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ABSTRACT

An approximate temperature of crystallization of rocks and im-

portant information on the thermodynamic nature of a crystalline solu-

tion, coexisting with orthopyroxene, can be obtained by using the experi-

mental 11Ig 2 '-Fe2 ' intra-crystalline distribution data inorthopyroxenes

at various temperatures and the Mg t` -Fe 2* inter-crystalline distribu-

tion data in natural assemblage. Ca-pyroxene Ca (Mg, Fe) Si 2 O6 with

the Nit site nearly filled by Ca, is a 'simple mixture' (Guggenheim,

1967) of NIg 2a and Fe e+ components with an energy constant w approxi-

mately 1100 cal/hole at 600°C. The estimated temperature of ion-

exchange equilibrium between coexisting cummingtonite and orthopyro-

xene in Biwabik iron Formation, Minnesota is —610 0 C. Cummingtonite

also approximates to a 'simple mixture' with w as 700 cal/mole at

600°C.
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INTRODliCTION

The distribution of Fe 2+ and Mg t " between two coexisting ferromagnesian

minerals such as ortho- and calcie-pyroxene by Krett (1963) has been studied

on the assumption that the Fe and Mg components mix ideally in each of the

minerals. Mueller (1961, 1962) considered the possibility of intra-crystalline

partitioning of the cations among the different structural sites in a mineral and

for cummingtonite found it desirable to assume a 'r° ,ular solution' model.

Matsui and Banno (1965), Banno and ?Matsui (1966) and Grover and Orville (1969)

assumed ideal mixing of Fe 2+ and Mg 2+ on each site in orthopyroxene and

interpreted the inter- crystailine Mg 2+-Fe 2+ distribution between coexisting

orthc - and ca-pyroxene on that basis.

Saxena and Ghose (1970a) have shown that the mixing of Fe J+ and Mg 2+ on

111 and TN12 sites is better approximated by a 'simple mixture' model (Guggenheim,

1967) for each site individually. The orthopyroxene crystalline solution its a

i	 whole is found to be non-ideal asymmeteic particularly at 500 and 600°C (Saxena
a
ti

and Ghose, 1970b) . By using the intea-crystalline Mg t+ -Fe 2+ distribution data

in orthopyroxene and the information on its solution behavior, the inter-crystalline

Mg 2+ -Fe2+ distribution between orthopyroxene and another coexisting mineral

can be interpreted more reliably. The study of Mg t+ -Fe 2+ distribution between

orthopyroxene and another mineral yields important information on the tempe-a-

ture of crystallization of the host rock and on the thermodynamic nature of mixing

of the Mg and Fe components in the other mineral.
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The following notations and symbols are used-

01 P x — orthopyroxene, Cpx- calcic pyroxene

Cum — cummingtor.ite

K a — equilibrium constant for a reaction (a)

XF e — mole fraction Fe e '/(Fe 2 ' + Mg = ') in a phase a as on a site a in a phase

aA — activit , of a component A in a phase a or on a site a ; in the latter case

they are referred to as 'partial' activity

w — an energy constant for 'simple mixture' (see Guggenheim, 1967)

AG° — standard free energy change for a reaction (a).

COEXISTING ORTHO-- AND CALCIC-PYROXENE

The Ion-exchange Reactions

The ion-exchange reactions betweRn orthopyroxene (Fe, Mg), Sit O6 with M1

and M2 sites and Ca-pyroxene Ca(Mg, FE) Si O	 with M2 site completely occupied
2	 6

by Ca are:

Mg (M1) + Fe (M1) 	 Fe (M1) + Mg (M1) (1)

Opx	 CPx	 npx Cpx

Mg (M2) + Fe (M1) T---̂ 'Fe (M2) + Mg (M1) (2)

Opx	 Cpx	 npx Cpx

Mg (M1) + Fe (M2) c= Fe (M1) + Mg (M2) (3)

