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ABSTRACT

Most recent studies involving multiple swingby interplanetary tra-
jectories have been made using a simplified model consisting of a se-
quence of heliocentric conic arcs matched in relative hyperbolic exess
velocity at each planetary encounter. This model provides adequate Te-
sults for preliminary mission planning and analysis but as more ad-
vanced investigations are undertaken, an accurate N-body reference tra-
jectory becomes necessary. This thesis presents a technique for the
rapid deterymination of such a reference trajectory.

The gap between the simple conic model and the integrated N-body
trajectory is bradged in two steps. The first of these utilizes a
model of the trajectory consisting of alternating planetocentric and
heliocentric conic legs corresponding to trajectory segments inside
and outside of the planetary spheres of influence. The trajectory legs
are constrained to match in position and time- but are inataally mis-
matched 1n velocity. An iteration scheme is developed to drive this
mis-match to zero. As the second step, N-body perturbed trajecteries
are calgulated which have the same end conditions in position and time
as the conic legs in the previous step but have slight offsets in
initial and final velocities., The same iteration scheme utilized in the
first step is employed to match these perturbed segments in velocity
as well as position and time. Finally, the accuracy of each trajectory
leg 1s checked by numerical integratiom.

Threc examples are considered an detail. They are.

1) a dual planet recomnalssance trajectory
{Earth-Venus~-Mars-Earth

2) Grand tour trajectory (Earth-Jupiter-Saturn-Uranus-
Neptune)

3) periodic trajectory (a repeating Earth-Venus shuttle
trajectory)

Free-fall trajectories are determined for the first two of these ex-
amples. Comparison with numerically integrated trajectory legs has shown
these solutions to be accurate to better than 0.4 m/sec in initial and
final velocity for heliocentric trajectory legs and better than 0.1
m/sec for planetocentric legs. No free-fall trajectory was found for
the third example but a powered trajectory (with a total Av of 220.5
m/sec) is presented, In general, accuracies comparable with the results
of the preceding two examples are obtained.
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Chapter 1

Introduction

1.0 Objectives of the Thesis

This thesis describes a technique for the determination of accu-

rate reference trajectories for multiple swingby interplanetary tra-

jectories. The main objectives of the research are the following:

1)

2)

3)

4)

To develop a basically analytic technique for the deter-
mination of multiple swingby reference trajectories which
will converge rapidly from a wide range of initial guesses

to a solution with a high level of accuracy.

To provade a means of specifying a multiple swingby tra-
jectory with uniform accuracy along its entire length by
providing a sequence of guidance aiming points spaced

along the trajectory

To provide a simple, accurate and economical means for
performing detailed mission analysis for multiple swingby

trajectories.

To demonstrate the feasibility, accuracy, and generality
of the technique by 1ts application te three examples;
a dual planet reconnaissance trajectory, a Grand Tour

trajectory, and a periodic trajecteory segment.

1.1 Defanition of the Problem

The determination of space trajectories is usually posed as a two-

point boundary wvalue problem. The initial and final position vectors

and the time of flight between them are given along with the equations

of motion for the trajectory. The calculation of the reference tra-

jectory which satisfies these conditions i1s the targeting problem. This

thesis deals with the problem of targeting for trajectories charaterized

13



by one or more close planetary encounters between their launch and

arrival points.

1.2 Existing Targeting Technaiques and Their Application to Multiple

Swingby Trajectories

The use of multiple swingby trajectories to substantially reduce
the launch energy and flight time for a numbexr of highly interesting
missions has long been recognized [1,2]. Each close planetary encounter
provides an opportunity to alter the energy of the trajectory with re-
spect to the sun by use of the planetary gravitational field. In effect,
the spacecraft exchanges energy with the planet. This ability to make
major heliocentric velocity changes along the trajectory without fuel
expenditure allows considerable flexibility in mission planning. Ex-

amples of some of the missions which have proposed are

1) Earth-Mars-Earth [3,4]

2) Earth-Venus-Earth [3]

3) Deep Space, Solar Probe and Out-of-Ecliptic [5,6]

4} EBarth-Venus-Mercury [7,8,9]

5) Earth-Venus-Mars-Earth {3,10,11,12,13,14,15]

6) Outer Planets Missions [16,17,18,18%,20,21]

7) Earth-Venus and Earth-Mars Periodic Orbits [22,23,24,25]

The majority of these studies have been concerned primarily with
preliminary mission planning and guidance requirements studies using
simplified models for targeting. To the author's knowledge, the only
multiple swingby mission for which precision reference trajectories

have been generated i1s the Barth-Venus-Mercury flight [7,8].

Present targeting techniques for multiple swingby interplanetary
trajectories fall inte two general classes. The first of these uses an
approximate model for the mission consisting of a sequence of helio-

centric conic arcs running from the center of one massless planet to

14



the next. Thus, the trajectory is determined by giving the order 1in
which the specific planets are encountered along with the launch,
arrival, and encounter dates. The effects of the planets on the tra-
jectory are approximated as impulsive changes in velocaty with respect
to the Sun at each planetary encounter. Using this model, a search is
made over a range of departure, arrival, and intermediate encounter
dates to determine combinations which yield trajectories which are
matched in hyperbolic excess velocity relative to the planet at each
intermediate encounter and which are physically realizable in the sense
that they do not require the trajectory to pass beneath the surface

of any planct. This scarch may be carried out exhaustively to deter-
mine all possible swingby trajectories within the range of dates
specified, {1,18] or may use an 1terative technique to converge on a
single set of dates [22]. The advantage of this technique lies 1in the
speed with which each trajectory may be calculated.. Since the model
assumes the trajectory to be a sequence of two-body legs, each may be
determined as the solution to Lambert's Problem. The disadvantages of

thas technigue are

1) The large number of trajectories which must be generated.
For an exhaustive search procedure, large numbers of
date combinations must be examined. An iterative technique
mitigates this difficulty but may not provide all possible

solutions.

2) The inaccuracies of the model. Both numerical [7,8, 28]
and analytic [27] studies have aindicated that while the
above model is acceptable for preliminary studies, 1t
does not have sufficient accuracy for precise trajectory
prediction for close planetary encounters.

In general, approximate targeting schemes presently employed for mul-

tiple swingby trajectories are most useful for preliminary mission
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studies and for the generation of initial conditaions for more accurate

targeting techniques.
t

The other class of targeting procedures which have been applied
to multiple swingby trajectories utilize numerical aintegration tech-
nigques to generate precision reference trajectories. An example of
this procedure as applied to an Earth-Venus-Mercury trajectory in [8]

is as follows,

1) TInitialize the launch conditions at Earth and the aiming
poaint at Venus with the conic values from an approximate

targeting technique.

2) Search over the injection conditions at Earth until a
numerically integrated trajectory hits the desired

aiming point at Venus.

a

3) Continue the converged case from 2) on to Mercury and

note the resulting miss of the desired target point there.

4) Perturb the aiming point at Venus and repeat steps 2) and
33.

5) From the results of step 4}, construct partials of the
miss at Mercury with respect to changes in the aiming

point at Venus.

6) Compute and apply differential corrections to the aiming

point at Venus.

7) Repeat steps 2) 3), and 6) untal convergence at Mercury
1s obtained.
The average running time for a convergence criterion of + 1000 km at
Mercury was about 45 minutes on the IBM 7094, A variation on this tech-
nique employs a many-body state transition matrix cbtained by the

nunerical integration of the variational equations to determine the

15



differential corrections in the targeting process. This latter method
has been used [26] for the targeting of single leg trajectories (e.g.
Earth-Venus or EBarth-Mars) but to the author's knowledge has not been

applied successfully to multiple swingby trajectories.

The advantage of the numerical integration technique is that it
gives a completely defined accurate reference trajectory. All signif-
1cant disturbing forces may be included tc the degree of precision
available on the computer used. The disadvantages of the technique are
the large amount of time consumed by the repeated numerical integration
of the trajectory legs and the question of its feasibility for tra-
jectories invelving more than one intermediate swingby. This latter
difficulty arises from the strong semnsitivity of the trajectory to
small changes in swingby conditions for planetary encounters earlier
in the trajectory. Thus, as more swingbys are added to the trajectory,
the accuracy requirement for the determination of the earlier swingbys
increases greatly. For the same reason, the linearity vegion for the
differential correction process shrinks. Both of these reasons lead
to a large increase in the number of numerical integrations of tra-
jectory legs needed. This difficulty did not arise in the approximate
targeting schemes since the trajectory was modeled as a set of shorter
arcs to be matched dynamically at a number of intermediate points
rather than as a single arc determined entairely by its initial con-

ditions.

The targeting procedure developed in this thesis attempts to
combine the advantages of both the approximate and the numerical inte-

gration techniques while minimizing the disadvantages of both.

1.3 Synopsis of Thesis

In Chapter 2, two patched conic models and their application to

multiple swingby trajectories are described. The first corresponds to

17



the approximate model described in the preceding section. The second
(the advanced patched conic model) adds planetocentric conic legs
between the heliocentwric conic legs to describe the swingby maneuver
more completely and accurately. The conic legs are constrained initial-
ly to match only in position and time. Then, an iterative process is
employed to vary the matching points until the legs also match in

velocity.

Chapter 3 describes a basically analytic method for computing the
perturbations of conic legs due to the disturbing accelerations of
other bodies. A technique is developed for calculating the initial and
final velocity offsets for each conic leg needed to produce a perturbed
trajectory having the same initial and final conditions in position

and time as the unperturbed conic reference leg.

Chapter 4 deals with the iterative techniques of matching the
individual trajectory legs (either perturbed or unperturbed) in veloc-
ity as well as position and time. Both first-order and second-order

techniques are developed.

Chapter 5 presents numerical results for a dvual planet recon-
naissance trajectory. The reference trajectory 1s specified by the
position, velocity, and time at the sphere of influence entry and
exit points for the launch, arrival, and swingby planets. Comparison
with numerically integrated trajectory legs indicates that the an-
alytically calculated trajectory legs match to within a total error

in velocaty of 0.2263 m/sec.

Chapter 6 presents the same results for a Grand Tour trajectory
example. Here the trajectory segments were matched analytically to

within a total error of 2.652 m/sec.

Chapter 7 discusses a segment of a periodic trajectory that

shuttles between Earth and Venus. No free-fall trajectory was found

18



for this example but a powered trajectory requiring a total impulse of
220.534 m/sec over the 3.6 year segment considered was determined. The
special nature of this trajectory resulted 1in less accurate predictions
by the analytic technique with the total error amounting to 38.950

m/sec.

Chapter 8 summarizes the thesis and its contributions. Several
applications of the techniques developed are suggested for further

research.

19
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Chapter 2
PATCHED CONIC ANALYSIS

2.0 Chapter Summary

The application of two patched comic models to multiple swingby
trajectory analysis 1s described. The fairst of these, the simple
patched conic model, consists of a sequence of heliocentric conic arxcs
matched in relative wvelocity magnitude at each planetary encounter.

It is found to be most suitable for preliminary mission analysis. The
second, the advanced patched conic model, comsiders the trajectory to
be approximated by a series of alternating heliocentric and planeto-
centric conic arcs matched in position, velocity and time at the entry
and exit points of the sphere of influence of each planet encountered.
It is found to be a more useful model for reference trajectory calcu-
lations. The computational details of the advanced patched conic model

are examined in depth and limitations on its accuracy considered.

2,1 The Simple Patched Conic Model

The simple patched conic model has been successfully employed for
a number of preliminary trajectory and mission analysis studies.
Examples of its use for multiple swingby missions may be found in
[zz, 7, 10, 16, 18, 6] and many others. The model consists of a se-
quence of heliocentric conic arcs matched in magnitude of velocity
relative to the planet at each planetary encounter. An illustration
of one such trajectory is given in Figure 2.1. The steps followed for
a trajectory with N planetary encounters (launch, N-2Z 1ntermediate
swingbys, and arraval) are:

1) Specify the launch date t,, the arrival date tyo and the

1
N-2 intermediate encounter dates tZ’ Tgsenes tN-l

2) At each date Ty calculate the position Tp g and the
H

velocity v, . of the planet encountered.
H

21



3)

4)

For each date t; (except for k=N)} calculate a helio-
centric conic arc running from Ip .k to 3P,k+1 with a
time of flight T=ty 4=t (See Appendix B for the method
of calculating these arcs). Each arc will have associ-
ated with it a planetary departure velocity vy . and
?
a planetary arrivel velocity Vo kel both of which are
Ty >

measured relative to the sun.

For each intermediate date ty (k=2,3,...N-1) calculate
the incoming and outgoing velocities relative to the

planet encountered.

Vi,k T ¥a,x T Y,k
(z.1)

Yo,x © ¥p,k ~ Yr,x

For a freg-fall trajectory to be dynamically possible,
the magnitudes of these velocities relative to the planet
must be equal at each encounter, Using some convenient
i1teration scheme {see [2Z] for an example), the inter-
mediate encounter dates are varied and steps 2 to 4 Te-

peated until this condition 15 satisfied.

Note that while the incoming and outgoing velocities (v , and
3

lr—O,kj relative to the planet are equal in magnitude, the arrival and

departure velocities (EA X and Yy k) relative to the sun usually differ
> =

in both magnitude and direction. The model considers the planetary

swingby to be equivalent to an instantaneous veloclty change of

22
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relative to the sun applied at the time of encounter.

Once the simple patched conic trazjectory has been determined,
some information on the planetary encounter phases may be obtained.
Using the incoming and outgoing velocities (EI,k and EO,k) relatave
to the planet as approximations to the asymptotic velocity vectors,
the constants for a planetocentric hyperbola may be determined and the
relevant parameters for the swangby calculated. The accuracy of this
approximation is studied in [27]. There it is shown that the approx-
imate swingby parameters differ from their time values by terms of

order €, the planet-to-sun mass ratio.

The advantages of the simple patched conic model are its simplic-
1ty, ease of implementation, and speed of computation. A large number
of trajectory alternatives may be explored with a relatively small
investment in computer time. Thus this model is well suited for prelim-
inary mission analysis. The basic limitatiomns of thé simple patched

conic model are:

1} The heliocentric conic arcs and the plametocentric hyper-
belas are matched only approximately. The model does not
provide a continuous or highly accurate descraption of

motion in the vicinity of a planetary encounter.

2) The effects of the planetary encounter are approximated
as an impulse rather than considered to act over a Tegion

in space and time.

3} All trajectory segments are considered to be conic arcs.
The effects of all perturbation other than the close

planetary encounters are ignored completely.

2.2 Advanced Patched Conic Model

To eliminate some of the inaccuracies and assumptions of the

23



simple patched conic model ané to lay the groundwork for a later per-
turbation analysis, a more advanced patched conic model is necessary.This
model consists of a sequence of altermating heliocentric and planeto-
centric conic arcs comstrained to match 1n position and time at the
sphere of influence (S80I} entry and exit points of each planet en-
countered., An illustration is given in Figure 2.2. These entry and

exit points are chosen initially from the solution for the simple
patched conic model and usually result in velocity mis-matches between
the conic arcs. An iterative procedure is necessary to drive this mis-
match to zero. The SOI used is defined in Appendix C. It is somewhat

larger than the Laplace SO0I commonly used. The application of this

model to a trajectory with N planetary encounters (launch, N-Z inter-

mediate swingbys, and arrival) is as follows:

1) At each intermediate encounter, specify the entry and
exit points on the planetary SOI. At'the launch planet,
specify the exit point and at the arrival point specify
the entry point. An entry point on the 30I is given by
its azimuth, elevation, and time of passage. An exit point
on the SOI is given by the increments in azimuth, eleva-
tion and time from the corresponding entry point on the
same SO0I. The one exception to this is the exit point
at the launch planet, which is specified in the same
way as an entry point. The radius of the S0I is assumed

to be a constant for each planet.

2) For each time ty of entry or exit through the SOI calcu-
late:
a) the position r and velocity v of the planet
=P,k —P,k

{this 1s discussed in Appendix C).

24



3)

4)

b) the cartesian coordinates of the entry or exit

point with respect to the planet encountered.

For each point k (except the last) calculate a conic arc
from point k to point k+1. For even k (entry points),
this will be planetocentric arc which will always be a
hyperbola with a central angle greater than 180°. This
arc wiill run from the entry peoint to the exit point of

a single planet's SOI. For odd k (exit points}, the arc
will be heliocentric and may be either an ellipse oT a
hyperbola. It will run from the S0I exit point of one

planet to the S80I entrance point of the next.

At each intermediate entry or exit point, calculate the
difference in velocity between the heliocentric and
planetocentric arcs. In Chapter 4, an iterative technique
for varving the position and time of these points in

order to eliminate the velocity mis-match 1s described.

After steps (1) - (4) have been repeated until convergence is.

achieved, the result is a series of conic arcs continuous in positaon,

velocity and time at all points. Discontinuities 1in acceleration occur

at the SOI entry and exit peints since a planet's gravitational field

is i1gnored outside of its SOI while the solar perturbing forces are

neglected inside of an SOI. Several peoints to be noted about this

model arte:

1)

For a trajectory with N planetary encounters, there are
ZN-2Z matching (entry or exit) points specified in posi-
tion and time along the trajectory. Odd-numbered matching
points are S0I exit points while even-numbered ones are

SO0I entry points.
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2) The different means used to specify entry and exit points
provides some separation in the effects of varying these
points. The two heliocentric arcs touching the planet's
80T are affected pramarily by changes 1in the entry point.
The heliocentric arc leaving the planet is also affected
by exit point changes but these effects are usuzlly much
smaller than those due to the entry peint changes. The
planctocentric arcs are affected primarily by exit point

changes.

3) This model considers the effects of an planetary encoun-
ter to be distributed over a region in both time and
space. This is a more accurate appruximation to the ac-
tual interaction than is provided by the simple patched

conic model.

4) A continuous description of the motioh along every phase
of the trajectory is given, This alsc provides a basis
for the perturbation analysis to be described in Chapter

3.

A detailed discussion of the computations involved in several of

the steps 1n the advanced patched conic model is given in the next

section,

2,3 Computational Details

2.31 Entry and Exit Point Coordinates

28

The state vector for an entry or exit poant is given by

k
X = |y k=even (entry point) {2.3)
ty or k=1 {launch point)



AGR

Xy = A¢k k=0dd and # 1 (exat point) (2.4)
Atk
where By = azimuth of point k
by = elevation of point k

ty = tame of passage through point k

[
@
|

x = difference in azimuth between points k and k-1
Apy = difference in elevation between points k and k-1

oty = difference in passage time between points k and k-1

These coordinates are illustrated in Figure 2.3,

The planetocentric cartesian coordinates of am entry or exit point are

calculated using

cCos o cos B XD k
Tpx T Is,i |SIM® cos Bl o= iVpx (2.5)
sin B 5.k
3

where ro ;< radius of SOI for planet :
o= 8y k=even or k=1
= 8y _; *+ 46, k=odd and k#1
B = ¢y k=even or k=1

Py * Ady k=o0dd and k#1

2.32 Calculation of Conic Arcs

In [3], it is shown that given thEl? initial (rl, tl), and final
(rz, tz) positions and times, it is possible using Lambert's theorem

to czlculate a two-body conic trajectory with initial velocity ¥, and
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final velocity v, connecting any two points. This procedure is

described in detail in Appendix B.

