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f	 SECTION 1

INTRODUCTION

1.1 GENERAL

Pulse code modulation (PCM) telemetry utilizes a series of binary
digits ("ones" and "zeros") to describe the analog level of a
sample taken from a data channel. As indicated in Figure 1-1
(Reference 1), the bi-phase-level, or split-phase, PCM code
utilizes the binary states 11 10" to represent a "one" and the binary
states 1101" to represent a "zero." One advantage offered by split-

	

1=	 phase coding over other types of PCM code formats (such as NRZ and
RZ) is that the transition density for a random bit pattern is
higher for split-phase than for the other formats. At least one
binary level transition will occur during each bit period of a
split-phase code, whereas it is possible for the other code formats
to have long groups of consecutive "ones" or "zeros." The greater
bit transition density for the split-phase format generally allows
more efficient bit synchronization (recovery of the bit rate clock
frequency) to be maintained at the receiver.

Prior to transmission, a PCM bit stream is used to modulate some
parameter (phase, frequency, or amplitude) of an RF carrier. In
some systems, the PCM signal first modulates a subcarrier, which
subsequently is used to modulate the main carrier. Such systems
are capable of transmitting other channels of information, such
as voice, in addition to the PCM telemetry channel.

1.2 PURPOSE

The purpose of this document is to determine certain transmission
characteristics (autocorrelation function and power spectral den-
sity) of a carrier which is modulated in some manner by a split-
phase PCM code. These characteristics are potentially useful in
determining transmission bandwidth requirements for channels over
which split-phase codes must be transmitted. In addition, these
characteristics must be known before precise calculations of bit
error. rate can be made for various signal-to-noise ratios (SNR's).
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1. "a SCOPE

This document is concerned with the determination of transmission
characteristics of a carrier which is modulated in various ways
(amplitude, phase, and frequency) by a split-phase PCM code with
a random bit pattern. It is assumed that "ones" and "zeros" occur
with equal likelihood. In addition, it is assumed that the modu-
lation process is noneoherent (i.e., the phase of the PCM modulat-
ing sequence is not related to the phase of the carrier).

The transmission characteristics which are determined include the
(ensemble-average) autocorrelation function and the power spectral
density (which is the Fourier Transform of the autocorrelation
function).
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SECTION 2

SUMMARY AND CONCLUSIONS

2.1 GENERAL

The results of the calculations presented in this document provide
some insight into the relative transmission bandwidth requirements
for carriers which are modulated in various ways by split-phase PCM
codes. It is demonstrated that the case of frequency modulation by
a split-phase code is the most general case to be analyzed; the
amplitude modulation and phase modulation cases are actually degen-
erate forms of this case.

2.2 CONCLUSIONS

A comparison of Figures 3-2, 4-1, and 5-2 indicates that the spectral
occupancy (and, therefore, the required transmission bandwidth) is
greater for a carrier which is frequency-modulated by a split-phase
code than for carriers which are amplitude- or phase-modulated by
that code. As expected, the spectral occupancy of the frequency-
modulated carrier depends upon the frequency deviation due to the
PCM code or, alternately, on the frequencies which are "keyed"
between by the code.

The spectral occupancy for the amplitude modulation case is the
same as that for the phase modulation case. For either case, the
baseband PCM code spectrum is translated to appear about plus and
minus the carrier frequency. A discrete carrier component is
always present for the amplitude modulation case, however, while
it is possible in the phase modulation case to convert all of the
available channel power into sideband power. Therefore, it may be
concluded that phase modulation is inherently a more efficient
techniqAe than either amplitude or frequency modulation for trans-
mission of a random split-phase PCM code.
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SECTION 3

AMPLITUDE-SHIFT KEYING BY SPLIT-PHASE PCM CODES

3.1 GENERAL

For the general case of amplitude modulation of a carrier by a
binary sequence, level transitions result in the carrier being
switched between two possible amplitude levels. It is common to
refer to this modulation process as amplitude - shift keying (ASK).
A special case of ASK is "on-off" keying of the carrier. This is
the case when one of the carrier amplitude levels is zero.