Opx	 Opx	 Opx Opx

i
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The equilibrium constants for these reactions are:

	

aMl Cpx	 aM2 a Cpx	 1Ml aM2

K 
_ Fe Mg	 K	 F e Mg K	 Fe Mg

1	 aM1 aCpx	 2	 aM2 aCPx	 3	 aMi aM2

	

M1; F^	 Mg Fe	 Mg Fe

where am!
Fe 	 the partial activ i ty of Fee+ referred to the M1 site in

orthopyroxei.e and similarly am '1 , a 'z and am represent other partial activities.
Fe

a Fe" or aCpx  are activities of the Fe acid Mg components in Ca-pyroxene. In

the present case, they are the same as the partial activity of Fe or Mg on the

M1 site in Ca-pyrorene. The inter-crystalline ion-exchange reaction between

(Mg, Fe) SiO 3 and Ca (Mg, Fe) S1 2 06 is

Mg (M1) + 1 / 2 Fe (M1 + M2) r Fe (M1) + 1 / 2 MR (M1 + M2)	 (4)

Cpx	 Opx	 Cpx	 Opx

The equilibrium constant for (4) is

	

a Cpx "J opx	 aCPx ( a M1 M2)1/2

	

K = Fe Mg	 Fe	 Mg Ng	
(5)

	

aCpx '̂J Upx	 aCpx ( a M1 a M2 )1/ 2

	

Mg Fe	 Mg	 Fe Fe

'rransforming K4 in terms of Ki and K2 , we have

	

K = K-1/2 K -1/2	 (6)
4	 1	 2

K i , K2 and K3 are interrelated as

K3 = K1 K21	 (7)

3
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As discussed by Kretz (1963) and Grover and Orville (1969), the effect of prassure

un those equilibrium constants is small. Therefore, we shall be mainly concerned

with the temperature effect.

Distribution of Mg 
J +
 and pe 

2+ 
between Ca-pyroxene and M1 Site in

Coexisting Orthopyroxene

The intra-crustalline Mg 2+ -Fe 2+ distribution data between M1 and M2 sites

in orthopyroxene (Saxena and Ghose, l 970a) can be used to obtain the inter-

crystalline distribution between M1 or M2 site in orthopyroxene and M1 site in

linopyroxene if the equilibrium temperature of the inter-crystalline ion-exchange

is known. In absence of any experimental data on the Mg 2+ -Fe 2+ distribution

between ortho- andCa-pyroxenes in the temperature range of 500-800°C, the

data available from natural assemblages are used. This invol v es both uncertainty

in the temperature of arystallination as well as the non- stoic hiometry of Ca in

the M2 site in clinopyroxene. Both the pyroxenes in natural assemblages also

contain small amounts of Al' + , Fe 3+ , T1 4+ and Mn 2+ . All these factors shall

affect the quantitative results obtained by using the chemical data :rom natural

assemblages.

The data on the distribution of Fe 2+ and Mg 2+ between coexisting ortho- and

Ca-pyroxene in six rocks of granutite facies, chosen arbitrarily from the data

in literature, are presented in Table 1. Assuming that the temperature of inter-

crystalline equilibrium was 600°C in these rocks, the data on Y am.! in orthopyroxene

4
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correspcl.dLig to each composition are obtained from Fig. 1 (reproduced here

from Saxena and Ghose, 1970a, Fig. 1). Similarly, the data on KFe in ortho-

pyroxene at 700°C are obtained and listed In Table 1 . The distribution coefficient

K'1 is:

1 - XCpx	 YMI
K' -_

	Fe-	 Fr	 (0)
1	 XCpx	 1 - XM1

Fe	 F^

K,' would correspond to the equilibrium constant K 1 if both Ca-pyroxene (Ml

site) and the M1 site in orthopyroxene were ideal. The values of Ki in Table 1

show that one or both of the phases may be non-ideal. As the Ca-pyroxene in

the six samples do not contain Ca t+ : (Mg 1+ + Fe e ' ) as 1:1, the K' values may

change as a function of Ca concentra`'.on. A plot of concentration of Ca l` in Ca-	 I

pyroxene against K,' does not show any significant correlation between the two.

