with the following changes:

Hgl = H&l = HZl = -5 deg
H%g = H&é = Héa = 5 deg
6 =35 deg

¥ = 35 deg

¢ = 0 deg

6, =35 deg

V. =35 deg

g =0 deg

erc = SO'deg

V. =30 deg
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C
o, =T, = 0.03907 deg/sec
Q =T = 0.04571 deg/sec
. . 571 deg/
o, = fz = 0.03201 deg/sec

Each of the above maneuvérs was simulated for a time sufficient to allow
the limit-cycle periods about each axis to damp to steady-state values.

" RESULI'S AND DISCUSSION

A series of maneuvers using the Saturn S-IVB attitude control system
to maintain the Apollo/S—IVB-at different pitch attitudes relative to the
local horizontal was simulated. The vehicle was initially oriented with
the y-axis normal to the orbit plane; consequently, the resultant aero-
dynamic and gravity torques acted about that axis, the x- and z-axes being
unaffected. In addition, a combined maneuver in which the vehicle was
commanded to maintain simultaneously a pitch and yaw attitude relative to
the local horizontal, a situation which could be required for a navita-
tion sighting or other operation, was also simulated. '

PITCH COMMAND

The vehicle damped to a steady-state limit cycle on one side of the
specified pitch deadband instead of traversing the entire deadband at
each commanded pitch attitude. This behavior is a consequence of the uni-
directional disturbance torques (fig. 7) acting about the y-axis tending
to increase the pitch attitude. As an example of this behavior, consider
the case listed in table I for a commanded pitch attitude of O degrees
with a specified deadband of +0.5 degrees. As shown in figure 8, when
the vehicle reaches the +0.5-degree side of the deadband from within the
deadband at a sufficiently low rate, the pitch attitude control jet will
impart a minimum impulse to the vehicle and reverse the direction of
rotation. The disturbance torques are then acting in a direction oppo-
site to the direction of rotation with sufficient magnitude to stop the
rotation before the vehicle reaches the ~0.5-degree side of the deadband
and force it to start back toward the +0.5-degree side of the deadband.
This behavior continues until a steady-state condition is reached wherein
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the vehicle rotates 0.053 degrees away from the +0.5-degree side of the
deadband in the direction of the -0.5-degree side, reverses direction
and returns, the cycle repeating (and the jet firing) every 413 seconds.
Similar results were obtained at the other commanded attitudes examined,
as shown in table I. ’

The resulting limit-cycle widths and periods were found to vary
with specified deadband width at the commanded attitudes examined. This
variation came about because the vehicle always remained in close prox-
imity to one side of the specified deadband, thus subjecting the vehicle
to varying (attitude—dependent) disturbance torgues. This variation is
seen from table I to be especially significant for a commanded pitch
attitude of O degrees, the resulting limit-cycle period varying from
413 seconds for -a +0.5 degree-specified deadband to 33 seconds for a
+b-degree specified deadband. For this reason, a series of maneuvers
were simulated wherein the commanded pitch attitude was O degrees and
the specified deadband widths were varied from +0.5 degrees to +5 de-
grees in increments of 0.5 degrees. Both the deadband widths and limit-
cycle periods resulting decreased as the specified deadband widths
increased. The results obtained are summarized in table II.

Combined Pitch-Yaw Command

The pitch and yaw attitudes were each commanded to 30 degrees within
a t5-degree deadband. The limit-cycles about both the pitch and yaw
axes exhibited similar behavior to the pure pitch command described above.
The pitch deadband width obtained was 0.001 degrees with a period of
7 seconds at the +5-degree side of the deadband. The yaw deadband width
obtained was 0.008 degrees with a period of 54 seconds at the -5-degree
side of the deadband.  The difference in limit-cycle characteristics in
pitch and yaw was due in part to the gravity gradient and aerodynamic
torques being in the same direction (positive) in pitch, but in opposite
directions in yaw. Another source of difference was the inertia cross-
coupling between the pitch and yaw axes through the roll axis because a
roll rate was required as a component of the orbital angular rate (rota-
tion rate of local horizontal in the orbit plane). Although this cross-
coupling was insignificant compared to the gravity gradient and aero-
dynamic torgues about the pitch axis, it dominated the motion about the
yaw axis. The final difference arose because the control torque about
the yaw axis was greater than the control torgue about the pitch axis
(two 150-pound-thrust jets produce torque in either direction for yaw
control, whereas only one 150-pound-thrust jet is available for pitch
control in each direction), while the moments of inertia in pitch and
yaw were equal.
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CONCLUDING REMARKS