3.2 AUTOCORRELATION FUNCTION

A generalized expression for a sinusoidal carrier which is amplitude-
modulated by a binary sequence is

e 
ASK (t) = A 

1
1 + m(t)E 1 aC Cos rwct + ^c/
	

(1)

where A is the unmodulated carrier amplitude,

m(t) _ ±1 is a random (PCbi) switching function,

E 1 represents the absolute voltage level of the binary
sequence,

Sc is the carrier modulation sensitivity (volt/volt),

WC is the carrier frequency (rad/sec),

and t  is the 'nitial phase of the carrier.

For the general case indicated above, binary transitions result in
the carrier being switched between two possible amplitude levels,
A(1 + E 1 0c) and A(1 - El0c). Note that for El$c =1, these two levels
are 2A and 0, respectively. This is the special case of "on-off"
keying of the carrier.

In order to determine the power spectral density of a random process,
it is first necessary to determine the ensemble-average autocorrela-
tion•function of that process. This function is merely the expected
value of the product of two samples of each member of an ensemble of
the random process, evaluated for various sampling times. The auto-
correlation function of the ASK signal of equation (1) is given by

R ASK (T) = E  ASK (t l) e ASK (tl+T)J	
(2)

!_._
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where t l and t l+T are the times at which the members of the ensemble
are sampled.

Equation (2) may be further expressed as

RASK(T)	
= E{ {A r+m ( l) E l s c jcos ^Ctl+^c

•{A
(1 	[

1+m tl+T1EllOC COS(WCtl+WCTC )
J

A 2 E I[l+m t	 E S1^	 1 l+m t +T E S[	 1	 1) C lc]	 cJ

cos Wctl+^C cos(Wct l +WCT +^c l	 (3)

But

Ell c
COs W t +^	 COs W t +W T+O	 = 1 COS W T+ l COS 2W t +W T + 2^	 (4)

1	 c	 C 1	 C	 C/2	 C2C1CC
 / 

SO

f
E R	 (T) = A E	 l+m t	 E S +m t +T E S +m t	 m t +T E	 SASK	 2	 rr	 ( 1, 1	 C 1	 1	 ( 1l	 1	 12 c 2 Cos W T2	 cc	 c

+ A 2 E C1+m(t l
)E

l O C +m
^t l+T)E l sc +m t l m (t1+T1E12ac2

•	 Z cos(2wctl+WCT+2^c 1
	 (5)

Ii the modulation process is non-coherent, then the PCM signal and
the carrier may be assumed to be statistically independent rRefer-

(,. ence 2).	 Since the expected value of the product of two statisti-
cally independent random variables is equal to the product of their
expected values, then

- A2El^CA2	 A2ElRc	 /

RASK ( T) = 2 E IC os
iwCT! +	 2	 E[m(t ll l 

+	 2	
E[m(tl/]E[coslwCT

\^
+T^^E[cosIWCT

\	 /1 J \	 /J
A2E12Sc2	

``	 /	 l	 A2+	 Erl+m t)E10c +m(t1+T)ElO,
+(	 (t 	 IC+T

E0StWc T}j +
]

2
l	

111////// 	
I

\	 /J
2 l	 \ J

+ m t mrt 1 +T E 1 2 sc 21E [COS(2WCt l +W CT+20 c)] (6)
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r
(	 If 0c is assumed to be a random variable, uniformly distributed
!_±	 over the range 0 to 2n, then

Ercos(2wc t 1 + wcT
 + 20c)J = 0
	 (7)

or the ensemble average of a sinusoid of random phase is the same
as the time average of that sinusoid. It can also be noted thatC_	 the assumption of a random PCM code with equally likely ones and
zeros results in

L]l 	 E
C
 m ( 1)]
	

m= E	 t 1 + T 	= 0	 (8)f `
Since wcT is constant for a given value of T, then

E 
I 

OS (W T )]
 
= Cos 

(W T) 
	 (9)

Substitution of equations (7), (8) and (9) into equation (6) yields

A 2	 A2 E 1 20c2	 /

	