Fig. 2, however, shows that there is a definite correlation between Ki and XcP'

Although Cat+ does not completely fill M2 site in the six Ca-p yroxenes, a

one site quasi-binary model for Ca-pyroxene may still be assumed. The absence

of any correlation between K' and concentration of Ca 2+ in the pyroxene favors

this assumption.

Since mixing on the M1 site in orthopyroxene is non-ideal (Saxena and

Ghose, 1970a), the K' values can be Improved by considering another equilibrium

constant KI' as

5
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I _, XCpx ^^ MI

K„ 
_	 Fe	 Fe	 (9)

'	 XCpx	 RMI
Fe	 MK

These values, also listed In fable 1, continue to be a function of X Fe . Therefore,

E	 the mixing of Fe- and Mg-compponents in Ca-pyroxene should be non-ideal to a

certain extent.

Estimation of Temperatur,) of Crystallization

Zigure 3 shows a plot of XFI in orthopyroxene against XFe " . The op:jn

circles are based on the assumption that the temperature of inter-crystalline

ion-exchange equilibrium was 600°C. Similarly, the solid circles represent

I	 700°C. The M1 site in orthopyroxene is a 'simple mixture` (Saxena and Ghose,

1970a) of Fe a+ and Mg 2+. Assuming that the one site quasi-binary Ca-pyroxene

Is also a'simple mixture', the log of the equilibrium constant for (1) is

^M1	 µCpx
	In K1 =In Kj + R7, (I - 2 XFe) - RT( 1 - 2 XCPx)	 (10)

Fe

Equation (10), in an exponential form, was derived by Mueller (1964) and later

used by Saxena (1969) in the logarithmic form. In Fig. 3, the distribution curves

are drawn using a least squares fit to the distribution data in Table 1 according

to equation (10). Table 2 shows the resulting constants. From Saxena an, Ghose

(1970x), the experimental values of w M '/RT are 1.294 ar_	 007 at 600 and

700°C respectively. The difference between the experimental w"IRT and the

calculated w M '/RT In Table 2 is due to the actual temperature of crystalll7atlon

6
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being different from either 600 or 700°C. By plotting the experimental w 11 1RT and

the calculated 01 /RT in Table t against temperature, the temperature of

crystallization can be determined graphically from the intersection of the straight

lines, one joining the calculated 0 1 /RT and the other joining the experimental

w"A YU. This method of temperature estimation is quite genes al and c; n be

applied to a group of coexisting pyroxenes with sufficient degree of Mg:Fe varia-

tion In the range of temperatures for which the antra-crystalline w Ml values are

avaiiable. The present data yield 620°C as the temperature of inter-crystalline

ion-exchange equilibrium (4`. Corresponding to this temperature w cPx /RT is

0.625 and Kl is 0.85.

Mg 2+-F'e 2 ' Partitioning in Metamorphic and Igneous Pyroxenes:

Assuming that both orthopyroxene and Ca-D ,yroxene ap^roach ideal solution

closely at high temperatures corresponding to igneous rocks (1150 0 ' 1, K4 can

be taken as 0.73 as obtained by Kretz (1963). w cP "/RT at 600°C is then 0.650

(or w is 1100 cal/mole) and the activity-composition relation (Fig. 4) in Ca-

pyroxene Ca (Mg, Fe) Si 2 O6 is:

ac" - X cPx exp 0.650 (1 - ^CPx)°Fe	 Fe	 Fe

where ace	 eex refers to the acti0ty of F' in the pyroxene crystalline solution

and should be similar In magnitude to the activity of the end-member CaFe 2 Siz 06

The equation (11) is for the 'simple mixtu.e' as defined by Guggenheim (1967).