2.321 Planetocentric Arcs

These arcs run from the entry point on a planet's S0I to the

corresponding exit point. They are always hyperbolic with respect to

the planet and traverse a central angle greater than 180° but never

make a complete revolution. The initial and final points are

5]
1l

Iy T Ipx Ty = Yy
(k=even) (2.6)

ot
]

Ip = Ip,ku1 2=tk t At

The initial and final velocities are stored as

Y,k T 4

(2.7)

Yy,k+1 - Y2

2.322 Heliocentric Arcs

The heliocentric arcs run from the SOI exit peint on one planet's

S80I to the entry point of the next. The initial and £inal points are

28

T3 T Ipx + Ip k ty =ty ; * At (5t for k=1)

(k=0dd) (2.8)

Yy = ¥p k+1 ¥ Ip,k+1 ty = Tk

In addition it is necessary to specify

1} The number of complete revolutions the arc traverses

about the central body. This must be given a priori.



z)

3)

Whether that portion of the arc remaining after the
complete revolutions have been finished traverses a
central angle greater or less than 180°. Assuming that
all heliocentric trajectories have inclinations less

than 90°, this may be determined using
Gl = sSgn [iz‘(f_lxzz)] (2.9)

If §1>0, the central angle is less than 180° while if

6,<0 it is greater than 180°.

Whether the arc is a hyperbola or an ellipse. This is

determined by comparing the time of flight for the arc
T=1t, -1 (z.10)

with the parabolic time of flaght (see [31)

T= 2 J% [33/2 - Gl(s-c)s/z:! (2.11)
€= 1,7 ¢ = |l
s = 7 (ry+ry*c)

Yy = gravitational parameter for the central body
{in this case the sun}
G1= as defined above

between the same two points. Then, if T>T the arc is

P,
an ellipse while 1f T<TP, it 1s a hyperbola. If T=TP, the

arc is a parabola.
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The initial and f£inal velocities for the heliocentric arcs are

stored as

1=
'—l

Ve, x
(2.12)

YR, k+1 T Y2

2.33 Calculation of Cost Function

At each entry or exit point along the trajectory (excluding the
initial and final points)} the velocity along both a heliocentric arc
and a planetocentric arc have been calculated. In general, these
velocities will not be consistent but instead will be mis-matched by

an amount

AV = Y,k T ¥H,k " Yp,k (2.13)
where VEx ° velocity relative to the sun along the heliocentric
b

arc at point k

xH,k = velocity relative to the planet along the planeto-
centric arc at point k
Vp i = Velocity of the planet relative to the sun at time
H

tk.

A scalar cost function J for the total velocity mis-match along

the trajectory may then be calculated using

2N-3
T
J = ¥ Av," Av (z.14)
k=2 -k "=k
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This expressien is positive definite and goes to zero only when

velocities are matched along the entire trajectory.

2.4 Accuracy of the Model

The basic limaitation on the accuracy of this model lies in the
fact that it assumes each trajectory segment to be a pure two-body arc.
The effects of direct planetary gravitational attractions are 1gnored
outside of the planet's SOI while the effects of solar perturbing
forces (due to the gradient of the sun's gravitational field) are neg-
lected inside of a planet's SOI. Within these assumptions, the calcu-
lation of the trajectory segments is an exact solution to the non-
linear two-body orbit determination problem. The accuracy of the so-

lution 1s limited only by the computational round-off errors of the

method used.
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Chapter 3

Perturbed Conic Analysis

3.0 Chapter Summary

Two approaches to computing the perturbed conic trajectory seg-
ments are considered. The first computes the perturbations for a tra-
jectory running from the initial time to the final time, Perturbatiens
due to disturbang accelerations near the initial tame are found to
grow to unacceptable levels near the final time. The second method
starts at the trajectory mid-point and computes perturbations from
there to beoth the initial and final times. The accuracy for this meth-
od is adequate. The details of evaluating the perturbations by quad-
rature are described. The method for determining the velocity offsets
for a perturbed trajectory passing through the same initial and final
position and time as the two-bedy trajectory is given. The source of

error in the calculations are discussed.

3.1 Description of Approach

The object of this chapter 1s to take into account the fact that
the segments of the true multi-swingby trajectory are only approxi-
mately two-body orbits. To do this, a set of perturbed conic trajectory
segments {corresponding to the segments of the advanced patched conic
model) are calculated. The heliocentric arcs take ante account the
disturbing effects of the attraction of the planets while the planeto-
centric arcs are affected by the disturbing forces due to the sun. The
perturbed conic trajectory segments "are constrained to match the same
initial and final conditions in position and time as the corresponding
segments 1n the advanced patched conic model but are offset in initial
and final velocity. It is the calculation of these velocity offsets

that is the main concern of this chapter.

Two approaches to the calculation of the velocity offsets were
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tried. The first of these is similar to the implicit velocity offset

technique used in space guidance [28]. This procedure i1s illustrated

in Figure 3.1. Its steps for a single trajectory segment are described

below.

36

1)

2)

3)

Assume that the state

Ty (t)
X, (1) = (3.1)
vy (t)

along the advanced patched conic trajectory segment found
in the preceding chapter may be expressed as a function
of tame. Starting with the same initial conditions as

the two-body trajectory
E(t]_) =%y (tl) (3.2)

calculate the perturbed trajectory x(t} using linear

perturbation theory.

At the final taime, calculate the position and velocity
differences between the two-body and perturbed trajec-
tories.

§r(t,)

65(1'-2) = 5E(t2) = E(tz) - X (tz) (3.3)

Using linear perturbation theory, calculate the velocity
offset needed at the initial time to reduce the final

time position offset value to zero.



Before _ After

0 [ 0
8x(t,) = _—— 8X(ty) =
=t =, £t A
- - T2 {3.4)
sr(t,) 0
8x(t,) = —( 2 —  8R(ty) = s
sSv(t,) Svi(t
- 2 ,__. 2-..

This process also leads to a new velocity offset value Giz(tz)
at the final time, The above procedure proved to be highly inaccurate.
All the trajectory segments have in common the characteristic of moving
from a region of strong perturbing forces (near the sphere of influence
boundary) intoc a region of weak perturbing forces (far from any planet
for the heliccentric legs and deep inside the sphere of influence for
the planetocentric legs) and then back into a region with strong per-
turbing forces. The effects of the initial strong perturbations grow
rapidly along the trajectory and lead to very large deviatiens in
position and velocity at the endpoint. These deviations are usually
outside the linear range of the perturbation theory used in steps 1
and 3 above, thus leading to unacceptable errors in the calculation

of the velocity offsets.

The reason for the failure of this first approach led to the use
of the much more successful second approach. Referring to Figure 3.2, the

steps for this method for a single trajectory segment are given below.
1) Assume that the state Eo(t) along the advanced patched
conic trajectory segment is a known function of time.
Starting at the mid-point

_1
ty = 5 (t, * tp) {(3.5)

of the two-body segment with the same state as the
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2)

3)

conic trajectory, calculate perturbed trajectories
forward to the final time and backward to the initial

time (See Figure 3.2a) from that point.

At the initial and final points, calculate the offsets
in position and velocity between the two-body trajectory

and the perturbed trajectory.

o

sxcep - 5V 0w - xeey) (3.6)
(51 (t,)]

éx(t,) =

T eute| = x(ty) - xyley) (3.7)

Using linear perturbation theory, calculate the offsets
in both position and velocity at the mid-point time Ty

needed to reduce the initial and final position offsets

to zero.

Before After
ST (t,) R [0

5{(121} = =1 ——— Sﬂ(tl:] = ~
6E(tl) SK(tl)
0 _— [52 (1]

GECtM] = - GE(tM) = N (3.8)

0 8V (ty)
sz(t,) . [0

sx(t,) = —_— 8X(t,) = |
sv(t,) s8(t,)]

This new trajectory is shown in Figure 3.2b.



This second approach provided the accuracy needed for the calcu-
latien of the inaitial and final velocity offsets (Sﬁ(tl) and Si(tz)).
Since the perturbed trajectories calculated in step 1 always run from
regilons of weak perturbations (the mid-section of the trajectory) to
regions of strong perturbations (the end-points), large deviations
{due to the accumulated effects of the strong perturbing forces) do
not have the time to grow. Also, since the effects of the strong per-
turbing forces depend on the time spent in the vicinity of the sphere
of influence boundaries at the end-points rather than on the time of
flight of the trajectory, the size of the position and velocity offsets
(ﬁi(tl) and Gi(tz)) are not influenced heavily by the length of the
trajectory. The computational details of the second approach are de-

scribed in the next section.

Once the velocity offsets have been determined, a new cost func-
tion taking them into account is contructed. Then, the iterative
procedure employed for the advanced patched conic model is used to
match the perturbed conic segments in velocity as well as position and

time at the entry and exit points.

3.2 Computational Details

3.21 Calculation of Perturbed Trajectory

i

It may be shown [3,29,30,31] that the solution (using linear per-
turbation theory) for the deviations between the perturbed and two-body

trajectories is given by

t

§x(t) = Qo(t,ti) Ggﬁti) + ./ﬁ QO(t,T) go(r) dt (3.9)
t.
i

where
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Sr(t)
8x(t) = = deviation from two-body orbit
§v(t)

Qﬂ(t,ti) = state transition matrix for the two-
body orbit between t; and t. (See Ap-
pendix D for a description of the

properties of this matrix.)

L=

go(t) = = disturbing vector
ag(t)

§d(t)- = disturbing acceleration evaluated as a

function of time along the two-body
trajectory.

All the quantities on the right-hand side of (3.9) are known functions
of time evaluated along the two-body reference trajectory. Since the

perturbed trajectory calculations start with
E[tM) = Eo(tM) (3.10)

1t can be seen that

(L=

sx(ty) = (3.11)

(=]

and that (3.9) becomss
. £y
8x(ty) =f 8, (t, )£, (T)dt (3.12)
El

M
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for the integration to the initial point and

t .
2

§x(t5) =f 8y (15,1 (0t (3.13)
t
M

for the integration to the final point. Since the integrands in (3.12)
and (3.13) are known functions of t, the integrals may be evaluated by

quadrature (See Appendix D for a discussion of the technique used).

3.22 Calculation of Disturbing Accelerations

The disturbing acceleration due to body Pj on the motion of P2

with respect to P1 (see Figure 3.3) 15 given by

1 1
= - L. + d. 3.14
24,) "3 ( PRI Y —J) (.10
where J 3
£j = positaon vector from P1 to Pj
gj = position vector from Pj to P2
uj = gravitational parameter for Pj

Numerical difficulties may arise in the use of (3.14) since &j and gj

are often nearly equal and opposite vectors, These difficulties may be

alleviated using a technique developed in [3]. Write

) d
1 1 = 1 S
—;3 &5 + _Eg QJ 23 [3 + ( 3 1) gj] (3.15)
J J i) i

where
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r = position vector from P, to P,
= L. d.
B+ g
Now, write
a3
% - 1] = W) (3.16)
22 3
J
where
q. = L (L - 2 cos a. (3.17)
R i
J J
Wiag) - @+ ¥ o (3.18)

o, = angle between r and &j

To evaluate W[qj), re-write (3.18) as

(1+q;)>-1
(l+‘:{j) +1
or
3+3q +q?
Wig.) = q. J 3 (3.19)
J J (1+qj) +1
Thus, substituting (3.19)and (3.18) into (3.15) yields
By W 3.20)
. = - + - - L]
84,j peill LIS EO R ¢
3
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http:3.19)and(3.16

The total disturbing acceleration is the sum of the individual

contributions.

Ed,j (3.21)

For the heliocentric legs, all significant planetary disturbing accel-
erations are included in the calculation of (3.21). For the planeto-

centric legs, only the disturbing acceleration due to the sun is con-

sidered.

3.23 Calculation of Velocity Offsets

As shown in Appendix D, the state transition matrix may be par-

titioned inteo four sub-matrices.

Ag(t,t,) By(t,t;)

@O(t,ti) (3.22)
Colt,t5) Dy(t,ty)
where

ar (t)
Agltsty) = |sgrey
0

= "1

BO (t’tl) =

1
[+

]
o

Gt t,) =

I
S5
I+
[ad
=

v (e) ]

agitii
- -0

]

Dy(t,t,)

Having computed the initial and final perturbations (Si(tl) and 65(t2))

corresponding to ngtM) = (0, form the correction matrix
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Agltysty) By (ty .ty
Hy(ty,t,,t,) = (5.23)

Ayt By lty,ty)

The new value for the deviation of the state at the mid-point Sg(tM)
is calculated to reduce the position deviations at the initial and
final points to zero. From (3.9), (3.12), (3.13), (3.22), and (3.23),

it can be seen that

8L (tq) 0 6x(ty)
X = = Hy(ty,t,,t) 6X(ty) + (3.24)
6x (t,) o 8r(t,)
Thus,
sztl)
8R(ty) = - Hyl(t,t,, t) (3.25)
ngtz)

The new values for the state deviations at any point may be cal-

culated using (3.9).

t
§X(t) = &g (1) sg(tM) +j o, (t,T) £y (T)dT (3.26)
t
M

Specifically, the offsets at the initial and final points are given by

0 )
ag(tl) = ;?Ct : = 2g(ty,ty) ag(tM) + 8x(tq) (3.27)
—-~"1
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0
8x(ty) = ;#(t ) = @D(tz,tM) GE(tM) + 6§(t2) {3.28)
=2

3.24 Calculation of Cost Function

For a heliocentric arc rumnning from t, = t, to t, = t,,.), store

the velocity offsets as

Sy = $¥(t)
(k = odd) (3.29)

SVE Kk+1 sv(ty)

For a planetocentric arc running from t1 = tk to t2 = Typspos store

the velocity offsets as

Sy = Sxlry)
(k = even) (3.30)
GY‘I{,k'bl = S'Y'(tz)
Then, let
A = Ve * S¥p kT Yo,k T Yu,k T %Y,k (3.31)
and
2?-3 T
J = Av Av (3.32)
k22 =k —k
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3.3 Sources of Error

The errors associated with the calculation of the perturbed tra-

jectories have as their source

1) Computational errors, 1n such areas as matrix inversion,
calculation of the two body orbaits and state transition
matrices, evaluation of the perturbation integrals by
gquadrature, etc. These errors may be reduced to any level
desired by increasing the precision of the calculations,
reducing step-size for quadrature metheds, and by in-
creasing the accuracy level required for the termination
of 1terative solutions to transcendental equations. The
ultimate level of accuracy due to errors of the above
nature is limited only by the precision available on the

computer used.

2) Errors associated with the approximations involved in the
use of the trajectory model. Referring to (3.9), it can
be seen that these errors occur because of the
i) evaluation of the disturbing acceleration ag on the
two-body reference trajectory rather than on the
perturbed trajectory.

i1) use of the two-body state transition matrix Qo(t,ti)
calculated for the reference trajectory rather than
the many-body state transition matrix @(t,ti) eval-
uated along the perturbed trajectory.

1ii) use of linear perturbation theory.

1v) neglect of smaller disturbing forces.

The error sources listed under 2) above are the dominant factors.
Examining each cf these sources in detail their importance can be es-

timated.
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i) From (3.14), the disturbing acceleration is

= - . R, _—
24,3 T e I 4, (3.14)

da, -
. 4,7
G(gj) = EEEL_
ad
= - . .._1—- o+ 8 (-L-) d
P31 Tg8 vy 3y el
j j
U T
6(d) = 3 |3 14 1y -1 (3.33)
7] 37

where &j 15 considered a constant.

The change in 24 j

due to a small shift from the reference trajsctory
3

15 given by

n

G(d;) &d

%24, 3

|

G(Qﬂ) 8r (3.34)
since t = gj + éﬁ amplies 8z = SQJ. From (3.33) and {(3.34), 1t can be
seen that the magnitude of a2y ; is roughly

3

M
§ag 5 7 —J—ds 8x (3.35)
3

The largest deviations from the reference trajectory for either planeto-
centric or heliocentric legs occurs at the sphere of influence (S0I1)
boundary. From the definition of the SOI (see Appendix C), the dis-

turbing acceleration due to the sun equals the primary acceleration due
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to the planet on this surface. On the heliocentric legs, the disturbang
acceleration at the SOI boundary is largely due to the primary accel-
eration of the planet while on the planetocentric legs, the disturbing
acceleration at the SOOI boundary is due largely to the perturbing ac-
celeration of the sun, From (C.9), the disturbing acceleration at the

S0I boundary may be written approximately as

ag,; = (-“—g)r = (-z-%- r) (3.36)
4 r N

J

where

gravitational parameter of the planet

=
]

gravitational parameter of the sun

=
]

Since, at the S80I, r<<%, (3.36) may be written as

"
a. . =({=%1x {3.37)
4.3 (d?

»J 2 St (3.38)

at the SOI boundary. Typical maximum values for this ratio are 0.06

for inner planets and 0.01 for outer planets.

ii) Numerical studies comparing an analytic two-body state transi-
tion matrix with a many-body state transition determined by numerical
integration showed that terms in both matrices remained equal to
within a few percent for both heliccentric and planetocentric legs
when the enlarged sphere of influence (see Appendix C) was used. When

the Laplace SOI was used, large differences (often over 100%) occurred
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in terms 1n the 0 and D matrices for the heliocentric legs.

11i) Numerical studies indicate that the perturbations ecountered
in all the steps are small enough for the linear theory to remain valid.

This i1s also shown by Slater and Sternm in [28].

1v} The perturbing forces neglected in this model are those due
to other planets during planetocentric legs, those due to oblateness
and other higher-order terms in the gravitatiomal field of the sun and
planets and those due to non-gravitational effects such as drag, radi-

ation pressurse, etc. They are considered small compared to the forces

included.

Numerical values for the accuracy of the perturbed trajectory
calculations may be found in Chapters 5-7 and Appendix B. In gemeral,
the perturbed trajectory appears to eliminate about 98%-99% of the
error between the conic and N-body trajectory segments. The largest
error source is usually the difference between the two-body and N-body

state transition matrices. This result is also indicated in [28].
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PERTURBED TRAJECTORY

TWO-BODY REFERENCE TRAJECTORY

x(tz}

x(ty)

Figure 3.1 Offset Calculation [First Methotﬂ




Figure 3.2 Offset Calculation [second method]

PERTURBED TRAJECTORIES
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Figure 3.2{a) Offset Calculation, Step 1

NEW PERTURBED TRAJECTORY

xg(tq)

TWO-BODY REFERENCE TRAJECTORY

Figure 3.2(b) Offset Calculation, Step 2
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Figure 3.3 Disturbing Acceleration Geometry
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Chapter 4

Trajectory Segment Matching Procedure

4,0 Chapter Summary

The problem of matching the trajectory segments in velocity as
well as position and time 1s formulated as a parameter optimization
exercilse. The details of the calculation of the gradient of the cost
function for the velocity mis-match are described. A number of first-
order techmniques ({steepest decent, modified steepest descent, con-
jugate gradient, and acceleration steps) are applied to the problem.
A second-order technique (generalized Newton-Rapheson) is also dis-
cussed and applied. The behavior of the different techniques is des-
cribed and the best are selected. The application of inequality con-
straints on the distance of closest approach tc each planet 1s de-
tailed. The application of the trajectory segment matching procedure

for the multiple swingby analysis is outlined.