RASK(T) = 2 cos 
(WCTl 

+	
2	

cos rwcT)E 
Cm(tl) m (tl

+T) J (10)

Several observations can be made regarding equation (10). First,
the term (A 2/2)cos(wcT) is recognized as being the autocorrelation
function of the carrier, A cos(wct + Oc). Second, the term
E 1 2E[m(tl)m(tl +T)] is recognized as being an expression for the
autocorrelation function of the binary sequence (split-phase PCM
code) under consideration. Thus,

R ASK (T) = R CARRIER (T) + S c 2R PCM (T)R CARRIER 
(T)	 (I1)

The autocorrelation function of the split-phase code, RpCM(T),
is easily determined (Reference 2) and is shown in Figure 3-1.

3.3 POWER SPECTRAL DENSITY

The Wiener-Khintchine theorem (Reference 3) states that the power
spectral density and the ensemble-average autocorrelation function
are Fourier Transforms of each other, or

S(w)	 2	
coR(T)e -jwTdT

	(12)
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R PCM (T)

1

0	 FOR r< -T1

^( r+Tl) FOR -Tl s r<---2

2
-E --^ (3 r+T^ FOR -^ ^ r < 0

R PCM (T)	 12

E	 (-3r+T1) FOR 05r<j1Z

E 2

	

	 *
2

, - (r -T4	 FOR -?!5 75T,

0	 FOR r>Tl

-T1	
-3T 1 	-T1	 -T1	

TT	 341	
T1

1	 4	 2	 4	 -

-E12
4

E 1 2- 
2

wwf W X+ (w)-+

(T1 = PCM CODE BIT PERIOD = —U—^

Figure 3-1 Ensemble-Average Autocorrelation Function
for a Random Split -Phase PCM Code
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Substituting equation (11) into Equation (12), it is seen that

S ASK (W)	 SCARRIER (w) + s c 2 SPCM (w) * SCARRIER(w)	 (13)

where * denotes convolution (multiplication of autocorrelation
functions results in convolution of power spectra).

1

Substituting the expression for RCARRIER(T) into equation (12), it
is easily shown that thepower spectrum of the carrier consists of
two impulses (of weight A°/4) located at w = we and at w = -wc, or

F	 2A 	 \	 /

	

SCARRIER (w) - 4 a1w - wc! + 6 W + we ) 	
(14)

Similarly, substitution of the expressions for Rp CM (T) into equa-
tion (12) results in the following expression for the power spectrum
of the split-phase code (Reference 2):

E21 
sin4(wT 

41/
S PCM (W)	 2n	

(WT11l2
	 (15)

1 4

The first term of equation (13), then, is given by equation (14),
and the second term is given by

R	 S	 (w) * S	 (w) = S	
'S
	 S 	 (w-wo)dwc 2 [ PCM	 CARRIER ]	 c 2f^ PCMo) CARRIER 	 o

°°	 w T
A 2 E1 2 Sc 2T 1 
	

sin4( 041)

8,ff	
(WoTl) 

2

- °° 1	 4

• Ca (W-WC-WO)+. 6(W+WC-w0)Jdw0

A2E 2 2T	 sin 4 1(	
c ) 11

1 sc 1	 4	 J
_	

8T	
(W+Wc)Tl 2

C	 4
(w-w )T

sin41	 4c 11	 (lb)

+	 (w-wc) T1 2

C 4
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Therefore, the final expression for the power spectral density of
t	 a carrier which is amplitude-shift-keyed by a split-phase PCM code

is

2
S	 W ^ A d r W-W +6(W+

WSR()T[ 	 J	 c)

A 
2 
E 

2a 2
T sin 4 [ (W+W)T1

]

	 sin 
[(w-wc)Tl

1 c 1	 4 	 4 J

+	 87r(tj'+Wc )T1 2	 +	 (W-Wc)T1 2	
(17)