7

(11)



By taking Ka fib 0.85 at 600°C and combining it with K 3 as 0.2516 (from the

experimental results in zaxena and Ghose, 1970a), K 2 as 3.38. 
Y4 is calculates:

to be 0.59 and AG O is 915 cal/mole. The distribution curve at 600°C for the

inter-crystalline Mg 2+-Fe 2+ distribution according to these data is shown in

I	 Figure 5. The ideal distribution curve with K 4 as 0.73 is also plotted.

It was noted by Saxena and Ghose (1970a) that the intracrystalline ion-

exchange free energy AGO does not change significantly wita changing tempera-

ture. It is probal le that LG4 also does not vary much with temperature. If

we assume 1150°C for K4 as 0.73, AG O4 is 890 cal/mole which is of the same

order of magnitude as AGO at 600°C The different distribution isotherm i

in the range of 600-1201 'C shall be quite closely spaced. As a result, they

cannot yield the ternperar:re estimates very accurately.

COEXISTING OFTHOPYROXF,NE AND CUDIMINGTONITE

Estimation of Temperature

The data on the distribution of Mg 2+ and Fe 2+ between coexisting ortho-

roxene and cummin onite in twelve metamorphic samples	 icPY	 Kt	 les from BiwabiP	 P

Iron Formation, Minnesota (Bonnichsen, 1969) are Listed in Tab1E 2. The ion-

exchange r.jaction between cummingtonite and MI site in orthopyro..ere Is written

as

Fe - (all si tes) + Mg .• M1 -,. 1 Mg - (all sites) + Fe - M?	 (12)

Cum	 Opx	 Cum	 Opx

.1

8
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Disregarding the different sites in cummingtonite and assuming that the crystal

as a whole is a'simple mixture', the equilibrium constant for (12) is

	

In 
K it = In KD + _
	

( 1 - 2 XFe) - wcum (1 - 2 X Fm ) 	(13)
RT	 RT	

e

Assuming that the tem perature of equilibrium in (12) is 500, 600 and 700°C, a

least squares fit according to (6) for the data in Table 2 at each temperature

is obtained. The results are shown in Table 3. The values of calculated wmI /RT

in Table 3 are plotted against temperature and so also the experimental values

of w" IRT in orthopyroxene from Saxena and Ghose (1970a). A crossing of the

two curves gives the temperature of inter-crystalline equilibrium (12) as 610°C.

The Mg 2+_ Fe 2+ Distribution between Coexi st ing Orthopyroxene and

Cummingtonite at 600°C

At 600°C the approximate value of w c-m /RT is 0.42. The activity of Fe 2+ in

cummingtonite at 600°C is:

a rum = XC` exn 0.42 0 - XCum)2	 (14)
Fe	 Fe	 Fe

The value of the energy constant w is 728 cal/mole at 600°C. The activity of

Fe component in orthopyroxene may be calculated by using the analytical expres-

sion for the activity-coefficient (Saxena and Ghose, 1970b)

log fFe = X 2 {0.280 + 0.118 (3 X Fe - X Mg ) + 0.190 (X Fe - X Mg ) ( 5 X Fe _ X Mg)(15)

9



or grakically from Fig. 3 in Saxena and Ghose (1970b). The ion-exchange

reaction between coexisting cummingtonite and orthopyroxene is;

1 fity -Cum . Fe - Opx r YQ - Opx .!Fe  - Cum	 (16)

The equilibrium constant for (16) is

acme ) on x

K	 Fe	
M & 	 (l i)lb aces aop1

Fe	 F•

T bie .1 shoe th_ value of K 16 in six samples, selected to represent a aide

composition ramie. The values of x16 using XFu° as ac— are also listed

for compa. son. The values of If16 are more uniform but they still vary with

Xr^" or vol ". It Is probable that cummingtonite, similar to orthopyroxene
re

(Saxena and Ghose, 1970b) is asymmetric crystalline solution and not the 'simple

mixture' assumed in the preceding section. However, the deviations from a

'simple mixture' model is probably not great. The -!G1 6 at 600°C, assuming

K i6 as 0.79, is 400 calltnole.