4.1 Descraption of the Problem

The problem of minimizing the velocity mis-match at the trajectory
entry and exit points may be formulated as a parameter optimization
problem. For a trajectory with N planetary encounters (launch, N-2

intermediate swingbys, and arrival}, define an expanded state vector

and its wvariation as

Xz FGEZ
X
=3 8x
i = . 63 = . (4_1)
X éx
faN- =ZN-3
| 2N L

where X is defined as an (2.3) and (2.4). The launch point X and

arrival point Xonog 2TE considered fixed, so that
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8x; = 6xyy.2 = 0 (4.2)

Similarly, for the 2N-4 trajectory matching points (the intermediate

entry and exit points), define a velocity mis-match vector as

u = - (4.3)

AV,N-3 ]

and a cost function

_2N-3 T
J =3 Avy " Ay (4.4)
k=2 -

where Ay, may be defined either as in (2.13) or in (3.31)

The object of the problem is to find the value of §s which min-
imizes J and if possible reduces J and u to zero. Both &s and u have
6 (N-2) independent components, so that sufficient degrees of freedom

exist for a solution to be possible.

To avoid unrealizable trajectories, it is necessary to apply the

inequality constraint

Top 2 kM Tq (4.5)

where

Top = radius of closest approach of trajectory to the planet
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3}

equatorial radius of the planet

kM = constant multiplier (nominal value = 1.1)

at each swingby. Changes in the value of &s which violate this inequal-
ity constraint are not allowed. The details of the constraint appli-

cation are discussed in Section 4.5 of this chapter.

4.2 Calcuiation of Cost Function Gradient

4.21 Calculation of Lambert Problem Partials

During the calculation of the conic trajectory segments for the

advanced patched conic model, it 1s also possible to calculate analyt-

ically the partial derivative matrices

av,

1Y% aE (4.6)
I
)
3V,

Vi¥p = T (4.8)
Iy
axz

VZEZ = Fi; (4.9)

and the partial derivative vectors

vy 8V, v, Wy (4.10)
Jat at at

1 2 T 9t

»
1
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where I3, ¥y, t; = dinitial position, velocity, and time for the
conic arc
Tpy Vgs Ty = final position, velocity, and time for the

conic arc

The relations necessary for the calculation of these partial derivatives
are given in Appendix B. They are in cartesian coordinates and must be
converted to spherical coordinates for use i1n the cost function gra-

dient. Recall from (2.6) that for a planetocentric conic segment

I = Ipk 7 Y
. (4.11)
Ty = Ip,k+1 By = bty ¥ ATy
and from (2.8) that for a heliocentric conic segment
r, =T + T .
Iy "I, x T Ip, k t) = tp_; * Aty
(= t, for k=1) (4.12)
I = Zp, x+1 ¥ Ip, ksl t3 = Tyn
where, from (2.53), it may be written
cos 6, cos ¢ X
: .y °5 Ok K k
=N, k S,1 sin ek cos ¢ | = Vi (4.13)
' sin ¢y Zy
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Since motion of the entry and exit points on the sphere of influence

(80I) does mot affect the planetary position r
T+

Sy = 0Ip g

Ty = 8Th 41

P,k

{4.14)

for both planetocentric and heliocentric arcs. The relation between

variations in cartesian and spherical coordinates 1s gaven by

5
%

[e2]
2]
]

8y
6z

-T cosq‘:j sinej

S,1

= r
5,1

0

cos¢j cosBJ

-r. . sind. cosh os¢. cosB 88
s,i SN ] cosé; 1] %%
-rs’:L sin¢j sinaj (:oscp:l SlneJ 6¢j
rs’l cos¢J 51n¢j Srs’i
(4.15)

Since the entry and exit points may wvary only on the S0I, it is

necessary that

{(4.16)

so that (4.15) may be written as
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-Tr cos siné. -T siné. cosé 0
¢J i ¢J 3

S,1 j 5,1
Szj = Ts,1 cos¢3 cosej “Tsi sin¢j sinej 0
0 rs’:L cos¢j 0
(4.17)
56 .
*]
= R |6
J ¢J
0

Referring to (4.11) and (4.12), it can be seen that the partial
derivative vectors (4.10) are affected by planetary motion for the

heliocentric legs but not for planetocentric legs. This effect is

given by
dv, 3wy %, Ay g
dtl atl BEP,k Btl
(4.18)
v,
=ar. t (V¥y) Yp i
v av
. -1 —1
since T 2 == = V.v
33P,k CEY 11
when In,k T fixed.
Similarly,
dv, 3vy
= + (Vav4) ¥ (4.19)
T,  3t, T VoY1) Vp oy
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w®, - v, - i¥e) Ypx (4.20)
dv, v,
T, - %%, " (V3¥5) ¥p 141 (4.21)

Note that the relations (4.18)-(4.21) are used only for the helio-

centric legs. For the planetocentric legs

av, v,
'a{'“' = TT (1, ] = 1, 2) (4.22)
J ]

If a new state vector y (differing from the state vector x) 1s

defined as

Xj = ¢J (4.23)

for all 3, it 1s then possible to define the partial derivative

matrices

o 0 |

vy dv,

7y =Qq = (Wv) Ry + [0 0 aE, (4.24)
0 0 | ]
0 0 1

eV, dv,

a—:é- = QZI = (Vz'\il) Rz" + 0 0 a—t—z- {4.25)
0 0 l
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0 0 |
332 dzz
52; = Q, = (Vlzz) R, + 10 0 EEI (4.25)
0 0 |
L -
K 0 | ]
s v,
2 2
0 0 |

For each conic arc {either heliocentric or planetocentric) from

point k to point k+1l, the partial derivatives (4,24)-(4.27) are stored

as
Ay = Qq, (4.28)
Bra1 = Qa2 (4.29)
Cx = Qu (4.30)
Dk+l Q21 {4.301)
4.22 Calculation of Gradient
From (2.14), the cost function was given by
2?—3 T (
J = Ay, Av 4.32)
k=2 Kk X
Its gradient with respect to Xy is given by
ZN-3 AV
aJ T "7k
gy 5 ®me = 2 Z AE (4'33)
N )
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where

and, from (2.13)

8Nk = Yex T Ypx T Yux (4.34)

From the definition of the state vector X given in (2.3) and (2.4),
the effects on the state vector Yy defined in (4.23) and hence on the
terms in (4.34) due to a change in X; occur at

Point affected Yy YE,k Y.k 1,k
k-1 x
k b x x x
k+1 bs X X X
k+2 x

for an entry point and at

Point affected Yy YE,k ¥p x Y4,k
k—l- X
k X X x x
k+1 X

for an exit point. The effect on Yp g is due solely to the change in
2

the time e associated with point k. This is given by
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where

2p,k

B

Yy

Yp,k
azk
0 0 ] 0
av
0 0 B;P’k = lo
k
0 0 | 0
u
= - 3
T3 Ip,x
P,k

1

n

as defined in (4.23)

gravitational parameter of the sun

2p,x

(4.35)

(4.36)

Thus, using {4.33} the gradient at an entry point may be written as

v
T —E,k-1
Z IAzk-l [gziL___]
[ av v av
+ Ava awB,k _ B—P,k ~ a~H,k]
[ %% X Xx
VR O 0 S N 3 o B Y 35
-k+1_ 3%y 3%y 3%y
av.
T —E,k+2
+ AEk"‘Z [—351(, ] }

Using the relations (4.28)-(4.31), this hecomes

62

]

(4.37)


http:4.2g)-(4.31

gx = T T - - -
k=2 {A‘ik-l [Dk] *oAvyp Byt Px O 7 Dy
+av . - A -B_, -P . +C (4.38)
Vsl k T Bre1 T Fren T Pk
T
B A‘—’rk+2[A1<+:L:|}
do a0 9
since 3;£ = Big + BEE
Xk X Kk+1
where @, = ¥p g, ¥p g > OF ¥y g

for an entry point.

For an exit point, the gradient is given by

oV,
T Yy, k-1
g =2 {Ay-k—l [‘ —“axk’ ]

T |%¥e,x  ¥p,x  VH,k
AN iax T O3x T
Xx Xy Xx

av
T —E, k+1
* AV g ["—3§k, ] } (4.39)

Usinﬁ (4.28)-(4.31), this becomes

g = 2 ‘{Azkrfl [—Dk] o avy " [Ck—Pk-Bk] (4.40)
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g 39&

since To— = wmo— for an exit point
a;k axk

The gradient vectors are calculated for all entry and exit points
except the launch and arrival points {these are considered fixed bound-

ary conditions) and then formed into an enlarged gradient vector

£2
£3

g = (4.41)

E2N-3
| S2N

4.3 First-Order Technigues

In finding 2 solution z=a of an equation £{z)=a, an iterative

technique which functions such that
Zpap - @ = Ay (2p-0) ]qk] <1 (4.42)
is known as a first-order technique. Several first-order techniques

were employed to mininize the ‘cost function J.

4.31 Steepest Descent

Referring to the notation of (4.1), the method of steepest

descent prescribes a change

Sxe1 T Ek + 85y (4.43)

88y = = hy glsy) (4.44)
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The multiplier hk is used to set the step size. One method of

determining it i1s on the basis of desired change in the cost J. Since
_ T
87 = g (55 85y

= -y gl (50808 (4.45)
the value of hk 15 given by

8J
He = - e _ (4.46)
k , gT (E_k)g_(_s_k)

The value of &8J is chosen to be some fraction of the cost J at the

state s). Thus

I

8J - Yy J(sk) (4.47)

Thus
¥y J (55
hy = v S (4.48)
The 1nitial value of Yx is Yy =1.

The procedure for a single steepest descent step is as follows
1) At the present state Sy evaluate the gradient gﬁ§k) and
the multaiplier hk‘
2)'Take the step given by (4.44). At the new state s;,.,,
evaluate the cost J(§k+1). )
3) If the new cost J(5k+1) is 1less than the old cost J(Ek)’

accept the step and set
Y1 © 1.1 Y {4.49)

4} If the new cost 1s greater than the old cost, reject the

step. Set

Yy = 005 Yg (4.50)
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and repeat the step.

This form of the steepest descent technique suffers from two
shortcomings. The first of these is the method of step-size control.
While 1t does insure that each accepted step will reduce the cost
function, it does not usually take the best possible step. The second,
and mere serious, concerns the nature of the cost function, which is
much steeper 1n directions corresponding to changes in the angle com-
ponents of § than in directions corresponding to changes in the time
components. This is the commen "ravine' problem encountered in many
parameter optimization situations. As depicted in Figure 4.1, it
results in a zig-zag path yielding little cost reduction for each step.
The means of alleviating both these shortcomings are dealt with in the

next section.

4.32 Modified Steepest Descent

4.321 Optimum Step-Size Selection

To insure an optimum step in the direction specified by (4.44), a
parabola 1s fitted to the cost function in that direction and the step

taken to its minimum. For a parabola given by
2
(Y'Co] =9 (X-Cz] (4.51)

the constants Cps Cy» Cp may be determined from the values of the

ordinate y at x=0 and x=1 and the slope at x=0.
Yo = v(0) Yo' = %Z | (4.52)
0 0 X _ )

= y(1)

5
et
)
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Substituting (4.52) inte {4.51) yields three equations

Yp=Cp T °1°22 (4.53)
¥1-€p = cl(l-czj2 {4.54)
YU‘ - . ZClcz (4-55)

Solving (4.53)-(4.558) for Cps €10 S yields

¢y = yl-y0~y0' (4.56)

L) 57

°2 7 " I (4.37)

€, = ¥,-C,C 2 (4.58)
0 0 "172 '

This technique searches for the minimum of the cgost function
along the line s = s,+xés; . The units are such that x=1 corresponds

to the step taken in the preceding section,
The procedure for taking an optimum step is as follows:

1) At the present state Syo evaluate the cost J{gk], the

gradient 5(§k)’ and the multiplier hk'

2) Take the step 6sy given by (4.44). At the new state

Ek evaluate the cost chk).

3) For the parabolic fit, set

Yo < J(ék) (x=0) (4.59)
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Y1 = (&) (x=1) (4.60)

Yo! = 83 = - v I(sy) (x=0) (4.61)

Solve for the values of Cgs €1 Cp using (4.5%56)-(4.58).

4) Take the optimum step

Spa1 = Sy * €y 65y (4.62)
and set
Yre1 T C2 Yk (4.65)

This technique requires one additional evaluation of the cost function

(in step 2)

4,322 Gradient Weighting Matrix Selection

From Figure 4.1, it can be seen that the gradient components
directed across the "ravine' will experience a sign change at each
step while those components aiong the axis of the "ravine" will remain
unchanged in 51gn: Thﬁs, the ravine preblem may be alleviated by
adding a weighting matrix Wk which turns the step direction along
those gradient components which do neot change sign. This modification

of (4.44) results in the new step
ng = - hk Wk &(gk] (4.64)

The weighting matrix is a diagonal matrix of weighting coefficients
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1,k
2,k

3,k
(4.65)

YeN-12,k

each of which corresponds to one component of the gradient vector.
The initial value of the weighting matrix is an identity matrix,
{4.66)

After each step, each component of the gradient is tested to see if
it has changed sign. The weighting coefficients corresponding to

those components which have not changed sign are increased by an
amount w_.
g

wi,k+1 = wi,k + wg (4.67)

while the coefficients corresponding to components which have changed
sign are decreased by a like amount.

Yikel Vi " Yy (4.68)

M (4.69)
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Different values of gain wg and maximum value Wy are assigned to

coefficients corfesponding to the 8, 4, and t components.

The net result of this procedure 1s to bias the direction of the
step in favor of those components of the gradient whose sign remains
unchanged. This is exactly what is needed to proceed down the length
of the "ravine". The technigue which incorporates both the optimum
step-size control and the weighted gradient step will be termed the

optimum gradient step ([0GS).

4,33 Conjugate Gradient Method

The method of conjugate gradients uses the information gained
from previous steps taken to gradually construct a set of mutually
conjugate directions., If the cost function J were an N-dimensiomnal
quadratic form, a sequence of N one-dimensional minimizations along
these conjugate directions would locate the minimum of the cost
function. For general functions, the process is iterative rather
than convergent in a finite number of steps. The method is detailed

in [32]. The computer subroutine used is DFEMCG taken from [33].

4,34 Use of Acceleration Steps

This method is a modification of steepest descent used to avoid
the ravine problem. It uses steepest descent steps with occasional

acceleration steps given by

85y = Prlsy - 5g.9)

where Py multiplier chosen for step-size control.

These acceleration steps have the effect of moving along the axis of
the zig-zag pattefn shown in Figure 4.1 when the ravine problem is
encountered. A modification of this procedure using alternating

steepest descent and acceleration steps is given [34].
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4.4 Second-Order Techniques

In finding a solutiom z=a to an equation f£(z)=a, an iterative

technique which acts such that

2
zk+1 T = qk(zk'u) ’Qk|<1

is known as a second-order technique. The technique used in this

(4.70})

thesis is a generalized Newton-Rapheson iteration. It may be used

only 1f the minimum value of the cost function J 15 zero since 1t

searches for a zero of the u vector.

Using the notation of (4.1) and (4.3), it is possible to con-

struct the matrix equation

where H is a matrix built up of the (3x3) sub-matrices H1

to the rules

1)

2)

For i = odd,

Hi1,1 7 Diex (=0 for i=1)
Hi,i © Bien 7 Piar 7 Cian - Pian
Hi+1,1 - A T By - Prag G
Hi+2,i = Aj (=0 for 1=2N-3)

For i = even

i-1,1 i+1
Hy 4 =_C1+1 " Py " Biag
Hi+1,i A1+1 (=0 for i=2N-4)

(4.71)

according

(4.72)
(4.73)

(4.74)

(4.75)

(4.76)
(4.77)

(4.78)
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3) For all Hi j not covered by (4.72)-(4.78)

] 0 0
Hi,] = 0 0 0 {(4.79)
0 0 0

These matrices are identical to the bracketed terms in (4.38) and
(4.40). The subscripts are offset by 1 since the terms in u and Ss

run from 2 to 2ZN-3 while the subscripts of H1 3 run from 1 to 2N-4.
L]

Solving (4.71) yields the variation which would cancel the velocity

mis-match vector if the linearization were an exact process
s = -H " u (4.80)

Since the linearization yields only a local approximation to the cost
function surface, this process is iterative. However, second-order

convergence is achieved,

The matrix H to be inverted in (4.80) is of dimension 6(N-2) where
N may be quite large. The inversion may be considerably simplified by
noting that H is a banded matrix (1.e. has non-zero terms only on or
near its main diagomal). Using this property solution (4.30) .may be
obtained by solving the set of linear equations (4.71) using a Gauss-
Jordan method which stores and manipulates only the non-zero elements.
This allows the storage and computational time to be reduced consid-

erably. The computer subroutine used is DGELB from [33].

4.5 Application of Inequality Constraints

At a planet; the coordinates of the entry and exit points are

given by
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entry point = X = ¢k (4.81)

exit poant = Xpeyg = A¢k+1 (4.82)

Atk*l

Unit vectors centered in the-planet in the direction of the entry and

exat points are given by

cosfy cos¢y
1; = |sinBy cos¢y (4.83)

51n:pk

cos(Bk + A9k+1)cos(¢k + A¢k+1)
ik+1 = 511‘1(8k + A9k+1)cos(¢k + A¢k+1) (4.84)

51n(¢k + A¢k+l)

Assuming that these unit vectors approximate the asymptotes of the

swingby hyperbola, ths turn angle v of the hyperbola is gaven by

<
W

T~ cos1 [1 - 1yl (4.85)

= - cos"1 {cos{ABk+l)cos¢kcos(¢k+A¢k+1)

+ sin¢ksin(¢k+a¢k+1]] (4.86)
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See Figure (4.2) for an illustration of this angle. The maximum

turn angle possible for a minimum periapse radius of Tpy is given by

vy = 2 sin” LI (4.87)
1+ TpAVr
-
where *
u; = gravitational parameter of the planet
vy = hyperbolic excess velocity
. 1
i z
Yu,x Y,k " 2 F.; (4.88)
5,1
Ty 3 radius of planetary sphere of influence
3

Before the acceptance of a step sz and 65k+1 for a planet's
entry and exit points, the values of v and Vy are calculated for the

projected new values

-

X = v 0%
(4.89)
Xee1 = Epap * X

If vy, the components of 68Xy 49 3Te set equal to zero and the
components of 8x; are left unchanged. This procedure is repeated for

each swingby on every 1teration. The criterion for the minimum periapse

distance is

(4.90)
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where

equatorial radius of the planet

constant multiplier (usually 1.1)

4.6 Behavior of Minimization Techniques

In general, the techmniques discussed i1n sections 4.3 and 4.4

behaved as follows;

1)

2)

3)

4)

5)

The steepest descent technique suffered badly from the

ravine problem. It was not used extensively.