[-	 4	 [	 4J
l
J

As indicated in Figure 3-2, this expression clearly consists of
discrete carrier components plus sidebands resulting from the split-
phase baseband spectrum being translated to appear about plus and
minus the carrier frequency. Maximum sideband power occurs for
El$c = 1, and, as noted previously, this corresponds to "on-off"
keying of the carrier by the split-phase code. Note that the power
contained in the discrete carrier components is unaffected by the
modulation level, Elsc•
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SECTION 4

PHASE-SHIFT KEYING BY SPLIT-PHASE PCM CODES

4.1 GENERAL

E-=

	

	 For the case of phase modulation of a carrier by a binary sequence,
a level transition results in the carrier phase being shifted by a

T

Ei	
discrete amount, either in the positive or negative direction.

 This modulation process is commonly referred to as phase-shift key-
ing (PSK). It will be shown that a limiting case of PSK is
identical to double-sideband (suppressed carrier) modulation.

4.2 AUTOCORRELATION FUNCTION

A generalized expression for a sinusoidal carrier which is phase-
modulated by a binary sequence is

e 
PSK (t) - A cos fwct + m(t)E 1 Sc + ^c
	

(18)

where A, wc, m(t), and ^c are as defined in Paragraph 3.2 and
Sc is now the carrier modulation sensitivity-in rad/volt.

Expanding equation (18) trigonometrically, the following expression
is obtained:

e PSK (t) - A cos (0) C t + ^c}os IM ()E1ac]
/ 

- A sin (wc t + 0 c)sin [ m(t)Elsc]

But, since m(t) _ ±1 and

cos (±X) = cos (X)

sin(±X) _ ±sin(X)

then
ePSK(t) - A Cos 

(WC 
t + ^c )COS (Eloc}

- A m(t)sin 
(WC 

t + ^c )sin Eloc

r

(19)

(20)

(21)

(22)

H	 4-1



r

E

Since E l sc is a constant, the second term of the preceding expres-
sion represents double-sideband (suppressed-carrier) modulation of
the carrier by the binary sequence, while the first term represents
a discrete carrier component. Note that for El0c - n/2, the carrier
component vanishes and the sideband term is maximized.

Following the same procedure as for the ASK case, the autocorrela-
tion function of the PSK signal of equation (22) is found to be
given by

A2 Cos
2 Elsc 

RPSK 
(T) -	 2	 cos i Wc 'r 1

A2 sin 2(El5c)
+2 	

C
cos W C T E m(tl)m(t,+T)]
( 

cos 2 (El1c)R CARRIER
(T)

2	 RPCM(T)
+ sin (Ellc)R 

CARRIER 
(T)
	 E 2
	 (23)

1
where RCARRIER(T) and RpCM(T) are as determined previously for the
ASK case.

4.3 POWER SPECTRAL DENSITY

Substituting equation (23) into equation (12), the power spectral
density for the PSK case is found to be

S PSK (W) -
 Cos 2 (El sc)SCARRIER(W)

+ 1ig

	

E 2 
sn 

(E l') SCARRIER (W) * SPCM(W)	
(24)

The expressions for SCARRIER(w) and SpCM (w) are the same as those
contained in equations (14) and (15), respectively. After per-
forming the convolution operation indicated in equation (24),
SpSK (wj reduces to

A 2 Cos 2
(
E

(W - W
	 A2T sing ES

SPSK (W) -	 4c)+d \W+wc) +
	

1 8n	
i s

sin 4 CL
(W+Wc)T1 	 sin 4 (

W-Wc)T1J

 4	 J	 4

(w+ WC )Tl 2	 + r(w- WC)T l 2	
(2.5)

4	 L 4
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Thus, the power spectral density for a carrier which is phase-
shift-keyed by a split-phase PCM code is as indicated in Figure
4-1. As for the ASK case, discrete carrier components exist in
addition to sidebands resulting from the baseband spectrum of the
split-phase code. However, unlike the ASK case, the carrier com-
ponents vanish as sideband power is maximized. Therefore, it is
possible to convert all of the available transmitted power into
useable sideband power if binary phase-shift-keying (ter/2) is used.