Gravity gradient and aerodynamic torques acting on the Apollo/S—IVB
in a 100-nautical-mile circular orbit about the earth are of sufficient
magnitude to have a significant deleterious effect on the limit-cycle
operation of the Saturn S-IVB attitude control system about both the pitch
and yaw axes of the vehicle. At the commanded attitudes considered in the
present analysis, the torques forced the vehicle to damp to a steady-state
limit-cycle on one side of the pitch and yaw specified deadbands instead
of traversing the entire deadbands, resulting in frequencies considerably
higher than the no-disturbance-torque condition.

At commanded attitudes near zero, the frequency of the steady-state
limit-cyeles about the pitch or yaw axis can be considerably reduced by
decreasing the specified deadbands, resulting in a decrease in attitude’
control fuel consumption. At larger commanded attitudes, the effect of
varying the specified deadbands is less pronounced.
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TABLE I.- EFFECT OF VARTATION IN COMMANDED PITCH ATTITUDE ON THE
PITCH-AXIS LIMIT-CYCLE CHARACTERISTICS OF THE APOLLO/S-IVB
IN A 100~-NAUTICAL-MILE CIRCULAR EARTH ORBIT*

pitch attitude deadband width deadband width .
(degrees) . (degrees) (degrees) %’:Z‘t‘)’d
0 +5 .003 33
k5 N | .001 - 5
90 £5 .002 1L
0 £0.5 .053 13
45 +0.5 001 6
90 +0.5 .001 1n

#S-IVB attitude control system with minimum pulse duration of
50ms and 150-pound-thrust jets used.
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TABLE II.- EFFECT OF VARIATION IN SPECIFIED PITCH DEADBAND ON THE
PITCH-AXIS LIMIT-CYCLE CHARACTERISTICS OF THE APOLLO/S—IVB

IN A 100-NAUTTCAL-MTLE CIRCULAR EARTH ORBIT*

Commanded Specified Resulting l?iing;E%e
piteh attitude deadband width deadband width .
(degrees) (degrees) (degrees) %EZi?d
0 +0.5 0.053 h13
0 +1.0 0.027 199
0 +1.5 0.017 131
0 +2.0 0.013 98
0 £2.5 0.011 78
0 +35.0 0.008 6l
0 +3.5 0.007 55
0 £h.0 0.006 L8
0 £4.5 0.006 43
0 +5.0 0.003 35

*5-IVB attitude control system with minimum pulse duration of.
50ms and 150-pound-thrust Jets used.
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Y —F
o
- Vehicle center
‘l.‘ of mass
—p Z

# 1 ’ Normal to orbit plane
Jor

o

Earth center of masg

Figure 2.- Coordinate systems utilized to a?alyze angular motions
¢ of Apollp/S-IVB in earth orbit.
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Ocdec ar Rﬁfﬁfﬁmﬁ
<I> a éé»':s:}"f - >/—; I K
3 T
() ¥ baul zoaxis
@B abi X-asis

Figure 4.- Buler angles defining attitude of
vehicle relative to inertial space.
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Figure 5.- Euler angles defining attitude of vehicle
relative to local vertical.
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Figure 6.- Orientation of resultant wvelocity and aerodynamic
torgue vectors relative to vehicle body axes.
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APPENDIX A

THEORETICAL STATIC AFRODYNAMIC FORCE COEFFICIENTS AND
CENTERS OF PRESSURE FOR CERTAIN SYMMETRICAL BODIES

OF REVOLUTION IN FREE-MOLECULE FLOW .
‘RIGHT CIRCULAR CONE

Force Coefficients

Consider a body having a perfectly smooth surface to be moving in -
g highly rarefied gas, that is, a gas in which the frequency of colli-
sions between individusl molecules is negligibly small. According to
reference 5, if a sufficient number of molecules are present to determine
the macroscopic properties of the gas (pressure, temperature, density,
et cetera), the condition is described as free-molecule flow. Near the
surface of the body the two streams of incident and emergent molecules
experience little interaction. In this case, the air molecules are said
to reflect specularly; that is, the molecules are assumed to be smooth,
perfectly elastic spheres which will rebound from a smooth surface at
the same angle at which they strike. The behavior is illustrated in
figure A-1 for a stream of air molecules impinging on a surface element
of a right circular cone.