The optimum gradient step (0GS) dealt with the ravine
problem fairly well and alsc solved the step-size con-
trol difficulties. It was adapted easily to the con-
straincd case. The 0GS was the most useful first-order

technique employed.

The conjugate gradient method proved to be slightly
faster than the 0GS. It was not adaptable to the con-
strained problem. Thus 1t was employed mainly as a check

on the performance of the 0GS.

The acceleration steps showed no noticeable improvement

over the 0GS. They were not used extensively.

The generalized Newton-Rapheson technique showed second-
order convergence near the solution. However, 1t some-
times diverged when started toc far from the solution
point, Also, it was applicable only when the minimum of

the cost function was zero.

In general, the first-order techniques showed a diminishing speed

of convergence as they approach the solution point. They were useful
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mainly to reach the neighborhood of the minimum. If applicable (i.e.
if an admissible minimum equal to zero exists) the second-order tech-
nigue was used to converge to the solution. Otherwise the 0GS techmnique

was used for the whole process,

4.7 Application of the Trajectory Segment Matching Technique

The procedure for application of the trajectory segment matching

procedure is as follows.

1) Using the cost function given in (2.13) and (2.14) con-
verge to a minimum of the cost for the advanced patched

conic model.

2) FPor this solution, compute the velocity offsets as

described in Chapter 3.

3) Using the cost function given in (3.31} and (3.32) con-
verge to a minimum of the cost for the perturbed conic
model. Durang this iteration, the offsets GEE,k and
SEH,k are considered to be constants and thus remain

unchanged.

4) TFor this new solution, re-compute the velocity offsets.
If they have changed measurably, return to step 3.
Otherwise, terminate the process.
The result is a sequence of perturbed conic legs matched in position,
velocity, and time at the sphere of influence entry and exit points.
The accuracy of this sequence may be checked by determining a set of
exact trajectory legs (corresponding to the same initial and final con-
ditions on position and time) by numerical integration. In all cases
examined, the perturbed conic legs have been close enough that the
numerical trajectory integration has converged to the desired boundary
conditions within two or three iterations.
Examples of‘the use of this technique are given in the next three

chapters.
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Chapter 5

Dual Planet Reconnaissance Trajectory Example

5.0 Chapter Summary

The dual planet reconnaissance trajectory is described. The coor-
dinates of the sphere of influence entry and exit points and the orbat-
al elements of the individual trajectory legs are gaiven. The perfor-
mance of the trajectory segment matching technique is discussed. The
results of the perturbed conic analysis are tabulated and the analytic
predictions are compared with numerically integrated trajectory legs.
The resulting comparison shows that the trajectory may be predicted to

within a total correction of 0.2263 m/sec.

5.1 Description of the Mission

This mission employs a free-fall trajectory (see Figure 5.1J which
leaves Earth, makes a close pass first to Venus and then to Mars, and
then returns to Earth. It would be possible for a reconnaissance mis-
sion of both Mars and Venus by manned or unmanned spacecraft. In the
unmanned case the return to earth would allow recovery of high res-
olution photographs taken during the swingbys. This mission is de-
scribed in [3]. A method for finding these dual planet swingbys using

the simple patched conic model is given in {10].

The final trajectory is specified by the following set of plane-
tary sphere of influence (S0OI) entry and exit points. The SOI radii

are given in Appendix C.

Point Julian Date Location
1 2441478,80000 Barth S0I exit poant (launch)
2 2441634.11977 Venus SOI entry point
3 " 2441637.99955 Venus 801 exit point
4 2441787.28715 Mars S0I entry point
5 2441792.32920 Mars SOI exit point
6 2441945.20000 Earth SOI entyry point {arrival)
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The spherical coordinates of the SOI entry and exit points given 1in a

planetocentric ecliptic coordinate system (see Appendix A) are

Point Azimuth Elevation
1 142.800° -19.600°
2 332.249° -2.637°
5 177.796° 1.716°
4 43.066° 4.118°
5 222.458° 3.885°
6 8.300° 5.700°

The complete set of cartesian coordinates of the SOI entry and exit
points in the heliocentric and planetocentric coordinate frames plus

the heliocentric coordinates of the planet are given in Appendix E.

The total time of flight is relatively short (about 1.3 years)

and divided approximately evenly among the heliocentric legs.

Leg Time of Flight (days) Central Angle Traversed
1-2 155.31977 244.268°
2-3 3,87978 193,491°
3-4 149,28760 122.855°
4-5 5.04205 184.410°
5-6 156.87080 85.562°

The legs (2-3) and (4-5) are planetocentric hyperbolas, while legs
{(1-2),(3-4) and (5-6) are heliocentric ellipses. The orbital elements

of these legs are

Leg Semi-Major Axas Bccentricity Inclination
1-2 0.80837 a.u. 0.25644 3.348°
2-3 0.72733 Tp 4.28637 3.053°
3-4 1.07057 a.u. 0.37045 3.290°
4-5 0.24513 Tp 13.00436 94,337°
5-6 1.0659% a.u. 0.37479 1.310°
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The semi-major axis 1s gaven in astronomical units {a.u.) for the

heliocentric legs and in planetary radii for the planetocentric legs.
The vis-viva energy at earth needed to launch on this trajectory

is

C3 = 18 378 kmzlsec2

while the re-entry velocity on return to earth is

Vg = 15,639.128 m/sec

The periapse radius (in kilometers and planetary radii), the
periapse velocity (in km/szsc), and the turn angle (as defined 1in

Section 4.5) for the planetocentric legs are

leg Periapse Radius Periapse Velocity Turn Angle
2-3 14,461,578 (2.3903) 10.904491 13.491°
4-5 10,034.548 (2.9427) 7.737818 4.410°

The time of periapse is the mid-point between the entry and exit times

on the sphere of influence.

All of the parameters listed in this section are for the two-body
trajectory legs used as reference orbits for the final perturbed conic

analysis.

5.2 Performance of Trajectory Segment Matching Techniques

The trajectory segment matching technique is repeated through
several cycles. The first of these uses only the advanced conic model.
The initial conditions are obtained from [10] where the trajectory was
determined using the simple patched conic model. All successive cycles

employ the perturbed conic model with the velocaty offsets re-calculated
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for each cycle. The column labeled method indicates whether the
optimum gradient step (0GS) or the generalized Newton-Rapheson (GNR)
procedure is used for that step. The cost function i1s defaned by

(2.13-,14) for the first cycle and by (3.31-.32) for successive cycles.

First Cycle: Iteration Method Cost Function (km/sec)
Initial Conditions - 3.87296
1 0GS 2.81187
2 06GS 0.35187
3 GNR 0.29405 (10™%)
4 GNR 0.34828 (10'9)
5 GNR 0.36653 (10717)
Second Cycle; Iteratioen Method Cost Function
Initial Conditions - 0.35299 (107%)
1 GNR 0.14899 (10 )
2 GNR 0.17063 (10717
Third Cycle: Iteration Method Cost Function
Initial Conditions - 0.65610 (10”5
1 GNR 0.10061 (10 1%
Fourth Cycle: Iteration Method Cost Function
Tnitial Conditions - 0.31691 (10 1%

The change from OGS to GNR occurred when the cost function fell
below 0.5,A cycle was terminated when the cost went below 1.0 (10'14

)

and the whole procedure was ended when the cost at the anitial point

-18

of a new cycle was less than 1.0 (10 ). The total rumning time of

this process on the IBM 360/65 was 48 sec.

5.3 Perturbed Conic Results

The first step in the perturbed conic model was the calculation

of the perturbations in the initial and final position and velocity
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for each leg due to the disturbing accelerations. The magnitudes of

these perturbations (in km and m/sec) for the last cycle are

EE% 8r(t,) Sv(ty) - 8r(t,) sv(t,)
1-2 35,161.42 39.727 9331.04 25.252
2-3 1,482.11 26.470 1335.23 23.669
3-4 11,780.23 26.099 2069.76 3.544
4-5 242.58 3.347 236.88 3,248
5-6 4,769.78 3.698 6545.68 15.886

The next step 1s the calculation of the position and velocity
perturbations at the mid-point that eliminate the position pertur-
bations at the initial and final points. These mid-point perturbation

magnitudes (in km and m/sec) for the last cycle are

Leg 6f(tM) sG(tM)
1-2 9197.48 4.882
2-3 324,23 50.435
3-4 6059.22 D.448
4-5 9.31 1.330
5-6 3618.21 0.723

The last step is the calculation of the offsets of the initial and

final velocities. These offset magnitudes {in m/sec) for the last

cycle are
Leg 87 (ty) §V(t,)
1-2 34.286 24,139
2-3 19.034 14.558
3-4 22.322 3.211
4-5 2.221 2.183
5-6 2,997 14.982
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5.4 Comparison with Numerically Integrated Results

The accuracy of the analytic procedure is evaluated by comparison
with numerically integrated trajectory legs determined using the

following procedure:

1) The initial conditions for the numerical integration are
set equal to the conic position and the perturbed conic

velocity at the inatial time tq-
i(tl) = ED(tl)
v(ty) = vp(ty) *+ §7(t;) (5.1)

[ denotes values on the numerically integrated tra-

jectory]

.2} The N-body eqpations of motion and the differential
equations for the N-body state transition matrix are
integrated forward to the final time ty The errors in

position and velocity at the final time are given by
Ax(ty) = T(ty) - 1g(ty) (5.2)
av(t,) = ¥(ty) - [vg(ty) + 88(t,)] (5.3)

The numerical integration routine is described in [26].

3) Using the N-body state transition matrix between tl and
t,, the change 1n i(tl) needed to eliminate Ar(t,) is

calculated,
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Steps 2) and 3) are repeated until az(tz) is driven to zero. If
the initial guéss 15 close this happens quite rapidly. For this example,

AT (t,) was reduced to under 107° km in two iterations.

The quantities chosen to indicate the accuracy of the analytic

techniques are the megnitude of the velocity error at t1
Ai(tl) = i(tl) - [Eﬂ(tl) + Gi(tl)], (5.4)

the magnitude of the velocity error at t,

AE(tz) = i(tz) - [Eg(tz) + 6\?_(1:2)]’ (5.5)

and the position error at ty due to the use of the analytically deter-

mined velocity at ty for the numerical integration

AT(ty) = r{ty) - xy(ty) (5.6)
for

Bty = volty) + 8¥(t;)

These values (in km and m/sec) are

Leg Av(tl) Av(tz) Ar(tz)

1-2 .1250 . 0450 5327.23
2-3 .0030 .0091 §.71
3-4 .0430 .0041" 1306.60
4-5 .0028 .0030 1.62
5-6 L0017 L0173 15.39

In order to fly the trajectory, it would be necessary to apply

velocity corrections at each of the 50I entry and exit points to
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eliminate these errors. The magnitudes of these corrections (in m/sec)

are
Point Correction
1 0.1250
2 0.0448
3 0.0340
4 0.0022
5 0.0030
6 0.0173

The total correction needed as
Av = 0.2263 n/sec.
It is also possible to compare the periapse conditions of the

numerically integrated trajectory with those of the two-body reference

trajectory used i1n the perturbed conic analysis. The differences are

Leg Ar Av ‘ At“
2-3 8.3576 km 8.0255 m/sec -29.142 sec
4-5 0.6106 km 1.1715 m/sec -1.223 sec
whete
t“o = time of periapse for two-body reference orbit
Eﬂ = time of periapse for numerically integrated trajectory

Az, = E (%) - go(tno)

Mg = ¥ (ty) - zwottwo)
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5.5 Discussion of Results

The analytic technique has provided an accurate description of the
legs of the dual planet reconnaissance trajectory. The velocity errors
described in the last section could be eliminated by running the tra-
jectory segment matching procedure for a few more cycles using offsets
calculated by numerical integration rather than by the analytic tech-
niques of Chapter 3. Instead, 2t is probzbly easier to absorb these
errors in the mid-course corrections made on approach and departure

from each planet.
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Chapter 6

Grand Tour Trajectory Example

6.0 Chapter Summary

The Grand Tour mission is described. The coordinates of the
sphere of influence entry and exit points and the orbital elements
of the individual trajectory legs are given. The performance of the
trajectory segment matching procedure 1s discussed. Fhe results of
the perturbed conic analysis are tabulated and the analytic predic-
tions are compared with numerically integrated trajectory legs. This
comparison shows that the trajectory may be predicted to withan a
total correction of 2,652 m/sec., The accuracy of the model for the

disturbing acceleration during the planetocentric phase 1s considered.

6.1 Description of the Mission

This mission employs a free-fall trajectory (see Figures 6.1
and 6.2} which leaves Earth and makes successive close passes to
Jupiter, Saturn, Uranus, and Neptune. The configuration of the planets
necessary for the Grand Tour occur only once every 179 years with the
next opportunity occurring in the perioed 1975-1981. Descriptions of
this type of mission may be found in [16],[17], and [20] where the
simple patched conic model is used to determine launch windows and
approximate trajectory parameters. The specifac trajectery chosen fer

this chapter leaves EBarth in October, 1978.

The final trajectory is specified by the following set of plane-
tary sphere of influence (S0I} entry and exit points. The SOI radia

are listed 1in Appendix C.

Point Julian Date Location
1 2443787.00000 Earth SOI exit poant (launch)
Z 2444291 .61927 Jupiter S0I entry point
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Point Julian Date Location

3 2444457.85596 Jupiter S0I exit point
4 2444930,62043 Saturn S0I entry point
5 2445126.30248 Saturn SO0I exit point
6 2446481.99628 Uranus SO0T entry point
2446638.44605 Uranus SOI exit point
8 2447720.00000 Neptune S0I entry peint
{arrival)

The launch date is October 6, 1978 while the arrival date is July 13,

1989 (which luckily occurs on a Thursday in that vear).

The spherical cpordinates of the SOI entry and exit points given

in a planetocentric ecliptic coordinate system (see Appendix A) are

Point Azimuth Elevation
i 101.424° 8.720°
2 312.920° 1.093°
3 180.066° 4.,253°
4 16.038° -3.433°
5 281.565° -2.502°
6 94.166° 1.665°
7 291.444° 2.975°
8 114.2706° -2.812°

The complete set of cartesian coordinates of the SOI entry aunu casc
points in the heliocentric and planetocentric coordinate frames plus
the heliocentric cogprdinates of the planets at encounter are given in

Appendix E.

The total flight time for the trajectory is short (sbout 10.77
years) considering the distance covered. The time of flight and central

angle traversed for the individual legs are
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Time of Flight (days)

Central Angle Traversed

504.61927

Leg

i-2

2-3 166.23669
3-4 472.76447
4-5 195.68205
5-6 1355.69380
6-7 156.44977
7-8

1081.55395

144.498°

205.609°

25.

223.

54
189
17

g02°

050°

.438°

.035°

.392°

*
b

The legs (2-3), (4-5}, and (6-7)} are planetocentric hyperbolas

about Jupater, Saturn, and Uranus respectively. The leg (1-2) is a

heliocentric ellipse while legs (3-4), (5-6) and (7-8) are heliocentric

hyperbolas. Each swingby adds energy to the trajectory, keeping it

above solar escape energy after the Jupiter swingby. The orbital ele-

ments for the trajectory legs are

Leg Semi-Major Axis
1-2 4.61480 a.u.
2-3 17.22512 1,
3-4 28.43593 a,u.
4-5 5.23592 Tp
5-6 - 3.77866 a.u.
6-7 1.10268 Tp
7-8 3.06068 a.u.

The semi-major axis is given in astronomical units (a.u.) for the

Eccentricity Inclination
0.78328 2.383°
2.31355 6.881°
1.14287 2.857°
1.46490 4.412°
3.54820 2.836°
6.36816 15.110°
5.41387 2.821°

heliocentric legs and in planetary radii for the planetocentric legs.

The vis-viva energy at earth needed to launch on this trajectory

is

C3 = 101,520 kmzlsecz
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The periapse radius (in kilometers and planetary radii), the
periapse velocity {in km/sec) and the turn angle (as defined in Section

4.5) for the planetocentric legs are

Leg Periapse Radius Periapse Velocity Turn Angle
2-3 1,615,506.286 (22.62614) 16.121540 25.609°
4-5 147,025,929 (2.4342) 25.207545 43.050°
6-7 139,143.535 {5.9210) 17.530135 9.035°

The taime of periapse is the mid-point between the entry and exit times
on the SOI.

Ail the parameters listed in this section are for the two-body
trajectory legs used as reference orbits for the final perturbed conic

gnalysis.

6.2 Performance of Trajectory Segment Matching Technique

The trajectory segment matching procedure is repeated through
several cycles. The first of these uses the advanced patched conic
model. The initial conditions are obtained from [16] where the tra-
jectory was determined using the simple patched conic model. All suc-
cessive cycles employ the perturbed conic model with offsets re-calcu-
iated for each cycle. The column labelled method indicates whether the
optimun gradient step (0GS) or the generalized Newton-Rapheson (GNR)
procedure 1s used for that step. The cost function is defined by

(2.13-.14) for the first cycle and by (3.31-.32) for successive cycles.

First Cycle: Iteration Method Cost Function (kmz/secz)
Initial Conditions - 4,04945
1 0GS 3.96201
2 0GS 3.89372
3 oGS 3.7947¢6
4 0GS 3.76557
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First Cycle: Iteration Method Cost Function [ka/secz)

5 0GS 3.72571
92 0GS 1.47623
93 0GS 1.47268
94 0GS 1.46821
95 GNR 0.47856 (107 %)
96 GNR 0.23789 (107 7)
97 GNR 0.80956 (10713
98 GNR 0.10929 (1071%)
Second Cycle- Iteration Method Cost Function
initial Conditions - 0.10898 (107%)
1 GNR 0.10408 (107°)
GNR 0.13908 (10”11)
3 GNR 0.32573 (10'17)
Third Cycle: Iteration Method Cost Function
Initial Conditions - 0.10560 (10—5)
1 GNR 0.10959 (107D
2 GNR 0.19818 (10717y
Fourth Cycle. Iteration Method Cost Function
Initial Conditions - 0.15182 (10_9)
1 GNR 0.24154 (1071%)
Fifth Cycle: Iteration Method Cost Function
Initial Conditions - 0.15638 (10‘11)

The change from OGS to GNR occurred when the cost function fell
below 1.47. A cycle was terminated when the cost fell below 1.0 (10-14)

and the whole procedure was ended when the cost at the beginning of
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a new cycle was less than 1.0 (107 7"). The total running time on the

IBM 360/65 was about 172 seconds.