4-3



W
i-

0O
cc
W
CL

F-
m
W
D
0
v

n

H

.b
.+~ O
u U
•rl4 6
a

M
O O
.ri N
Er CO

U 0.

^ Sri

rl
44 p.
O V)

H ^

CIO

^ m
e0 ^G
^ 1
+J .J
u 4a

a.c
1

3 coOras

1

a^

w

U

W
N

O

N	 ^`Q	 3
V!a

f

U

W
tm

O ^
V

N
Q

U3
k ^r+
N

1

U
3

Q IH

3

4k r, ?

^ a

1	 ^

3
u

z ,a,
N ^

V

WN
Z

N k
H

a

.—ter—.

+

`	 Y
+

z L
N

U
ax

W
N
2
U; k
.^ co

N
Q

jor k ^rl
N

U
3

4-4



SECTION S

FREQUENCY-SHIFT KEYING BY SPLIT-PHASE PCM CODES

S.1 GENERAL

Since this work is concerned only with noncoherent modulation,
the case of frequency-shift keying by split-phase PCM codes can
be considered as being equivalent to switching between two inde-
pendent (unsynchronized) oscillators of different frequency.
When the PCM code assumes the +El voltage level, the modulated
signal should be of the form

`	
eFSK1M - K Cos (w l t + m1)	 (26)

1and when the code assumes the -E voltage level, the ou tput signal
should be

eFSK2(t) - K cos (W 2 t + ^ 2)	 (27)

Physically, then, the frequency-shift keying problem consists of
turning the first oscillator ON and the second oscillator OFF when
a +El level is present, and reversing these conditions when a -L•l
level is present. One scheme that will allow this switching pat-
tern to be accomplished is shown in Figure 5-1. This scheme
requires first that the bipolar (+El, -El) split-phase code and
its inverse be converted to unipolar (+El, 0) codes. (Such con-
version is easily accomplished using standard digital techniques.)
Each of these unipolar codes is used to "on-off" key the output
signals from the two oscillators, as indicated in Figure S-1.
These individually keyed outputs are then summed to provide the
composite frequency-shift-keyed signal.
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5.2 AUTOCORRELATION FUNCTION

To determine the autocorrelation function of the composite frequency-
shift-keyed signal, it is first noted that the original bipolar
split-phase (Bid-L) code may be represented by

e 
PCM (t) = m(t)E 1 	(28)

where m(t) _ ±1 is the random (Bid-L PCM) bipolar switching function
and El represents the PCM code absolute voltage level.

Then the inverted split-phase code may be expressed as

eP (t) = m'(t)E 1 	(29)

where ' m'(t) = 1 when m(t) _ +1
1+1 when m(t) _ -1

Next, it is observed that the corresponding unipolar codes are

ePCM1(t) = m
1 (t)E 1 	(30)

and

ePCM1(t)	 = ml '(t) E 1 (31)

where m l (t) _ +1,0 is the random (Bit-L PCM) unipolar switching
function and

ml '(t)
_	 0	 when m (t)	 _ +1

milt)	 = 0+1 when

The output signal from the first multiplier is

e01 (t) = m 1 (t)E1A cos (wl t + 01)	 (32)

Similarly, the output from the second multiplier is given by

e02 (t) = m l '(t)AE1 cos ^ 2 t + ^ 2 t	 (33)
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The composite output signal is given by the sum of equations (32)
and (33) , or

eFSK(t) = e01 (t) + e02(t)

= m l (t)AE 1 cos (w l t + 
01

)
 

+ m l '(t) AE 1 cos (w 2 t + 02)(34)

The autocorrelation function of the FSK signal is found in the
same manner as for the ASK and PSK signals:

L= 
RFSK(T) = E IeFSKf t11 eFSK (1 + TA
	

(35)

After substituting equation (34) into equation (35) and perform-
=	 ing operations analogous to those performed in equations (3)

through (9) for the ASK signal, the preceding autocorrelation
function becomes}	

A 
2 
E 2

RFSK(T) -
	 21 cos ^w 1 T)E rm l tl)ml \

tl + T/J^ 	 2 2 \	 L

	

