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COORDINATE SYSTEM INFLUENCE ON THE REGULARIZED
 

TRAJECTORY OPTIMIZATION PROBLEM
 

By J. M. Lewallen, Manned Spacecraft Center,
 
and 0. A. Schwausch, Lockheed Electronics Company
 

SUMMARY
 

This investigation studies the effect of using regu­

larized variables to enhance the numerical integration
 

process associated with the optimal trajectory of a con­

tinuously thrusting space vehicle. The integration charac­

teristicsr of both the rectangular Cartesian and polar
 

cylindrical coordinates are considered for an optimal, low­

thrust, Earth-escape, spiral trajectory. The numerical
 

accuracy achieved and the computer time required are compared
 

for various numerical integration error bounds, by using
 

both the unregularized and regularized equations. The results
 

obtained indicate that for space vehicles which experience
 

wide variations in the gravitational force magnitude, signi­

ficant reductions in computing time can-be obtained by
 

using the regularized trajectory optimization equations. In
 

some cases, the computing time is reduced by a factor of
 

three if regularized variables are used. Furthermore, for
 

the problem considered here, use of the polar coordinates
 

consistently results in more favorable computer times than
 

when rectangular coordinates are used. In addition, if the
 

numerically evaluated Hamiltonian, which is theoretically
 

constant, is used as an indication of integration error
 

generation, the trade-off between integration time and inte­

gration error becomes apparent. Finally, it is shown that
 

the polar coordinates are less sensitive than the rectangular
 

coordinates to errors in the initial Lagrange multipliers.
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INTRODUCTION
 

During the past decade, considerable effort has been
 

directed toward determining numerical methods for optimiza­

tion of nonlinear, dynamic systems. A comparison of the
 

characteristics of several of the more popular direct and
 

indirect numerical optimization methods is given in Ref. 1.
 

Further investigations dealing with the procedures for
 

accelerating convergence of the indirect optimization
 

methods are discussed in Ref. 2. The primary consideration
 

in evaluating an optimization method is the computing time
 

required for convergence to a sufficiently accurate solu­

tion. These characteristics may be influenced by the func­

tional form of the equations of motion as well as the choice
 

of the coordinate system in which the motion is computed.
 

Regularizing transformations have been used in celes­

tial mechanics to eliminate singularities associated with
 

gravitational force centers. Results reported in Ref. 3
 

indicate that the numerical integration characteristics can
 

be enhanced considerably when a regularized set of differen­

tial equations are used for trajectories that experience
 

close primary body approaches. This conclusion has been
 

reached also in Ref. 4 for a wide range of problems in
 

celestial mechanics. Based on these conclusions, a study
 

was made of the applicability of using regularizing trans­

formations to the problem of improving the computational
 

characteristics of numerical optimization procedures. The
 

results described in Ref. S indicate significant numerical
 

advantages in terms of.computational time and accuracy of
 

terminal condition satisfaction if regular variables are
 

used.
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The effect of the regularizing transformation is
 

obviously dependent on the choice of the coordinate system
 

for the unregularized variables. The influence of the coor­

dinate system on numerical error generation in the two-body
 

problem has been studied in Ref. 6 and in the unregularized
 

trajectory optimization problem in Refs. 7 and 8. These
 

investigations indicate that the coordinate sytem used can
 

have a significant effect on computation time and the accuracy
 

of the resulting numerical solution. In particular, these
 

investigations revealed that the polar coordinates were
 

computationally superior to the rectangular coordinates for
 

the continuously powered escape spiral.
 

In the investigation discussed in the following section,
 

the effect of using both rectangular Cartesian and polar
 

cylindrical coordinate systems is studied for a minimum time,
 

1gw-thrust, Earth escape spital. The numerical accuracy,
 

the computation time and the convergence characteristics are
 

compared by using both the regularized and unregularized
 

equations for various bounds on the integration error.
 

FORMULATION
 

If the transfer trajectory for a continuously powered, 

low-thrust, space vehicle is to be time optimal, the following 

equations must be satisfied in the interval to t < tf 

r = - 11 --r TXm- ' m = - (1) 

r 

T 3 (TW f)- TX x 5 r (2)
3 1 r-2 


rr53 m 
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The quantity m = m 0 - Bt where 0 is a constant mass flow 

rate and T and w are Lagrange multiplier vectors. The 
boundary conditions that must be satisfied are
 

7(t0 ) = F0 v(t 0 ) = v0 m(t 0) = 0 (3) 

r(tf) = Vf v(tf) = vf Am(tf) = 0 (4) 

1+Y TY- n. A 0 (5) 

By using a generalization of the classical Sundman regu­

larizing transformation discussed in Ref. 9, i.e.,
 

dT= r-3/ 2dt (6)
 

a set of regularized equations for the optimal trajectory
 

can be obtained as follows:
 

= 3/2(.r 3/ 2-r Tr3X m3 - r- (7)2 mA
 r
 

3/2(=K" =22 + 3p CT " r)cY ' l' Tr3/2x___ = 2 
2 2 2 r m 

(8)
 

where the primes indicate derivatives with respect to the
 

pseudo time variable T rather than the real time t
 

This transformation is discussed in Ref. 5 where it is
 

shown that Eqs. (7) and (8) are mathematically regular. This
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vector form of the regularized equations is invariant with
 

the choice of coordinate system. Hence, Eqs. (1) and (2)
 
describe the optimal process in the unregularized rectan­

gular and polar coordinates, while Eqs. (7) and (8) describe
 

the regularized equations associated with each of the coor­
dinate systems. Either set of equations represents the
 

usual, nonlinear, two-point boundary value problem.
 