6.3 Perturbed Conic Results

The first step in the perturbed conic model was the calculation
of the perturbations in the anitial and final position and velocity
for each leg due to the disturbing accelerations. The magnitudes of

these perturbations (in km. and m/sec) for the last cycle are

Leg Gr(tl) 8v(tq) Sr(tzj Bv(tz)

1-2 144,135.26 20.974 680,081.06 115.831
2-3 350,124.98 146.486 317,175.98 126.799
3-4 681,236.05 117.365 90,828.50 7.226
4-5 106,229.23 38.040 51,438.66 18.086
5-6 847,681.45 46.614 464 ,247.07 12.62¢6
6-7 8,764.69 3.921 7,684.89 3.384
7-8 246,233.21 11.917 222,593.00 10.058

The next step is the calculat:on of the position and velocity
perturbations at the mid-point that eliminate the position perturbations
at the initial and final points. The magnitudes of these mid-point per-

turbations (in km and m/sec) for the last cycle are

Leg 8T (ty) 5V (tyy)
1-2 276,302.85 13.418
2-3 14,105.26 56.324
3-4 367,398.01 14.229
4-5 174,611.87 12,147.092
5-6 616,749,98 3,755
6-7 1,673.59 29.264
7-8 215,439.75 2.071

The last step is the calculation of the offsets of the initial
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and final velocities. These offset magnitudes (in m/sec) for the last

cycle are

Leg 5% (t;) 87 (t,)
1-2 16,800 92.557
2-3 94,702 81.347
3-4 100.210 10.165
4-5 34.432 20.439
5-6 42.388 14.480
6-7 2.820 2.104
7-8 10.560 9.195

6.4 Comparison with Numerically Integrated Results

The accuracy of the analytic procedure is evaluazted by comparison
with numerically integrated trajectory legs using the procedure de-
scribed in Section 5.4. The quantities used to evaluate the accuracy
of the analytic technique are the errors in the velocity offsets at
the initial and final times and the position error at the final time
due to the use of the analytically determined initial velocity. The

magnitudes of these quantities (in km and m/sec) are

Leg Av(tl) av(t,) - Ar(t,)
1-2 0.305 0.139 8185.05
2-3 0.622 0.438 8955,75
3-4 0.353 0.089 15,348.52
4-5 0.335 0.184 239,662.60
5-6 0.052 0.095  6444.35
6-7 0.0081 0.0071 1904.25
7-8 0.095 0.095 8833.50

In order to fly the trajectory, it would be necessary to apply

velocity corrections at each SOI entry and exit point to eliminate the
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above errors. The magnitudes of these corrections (in m/sec) are

Point Correction
1 0.305
2 0.667
3 0.787
4 0.424
5 0.179
6 0.103
7 0.002
8 0.095

The total correction needed 1s

Av = 2,652 m/sec.

The differences in the periapsé conditions between the numerically

integrated trajectory legs and the two-body reference values for the

planetocentric legs are

Leg ArTr Avw At1r

2-3 . 1025.172 km 29,075 m/sec 18.5368 minutes
4-5 40.068 km 5.083 m/sec -116.5053 minutes
6-7 8.162 km 1.216 m/sec -1.5907 minutes

6.5 Discussion of Results

The assumption that the disturbing acceleration due to other
planets has neglible effect during the planetocentric legs of the tra-
jectory does not prove to be as good for this example as it did for the
dual planet reccnnaissance trajectory., This shows up most strongly for
the planetocentric leg about Saturn due to the long time inside the

sphere of influence (196 days) and the proximity of Jupiter (about
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5 a.u. away). To evaluate the effects of the other planets, the
numerical integration of the Saturn planetocentric leg was repeated

using the sun as the only disturbing body. The results are

Av(tl) = 0,026 m/sec (0.335 m/sec)

Av(tz) = 0,004 m/sec {0.184 m/sec)

Ar(t,) = 1704.871 km (239,662.60 km)

1% = 37.827 km (40.068 km)

Av, = 4,918 n/sec (5.083 m/sec)

At = -115.4210 minutes (-116.5053 minutes)

The corresponding figures for the numerical integration of the same
leg using all the other planets as well as the sun as disturbing

bodies are shown in parenthesis.

The large shift in periapse time at Saturn shows up in large
values of Sg(tM) and 6G(tM) given in Section 6.3. Position and veloc-

ity change quite rapidly near periapse for a hyperbola.

The general accuracy of the analytic procedure as appiled to
this trajectory is quite adequate. The total correction needed (2.652
m/sec) may be quite easily absorbed into the mid-course correction
allowance., Based on the results described above, about 40% of the
total correction magnitude could be eliminated by using a perturbed
conic model which includes the disturbing accelerations of the other

planets during the planetocentric phases.
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Chapter 7

Periodic Trajectory Example

7.0 Chapter Summary

The pericdic trajectory example is described. The cooxdinates
of the sphere of influence entry and exit points and the orbital
elements of the individual trajectory legs are given. The performance
of the trajectory segment matching procedure is discussed. The re-
sults of the perturbed conic analysis are tabulated and the analytic
predictions are compared with numerically integrated trajectory legs.
The solution found is not a free-fall trajectory but requires a total
impulse of 220.534 m/sec applied at the various sphere of influence
(801) entry and exit poants. The total error in the calculation of
the trajectory legs amounted to 38.950 m/sec which would also be
applied at the SOI entry and exit points. The sources of these errors

are discussed.

7.1 Description of Mission

The term periodic orbit is used here to mean an interplanetary
free-fall trajectory which shuttles back and forth between two planets.
Once this orbit is established, it continues indefinitely with only
minor guidance corrections. The existence of such trajectories was
first explored by Hollister in [22]. Using the simple patched conic
model, a general search procedure for periodic trajectories was de-
veloped and three types of trajectories connecting Earth and Venus
were discovered. This work was extended by Menning [23] who found
additional Earth-Venus trajectories and by Rall [25] who examined
Earth-Mars periodic trajectories. The guidance requirements for the

Earth-Venus trajéctories were examined by Hackman in [24].

The trajectory chosen for closer examination using the technique

developed in this thesis 15 a segment of Periedic Orbit I given imn
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[22]. It comnsists of the sequence

1} =Earth to Venus transfer
2) Direct Return to Venus
3) Direct Return to Venus
4) Venus to EBarth transfer
5) Direct Return to Larth

6) Earth to Venus transfer

The direct return legs are trajectories which return to the launch
planet one planetary year later. This sequence (illustrated in Figures
7.1 to 7.3) forms a part of a larger (16 year) orbit which repeats

indefinitely between Earth and Venus.

The final trajectery is specified by the following set of plane-
tary sphere of influence (S0I) entry and exit points. The S80I radii

are given in Appendix C.

Point Julian Date Location
1 2440811.29805 Eart? S0I ex1t‘p01nt (launch)
\g“ 2446968.1735}L Venus éOE&;;%;y point
é 2440974 .71063 Venus éOI exit p01nt:
vy 244;192.33554’ 'Venus SOI entry point
3 ?441J199.051q5'z' “Venus SOT exat point
6 244141681361 V;nu”s“SEJIuelntry po;.n';:
:%‘ ?4'21142-3'3'15?33-6k Venus.SOI ex;t.p01nt
,thI é4&i§8§1%i5636 Ea;th SOI entry point
"y 1244iI5?8L'426'%3' EarthLSOI exit point
15 l 24419§iaé7§§7 Earth SOI.entry £01nt
ii' 2441&6% 96593 {Earth éOI ex1t pélﬁt
12 2442123 36905 Venus 501 entry point (arrival)

The launch date is on August 11, 1970 with the arrival date on March
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13, 1974 (which is a Wednesday).

The spherical coordinates of the S0I entry and exit points in a

planetocentric eclaptic coordinate system (see Appendix A) are

Point Azimuth Elevation
1 -68.845° -71.474°
2 35.165° -52.462°
3 157.616° 18.414°
4 336.896° -16.982°
5 154.209° -54.071°
6 334.844° 55.489°
7 90.723° -121.732°
8 76.408° -48.250°
9 3.803° 41.428°

10 183.950" -40.474°
11 314.174° -42.542°
12 151.149° -65.069°

The complete set of cartesian coordinates of the SOI entry and exit

points in the heliocentric and planetocentric coordinate frames plus

the heliocentric coordinates of the planets at encounter are given in

Appendix E.

The total flight time for the trajectory is 3.59 years which is

about one-fifth of the basic periodic orbit period. The time of flaght

and central angle traversed for the individual legs are

Leg Time of Flight {days) Central Angle Traversed
1-2 156.87546 196.498°
2-3 6.53712 208.873°
3-4 217.82491 348.,950°
4-5 6.51588 216,238°
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Leg Time of Flight (days) Central Angle Traversed

5-6 217.76209 348.831°
6-7 6.54485 208.537°
7-8 164.06107 198.183°
8-9 11.060109 215.694°
9-10 353.55824 348.607°
10-11 10.98699 227.708°
11-12 159.40312 192.359°

The legs (2-3), (4-5), (6-7), (8-9) and (10-11) are planetocentric
hyperbolas while the legs (1-2), (3-4), (5-6), (7-8), (9-10), and

(11-12) are heliocentric ellipses. The orbital elements of these legs

are

Leg Semi-Major Axas Eccentricity Inclination
1-2 . 0.86448 0.17688 7.058°
z2-3 2.1549% 2.07092 126.095°
3-4 0.72333 0.13795 4.093"
4-5 2.14851 1.69163 91.594°
5-6 0.72333 0.07569 7.270°
6-7 2.16000 2.08324 70.943°
7-8 0.86362 0.16973 6.908°
8-9 3.26454 1.71393 59.504°
9-10 0.39995 0.09105 5.438°
10-11 3.27180 1.35186 115.417°
11-12 0.86564 0.16374 6.373°

The semi-major axis is given 1n astronomical units for the heliocentric
legs and in planetary radii for the planetocentric legs.

The vis-viva energy at earth needed to launch on this trajectory
is

C., = 18.427 kmzfsecz

3
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The periapse radius (in kilometers and planetary radii), the
periapse velocity {(in km/sec) and the turn angle (as defined in Sec-

tion 4.5) for the planetocentric legs are

Leg Periapse Radius Periapse Velocity Turn Angle
2-3 13,962,344 (2.30783) 8.45835 28.873°
4-5 8,990.130 (1.48597) 9.86860 36.238°
6-7 14,286.449 (2.36140) 8.39219 28.537°
§-9 14,865.250 (2.33065) 8.52453 35.694°
10-11 7,342,533 (1.15120) 11.29118 47.708°

The time of periapse is the mid-point between the entry and exit points

on the sphere of influence.

All of the parameters listed in this section are for the two-body
trajectory legs used as reference orbats for the final perturbed conic

analysis.

7.2 Performance of Trajectory Segment Matching Technique

No free-fall sclution was found for the trajectory sequence chosen
for detailed examination. Since no zero of the cost function existed,
the generalized Newton-Rapheson (GNR) technique could not be used. All
attempts at application of GNR resulted in a rapid divergence from the
minimum. Thué, the trajectory segment matching procedure was restricted
to the first-order optimum gradient step (0GS) technique. This tech-
nique was repeated through five cycles. The first of these used the
advanced patched conic model alone with initial conditions cbtained
from [22] and [24]. All successive cycles employed the perturbed conic
model with the velocity offsets re-computed for each cycle. The cost
function 1s defined by (2.13-,14) for the first cycle and by (3.31-.32)

for successive cycles,
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First Cycle: Iteration

" Initial Conditions
1
2
3

158
199
200

Second Cycle: Iteration

Initial Conditions
1

2
3

49
50

Third Cycle: Iteration

Initial Conditaions

1
2

79
80

Fourth Cycle: Iteration

Initial Conditaons
1
2

106

Method

0GS
0G3

oGS
0GS

0GS

Method

0GS
0GS
0GSs

0GS

0GS

Method

0GS
0GS

0Gs
OGS

Method

0GS
0GS

Cost Function (kmz/secz)

0.61931
0.41670
0.25163

0.0006968
0.0006964

0.0006961

Cost Function

0.023412
0.013790
0.013629
0.013415

0.012933
0.012926

Cost Function

0.012836
0.012824
0.012816

0.012250
0.01z2241

Cost Function

0.012155
0.012140
0.012131



Fourth Cycle: Iteration Method Cost Function
09 0GS 0.011551
100 0GS 0.011545

Fifth Cycle: Iteration Method Cost Function
Initial Conditions - 0.011401

As the iteration approached a minimum the rate of convergence

slowed down. The procedure was terminated at the fifth cycle due to

1

2)

3)

8J

4)

The small change i1n the solution point during the thard

5

and fourth cycles (the coordinates varied by 10 ° days

and 107> degrees).

The small change in the cost function for each iteration

5 6

{(about 10™° to 10~

per iteration in the fourth cycle).
The small change in the cost function between the fourth

and fafth cycles.
= 5.4 (107%)
Fluctuations in the components of the 0GS weighting

matrix indicating that the path of the iteration changes

direction repeatedly.

Since the trajectory sequence found is not a free-fall solution,

a velocity impulse is required at each SOI entry and exit point. The

magnitudes of

Point

1
2

these impulses (in m/sec) for the last cycle are

Impulse Required

0.181
9.935
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Point Impulse Required

4 10.380
5 69.168

6 70.561

7 0.607

8 2.240

9 27.545
10 27.402
11 Z.515

12 -

Total Impulse 220.534 m/sec

Since they are boundary points and need not be matched with any other

trajectory segments, points 1 and 12 do not have impulses required,
Total running time on the IBM 360/65 was about 450 seconds.

7.3 Perturbed Conic Results

The first step in the perturbed conic model is the calculation
of the perturbations in the initial and final position and velccity
for each leg due to the disturbing accelerations. The magnitudes of

these perturbations (in km-and m/sec) for the last cycle are

Leg ér(t,) Svtq) sT(t,) §v(t,)
1-2 41,314.08 40,979 32,426.32 40.633
2-3 2614,02 26.988 4091.55. 42.725
3-4 28,220.08 45,670 29,605,992 46,557
4-5 4237.34 44 .508 2906.04 30.227
5-6 46,910.76 49 855 48,591.14 50.337
6-7 2821,82 29,843 2253.46 23.601
7-8 31,659,97 40.791 40,915.69 38.892
8-9 3542.84 21.977 5319.98 33.174
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Leg

9-1¢
10-11
11-12

The next step is the calculation of the position and velocity

Gr(tl)

48,817.55
5558.97
40,283.06

Sv(tl)

13.424
34.485
39,210

Gr(tz)

59,081.77
4081.22
23,510.72

Bv(tz)

46.252
25.052
35.092

perturbations at the mid-point that eliminate the position perturba-

ticns at the ainitial and final points. The magnitudes of these mid-

point perturbations (in km and m/sec) for the last cycle are

9-10

10-11

11-12

200,104.06
4079.14
1,096,815.12
4147.93
1,415,883.04
1170.26
184,637.38
4769.56
1,845,405.84
5340,29
242,051.23

8 (tyy)
13,023
810.701
249,635
1694.559
339.272
224.513
10,833
1010.601
271.268
3490.696
12.239

The last step is the calculation of the offsets of the initial

and final velocities. These offset magnitudes (in m/sec) for the last

cycle are

aG(tl)

18.892
23.658
136.154
36.352

6v(t2)
47.168
36.155

137.953
22.588
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Leg 6v(t1) 6v(t2)

5-6 179.485 180.798
6-7 19,858 17.587
7-8 36.508 26.500
§-9 18.928 25.041
9-10 168.229 145,449
10-11 25.288 19,274
11-12 37.285 43.667

7.4 Comparison with Numerically Integrated Results

The accuracy of the analytic procedure is evaluated by comparison
with numerically integrated trajectory legs using the procedure de-
scribed in Section 5.4, The quantities used to evaluate the accuracy
of the analytic techmnique are the errors in the velocity offsets at
the anitial and final times and the position error at the final time
due to the use of the analytically determined initial velocity. The

magnitudes of these quantities (in km and m/sec) are

EEE Av(t;) av(t,) AT (t,)
1-2 0.265 0.397 6474 .90
2-3 0.019 0.078 307.75
3-4 4.001 4.148 3645.73
4-5 0.072 0.020 453.86
5-6 8.757 8.830 7159.38
6-7 0.030 0.010 360.25
7-8 0.279 0.238 7305.56
8-9 0.007 0.052 143.39
9-10 5.489 5.574 5829.96
10-1il1 0.045 0.012 1849.09
11-12 0.388 0.240 8008.43
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In order to fly the trajectory, 1t would be necessary to apply
additional velecity corrections at each SOI entry and exit point to
eliminate the above errors. The following table 1lists the magnitudes
(in m/sec) of the impulse required at each SOI entry and exit point
as predicted by the analytic technique and the magnitudes (in m/sec)
of the errors in these predictions as. determined by the numerical

integrations.

Point Impulse Required Error

1 - 0.265

2 0.181 0.410

3 9.835 4.166

4 10.380 4.218

5 69.168 8.749

6 70.561 §.856

7 0.607 0.277

8 2.240 0.239

9 27.545 5.532

10 27.402 5.612

11 2.515 0.386
12 - 0.240 -

Totals 220.534 38.950

The differences in-the periapse conditions between the numerically
integrated trajectery legs and the two-body reference values for the

planetocentric legs are

Leg Arﬁ AVTr ﬂ.‘t,IT

2-3 18.01 km 11.351 m/sec 7.997 minutes
4-5 19.81 km 6.743 m/sec  -6.991 mirnutes
6-7 38.27 km 5.371 m/sec -2.307 minutes
8-9 66.57 km 14,038 m/sec 9.291 minutes
10-11 38.36 km 31.352 m/sec 7.879% minutes
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7.5 Discussion of Results

Since the solution found is not a zero of the cost function, it
may not be assumed to be a global minimum, The divergence of the GNR
iteration indicates strongly that no zero of the cost function exists
locally but this has not been proven. Similarly, the existence of
other lower but non-zero minima has not been disproven. Some experi-
mentation using different sets of initial conditions was conducted
but no firm conclusions on the existence of multiple sclutions were

reached.

The calculation of the direct return trajectories im this example
proved to be a most severe test of the trajectory determination tech-
nique. The initial and final velocity offsets required for these legs
were an order of magnitude larger than those for previous trajectories,
The source of these large offsets may be seen by examining the tra-
jectories in Figures 7.1 ‘to 7.3. The direct return trajectories ob-
viously spend a large time in the vicinity of the planet with which

they are associated leading to their somewhat extreme behavior.

The errors in the offset calculations associated with the direct
Teturn trajectories are also about an order of magnitude larger than

those for previous heliocentric trajectories., This is due to two effects

1} The larger offsets put a greater strain on the linearity

assumptions of the perturbed conic model.

2) The nearness of the associated planet over a large part
of the trajectory causes significant differences between
the two-body state transition matrix used and the actual

many-body state transition matrix.

0f these two sources, the second is considered more significant. One

point which is interesting to note is the fact that the final positiom
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error due to using the analytically determined initial velocity is
not significantly larger for the direct return trajectories. This
indicates that the velocity errors for the direct returns are not

in a critical direction.

The general accuracy of the trajectory determination procedure
as applied to the periodic trajectory example appears to be compatible
with the results of the preceding examples., For applications for which
the accuracy of the direct return leg calculations proved unacceptable,
a third stage using numerical integration to determine the velocity

offsets for these legs could be added to the solution procedure.
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Figure 7.2 Periodic Trajectory Segment
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Chapter 8

Summary, Conclusions, and Recommendations

8.0 Summary and Conclusions

The trajectory targeting technique developed in this thesis 1s
intended for the pre-mission calculation of reference trajectories
for multiple swingby interplanetary trajectories. The primary objective

has been to develop a technique which

i) has a wide enough region of convergence such that
the initial conditions for the trajectory determina-
tion process may be derived from a simple patched

conic mission analysis,

ii} is largely analytic to minimize computational time

required, and

11i) 15 accurate enough to eliminate or at least signif-
i1cantly reduce the need for numerical integration of

trajectories.