A El 

`+2 
\\	 /	 \l

+	 2	 coTIE m l '(t l )ml - (t l + T,
1
	(36)

t
Further, it can be observed that

RFSK (T) = RPCM1 (T)RCARRIERI (T) + RPCM2(T)RCARRIER2(T) (37)

It is noted, however, that the above autocorrelation functions,
RPCM1( T ) and RpCM2(T), for the unipolar split-phase code are not
the same as for the bipolar split-phase code. Since the unipolar
codes have no negative voltage levels, it is not possible for

L^	 their autocorrelation functions to ever be negative. Using the
procedure outlined in Reference 2, the autocorrelation function
for the unipolar split-phase codes may be found. Detailed calcu-
lations are included in Appendix A. and the result of these calcu-
lations (note that RpCM1 (T) = RpCM2(T)) is shown in Figure A-2.
Inspection of this figure reveals that the autocorrelation function
of the unipolar split-phase code is merely an attenuated version
of that of the bipolar split-phase code (Figure 3-1), displaced
vertically by E 1 214. Thus,

_	 2

	

RPCM1(T) - RPCM2(T)	 E4 + 4 RPCM (T)	 (38)
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Fit-

where RpCM(T)	 is the autocorrelation function of the bipolar split-
phase code.

The autocorrelation function of the FSK signal is found by substi-
tuting equation (38) into equation	 (37).

2
E
1

El 2
R	

(T)FSK —4 R	 (T)	 +	 R	 (T)CARRIER1	 4	 CARRIER2

4 R (T)R	 (T)	 R	 (-r)R	 (T)PCM	 CARRIER1	 4	 PCM	 CARRIER2	 (39)

C__i

^t



5.3 POWER SPECTRAL DENSITY

r

Substitution of equation (39)	 into equation (12) results in the
following expression for the power spectral density for the FSK

1 case:

-

i
2

E1

2

El1 S	 (w)	 =
FSK	 4

S	 (W)	 +
CARRIERI	 4

S	 (^)
CARRIER2

+ 4 ISPCM
(W) 

* SCARRIERl (^ ) ] + 4[SPCM (^ ) * SCARRIER2(W)^

Ei

The individual
those obtained

terms of the above
for the ASK and PSK

expression are very similar to
signals.	 Hence,

(40)

HA2E12

SFSK (W) -	
16 6 W-W l + 6 W+W1 J

Fil

[

A 
2 E 2

+	 16 [6 ( 

/

W-W 2 + d(W+W2)]

	( w+W )T	 (W-W )T

	

_	 A2E12T1 sin4	
41 

1	 sin4	
41 1

+ 327r	 (W+Wl)T1 2	 +	 (W_W1)T1 2

4	 4

A 2E 2T	 4 
(W+W2)T1	 4 (W-W2)T1

+	 1 1 sin	
4	

+ sin	
4

	

r	 327r	 [(W+W 
2)T1 

2	 [ (w_o,2)Tll 2	 (41)

I^
4	 4

U	 The power spectral density just c
illustrated in Figure 5-2. It is

Ul 
similar to the ASK case, and this
FSK signal was shown to be merely
carriers of different frequency.

alculated for the FSK signal is
observed that this case is quite
is intuitively correct, since the
the sum of two "on-off" keyed
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APPENDIX A

CALCULATION OF THE ENSEMBLE-AVERAGE AUTOCORRELATION FUNCTION
FOR RANDOM (UNIPOLAR) SPLIT-PHASE PCM CODES

The members (sample functions) of.an ensemble of random unipolar
split-phase PCM codes are illustrated in Figure A-1. In order to
calculate the ensemble-average autocorrelation function, the fol-
lowing initial assumptions are made.

A. The process is at least wide-sense stationary (i.e., its
autocorrelation function is dependent only on the time, T,
between successive samples and not on the actual sampling
times tl and t2).