Figure A-1
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In order to deflect the stream of incident molecules through the angle
2e¢ shown in figure A-1l, the surface element ds must impart a velocity
component ’ .

Vp =2|7) cos N = 2V cos 1 (A1)
to the. stream perpendicular to the surface element. If the velocity

change is assumed to occur in unit time, the force exerted on the sur-
face element due to the momentum change of the stream of molecules

dF = MV A2
_ \ (42)
where

Substituting equations (Al) and (A3) into equation (A2),

ar = 4pV2 cose nds (Ah)

But p and V can be expressed in terms of dynamic pressure

N _
Substituting equation (A5) into equation (AL),

aF = 8q cos® nds (46)

For a right circular cone, the position of a surface element is shown in

figure A-2. .
: c

]

Figure A-2
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In order ta determine the aerodynamic force acting on the element, the
angle T can be expressed as follows. From figure A-2, a unit vector
perpendicular to the element of surface area :

>~ sl ”~ . "o
P=P,1i +P ,5 +P k- (A7)
¥, ¢© Yo © z, ©
and the veloecity vector
~ ~ ~ :
V=v, 1c+vy, Jg Vo Ky (A8)
c C c

The components of P along the body axes are

Px' = P sin 61 h

c

= - ' A
Pyé P cos B cox By > (A9)
P,v = -Pcox 61 sin Bl
J
and the components of V along the same axes are

V, =Vcosa
X

(A10)

<!
#
o

v

VZ' =V sin o
¢ J
A —
Since 1 1is the angle between P and V, it can be obtained from the
dot product

T-P=VPeos =V, B, +V, B, +7, F, (A11)
c e c e c “c

Substituting equations (A9) and (Al0) into equation (All),;

VP cos N = VP’cqs o sin 8. - VP cos 6i'sin Bl sin «

1
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or

cos 1| = cos a sin 61 - cox 61 sin B, sin o (A12)

Substituting equation (A12) into equation (A6), the resultant force
acting on the surface element is

2
dF = 8q (cos a sin 8 ~ cos B, sin B, sin @) ds (A13)

1

The resultant force can be divided into a normal force dN along the
zC—axis and an axial force dC along the xc—axis,

il

dN = -dF cos 5, sin By (ALL)

ac

aF sin &) (A15)

If the body possesses homogeneous mass distribution, the center of mass
is located on the axis of symmetry, or the. xc—axis of figure A-l. Since

only the moment produced by the resultant aerodynamic force is of interest
in the present analysis and since the axial force acts through the center
of mass, the axial force equation, equation (Al5), will not be developed
further. v

The element of area shown in figure A-l can be seen to be

rdB.dx
a8 = —=2 (A16)
cos ©
1
Substituting equation (Al6) into equation (A1lL),.
dN = dFr sin BdBldxc/dS (A17)

When o 5_61, the entire surface of the cone is exposed to the flow.
However, when o > 61, a portion of the surface is shielded from the

flow. According to impact theory, the pressure in the shielded region

is zero and thus contributes nothing to the aerodynamic force. The

boundary line separating the exposed region from the shielded region is

the locus of points along the surface at which the velocity is tangent

to the surface. Thus, at these points, the velocity vector V is per-
~ .

pendicular to the area p and cos ﬂu = 0.
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To determine Bl at points along the boundary, equation (Al2) can be

written

cos ﬂu = cos a sin Gl - sin o cos,Sl sin Bl

=0

u

or rearranging and solving equation (A18) for By
u

tan 51

By -=sin " T

(A18)

(A19)

The resultant normal force acting on the body can be found by integrating

equation (AL7) over the exposed surface area, that is,
xu Bl
u
= - dr i
N Jf \Z; dFr sin Bldgldxc//ds
° )

Substituting equation (Al3) into equation (A20),
e Bl
u u 5
N = -8q J[\ Jf (cos o sin 8, - sin a cos 81 sin'Bl)
-
° 2

In order to integrate equation (AEl), it is convenient to
normal force coefficient per unit length of the body.

dCN

C
e =
NC dixc/Dl)

where

C =-N—= N

2
NC gs QIry

or, differentiating equation (A23),

dN

(A20)

sin Bldﬁldxc

define a

(A21)

(422)

(A23)

(a2k4)
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Substituting equation (A2L4) into equation (A22),