The trajectory targeting technique developed is applied in the
following manner, & simple patched conic model (consisting of a sequence
of heliocentric conic arcs running from the center of one planet to the
next matched in relative hyperbolic excess velocity at each planetary
encounter) is used to calculate a set of initial conditions for an
advanced patched conic model. This advanced patched conic model con-
sists of a set of alternating heliocentric and planetocentric conic
arcs joined at the planetary sphere of influence (S0I). These arcs are
specified by the position and time of the entry and exit points of the
trajectory through the SOI of each planet encountered (i.e. the helio-
centric arcs run from the exit point on one S0I to the entry point on
the next S0I while the planetocentric arcs run from the entry point to

the exit point of a single S0I}. Since the end points and the time of
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flight for each arc are specified, the conic initial and final weloc-
ities may be calculated by solving Lambert's Problem.

Since the initial conditiomns for the SOI entry and exit points
were determined using an approximate model, the conic arcs in the
advanced patched conic model are not likely to match dynamically.
Instead, velocity discontinuities occur at each SOI entry and exit
point. Using the sum of the squares of the magnitudes of these veloc-
ity mis-matches as a cost function, the next step is to formulate the
problem of varying the entry and exit points and times to minimize
the total velocity mis-match as a parameter optamization problem. The
expression for the gradient of the cost function with respect to the
entry and exit point coordinates may be determined analytically from
the relations for the Lambert Problem. Then, by applying first- or
second-order iteration techniques, the velocity mis-match may bde

reduced to a minimum, which will be zero for a free-fall trajectory.

Once the velocity mis-match has been minimized for the advanced
patched conic model the next step is to repeat the process using the
perturbed conic model. Using the two-body conic arcs calculated for the
advanced patched conic model as reference trajectories, perturbed conic
segments {which include perturbations caused by the disturbing accel-
erations of the planets on the heliocentric legs and the disturbing
acceleration ¢f the sun on the planetocentric legs) which pass through
the same end points and times as the advanced patched conic segments
are calculated analytically. These perturbed conic segments differ from
the advanced patched conic segments by velocity offsets at the initial
and final times. The cost function is now modified to include these
offsets and the iteration procedure to minimize the velocity mis-match
{now including the.offsets) is repeated, This process is repeated with
the offsets re-calculated at each stage until convergence to a set of

dynamically consistent (i.e. matching in position, velocity and time)
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perturbed conic segments is achieved. If a free-fall trajectory is
not found, the process determines a2 powered trajectory with the minimum

velocity mis-match,

After the velocity mis-match has been minimized for the perturbed
conic segments, the initial and final velocity offsets may be re-cal-
culated using numerically integreted trajectory legs running between
the same end polnts and times as the perturbed conic legs. At this
point, two alternatives are possible. The first is to repeat the iter-
ation process of the preceding steps using velocity offsets calculated
by numerical integration at each stage. This will provide a trajectory
whose accuracy is limited only by the numerical precision of the inte-
gration techniques used but will also consume a large amount of com-
puter time. A second alternative is to accept the errors of the analytic
technique as being well below the mid-course correction allowance and
to use a single determination of each trajectory leg by numerical inte-
gration as a check of the accuracy of the analytic procedure and as
a means of determining the velocity impulse needed at each S0I entry

and exit point to fly the trajectory predicted.

The basic advantages of the trajectory targeting technique devel-

oped in this thesis are

1) The technique is basically analytic in nature, providing
a great reduction in the computation required, Its con-

vergence range is wide.

2) A continuous description of the entire trajectory is
provided. The near-planet phases of the trajectory are
approximated quite well by the planetocentric trajectory

legé.

3) By specifying the trajectory as a sequence of individual

legs matched in position, velocity, and time, the
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determination of the trajectory is uniformly accurate
along the trajectery. In addition, guidance objectives

are given for each leg of the trajectory.

4) The effects of other disturbing forces (such as non-
gravitational effects) may be easily included in the

perturbed comic analysis.

5) A powered trajectory is provided for those cases which

do not have a free-fall solution.

The main limitation of the analytic technique lies in its accu-
racy. The main assumption of the perturbation techniques employed is
that each trajectory segment is basically two-bedy in nature. The
presence of strong disturbing accelerations acting over extended peri-
ods of time can cause large perturbations from the two-body reference
legs and lead to a degradation in the accuracy of the results (as seen
in Chapter 7). In such cases, the use of a final step employing ve-
locity offsets calculated by numerical integration for the strongly

perturbed legs may be necessary.

The basic conclusion of this thesis is that the analytic targeting
technique developed provides results sufficiently accurate for a wide
variety of multiple swingby missions. Where its accuracy is not ade-
quate, 1t may be supplemented by a final stage using numerical inte-
gration (with the associated penalty of 1increased computation) to
provide any degree of accuracy required. For heliocentric arcs (with
the exception of those discussed in Chapter 7), the initial and final
velocities may be determined analytically to better than 0.4 m/sec.
Errors 1in final position for a numerical integration of gach leg using
the calculated initial velocity range from 1300 km to 15,000 km with
typical values falling in the region of 5000-8000 km. For planeto-

centric arcs, the initial and final velocities are determined generally
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to within 0.1 m/sec. The exceptions to this occur at Jupiter and
Saturn for the Grand Tour example where the neglected effects of the
disturbing accelerations due to other planets proved significant.
Errors in final position for numerical integrations of individual legs
using the calculated initial velocity range from 1.6 km to 240,000 km

with the bulk of the values in the interval 2-2000 km.

8.1 Contributions of the Thesis

The author considers the following items to constitute the orig-
inal contributions of this thesis in the field of trajectory deter-

mination and targeting:

1) The development of a basically analytic technique for
the precision targeting of multiple swingby reference

trajectories. This technique has the following features:

a) a wide range of convergence

b) a uniformly high level of accuracy along the
entire trajectory

¢) specification of guidance objectives along the
entire trajectory

d) fast and simple to apply

e) easily adaptable to different disturbing force

models,

2) Development of a method which provides an economical
means of checking and refining the results of simple

patched conic analyses of complicated trajectories,

3) Development of a simple means for determining powered
solutions for multiple swingby trajectories in cases

where free-fall solutions do not exist,

4) Determination cof the first accurate many-body reference
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trajectories for a multiple swingby trajectory having

more than one intermediate swingby.

Contraibutions of a secondary nature to the objective of this

thesis are 1) development of the optimum gradient step (0GS) modifi-

cation to the steepest descent procedure, 2) derivation of analytic

partial derivative matrices for variations about a solution to

Lambert's Problem, and 3) development of a perturbed conic technique

which improves the Ilinear range for the perturbed two-body model.

8.2 Recommendations for Further Study

Several improvements and extensions of the results of this thesis

are recommended. These are

1)

2}

3)

4)

Inciude the effects of other disturbing accelerations
(such as planetary oblateness, solar radiation pressure,

low thrust, etc) in the perturbed conic model.

Explore the feasibility of using the perturbed two-body
state transition matrix {developed in Appendix D) in the

perturbed conic model.

Study the possibility of determining (either analytically
or numerically) the second partial derivative matrices
for the Lambert Problem. This would allow the use of
second order techniques to search for non-zero minima of

the velocity mis-match cost function.

Extend the perturbed conic analysis to include the deter-
mination of injection and arrival conditions in the near-

planet region.

Several areas for further research using the techniques developed

in this thesis are
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1)

2)

3)

Apply the analytic partial derivative matrices and so-
lution techniques developed to the simple patched conic

model for use in preliminary mission planning.

Apply the targeting techniques developed to detailed
mission analysis studies for the determination of launch
windows, abort and inflight mission modification alter-
natives, midcourse guidance requirements, and the effects

of guidance and navigation inaccuracies.

Apply the techniques for the matching of perturbed conic
arcs to the optimization of multiple impulse orbit-to-
orbit transfers. These transfers may be considered as
sequences gf perturbed conic coasting arcs with impulsive
velocity changes at the matching points. The trajectory
segment matching techniques developed here may be used

to minimize the total ampulse used for the given transfer.
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Appendix A

Notation and Coordinate Systems

A.1 Notation

The following notation convention 1s used in thas thesis. Examples

are given for (3x1) vectors and (3x3) matrices but apply for any da-

mension quantities.

vector = column matrix

vector transpose = row matrix

vector magnitude

X = sl = Yx? + xp? v xg?

unit vector

inner (or dot) product

T
X LTEY XYy T XYy T XY
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outer {or dyadic) product

Y1 X172
T
L9 4 X221 X*2¥z2
X3V, X372
cross product
¥z 7 32
Xxr= |%¥y - X1¥3
XYz © ¥
vector derivatives
axl
9a
EED 2a
Bxs
| 32
r -
axl 0x Bxl
aal aa 333
Eé _ axz axz sz
8a day Ja day
Bx3 ax3 ax3
_?al ﬁaz aa3
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Unit Matrix

1 0 0
I = 0 1 0]
0 0.1
Zero Vector
0
o0=1|o
0

A.2 Coordinate Systems

A.2.1 Heliocentric Coordinate System

The heliocentric coordinate system 1s a non-rotating cartesian

coordinate system centered in the sun with

a) the positive x-axis along the line of “inter-
section of the earth's equatorial plane and the
e§11pt1c plane.

b) the positive z-axis in a direction perpendicular
to the ecliptic plane and parallel to the angular
momentum vector of the earth about the sun

c) the positive y-axis in the ecliptic plane located

so as to form a right-handed coordinate system.

A.2.2 Planetocentric Coordinate System

The planetocentric coordinate system 1s a2 non-rotating cartesian
coordinate system centered in a planet with its axes parallel to the

heliocentric coordinate system,
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Appendax B

Calculation of Conic Arcs and Their Partial Derivative Matrices

B.1 (Calculation of Conic Trajectory Arcs

Referring to Figure B.1, the Lambert Problem is defined as fol-

lows:

Given: 1) 1Initial position x; and time t,
2} Final position I, and time t,

3) The number N of complete revolutions made about the

central body.

Find the initial (El) and final (32) velocities for a two-body conic

trajectory connecting these two points.
The problem 15 solved using the following steps:
1) Determine by some means

a) G; = sgn [ﬂz - 82] (B.1)
where
8 = central angle traversed by the last

incomplete revolution of the trajectory

b) whether the trajectory is an ellipse or a

hyperbola

2} Calculate

c=r,-15 s c = |cj (B.2)
_ 1
s =3 (rl T, % c) {B.3)

3) For an ellipse, solve forA in the transcendental

equation
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]

VE(ty-t) = 1 = (I:(E;EET)'E [ZﬂN + (A—51nl)-Gl(B—51nB)] (B.4)

where

s{l-cosB) = (s-c) (l-cosi) (E.5)
and

0 <X < 2m ; 0<B<A " ;0<B=T

p = gravitational parameter of central body
Calculate

a = s/(1-cosi) (B.6)

2

G, = sgn [12 - A% (B.7)

For a hyperbola, solve for y in the transcendental eguation

- 3

VE(t,t) = T = (mq;—cossy-l) 7 [(sanhy-v) -6, (sinhé-8)]  (8.8)
where

s{coshé-1) = {s-c){coshy-1} (B.9)
and

0 6 <y <o
Calculate

a = s/(l-coshy) (B.10)
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and set

where

The

4) Calculate the quantities

<
2]
]
=
£
&+
e

<}
I
[y
=
1
=

|=
=
[
-3
%]
-
<
it

!
S R |
r
= 5
__r P
2 r,

= 1 -
Lo=g oy

derivations for these equations

may be found in [3].

(B.11)

(B.12)

(B.13)

(3.14)

(B.15)

(B.16)

(B.17)

(B.18)
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B.2 Calculation of Conic Partial Derivative Matrices

This section deals with the derivation of the partial derivative

matrices

Y, 0V, ) Y,

e 2 e 2 >
8Ty 9T, CE ar,

and the partial derivative vectors

agl 331 312 322
3 H H
Btl Btz Btl atz
The notation
3
Bxk
a0 g
e = Vy 0 = | o= fo = scal
3£k X 5 T o alar
o
and —_ -
Bal Bal Bal
axk Byk sz
do o, Bu, da %1
=V 0 = | == — = for a =|a = vector
sz k- axk ayk sz - mz
3
aa3 3“3 3a3
axk ayk sz

will be used for k = 1 or 2

To find the desired partial derivatives using the chain rule, it

is necessary to derive some intermediate results,

2 2 AL
1) no= [md et v l2 k=1, 2 (8.19)
ar o
k% _
aak - ﬁ o = X, ¥, Z
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. Ve Ty = i"’k (B.20)
2 _ 2 2
2) c” ="+, 231-1'2
=r2+r2-2(xx+ + zZ.2,)
1 2 1¥2 7 V1Y T %2
.. Vlc = - i (B.21)
Vzc. =i
3) 5 = 1 {r, + T, + ¢)
2 1 2
- 4 L3
st Gy - L)
=1 s
Vos = 5 (irz il (B.22)
4) a) For an ellapse
5 3 . .
T = (m)f [27N + (A-s.tnl) - Gl(B-s:LnB)] (B.4)
Then,
3
_ s = _ A _ _B_E]
_g%_ (1_(:05;\)2 [(1 cos?\) 3z - %1 (1 cosB) 3
2 = %" 1 2 (1—005)\)—8—5—
Z {I-cosa {I-cosA) EE)
-s sini g%%] }[ZWN + (A-sainx) - Gl (B-sinB):l (B.23)
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Usang
s(l-cosp) = (s-c)(l-cosh) (B.5)
and its derivative

5 sing %% + (1-cosg) %% = (s-c)sini %% + (%% - %g) {1-cosi)

(B.24)
solve for

(1-cosB) = (—S—EE) (1-cosi) (B.25)

and

w

g _ (s-c) (sink) 3A , cosB-cos) 3s {l-cosA) 3ac (B.26)

—_— —_— -
3

sinpg/ do s sing k) S Sing o

Q)
=]

Substitute {B.4), (B.25) and (B.26) into (B.23) to get

3
3T _ s \Z _ 32
E R (I—cosh) i{l cosA) o

-6 (52) oo [ (552) (2323) 22

. (cosB-cosi) 3s - (l-cosi) 3c
s sing oa s sing E
3 1T |9s s sink 23A
*75[‘3—3 " TTcosx 'ﬁ] (.27)

Groupaing terms in (B.27)
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sanA|_ 3 Tsinl

3
2
%%.:-{(%tEggx)il(l—cosl) [1-G1 (S;C)

3
Gl(%?%ﬁ?l)j-(iég) (1-cosi) (COSB—CGS}L

S sinf

3
z /. ) 2
o (retomr) (252) o (

Substituting

s
a =

l-cosa

into (B.28) where possible

5

2 .
0T _ S-C sinA 3 at .
a—a"{sva [1'G1 (—s") s—in—s] z —51“"}

0|

_ —{s-c){cosB-cosA) 3
{GlV’a ( S )( sinpg ) 3

|

+ iG (s-c) 1 lgg
1 Vi SINg | sa
Then, (B.ZQJ‘may be written as

aT

4

Pl

where

sinB]

wlar
Q[

3as
LT

sini

Z T-cosx

A
aa

-2 X3S
) 25 }aa

1 ac
S Sinp Ja

(B.28)

(B.6)

(B.29)

(B.30)

(B.31)
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my - Ve (59 (2o - 3 1 (3.5
H, = Gpls-e) (B.33)
Va sing

From (B.30) it can be seen that

YA = Q [Hl Vs - Hy ch] (B.34)
S1nce

VT = 0 (B.35)
and that

2 .q (B.36)
since

=0 X=zo0 , =1

b) For a hyperbola, similar procedure may be followed.
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o] Lt

_ s
T= (cosﬁy-l) [(sinhy-vy) - G1(51nh6—6)] (B.8)

Taking the derivataves,

3
= 3y 9d
3T . s 2 Fcoshy-l) =— - G.{coshs-1) ——]
R (cosﬁy-l) da 1 o
1
3 s )7 1 [ 3s . 3y
+ 5 - (coshy-1) == - s sinhy ]}
2 (coshY 1 {(coshY—l)z 3 90
[Esinhy-y) - Gl(sinha-a)] (8.37)
Using
s{coshé-1) = (s-¢){coshy-1) (B.92)

and its derivative

s sinhé %% * {coshé-1) %% = (s-c) sinhy %% + (coshy-l)(%% - EE)

30
(B.38)
solve for
{coshé-1) = (EéE) {ceshy-1) (B.39)
and
38 _ [s-c) {sinhy 3y coshy-coshs) .95 _ [coshy-1) sc
30 ( s ) (51n 6) To ( S Sinho £ s sinhd/ o
(B.40)
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Substituting (B.8), (B.39), and (B.40) into (B.37) yields

3

3T _ s \o By 5-C sinhy}oy
55~ (EEEE?_TQ {(coshy-l)ga - G (—E-)(coshY-l)[( )(51nh6)§_
+ | coshy-coshd})ds _ [ coshy-1} 3c
S sinhé BT s sinhg/ 3o

3t 9s _ s sinhy 3y
T2s [aa coshy-1 Ba] (B.41)

Grouping terms,
3
2 .
Y . S sinhy 3 rsinhy By
EI {C:OSEY ) (coshy-1) [l Gl( )(sinﬁa)] 7 “coshy-1 o

s-c _1yfeoshy-coshé) 3 7 ( 3s
{ (os coshy-1 ) (T)(c“h'Y 1)(5 sinho ) ) s} )

s-C 2 1 dc
{Gl(Eagﬁ'rT) (T)(°°5hY‘13 (mm)}a—a (B.42)
Substituting
_ 5
2 = TegsEy (8.10)

into (B.42) where possible

R AVCJERE GO I S

. r— f{s-c) fcoshy-coshé} _ 3 1 (23s

{Gl a (_s'—) ( 5inhs ) Zs } aa
{G 1(5-9) sc (B.43)
V-2 sinhé o
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Then, (B.43)} may be written as

9T _ 1 3y _ 9S 9¢c
3@°Q %a "M et Y¥e (B.44)
where
l e [1_(; s-c 2 Sinh"(] + §_ aT sinh (B 45)
) v 1\ s Sinhé Z s °ceny :
- — [s-c} {coshy-coshé} _ 3 1
Hl B Gl a ( s ) ( sinho ) 7S (B.46)
H. = @ “fs-c 1 )
2 1 \W~ 2/ sinhs (B.47)

From {B.44), it may be seen thz

ka = Q [H1 Vs - Hy ch] (B.48)

since

v

i
(=

E (B.49)

and that

Y . g (B.50)

since

|
It
[=1
w
o)|o:
=0
]
=3
-
n:|o:
AlA
1]
=
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5) From (B.4) oxr (B.8)