B. The probability of occurrence of a "one" is equal to the
probability of occurrence of a "zero," or

P(Xtl
= E l ) = P(X

tl
= 0) = P(X t2=E l) = P(Xt2=0) = 1/2	 (A-1)

The ensemble-average autocorrelation function is equal to the
expected value (mean) of the product of the samples X t l and Xt2
of each member of the ensemble, or

RPCM1(T) = E C 
X
tl Xt2]

	
(A-2)

tx

ki

H

a

In general, the expected value
variables 

Xtl 
and Xt2 is given

0

[XtlXt2]
E
	 J . -. XtlXt

where PXtl,Xt2(Xtl'Xt2) is the
of Xtl

of the product of two random
by (Reference 4):

2 PXtl ,Xt2(gtl $Xt2)dXldX2	 (A-3)

joint probability density function
and Xt2.

C'

Q
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Figure A-1 Ensemble of Sample Functions of a Random
(Unipolar) Split-Phase Code
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c
For the case of discrete random variables (which take on only a
finite number of values), the integrals in the previous expression
reduce to summations, and the expected value is given by

L.
E XtlX 2 = E	 1:X	

.j^jj . X	 . ,Xr	
t ,	 tl,i"t2,

P
^ 

f 
tl

=g
 tl,i t2

=g t2,^1 (A-4)
L	 1	 /=	 all i all ^

where the gtl i are the possible values that Xtl can assume,

the gt2'j are the possible values that X t2 can assume,

and PX =	 ,X =g	 is the probability of joint
( tl	

l,i t2 t2,j occurrence ofand

	

g tl i	 g t2,i
The possible values of each of the discrete random variables Xtl
and X t2 , for the case of the random unipolar split-phase PCM code,
are +El volts and 0 volts. The autocorrelation function, then, is

RPCM1(T) = E[Xt1Xt2

	

\E1) \E1)
P (Xt,'

X t2-E ,	 =E1) + (El)(0)P(Xtl=E'l'Xt2=O)
+ (0)(E 1) P(X tl =O,X t2=E l + (0)(0)P(Xtl=O,Xt2=0

= E12P Xtl =E l, Xt2 =E 1	 (A-5)

But the probability of the joint occurrence of the events Xtl=El
and Xt2 =1: 1 may be expressed as

P(X
tl =E1' X t2=E1) = P(Xt2=E 1 Ix ti , E 1)P (Xtl E1)	

(A-6)

where 
PIXt2=E\lJXtl-Ell 

is the probability of occurrence of the
\	 J event Xt 2=El, provided the event X t l=El has

occurred,

and P(Xtl =E l) is the probability of occurrence of the event X
t1 E1'

6
S
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Substitution of the conditional probability expression of equation
(A-6), along with substitution of equation (A-1), into equation
(A-5) yields the following:

E 2

RPCM1 (T)	2 P(Xt2=EljXt1=E1)
	 (A-7)

Evaluation of the conditional probability of equation (A-7) is
dependent upon the value of T, the time difference between samples
X t l and X t 2. For instance, if T - 0, then t2 - tl and the prob-

e ability f the event X	 = E	 given that X	 = E	 is unit	 ThenY	 t2	 1 ► g	 Xtl	 I^	 Y•

^	 E12

R	 (0) _	 (A-8)
PCMl	 2

-' RPCM1(T)	 is	 foreasily evaluated	 jTj>T l , as the conditional prob-
abilities reduce to simple unconditional probabilities. 	 For

sITI>T1, Xt2 and Xtl are samples of different bit periods, and the
value of X t 2 is independent of the value of X tl .	 Therefore,

P(X	 =E	 jX	
=E ) = P(Xt2

 =El)
	

1	 (A-9)
t2	 I	 tl	 11  	 1	 2

For	 (TI>T1, then, the autocorrelation function is

-+ E 2	 E 2

RPCM1 (T)	 2	 (2)	 4	
(A-10)