1 an

1\TC qﬂrle d(Xc/Dl)

o (425)

Differentiating equation (A21) with respect to x,

B]_
aw v . . ) 2
=" 8qr q[j (cos o sin 61 - sin @ cos 61 sin Bl) sin BldBl
. (426)
since r 1is a function of X, only.
But
aNn 1 dN
&L (21)
dx Dy d(xc/Dl)_

Thus, the right side of equation (A26) can be multiplied by Dl ‘and the
resulting quantity substituted into equation (A25), yielding

B
—8qul 1 5
v . o . .
C'y 5 u/\ (cos o sin 8, - sin a cos 81 sin Bl) sin B a8, (A28)
C qgur -1t .
) 1 =
2
Substituting Dy = 2rp and expanding equation (A28),
cr. = 216 R (c 20 sin® & 2 sin a o sin & 5, si
N~ x T o] , 81 - 1 cos sin 1 cos 1 51n_Bl
C 1 =z
2
2 2 2 . *
+ sin” a cos” & sin Bl) sin B,dB; (A29)

Since the cone angle 61 is constant, straightforward integration of

equation (A29) holding' G constantvduring the integration yields



8r J1 Ty . . 2 2
1 — —— — — ]
C N. 7z \3 (Bu + 2) sin 2a sin 261 + cos Bl [é cos o sin 61
C 1 u
1 . . 2 2 2
- 5 sin 2a sin 261 sin Blu + 35 sina cos 81 (sin Blu + 2?] (A30)

For the case in which aAS_Sl, the entire surface of the cone is exposed

to the flow. In this case the upper limit of integration is Bl = g
and equation (A30) reduces to v
hr | .
C'.. = — sin 2a sin 25 (A31)
NC Ty 1

When o> 8, equation (A19) must be utilized to evaluate equation (A30).
Tt can be seen from equation (Al9) that

“v/gghga - tan2 61

QOS Bl = tan o (ABE)
u
Substituting equation (A32) into equation (A30) and rearranging,
ct. = Er cos® B, sin 2a (B + L) tan &, + = t ° 5
N T 1 1 1 5 n 1 3 cos Bl cot o tan ol
C 1 ) u u
+ 2 tan a] (A33)

It should be remembered that equations (A31) and (A33) were derived on
the assumption that centrifugal forces resulting from flow over a curved
surface are negligible and that expansion flow regions contribute nothing
to the aerodynamic force.

The total normal force coefficient can be obtained from equation (A22),
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1

«Q
=
«Q
]
]_l

oy a( j}) (3

When'a,g_ﬁl, substitution of equation (A31) into equation (A34) yields

!
: “lr *e
C. =4 sin 2o sin 28 —dl = (A35)
N 1 r D
C : 1 1
0
But, as shown in figure A-3,
T Xe
— = 2 (A36)
1 1
Z
Te
4 1 n
I r
5 T .
1 ¢ vy x
» C Dl
+—— "¢
L
-~ >
Figure A-3

Multiplying and dividing equation (A36) by D,

r (X——c-> (837)
oA
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Also from figure A-3,

Dl
— =2 tan & (A38)
L 1
1
Thus
T *e
= 2 N tan 51 (A39)

1 1

Substituting equation (A59) into equation (A35), replacing sin 2%, by
2 sin 6 cos 8

Ll~

2 BI Xc x,
C_ =16 sin” &, sin 2 £ Jg| ==& (Ak0)
N, 1 D, D,

0

- Integrating equation (A4O) and evaluating at the upper and lower limits,

Ll 3 2
C. =8|==] sin” & sin 2a (Ak1)
NC Dl 1

But, from equation (A38),

L os O

1

1

[¢]

L (AL2)
L

-
0

in ©
Substituting equation (A42) into equation (A41),

C =2 cos> &, sin 2a when a < & (AL3)
N, 1 =1
When a > 8, substitution of equation (A39) into equation (A30) followed

by substltutlon of the resulting expression into equation (A3k4) ylelds,
after integration along X
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2
6l

_2 1 EAP : 2 o
C —ﬁcot 81 2631‘1+2>s1n 20, sin 28l+cos Blu[z? cos o sin

L. . . 2 .2 2 .2 .
= 5 8in 20 sin 261 sin Bl + 3 sin o cos 81 <sln ‘Bl -+%XJ
u u
when o > 61 (Akk)

It should be remembered that CN as evaluated from equation (A43) or

c
(A4l) is based on the maximum cross-sectional area of the cone, ﬂDlé/h.