Thus

T =4/ 18 (t2 - tl) (B.51)
a0 _ _ g0
"3_'1':'1_ VH T

(8.52)
oo _ -]
3t, Ve

6) a) For an ellipse

Then,

Thus,
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Vka

s
" T-cosa (3.6)
= 1 - - .
= m [{1-cosA) Vs (s sini) ka]
1 .
= EETE;;IET [(1-cos)) Vks - Qs 51nA(H1Vks - szkc)}

- (%)2 [(% - QsH; sin}) Vs + (QsH; sind) Vyc]

2

= (g) [P,7ys - P,V;c] (B.53)



where

~ 5 _ :
Py = 3 - QsHy sini (B.54)
P, = - QSHZ sini (B.55)

b} For a hyperbola

a = 1-cstY (8.10)
Then
v.a = ___;L____T [(1-coshy) Vys *+ s sinhy Vvl
(1-coshy)
= __...__l___..z_ [{1-coshy) Vks + Qs SinhY(HIVkS - HZch)]
{1-coshy)
a\2 s :
=(§) ECE + QSHl sinhy) Vks - (Qst sinhy) ch]
Thus
a 2 56
v = (g) [Py7)s - Py¥yc] (B.56)
where
P, = 2 + QsH, sinhy (B.57)
P, = QsH, sinhy (B.58)
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7} For

i1
1Y¥s-c 2a (B.12)

‘-
]
(7]

= 1 _.1 |
va = Yy [Gl s-¢  Za ]

- [ - ]
24 k |s-c Za

1 1
= o - (V s - ¥ C) + —= ¥V a]
7A [ Pl S LNy A

Substituting for Vi 2 yields

1 1 1
VA=—-—-—[- (Vs—Vc)-l-———(PVs-PVC):I
k ZA (s-c)z k k 252 17k 27k

Collecting terms,

P P .
_ 1 11 (P21
VkA ~2A [( 2 (s_c)z) vks ( z '(5-(:)2) vkc] (B.59)
For

" .
R (B.13)

142



I S P 1 .
= 75 [ A S (P1Vys szk“)]

Thus, collecting terms

P P
1 1 1 2
V. B = 53— - =} v,s - v..C (B.60)
k 2B [( 252 52) k 252 k]
8) For
V.= §5 A+ B] (B.13)
VY. = ‘f% [V A + ¥y B]
P P
_ Jitra 1 .1 ), .1 1 _1_) 7
Gl (25 3 G =) In
P P
a1 2 1 , 1 ( 2 )]v c}
[ZA (252 (S_C)z) 78\ 5.2/ 'k
=“1J [Pl (14-.1'.)- 1 - ]Vs
2 0T \E BT aags-e)? ams?d K
P
- 2 1 + .];) - ———--2—1 v..c
[ 1s? (K B 2A(s-c) ] k
Thus,
= «B -
Yy Ve = J; [2D3¥,s - D,V;c] (B.61)
where
D. = _3%_(% + %)- 1 - - 12 (B.62)
1 8s 4A(s-c) 4Bs
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Similarly, for

VP
Vkvp
Thus
v,V
where
Dy =
D, =
) For

i
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kp,"

1
%]} =

]
Mtl
e
=
1
<1
-
ot

R - ““lf (l B B 1 + 2 Yy 8
‘,:{ [45 A B ZA(s-c:)2 ZBsz] K
i (l ] ;) e
4s2 \A B 2A(s-c)2 | K
- \E;[znsvks Dvsc]
Py (1 AN 1 , 1
gs2 \A B AA(s-c)%  4Bs?
2 (l AR 1
452 \K B 2A(s-c) %
/e

(B.63)

(B.14)

(B.64)

(B.65)

(B.65)

(B.18)



C
Vk(ic) = Vk( c )
== [
= cV, c
c k=
1 - T
=z [?kE " 2. (Vge) ]
Since
X2
c=1I, I3 ¢ 7
%2
Ve = - 1 H
From (B.21)
Vlc = - ic ;

< _ 1 1
Wik =-cltg
N R
Voltd = g1 - ¢ i
Similarly,
. 1 1
Vol(i, ) =2 I - =
1 =Ty Ty Ty
s 1 1
Vo(i ) =% I -=
2 =T, r2 s

i
=c

(B.67)

(B.68)

{(B.21)

(B.69)

(B.70)

(B.71)
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v,3,) =¢
1 =,

v, (i3 =0
2 ~r,

(B.72)

(B.73)

The above intermediate ‘partials may be used for the calculation

of the desired partial derivative matrices. From

calculate

Thus

1486

0= Ve ke Vi (8.16)
Vp = Ve i -V, irz (B.17)
Vave = i (V)T + VY ) + i (V)T 4 Vv (i)
11 = “'l1l'c c 1l =¢c =ry-1'p Pl =rq
N R AL EREETEC ISR A AL
=c‘1'e’ T T ic ¢ iTl 1'p
V
+ B [I -1 1T ]
1 1™
v v v T
2. € i £ 3 :
V131 [rl c ] L Le [Vlvc * c lc:l (B:74)
v T
+
Ty [vlvp - % —-1'1]



Similavyly,

= | L . c . 1T . T

o s (B Tea [rve - 2T i, [72%) (8.75)
v

- [ 1.. . c . IT . T

Vi¥p = [ c vc] T+i, [Vlvc v ECJ ) irz-[vlva (B.76)
v

_ 11 1 . c T

Vv, [c Vc T, Vp] I+1 [VZVC c L(:]
“ i foy - pg T (B.77)
2 2'p T, =T,

Substitute (B.13), (B.14), (B.61}, and (B.64) into (B.74)-(B.77) to

get

- o2 f[1 1 :
ny s fE{Fe-mtarw] s [mys -oe

T T
A+ B . ] . [ _ A-B. ] }
+ c }-C + _'J:_rl ZDSVIS D4V1C = T 1‘.1-

N o R I N

—

W ] ) LT e
V¥ = 4;{ (Eg - Bj) I + (D3 - Ep) de e ¥ (Dy-Dz) RS

. . . LT
+ D1 R S (D2 + El - Dl) i lc} {(B.78)
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http:B.74)-(B.77

Similarly,

= E. T T
Va¥a -2{511“33-1-1- i
1 %2
. LT
* Dy i Erz
vov, = & {-E 1-0D. i
1-2 2 1 3 =y
. .T
* Dl e Ly

1

= Ay { -

+ (D4

where
EO - A ;lB
El=AZB
E, = A ;ZB

Define the matrices

1438

(B.79)

(B.80)

. LT
i if}

(B.81)

(B.82)

(B.83)

(B.84]



B T T
MZ - -:-L-rl ic MS lrz e

LT ~ T
My =i i, Mg = =r, EI'—:rz

Substituting (B.85} into (B.78)-(B.81} yields

Vi¥y =

V¥ =

Vi¥y =

V¥, =

The partial

vy

at

H - - -
V8 [ - ) 1 e g - B g+ 0 - D M
+ D MT + (D, + E. - D,) M
1 M3 2 ¥ Ep - D) My
H T T
7 [El I+ DgMy+ (Dy - Dy) My + Dy Mg
* Dy - Dy - By) Ms]

m [ ) ) ) T
JE:[ E; I - Dy My - (D, - Dg) Mg + Dy M,

* Dy + Ep - Dy) Ms]
u - - -
\F; [(El E;) T+ (B - Bg) Mg + (Dy - Dy) Mg
+D, ML + (D, - D, - E.) M
175 1 2 1 3
derivatives with respect to time

BEZ
3T

(B.85)

(B.86)

(B.87)

(B.88)

(B.Bé]
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may be gotten by the chain rule using

1) a) For an ellipse

_ s
a = TTeE% (B.6)
3a _ _ s sin) A
at (1-cosh)2 3T

2
_ a R IA
= - o sini T
Using

9A
2 .q (B.36)
da _ _a%Q iy (B.90)
aT S -

b) For a hyperbola

& = T-eoshy (B.10)
92 _ _s sinhy 3y
3T (1‘C°sh7)2 T
= Ei sinhy %%
Using
- g (B.50)
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2) From (B.12)

where

FENNES S
T 5 sinhy
- (B.15)
3A L 1 da
at 4pns 9T

3T 4Baz 9T
Ve | i,
5T 7 Lot
fi_‘m 9A
9T 2 19t

Substituting (3.90)

av

c _ u 1
T V?W[K
U 1
fw[—

A

W= - %? sina
=‘%§vsinhy

2]
9T
=]
ot

(B.93) into (B.%4) and (B.95) yields

| = |-
2 L

{ellipse)

(hyperbola)

- Using the above relations with (B.16) and (B.1l7) yields

(B.91)

(B.92)

(B.93)

{B.94)

(B.95)

(B.96}

(B.97)

(B.58)
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v

0 _ e Julf, e 1 1Y),

Pl 7[(K,+ 'ﬁ)lc“(x 3 irl]

v

=2 _ vfl 1 I R N

5z o " 7[(K+ )lc (A B irz]
Using (B.52),

i%l:—?é.:— u—a—‘r_-l.

3t1 Btz 9T

Wa . Ny ,\r‘aﬁz

Btl Etz L1+

B.3 Equation Summary for Partial Derivative Matrices

(B.99)

(B.100)

(B.101)

(B.102)

—_ «H - - -
v —‘ﬁ; [(EO B,) I+ (Dg - By) My + (D, - Dg) M,

T
+ D1 M2.+

(D, - Dy + E) M3]
=<2 . ) . T
vy =45 {5 10y My - (By = Dg) My + Dy Mg
+ Ep) MS]
T

=¢/B i - - - .
V1Y; \/;[El I =Dy My - (Dy - D3)Mg+ Dy My

*+ (D, - D; + E'l) MS]
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= ol B
V¥, <y [(El - Ep) I - (Dy - By) Mg+ (D, - Dg) My

T
* Dy Mg - (B - Dy + Ey) Ms]

s .T _ s T _ .T
M= iy Mg = 3. 1 Ms = iy Lo
- .T _ LT _ T
My = 3‘—r1 e My = =T, E“-rl Mg = =T, E1"2
_A-B _ A*B _ A-B
Ey = T, B == E; T,
b =il (;_ . ;) .o .4
1 852 A B 4A[s—c)2 4Bsz
. =2 (;_+ 1) i 1
2 4sZ\R B 2A(s-c)®
D, = Pl (l - 1) _ 1 + 1
5 8s2 AT B 4A(s—c)2 4Bs?
D, = -2 (1 ] ,1_) oo
¢ 4sZ\A B 2A(s-c) 2
Ellipse Hyperbela
P, = = - QsH, sinx P, = 3 + QsH; sinhy
P2 = - Qst sinl P2 = Qst sinhy
- s-c)fcosB-cosA) _ 3 T - — [s-c}fcoshy-coshg]_ 3 ¢
fy = G Va ( 5 )( Sing ) 75 | B - Givra( s )( Sinkd ) 75
= 5-C 1 _ s-¢C 1
Hp = 6 (\é-) sing Hy = Gy (\/—a) sinhd
2 _. 2 .
1 _ ol s-c | sinl L _ _r _ S5-C smhy]
q -~ v [1 Gy ( s ) 51nB] Q- ° a[l Gl( s ) sinhd
- % 2—'5 sina + -g— %—-I- sinhy
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-1 _ -1
T, C ViEm

v, _ 3V,

at, LT

u {1, 1Y), 1i_1). ]
W 7[(1*3‘)&:*(;? Ts‘)—rl
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Hyperbola
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Figure B.1 LlLambert Problem Geometry
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Appendix C

Calculation of Planetary Data

C.1 Ephemeris Generation

. Expressions for the mean elements of the eight inner planets were

obtained from [35]. The elements obtained from the calculations are

f# = longitude of ascending node

v = argument of perihelion

M = mean anomaly

L = mean 1ongitudé =Q+uw+M

B = longitude of perihelion = Q + w

e = orbital eccentricity

e
1]

orbital inclination to ecliptic plane

a = semi-major axis (in astronomical units)

The six elements L, @&, 2, e, i, a are given as expansions in the

time in centuries

_(3.p) - (3D

36525.0 (C.1)
measured from the epoch Julian date for January 0.5, 1900
(J.D.)0 = 2415020.0 days (C.2)

The term (J.D.) is the current Julian date in days. The expansions, as

determined empirically from cbservational astronomy are as follows.

Mercury

a = 0.3870984

e = 0,20561421 + 0.00002046T-0.000000030T"
i = 7°0'10M.37 + 6".699T -0',066T>

Q = A7°8145",40 + 4266M.75T + 0".626T°
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http:4708'45".40
http:700t10".37

75°53158",91 + $599".76 T + 1".061 Tz

E’ =

L =.178°10'44",68 + 538106654".80 T + 1".084 TZ
Venus

a = 0,72333015

e = 0.00682069 - 0.00004774 T + 0.00000009% T2
i = 3°231371.07 + 3".621 T - 0".0035 T2

Q = 75°46'46".73 + 3239".46 T + 1M.476 T2

B = 130°01490" 8 + 5068".93 T - 3 515 T2

L = 342°46'1".39 + 210669162".88 T + 1',1148 TZ
Earth

a = 1.00000013
e = 0.01675104 - 0.00004180 T - 0.0000001256 T2
i=0.0°

£ = 0.0°

B = 101°13'15".0 + 6189".03T + 1".63 T> + 0,012 T°

L = 99°431'48%,04 + 129602768".13 T + 1'.089 T2

a = 1.52368830
e = 0.09331290 + 0.000092064 T - 0.000000077 T2

i = 1°51'17,20 - 29430 T + O".0454 T

§ = 48°47'11".18 + 2775".57 T - 0".005 TZ - O".0192 T°

334°1375".53 + 6628".73 T + 0.4675 T2 - 0".0043 T3

£
i

1L = 293°44'51",46 + 68910117".33 T + 1".1184 T2

Jupiter

5.202561

™
It

0.04833475 + 0.000164180 T - 0.0000004676 T> - 0.0000000017 T°
2

Lo
n

1°18'31".45 - 20".506 T + 0.014" T

(%N
1

99°26'36".10 + 3637.908" T + 1".2680 T - 0".03064 T°

e
1l
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http:5068".93
http:3239".46
http:75046146".73
http:3o23t37"'.07
http:538106654".80
http:5599".76
http:75'53'58"h.91

& = 12°43'15".34 + S795".862 T + 3" 80258 T- - 0".01236 T°

L = -238°2'57".32 + 10930687".148 T + 1".20486 T2 - 0.005936 T°
Saturn

a = 9.554747

e = 0.05589232 - 0.0003455 T - 0.000000728 T2 + 0.00000000074 TS
i = 2°29'33".07 - 14".108 T - 0".05576 T2 + 0.00016 T°

Q = 112°47'25".40 + 3143",.5025 T - O".54785 T2 - 0'.0191 T°

© = 01°5'53".38 + 7050".297 T + 2".9749 T% + Q".0166 T>

L = 266°33'51".76 + 4404635".5810 T + 1".16835 T2 - 0".021 T2
Uranus

a = 19.21814

e = 0.0463444 - 0.00002658 T + 0.000000077 T2

i = 0°46'20".87 + 2",251 T + O".1422 T2

Q = 73°28'37",55 + 17095".204 T + 47.722 T2

B = 171°32'55",14 + 5343".958 T + 0".8539 T% - 0'.00218 T°

L 244°11'50".89 + 1547508 .765 T + 1".16835 T2 - or.021 T3
Neptune

a = 30.10057

e = 0.00899704 + 0.00000633 T - 0.000000002 T2

i = 1°46145",27 - 34%.357 T - 0".0328 T2

2 = 130°40'52",89 + 3956".166 T + 0.89952 TZ - 0".016984 T°

% = 46°43'38Y.37 + 5128".468 T + 1".40694 T2 - 0".002176 T°

L = 84°27'28".78 + 791589".201 T + 1".15374 T% - 0".002176 T°

The other elements are found using

(c.3)
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A listing of the gravitational parameter used for the planets and

the-.sun is given in Table C.1.
Once the orbital elements of a planet have been calculated for a

given time, its position and velocity may be calculated using the

following relations (see [3] for derivations).

Ip = a {cos E - 1) i1+\/ap sin E 12
(C.4)
= 1 _ . . :
Vp T ?P [ Vua sin E i; *Vup cos E 52]

where

E = eccentric anomaly
p = semilatus rectum
= a(l—ez)
u = gravitational parameter of the central bedy (in this

case, of the sun)

The coordinate system defined by the unit vectors, i;, i,, iz is shown
in Figure C.1., It can be seen that these unit vectors may be expressed

in the ecliptic frame as

cosfl cosw - s5inQ sinw cos i

[al]

i, = 5in@ cosw + cosf sinw cos
sinw sin i

- cosf) sinw - sinQ cosw cos i

- sin@ sinw + cosQ cosw cos i (c.s)

e
™~
]

cosw sin i
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sin® sin i
is = - cosf sin 1

cos i

The eccentric anomaly E is related to the mean anomaly M .by Kepler's

equation
M=E- e sinE (C.6)

This equation is transcendental and may not be solved analytically.
The solution technique used here is a Newton-Rapheson iteration which

sets

[Ek - M- e sin Ek]
Ers1™Bg- [T - e cos E] (€.7)

with the initial condition

E, = M (c.8)

This iteration converges rapidly for orbits with small eccentricity.

C.2 Calculation of Sphere of Influence Radius

In this thesis, a somewhat larger sphere of influence (80I) is
used than the classical Laplace SOI. This enlarged SO0I is the surface
on which the direct acceleration due to the planet equals the perturb-
ing acceleration due to the gradient of the solar gravitational field.
Referring to Figure C.2 it can be shown (see [3]) that an apﬁroximate
expression (good te first order in 1/2) for the acceleration on a point

mass m due to a planet P and the sun S is
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- . T .
e i * ;7 T (3 cose i, 5{) (C.9)

where

r = position of mass m with respect to the planet P
L = position of the sun S with respect to the planet P
o = angle between L2 and T

Hg, Hp, M, = gravitational parameters of the sun, planet,

and mass m respectively,

Equating the direct and perturbing accelerations yields

’ B TR i
%=(1+3c052a) 6(1’___“1)3 (C.10)
M
S
Since 1
0.7937 < (1 + 3 coszu) ® <1.0
and

Fp << ¥p OT g

the locus of these points may be approximated by a sphere of radius

u 1 -
T = 2.(—1-13)3- (C.11)
3

For computational purposes, % is assumed equal to thé semi-major axis

of the orbit of the planet under consideration.

" The Laplace S0I is a somewhat smaller surface defined approximate-

1y (see [3]) as

2
u —
r = 9.(—1'1) 5‘ (€.12)

162



This surface is the locus of points where the ratio of 'disturbing
acceleration to primary acceleration is equal for the equations of

motion referred to either the sun or the planet.

Numerical experiments by the author and by Carlson [29] show that
a better trajectory approximation is obtained by using the enlarged
sphere of influence. Carlson also shows that the theory of matched
asymptotic expansion predicts an overlap of the region of validity of
the heliocentric and planetocentric trajectory representations in the
vicinity of this enlarged sphere of influence. A listing of the size
of both the Laplace and the enlarged spheres of influence is given in

Table C.2
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Table C.1 Gravitational Parameters

Body u_(m®/sec?)