In order to evaluate RpCM1(T) for O<ITI<T l ,	 it is necessary to
introduce additional conditional probabilities. 	 For instance, if
T = T 1 /2, then P(Xt2=El , lXtl=El)	 is dependent upon whether X t l is
in the first or second half of a bit period. 	 If Xtl is in the
first half of a bit period, then a sample of the second half of

s that same bit period must be of opposite polarity. 	 Hence,

_ i Xtl in first half 	 0	 (A-11)P	
Xt2=E l IX tl =E 1	 (	 A

A-4



U1

e
ti

However, if X t l is in the second half of a bit period, then Xt2
will be a sample function of the next bit period and, therefore,
is independent of X t l. Then,	

1

	

PRXt2EliXtl 
E1 

^(Xtl 
in second 

halft2=El)
	 2(A-12)

 / \	
)J
	PIX

\	 /

The total conditional probabilities for T = T 1 /2 are

1l
P (X t2 =E 1 lXt1-E1) MP RX t2' El iXtl=FlMXt, in 1st half I

J P(Xtl

+ PR
X 
t2 a 

E 
1 

Ix 
tl 

E1 
i(Xtl 

in 2nd half}]

• P(X tl in 2nd half 
1

(0) (2^ + t 2)^2)	 d

in lst half f

(A-13)

xPCMJ (T), then, for T = T 1 /2 is given by

2	 2

	

(T l
	

E1	
1	

E1

	

RPCMl 2	 2	 4 = 8

Similarly,

	

T1	 El
2

	

RPCM1 2	 8

(A-14 )

(A-1S)

If T	 T 1 /4, then P (Xt 2=EliXtl =E1) is dependent upon which quarter
of a bit period X tl is located. If X t _s in the first quarter of
a bit period, then a sample of the sec	 quarter of that bit
period must be of the same polarity.

P
C( 

X
t2=E l iXtl	 /

E1 
i(Xtl 

in 1st qtr)	 1	 (A-16)

6
P
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r
j.

However, if X t l is in the second quarter of a bit period, then a
sample of the third quarter of that bit period must he of opposite
polarity. Then,

P	 =E^X=Ej X	 in Znd qtr	 0	 (A-17)
[(Xt2 1 tl 1) ( tl	 )1J

Similarly,

T-- P[(Xt2 -El 
jXt1 

E1	
((Xtl

in 3rd gtr)
J
	= 1 (A-18)

andU =E lP X(X=E	 X	 in 4th[(t2 	 t1	 1	 tl qtr	 P X	 -E
)]	 ( t2	 1^	 2 (A-19)

El The total conditional probability for T 	 T 1 /4, then, is

P X
t2 -E l jXtl =E 1 	 =p[(Xt2 =E1IXt1=E1)I(Xtl

in 1st gtrP(Xt1 in ist qtr

L=

+ pR
X t2= E 

1 
Ix 
ti 

E1
Xtl 

in 2nd qtr/J

• P(X tl in 2nd qtr

^-` (
[\+ P t2X 	 =E 1 

jXtl =E 1 Xxt,  
in 3rd qtr

},

• P(X tl in 3rd qtr l

l= +	
.EljXtl =El)j

p[(Xt2
Xtl in 4th qtr  ll

r P(Xtl in 4th qtr
l_=

1	 +_ (1)	 4	 +	
(0)	 44 4 	 8

(1) 1	
+ (11)(7 (A-20)

Then, RpCM1(T), for T = T 1/4, is given by

t
2

T1 	 (E J )(S
RPO4	 4	 2

_	 S	 2
8	 16 

E 1 (A-21)
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Again,

R	 _T1 = 5 E 2
 )

PCMI 4	 16 1	 `A°'2)

The procedure followed in the preceding may be repeated for various
values of T, thereby allowing a point-by-point calculation of
RpCMl(T) to be performed. The resultant plot of RpCMl(T), for
all T, is contained in Figure A-2.

The entire procedure for the calculation of RpCM1(T) can be
repeated to determine RPD12 (T), the autocorrelation function of
the inverted unipolar split-phase PCM code of Figure 5-1. The
result is that RpCM2 (T) = RPCM1(T) for all T. This is intuitively
correct, since inversion of a random process should not result in
a change in its autocorrelation function.
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