Center of Pressure

In order to determine the aerodynamic moment on a right circular cone
from the normal force coefficient, it is necessary to know the location
of the center of pressure. This can be determined from the expression

- moment _
c normal force N

=

1 (Ak5)

The normal force on a unit length of the cone is, from equation (A25)

X
aN = ¢ af =2\ qmr. 2 (A46)
N D 1
c 1
and the resulting moment about the cone vertex

c Dl

x 2
aM = x C! d<-£5>(xmr (AkT)
N 1
C
Integrating equation (A7) over the length of the cone,

1
D

M_ 2 l ic.g C! d X....c_
=Dy amry D, ) W\ D (848)

0
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Substituting equations (A3l) and (A39) into equation (ALS8),

M
D, /x \2 /[/x
M = 16 D, grr.> sin 20 sind Tle) g8 (A49)
1 1 1 D D
1 1
0 :
Inﬁégrating eqguation (Ak9),
6 L\’
1 : 2 . L2 1
M= 3 D, @w,” sin 2« sin 61<Dl) (A50)
The resultant normal force on the cone
N=C_ gmr e (A51)
N 1

C

Substituting equations (A41l), (A50), and (A51) into eguation (AL5) and
simplifying, '

2
1, = 3 L, (A52)

where lC is measured from the cone vertex.

RIGHT CIRCULAR CONE FRUSTUM

Noxrmal Force Coefficient

The normal force coefficient for a right circular cone frustum can
be obtained from the expressions for the normal force coefficients of a
right circular cone developed above. This is accomplished by subtracting
the coefficient of the small cone shown in figure A-4 from the coeffi-
cient of the large cone. When o < dp, the coefficient of the small
cone is seen from equation (AL3) and figure A-4 to be

C. =2 0052 5, sin 2a (453)
NS 2

where C is based on the area =D %/ﬁ.
NS 1
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Figure A-4

Similarly, the coefficient for the large cone

. =2 0052 5, sin 2« (A5h)
NL 2

where CN is based on the area ﬂD%/L.
L

Before subtractlng CN from CN to determine the coefficient of the
L

frustum, both must be based on the same area. If the area ﬂD//4 is

chosen, Cp must be multiplied by the ratio (ﬁpl//hZ//(nD%/ﬁ) = Dl%/D2’
S S
Dl ° 2 '
C. =2\=/ cos 8, sin 2a (A55)
Then the frustum éoefficienf
¢ =0 - C (A56)
Ne N, T
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Substituting equations (A54) and (A55) into equation (A56),

2
b\ 2
CNf =21 - (-5—) cos” 8, sin 2a a,§_82 (857)

When \a > 8,, the above procedure can be applied to equatioq:ZAkh),

replacing Bi. and By by 8, and B, respectively in equation (AklL)
u - : u :
to obtain,

2 <£& )
CNf == cot 62 1 - T

el
nja

(82u + > sin 2o sin 262

+ cos B2 [% cosga sin2 62 - % sin 20 sin 282 sin B2
u u

+ 2 sin’a cos=d (sin2 B, + 2) a> B (A58)
3 2 Eu 2

where B, is obtained from equation (A32) Dby replacing 81 and By
u u

by 82 and BE respectively. It should be remembered that CN as
u

: f
determined from equation (A57) or (A58) is based on the area nD%/h.

Center of Pressure

The center of pressure of the frustum can. be determined using
equation (A52) with the appropriate subscripts for the small and large
cones of figure 4. The center of pressure of the large cone

1 =%

L (A + LB) ‘ ~(A59)

N

and the center of pressure of the small cone

2
lS = 3 A (A60) .
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The center qQf pressure distance from the cone veftex is determined
by the ratio of large-cone moment minus small-cone moment to large-cone
normal force minus small-cone normel force. Symbolically,

(a61)

But 7

t?

i

@)
=

o)

b > (A62)

{52
1
o

=

o)

and

’ , (463)

My =Ny lg =Cy a1

Substituting equations (A62) and (A63) into equation (A6l) and simpli-
fying,

L L~ “m 2 g
A+l =—= 5 5 (a6k)
g D - Oy D '
L s

Substituting equations (A59) and (A60) into equation (A64) and simpli-
fying,

c D2‘(A+L5)-c D,“ A

NL
- e (A65)
CN D - CN Dl
L 1S

A+lf=

W
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From equation (AL43), replacing Si;g%& B,