DISt, VSSION

The availability of the intra-crystalline Mgt* -Fe 2'' distribution data in

orthopyroxene at various tomperatures when used with the Mg 2• - Fe2 ' distribsi-

tion d.its for the coexisting ortho- ind Ca-pyroxene in natural assemblages

makes it possible to interpret such inter-crystalline Mg t '-Fe 2` distributions
1
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without making various assumptions which were necessarily used b y previous

workers. In particular, it is not necessary to assume 1) the ideal mixing of

Mg 2+ and Fe 2+ on individual sites in a pyroxene and 2) the equivalence of

Ml site in Ca-pyroxene to the Ail site in orthopyroxene. The second assumption

was introduced by Aiueller (1962) and was used along with the first assumption

by Banno and Matsui (1965) and Grover and Orville (1969). Although these as-

sumptions are no longer required in the present work, a binary solution model

for a multi-component phase has still to be used. Ca-pyroxene should be treated

as a phase with three -najor components (Fe 2+ , 11ig 2+ and Cat+ ) distributed

between two non-equivalent sites. The solution mode'_ for cummingtonite, a

quasi-binary four site phase, is not yet definite.
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TABLE 1

Distribution of Fe 2+ and Mg between Coexisting Pyroxenes

In Orthopyroxene

Sample XFe x aFe x 	 I	 X Fe aFe aM g
KI	 K 11

600°C

11-4 0.650 0.773 0.645 0.759 0.608 0.978 0.672

115 0.507 O.F32 0.405 I	 0.640 0.735 0.661 0.846

4642 A 0.429 0.571 0.310 I	 0.574 0.731 0.598 0.978

Arendalite 0.365 0.500 0.219 0.482 0.83'1 0.488 1.009

2941 0.321 0.457 0.196 0.425 0.855 0.483 1.031

2270 0.249 0.384 0.129 0,317 I	 0.900 0.446 1.062	 i

700°

H4 0.650 0.773 0.660 0.741 0.527 1.045 0.757

115 0.507 0.632 0.435 0.599 0.683 0.748 0.852

4642A 0.429 0.571 0.350 0.535 0.735 0.717 0.964

Arendalite 0.365 0.500 0.260 0.450 0.782 0.610 1.001

2941 0.321 0.457 0.225 0.412 0.815 0.610 1.068

2270 0.249 I	 0.384 0.156 0.319 0.865 0.557 1.114

Samples: H a -Metamorphic iron formation; northern Quebec; Kranck (1961).
115,4642 A, 2941 and 2270 -Charnockites from India; Howie (1950.
Arendalite-From the ty pe locality Arer,dal, southern Norwny; collected by Saxena.

X = Fe 2+/(Fe 2+ +Mg 2 ^, aFe partial activity referring to activity of Fe e+ on M l, in

orthopyroxa.a; the .alues are obtained from Fig. 1 of Saxena and Ghose (1970a).
XM1	 1 _ X CPx	 Ml 1 _XCPx
_Fe	 Fe	 ,^- Fe	 re