Sun 0.1327154456 (101%)
Mercury 0.2211924093 (10°)

Venus 0.32528295482(10%)

Earth 0.39802852025 (10%)

Mars 0.4290138858 (10°)

Jupiter 0.12671486322(10%)

Saturn 0.3790137239 (10%)

Uranus 0.580329029 (107)

Neptune 0.68714634755 (107)

Table C.2 Sphere of Influence Radius

Bedy Laplace Spﬁere (km) Enlarged Sphere (km)
Mercury 113,455.7 318,688.4
Venus 616,362.0 1,458,966.1
Earth 923,738.2 2,157,378.4
Mars 574,520.1 1,564,377.2
Jupiter 48,177,614.0 76,638,659.8
Saturn 54,505,381.7 94,129,489.7
Uranus 51,742,2153.6 101,287,919.7
Neptune 86,747,707.2 167,883,945.9
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Figure C.1 Coordinate System Geometry
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Figure C.2 Geometry of Perturbing Acceleration




Appendix D

Properties and Application of the Two-Body State Transition Matrix

D.1 Properties of the Two-Body State Transition Matrix

This section summarizes some of the more important properties

of

the two-body state transition matrix. For a more complete discussion,

see [36] or [3].

The equation of motion for two-body flight is
- M
¥= - T (D
r ;3 L

The variational equation for small perturbations about the nominal

trajectory is

8% = G (z)sr G (t) st (v
where
6x) =¥ [31 1T -1 {D
= ;f [ =r =r ]
= x(t)

Equations (D.1) and (D.2) may be put inte first-order form by

defining
r (t)
x (t) = | (D
- v (B)
§r (t)
8x = | (D
8y (t)
Then
] I
x= X (v
K 0
>

1)

.2)

.3)

.4)

.5)

.6)
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and

5x = F{t)x (D.7)
where
o1
F(t) = (D.8)
G(t) ¢

The solution to (D.7) is given by
§x (t) = (I)U (t, ’to) 6£(t0) (D.9)

where
@O(t,to) = state transition matrix from time ty to time t

for the two-body trajectory.

It may be shown [3] that the state transition matrix satisfies the

same differential equation as the state

QO(t,tO) = F(t)@DCt,tU) (D.10)
with the initial conditions

Qo(to,to) = I (b.11)

A number of analytic solutions to (D.10) in different coordinate
systems exist (see [3), [36], [37]). The one used in this thesis is by
Goodyear [37], which provides a solution in gegeralized cartesian co-

ordinates.

» 3 - * >
The state transition matrix is a member of a class known as sym-

plectic matrices. These matrices satisfy the relation

‘168



QJQ = J
where

J = Q = symplectic matrix

Post-multiply (D.12) by Q'1 and pre-nultiply by J to get

-1

Qt=-3q"y

If the state transition matrix is partitioned into

Ao(t,to) Bo(t,to)
g, (t,ty) =
Colt,tg) Dy (t.ty)
then
DTt tg) =By (t,tg)
@61 (t,ty) =

-COT(t,tD) Ao(t,to)

may be calculated using (D.13).

If (D.7) includes a disturbing term

§x(t) = F(t) 8x(t) + £,(t)

Wwhere

jo(t) =, disturbing vector

0

a4(t)

(D.12)

(D.13)

{D.14)

(D.15)

(D.16)
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gd(t) = disturbing zcceleration evaluated along the reference

orbit

the solution to the perturbed motion is given by

t
8x(t) = 8,(t,t,) 8x(ty) * f 8 (t, 1) £ (1) dT (D.17)
t
)]

See [30] for a derivation of this relation.

D.2 Evaluation of Perturbation Integrals by Quadrature

In the calculation of the perturbed conic trajectory segments,

it is necessary to evaluate the integral

t .
s(t) = f@o(t,r)gocr)dt (D.18)
1:0 .

in (D.17) Since both terms in the integrand are known functions of time
along the reference trajectory, the integral may be evaluated by quad-
rature. The quadrature meithod chosen was Simpson's Rule [38}, which

states that

a+nh
I= uf{t)dt = %[ﬁo + duy + 2u, 4+ dug + oL

a

+ 4“n—3 + Zun_z + 4un_1 + un] + R (D.19)
where

h = step-size
n = number of steps (even)
Uy = u{a+kh)
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5
Rn=-’%%-5 oV @) 5 e cza+annm (D.20)

truncation error

The integral (D.18) always runs from the mid-point Ty of a tra-
jectory segment to its end point t, or its initial point ty (see (3.12)
and (3.13)). To take into account the fact that the integrand varys

moxe rapidly with time near ty or t than it does near Ty the inte-

2
gral is evaluated over four sub-intervals with different step-sizes.

These four intervals are

1 s 1
IZ: h2 = ZTS , n, = 8
13: h3 = 4TS R np = 8

14: The values of n and h for the fourth sub- interval are

calculated using

d =8 TS )
T,.= !ti - tM] = nyhy - nyh, - nghg
= Jt; - tyl - 56 T (i =1 or 2)
n,= 2 Integer [TR/Zd]
h4= TR/n4

This method insures that the interval for Ié is divided into

an even number of steps approximately d in length.

For a small planet (Mercury, Venus, Earth, Mars) the parameter T is

assigned the values

=
n

0.5 days (helioccentric leg)

-]
]

'0.02 days (planetccentric lég) (b.21)}
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while for a large planet {Jupiter, Saturn, Uranus, Neptune) it has

the values

1

T z.5 days (heliocentric leg)
{D.22)
T. = 0.5 days (planetocentric leg)

These values are picked to provide a balance between running time and

accuracy.

The value of the integral in (D.18) is given by the sum of the

integrals over the sub-intervals.
I =71, + I, + T, + 14 (D.23)
To illustrate the accuracy of this procedure, a comparison between
the perturbations obtained by quadrature and those found by numerical

integration is given for

1) Heliocentric Ellipse (Earth to Venus)

t; = 2441478.8 days ty = 2441556.4599 days
t, = 2441634.11877 days

Quadrature Numerical Integration Difference
sr(ty) 35,164.67 kn 35,267.35 km 102.78 km
6v(t1) 39.723 m/sec 40.237 m/sec .514 m/sec

2) Planetocentric Hyperbola (about Venus)

t 2441634.11977 days tM = 2441636.0597 days

1

It

t 2441637.99955 days

2
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Quadrature Numerical Integration Difference

8x(t)) 1482.11 km 1512.57 km 30.46 km
sv(ty) 26.470 m/sec 26.489 m/sec .190 n/sec

3) Heliocentric EBllipse (Earth to Jupiter)

tl = 2443787.0 days Ty = 2444040.0151 days
t, = 24442983.03027 days

Quadrature Mumerical Integration Difference
Gr(tz) 687,602,.28 km 689,394.07 km 1791.79 km
Gv(téJ 116.409 m/sec 117.202 m/sec .793 m/sec

4] Planetocentric Hyperbola (about Jupiter)

tl = 2444293.03027 days ty = 2444376.7112 days
1:2 = 2444460.39204 days

Quadrature Numerical Integration Difference
6r(t1) 355,455.46 km 356,310.0 km 854.54 km
Gv(tl) 147.690 m/sec 148.114 m/sec 0.424 m/sec

Errors in the calculation of the perturbations by the analytic
quadrature methed are on the order of 1% or less. Position perturba-
tions tend to be more accurate than the velocity perturbations. This
is due to the fact that the true A and B sub-matrices in the state
transition matrix (see (D.14)) are more accurately approximated by
their value on the two-body reference trajectory than are the C and D

sub-matrices.

D.3 Calculation of Perturbed State Transition Matrix

It was stated in (D.7) and (D.10) that the state variation 8x and

the state transition matrix both satisfy the same differential equation.
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8x(t) = P{t)éx(t) (D.7)

é(t;;oj = F(£)e(t,t,) (D.10)

Furthermore, if a perturbing term £ is added to (D.7), its solution

becomes

T
8x{t) = @(t,to)égﬁt) + J~ o(t,r)f(r)dr {D.17)
t
0
for

§x(t) = F(t)sx(t) + £(t) (D.16)

A similar form may be derived for the perturbed state tramsition

matrix. Let
og(tsty) = Fplt) o,(t,z,) (D.24)
be the differential equation for the pure two-body problem while
8(t,ty) = F(r)e(t,ty) (D.25)

is the differential equation for the pertufbed two-body problem. Note

that

F(t)

Folt) + Fg(t)

(D.26)

iU
+
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where

9a
_ =4
6, = = |, (D.27)
Substituting (D.26) into (D.25) yields
¢(t,t0) = Fo(t}é(t,to) - Fd(t)¢(t,t0) (D.28)
Let -
@(t,tO) = éo(t,toj + éé(t,to) (D.29)
(D.29)

Then,. (D.28) becomes

éD(t,tO) + aé(t,to) = By (t) e, (t,ty) + Fylt)selt,t,)
+ Fg(t)ey(t,tp) + Fy(t)68(t,ty) (D.30)

Eliminating the two-body terms and neglecting the product Fd(t)éé(t,to)

leaves
aé(t,to) = Po(t)ﬁé(t,tﬂ) + Fd(t)éo(t,to) (D.31)
By comparing (D.31) with (D.16), the solution analogous to (D.17) is
t -
58(t,tg) = By (t,ty)50(ty,t0) + j' 8y (,TIF (0] 8y (1, £y dr
ty (D.32)
Inserting (D.32) into (D.29) and recognizing that

88 (ty,ty) = O

vields
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ot

2(t,tg) = 8y(t,ty) * f 24 (t,T)F, ()8, (v, tp)dT (p.33)
o
which is an approximate solution for a many-body state transition

matrix.

The errors associated with the use of the pure two-body state
transition-matrix rather than the actual many body matrix were the
major source of inaccuracy in the perturbed conic analysis. However,
since these errors were not excessive, it was felt that the increased
computation time associated with the above calculation of an approxi-

mate many-body state transition matrix was not justified. No numerical
studies on the accuracy of the above technique were performed.
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Appendix E

Trajectory Description Data

E.1 Description of Tables

This, appendix presents the detailed data needed for the specifi-
cation of -the trajectories determined in Chapter 5-7. The following

sections contain tables of

1) Planetary position in the heliocentric ecliptic coordinate
system at each sphere of influence (S0I) entry and exit

time.

2) Planetary velocity in the heliocentric ecliptic coordinate

system at each S0I entry and exit time.

3) Position of S80I entry and exit points in the planetocen-

tric ecliptic coordinate frame.

4) True hellocentric velocity at each SOI entry and exit

point.

5) True planetocentric velocity at each S0I entry and exit

point.

The true velocities at each SOI entry and exit point are deter-
mined by nuﬁerical integration of each trajectory leg as described in
Section 5.4. The time of passage through each SOI entry and exit point
may be found in Chapters 5-7. Planets are referred to by number in the

tables in the following manner

Number Planet Number Planet
1 Mercury 5 Jupiter
2 Venus 6 Saturn
3 Earth 7 Uranus
4 Mars 8 Neptune
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E.2 Dual Planet Reconnaissance Trajectory

Planetary Positien (km)

Point Planet X y Z
1 3 -27,683,560 -149,351,633 0
2 2 -85,946,304 64,291,179 5,849,706
3 2 -92,494,950 54,464,844 6,090,584
4 4 9,298,184 -216,541,101  -4,783,633
5 4 20,235,530 -214,917,173 -5,017,472
6 3 150,071,922 1,341,038 0
Planetary Velocity (km/sec)
Point Planet XE Ez_ zg
1 3 28.803850 -5.536705 0.0
2 pA -21.115118 - -28.219406 0.824872
3 2 ~17.916849 -30.347939 0.610865
4 4 25.142150 3.112230 -0.550617
5 4 25.057758 4.344065 -0.522634
6 3 -0.752478 29.680227 0.0
Planetocentric Ccordinates of SOI Entry and Exit Points (km)
Point Planet X b z
1 3 -1,618,847 1,228,772 -723,696
2 2 1,289,792 -678,612 -67,123
3 2 -1,457,233 56,086 43,682
4 4 1,139,936 1,065,458 112,352
5 4 -1,151,504 -1,053,602 1,060,012
6 3 2,124,226 309,891 214,270
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True Heliocentric Velocity at S0I Entry and EBEXit Polnts (km/sec)

" Point Planet
1 3
2 2
3 2
4 4
5 4
6 3

True Planetocentric Velocity at SOI Entry and Exit Points (km/sec)

™x

25.411804
-28.702396
~26.543009

19.925562

19.783087
-11.562088

Yy

~-3.308020
-24.100878
-30.113072
-1.771693
-0.479968
27.887921

Yz

-1.496488
1.225602
0.865247

—1.1&4716

0.012257

0.623309 .

Point

Planet

[« N S . D T o

(7 - R

Yx

-7.587318
-8.626212
~5,216591
-5.274674

E.3 Grand Tour Trajectory

Planetary Position (km)

Point

ES

146,373,093
730,966,280
-793,050,422

6 -1,392,750,100

6 -1,351,245,940

Planet

1 3
2 5
3 5
4

5

6 7
7 7
8 8

508,598,411
417,872,638
825,783,251

v,
A
4.118546
. 0.234868
-4.883929
-4.824036

7

30,840,193
341,268,726
172,374,356

Yz

0.400726
0.254384
-0.564099
0.534891

fea

14,992,492
17,066,856

-367,498,888

-523,607,941
-2,816,199,860
-2,835,394,500
-4,452,305,730

61,896,089
62,947,475

-3,939,139

-5,185,687
72,635,448
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Planetary Velocity (km/sec)

Planetocentric Coordinates

Point Planet
1 3
2 5
3 5
4 6
5 6
6 7
7 7
8 8

Vx
~6.627671
-5.683434
~2.929249

1.929444
2.952499
6.653486
6.689117
5.299626

Yy

25.040716
-11.237136
-12.166462

-0.356882

-9.024942

-1.521178

-1.304052

1.020036

v
-z

0.0
0.172861
0.114945
0.085318
0.038810
-0.091945
-0.091596
~0.143199

of S0I Entry and Exit Points (km)

Point Planet
1 3
2 5
3 5
4 6
5 6
6 7
7. 7
8 8

x

-422,358
52,179,576
-76,427,535
90,303,036
18,853,800
-7,355,051
36,980,520
-68,924,481

Y

2,090,193
-56,112,733
-88,025
25,960,699
-92,130,386
100,977,635
-94,149,082
152,861,419

z

327,087
1,461,922
5,684,043
5,635,961
-4,109,294
2,943,333
5,256,825
-8,235,400

True Heliocentric Velocity at SOI ‘Entry and Exit Points (km/sec)
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Point Planet
1
2 5
3 5
) 6
5 6
6 7

Vx

-8.729043
~12.546516
-13.280658

-8.652141

5.181211
7.716297

V.

Z

38.773437
-3.447447
-12.488954
-12.357576
-19.749870
-16.446444

Ve

1.658246
0.060104
0.910924
0.746294

-0.442043

-0.533078



Point Planet
7 7
8 8

True Planetocentric Velocity at SOI Entry and Exit Points (km/sec)

x
12.174013
12.136149

Y

-15.208984
-14.246205

Yz

0.691257
0.684301

Point Planet
1 3
2 5
3 5
4 6
5 6
6 7
7 7
8 8

Xx
-6.862568
-10.35132¢6
-10.581829
2.228758
1.062830
5.484978

E.4 Periodic Trajectory

Planetary Position (km)

Point Planet
1 3
2 2
3 2
4 2
5 2
6 2
7 2
8 3
8 3

10 3
11 3
12 2

X

115,517,131
-98,406,259

-104,690,651

97,993,845
-104,439,345
97,465,377
104,152,073
149,582,514
144,544,696
149,721,363
145,020,497
-96,870,027

y
7.789369
-0.322564
-3.000683
~10.724730
-14,925182
-13.904982

¥

-98,137,483
42,926,751
24,078,614
43,854,474
25,127,936
45,010,278
26,274,532
10,210,861
38,009,310

8,463,429
36,278,351
-47,526,925

v
£

-0,232962
0.795978
0.660993

-0.480851

-0.441132
0.782347

|~

0
6,271,195
6,371,004
6,260,237
6,371,140
6,245,750
6,370,544
0
0
0
0
4,924,934
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Planetary Velocity (km/sec)

Point Planet
1 3
2 2
3 2
4 2
5 2
6 2
7 2
8 3
] 3

10 3
11 3
12 2

Vx

18.800505
-14,161646
-8.02599¢9
-14.463523
-8.371178
-14.839637
-8,744011
-2.515084
-8.062106
-2.167525
-7.715572
15.182219

Planetocentric Coordinates of SOIL

Yy

22.595294
-32.263702
-34.286904
-32.13037%9
-34.,206640
-31.559383
-34,114777

25.612395

28.702144

29.633935

28.780893
-31.602193

v,
_Z

0.0

0.367108
-0.014566

0.386568

0.006423

0.410832

0.029399

0.0

6.0

0.0

0.0
-1.314630

Entry and Exit Points (km)
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Point Planet
1 3
2 2
3 2
4 2
5
6 2
7 2
8 3
9 3

10 3
11 3
12 pA

X
247,388
726,703

-1,279,966
1,283,436
-770,819
748,191
9,682
337,614
1,614,003
1,637,219
1,107,649
538,663

bk

-639,293
511,959
527,150

-547,542
372,484

-351,377

-767,274

1,396,334
107,287
-113,046
-1,140,039
296,754

z
-2,045,577
-1,156,885

460,850
-426,113
-1,181,388
1,202,217
-1,240,878
-1,609,518
1,427,503
-1,400,362
-1,458,666
-1,323,012



True Heliocemntric Velocity at SOI Entry

and Exit Points (km/sec)

Point Planet
1 3
2 2
3 2
4 2
5 2
6 2
7 2
8 3
9 3

10 3
11 3
12 2

Yx

17.323915
-16.616974
-12.484461
-18.920016
~11.046420
-17,512140

-8.650568

-3.262805

-4.699129

1.194127
~5.477269

16.261390

v

A

20.157965
-34.071864
-32.404149
-30.231828
-32.921844
-30,658423
~-36.809915
"26.747620

28.972881

29.890394

26.475428
-33,864871

True Planetocentric Veloeity at S0I Entry and Exit

Va

-3.267526
4.356735
1.506887
1.908059

-4.047927

-3.641063

-4.202766
3.254240
2.858207
2,.857028

-2.992208
3.969588

Points (km/sec)

Point Planet
1 3
2 2
3 2
4 2
5 2
) 2
7 2
8 3
9 3

106 3
11 é
12 2

Tx
-2.455124
-4.455058
-4.457173
-2.631615
-2.625721

0.093025
-0.746902

3.351399
3.348385
2.239589

4

-1.807893%

1.883022
1.899298
1.269900
1.284945
-2.694363
-2.862650
0.267886
0.253327

-2.317191

v
Z

3.989542
1.531741
1.552338
-4.102211
-4.097597
-4.232504
3.253536
2.882569
2.879679

-2,991828
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