2 .
C =2 cos- 8. sin 2a
N . 2 ,
L Lo T
2 . ,
C =2 cos B, sin 2.
NS 2

Substituting equation (A66) into equation (A65) and simplifying

2 2
D™ (A + LB) -D" A

%)

1 =

2
f 3 - A

2
(D™ - D,

From figure A-4, using a property of similar triangles,

A tih
Dl D
or, solving for A,
a3t
D - Dl

Substituting eqﬁation (A69) into equation (A67) and rearranging,

) L5 (Dl + 2D)
£ 3(D +D)

RIGHT CIRCULAR CYLINDER

Normal Force Coefficient

(A66)

(A67)

(A68)

(A69)

(AT0)

The normal force coefficient per unit length of a right circular
cylinder can be obtained from equations (Al19) and (A30) developed above
for a right circular cone. The procedure is simply to equate the cone



51

angle 8, in equations (A19) and (A30) to zero and determine the re-

sulting expressions. From equation (Al9), with &, = 0,

1

By =0 (AT1)

u

Substituting equation (A71) into equation (A30), with 8 =0 and

r=r o= rcyl for the cyllnder,

C'y = %% sin2 a (A72)
cyl

Using the nomenclature shown in figure A-5,

chl

cyl cyl'
l - —s “cyl

Y

cyl

Figure A-5

the normal force coefficient for the complete ¢ylinder

L
cyl
Dc i chl
“y = L/j 4 C'y D (AT73)
cyl 0 cyl cyl

Substituting equation (A72) into equation (A73) and integrating,

L

CN' =22 eyl sing o (ATH)
3t D

cyl cyl
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. 2
where CNcy]_ is based onA the area =D cyl/h'

“

Center of Pressure

The elemental torque due to the normal force acting on a unit
length of the cylinder

X
1 2
aM . =X . C'_d -91?> grr (A75)
cy;L cyl | l\Tc (Dcyl cyl
and the resultant torque
Coyl |
D X X .
_ cyl < cyl> ( cyl) 2 :
M . .=D ! d qar (AT6)
cyl cyl . NC Dcyl Dcyl / cyl

Substituting equation (A72) into equation (A76) and performing the
indicated integration, ' ’

2

L
_ 16 T eyl 2 , 2
eyl = 3x Dcy]_ qr” g sinTa (AT7T)

The resultant normal force acting on the cylinder

N . =¢ Qe (AT78)

cyl Ncyl cyl

Substituting equation (AT4) into equation (AT78)

L
_ 232 eyl 2 . 2 -
Ncyl = 5 Dcyl gnr eyl sin“a (A79)

The center of pressure distance from the front of the cylinder

Mev1
= & - (480)

1
cyl N eyl

Substituting equations (AT7) and (AT9) into equation (A80) and simpli-
fying, i .

1 =

1 L
cyl 2 Lcyl, (a81)
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APPENDIX B

GRAVITY GRADIENT TORQUE ACTING ON A VEHICLE

IN AN INVERSE SQUARE FCRCE FIELD

The force due to gravity acting on an element of mass dm in the
vehicle shown in figure B-]l can be written vectorially as:

_ Kdmr
'dFG = = 5 (B1)

¥y
Vehicle center ~ l
J

of mass \

X
/ o )
z /////
Attracting body
center of mass
: m
Figure B-1
But, by vector addition (see fig. B-1),
r =R +a (B2)
whe;c'e
~ ~ ~

=l

=in+Ryj+Rzk (B3)
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& =xi +y) +zk (BL)
Substituting equations (B3) and (B4) into equation (B2),

r
m

i

(R, + 01+ (R + 7)) + (R, + 2)k (35)

The incremental torque on the vehicle is, from reference 6,

dMG = g xd FG (B6)

Substituting equations (BL), (B4), and (BS) into equation (B6) and using
matrix notation

i 3 k
(x) (¥) (2)
e A R A (87)
m

Expanding equation (B7) and simplifying,

~

- 28 [, ) 05 () o )

r
m

In order to integrate equation (B8) over the mass of the vehicle,
it is necessary to express the quantity l/iﬂ5 as a function of R and a.
An approximate expression of this form can be obtained in the following

manner.