Kl	

a

1 - XMl	 XCP"	 aMl	 X CPx
Fe	 Fe	 Mg	 Fe

14



TABLE 2

Fe e '-Mg 21 Distribution Data in Coexistin g; Cummingtonite and Orthopyroxene

Sample Nos. XCum
Fe

Xopx
Fe

XFe in Opx

500°C 600°C 700°C

026 0.666 0.736 0.540 0.565 0.580

073 0.573 0.631 0.365 0.405 0.435

082 0.722 0.771 9.635 0.650 0.660

087 0.732 0.754 0.585 0.600 0.615

088 0.609

I
0.637 0.370 I	 0.410 0.440

122 0.747 0.787 0.650 0.660 0.670

i	 131 0.274 I	 0.310 0.045 0.085 0.115

175 0.676 0.750 0.585 0.600 0.615

234 0.743 0.791 0.670 0.680 0.690

241 0.659 0.722 0.535 0.555 0.570

266 i	 0.594 0.634 0.365 0.405 0.435

304 I	 0.353 0.416 ,.085 0.11'9 0.185

Data on coexisting minerals from Bonnichsen (1969). Data on XF1 in orthropyxene from
Fig. 1 (Saxena and Ghose, 1970a).

15



S. No. XCum
Fe

XOPX
Fe

arum
Fe

aCum
Mg

aopx
Fe

aOpx
Mg

K 1 K'1

131 0.274 0.310 .341 .749 .420 .725 .78 .65

304 0.353 0.416 .421 .681 .530 .640 .75 .66

073 0.573 0.631 I	 .620 .490 .740 .430 .73 .78

026 0.666 0.736 .698 .402 .810 .360 .77 .88

082 0.722 0.771 .746 .346 .825 .320 .86 1.04

234 0.743 0.787 .764 .324 .840 .310 .87 1.07

TABLE 3

Equilibrium Constant K 12 and w for the Data in Table 2

Using a Least Squares Program on Equation

T°C K12 wCum /RT wMl/RT (opx)

500 0.36 -1.00 0.58

600 0.61 0.42 1.19

700 0.78 1.22 1.63

TABLE 4

Calculation of Equilibrium Constants

16
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FIGURE CAPTIONS

Figure 1. Distribution of Mg 2+ and Fe 2+ between M1 site and M° site in ortho-

pyroxene (from Saxena and Ghose, 1970a). The mole fractions Xr' and

X F2 are determined by M6ssbauer resonance spectroscopy on heated

orthopyroxenes.

1 — XCpx	 XM1

Figure 2. The distribution coefficient K1'	
Fe	 Fe	 plotted against XF°"

X Cp "	 1 — AFe

to show the non-ideal relationship.

Figure 3. The distribution of Fe 2+ and Mg between Ml in orthopyroxene and

clinopyroxene. The curves are least squares fit according to the

equation employing simple mixture model of Guggenheim (see Saxena

and Ghose, 1970). The dashed curve uses the data on XFl in ortho-

pyroxene at 600°C and the solid curve at 700°C.

Figure 4. Inferred activity-composition relaticn in calcic pyroxene Ca Q,1g, Fe)

Si 206 at 600°C.

Figure 5. Distribution of Fe e+ and Mg between ortho- and calcic-pyroxene. The

aata are from Kretz (1 y63). Open circles — metamorphic, crosses —

igneous. The 600°C isotherm is based on activity-composition rela-

tions in clinopyroxene as shown in Fig. 3 and in orthopyroxene as

listed in Table 1 (Saxena and Ghose, 1970b) K4 is 0.59. The 1150°C

isotherm is based on ideal solution model with K 4 as 0.73.

i
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clinopyro;^ane. The curves are least squares fit according to the

equation employing simple mixture model of Guggenheim (see Saxena

and Ghose, 1970). The dashed curve uses the data on X-1Fe 	 ortho-

pyroxene at 600°C and the solid curve at 700°C.
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Figure 4. Inferred activity-composition relation in calcir vyroxene Ca (Mg, Fe)
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Figure 5. Distribution of Fe e ' and Mg between ortho- and cable-pyroxene. The

data are from Kretz (1963). Open circles — metamorphio, crosses —

igneous. The 600°C isotherm is based on activity-composition rela-

tions in clinopyroxene as shown in Fig. 3 and In orthopyroxene as

listed in Table I (Saxena and Ghost, 1970b)R4 is 0.59. The 1150°C

isotherm is based on ideal solution model with N 4 as 0.73.
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