The dot product

- - 2 - -
ro.T =r° = (R+a) . (R +a)
=R.R+a.a+2R.a (B9)

Substituting equations (B3) and (B4) into equation (B9) and expanding,

rm2 - R® [1 + (a/R)2 +_ (2//R2) (XRx + yRy + zRZ):| (BlO).
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Assume now that (a/R)2 << 1 and can be ignored in equation (B10).
Thus,

rm2 ~ 32[1 +»(2/R2) (XRX_+ yRy + zRZ)] . (BL1)

Raising equation (Bll) to the -§/2 power,
-2
1 1 2 2
—_—— e 2 R 2
r5_R5[1+(./R)(xRX+yy+zRZ)} (B12)

Expanding equation (Bl2) by the binomial theorem, retaining only the
first term of the expansion,

1 1 2
—_— =l - - R R B
rB—RB[ R2(xRX+yy+zZ)] (BL3)

m

Combining equations (B8) and (Bl3), the components of aM along the"
x, ¥, and z-axes, respectively, are:

— -~ -

- Kdm |, _ 3 -
a = 3 1 > (xRX + yRy + sz) ¥R, zRy (Blh)
¢ R R
L. - = -
™ Ir .
a - = :5%& 1- ;%-(xR +yR_ + ZRz) zR_ - xR (B15)
-Kdm 3 :
M = —— |1 - < (xR_ +yR_+2zR )| |xR_ - yR (B16)
2 R5 i R2 X y ZJ i v X

aMm = = [}RZ ZRy Rg (xyRXRZ - XZRXRy

2 2 2
+y Rsz - yzRy + yzR, - zgRyRZ{} (B17)
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The total torque about the x-axis due to gravity gradient for any
orientation of the vehicle relative to the attracting body can be found
by integrating equation (BL7) over the mass of the vehicle with R, Ry,

and R, held constant during the integration. Integrating _equatioh (B17)

term by term,

-K -3
M =-—=— /R fyd:m-R fzdm——-RR fxyd.m
Xy 'RE {z v RQ[XZ
-R R fxzdm+RR fygd_m Rgfzdm
Xy J Yy Z y Y
2 2
+R fyzd.m-— R R fz dm] (B18)
Z . vy z

Since the origin of the xyz-axis system is located at the center of mass
of the vehicle (fig. B-1l), it must necessarily follow that:

f;cdm = fydm = fzdm: 0 (B19)

to be consistent with the definition of center of mass. Substituting
equation (Bl9) into equation (B18), then adding and subtracting

(BK/R5 ) Rsz f x2dm to the resulting expression yields:

M =22 {RR fxyd;m—RR fxzdm
Xg g ).X% Xy

: 2 2 2 2
+RyRZf(x +y)dm-Rszf(x +2z7) dm

2 2
+ (sz -‘Ry )fyzd.m (B20)
But ~
fxydm = Ixy
fxzdm =TI, 5 (B21)
fyzdm = IyZ'_)
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~
f(y'2 +2%) dm = I
k/p(xe +2°) dn = Iy' > (B22)
u/\(x2 + ye) dm = T,

Substituting equations (B21l) and (B22) into equation (B20),

_ 3K 2 2
M%G =5 RR, ey - 3XRyIXZ + (R, - Ry ) I, * RyRZ(IZ - Iy) (B23)

For the special case in which x, y, and z are principal axes of the
vehicle, equation (B23) reduces to:

- X _ :
MkG 5 RyRZ (IZ Iy) (B24)

Applying the above procedure to the y-axis, 1t can be shown that:

_x[g2_g2
D%Q} - R5 [ERX - Rz ) Ixz + RXRZ (IX_ Iz)
+ RXRnyZ - RyRZIX%] (325)

or, if the x, y, z-axes are principal axes, equation (B25) reduces to:

ox _
M&G = 5 RR, (IX - IZ) (B26)

Similarly, it can be shown that

3K
Moo=
¢ R

2 2 '
- R + R - b - .
. [ERy . ) Ixy ny (Iy IX) + RyBZIXZ RXRZIy%] (B27)
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or, if the x, y, z-axes are principal axes, equation (B27) reduces to:

=X -
MZG 5 RXRy (Iy Ix‘) (B28)

It should be remembered that the results obtained above are based
on the assumption that the gravitational force generated by the attract-
ing body on an element of mass in the vehicle is represented by equa-
tion (Bl). The resylts are further limited by the validity of neglecting
higher order terms in the binomial expansion used to obtain equation (Bl3).