DISCUSSION OF RESULTS
 

From the preceding section, it is seen that the solution
 

to the optimal trajectory problem involves the solution of a
 
nonlinear two-point boundary value problem. Usually, efforts
 

are made to obtain a numerical solution to Eqs. (1) and (2)
 
which satisfies the boundary conditions given by Eqs. (3),
 
(4), and (5). Since Eqs. (3) specify only half the neces­

sary initial conditions, values for the remaining unknown
 
initial conditions, usually Lagrange multipliers and the
 

unknown time, must be assumed before a numerical solution
 

can be determined. Inasmuch as the values of the unknown
 

initial boundary conditions are arbitrarily selected, the
 
terminal constraints given by Eqs. (4) and (5) will not be
 

satisfied. These arbitrarily selected initial conditions
 
are changed systematically on subsequent iterations until
 

the terminal constraints are satisfied more exactly. There
 

are numerous procedures for obtaining the corrections to the
 
unknown conditions. Several of the currently popular itera­

tion procedures are discussed in Ref. 1.
 

Adequate satisfaction of the specified terminal con­

straints as well as sufficient numerical accuracy, must be
 

achieved if an acceptable numerical solution is to be
 

5
 



obtained. Adequate terminal constraint satisfaction is
 

obtained by requiring the norm of the terminal constraint
 

error to be less than 10- 7 . Sufficient numerical accuracy
 

is obtained by using full-double precision arithmetic on
 

the UNIVAC 1108 at the NASA Manned Spacecraft Center and
 

by perform-ing the integrations with a variable step-size
 

integration scheme, thereby maintaining the single-step error
 

within certain desired tolerances. The integration scheme
 

employed is a modified version of the scheme discussed in
 

Ref. 10. This scheme uses a fourth-order Runge-Kutta
 

starter and a fourth-order Adams-Bashford predictor corrector.
 

In order to determine the individual effects of the
 

coordinate system and regularization, the same problem must
 

be solved in both coordinate systems and in both unregu­

larized and regularized form. The optimal Earth escape
 

spiral for a low-thrust spacd vehicle is an excellent
 

example problem for regularization investigations since the
 

gravitational force magnitude varies by approximately 102
 

and hence it is expected that a wide range of numerical
 

integration step sizes will be required to maintain certain
 

specified error bounds.
 

Figure 1 shows the optimal escape spiral. Initially,
 

the spacecraft is in a circular near-Earth orbit with a
 

radius equal to 1.05 times the Earth radius. For a constant
 

low-thrust space vehicle subjected to a thrust to mass ratio'
 

of 0.1, the spacecraft acquires escape energy in approxi­

mately 70 normalized time units (approximately 15.7 hours)
 

and reaches an orbit of radius equal to 8.5 times the Earth
 

radius. Although this thrust to mass ratio is relatively
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large, it was selected to compromise between a computationally
 

expensive realistic trajectory and an inexpensive unrealistic
 

one. The trend of the results is probably unaltered. Figure
 

1 also shows the optimal control programs for both the rec­

tangular and polar coordinate systems. Figure 2 shows the
 

relationship between the real and regularized time for the
 

optimal trajectory.
 

Tables 1 through 3 compare the integration characteris­

tics of the regularized and unregularized polar and rectan­

gular coordinate systems for various absolute single-step
 

integration error bounds. The error-bound separations in
 

Tables 1, 2, and 3 are 10 6 , 104 , and 10 2 , respectively.
 

The numerical integration characteristics which are compared
 

include the amount of computer time needed to perform all
 

integrations for the final converged iteration, the average
 

amount of computer time required per integration step, the
 

number of integration steps required, the number of step size
 

changes made, and the norm of the terminal constraint error.
 

The integration time shown in Tables 1 through 3
 

represents the computation time needed to integrate the
 

state equations, the Euler-Lagrange equations, and the
 

perturbation equations from the initial time to the final
 

time. The values shown also include the time required to
 

monitor the single-step integration error and determine
 

the appropriate integration step size. The appropriate step
 

size is determined by comparing the single-step error with
 

the desired accuracy limits. If either the maximum or
 

minimum error limit is encountered, the step size is either
 

halved or doubled. If, by doubling the step size, the maximum
 

bound is violated, then the step size remains unchanged. The
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total number of integration steps taken in the interval and
 
the number of step-size changes necessary to maintain the
 
desired accuracy are 
recorded also. No distinction is made
 
in the Tables between step-size changes associated with
 
doubling and halving. The average computer time per inte­
gration step is recorded to indicate the degree of complexity
 
of the equations for each case. Finally, in order to indicate
 
the degree to which the terminal constraints are satisfied,
 
the norm of the constraint error is recorded. 
This quantity
 
should be considered with some reservation since the routine
 

simply requires that the norm be less than 10-7 .
 The extent
 
to which this criterion is exceeded is not controlled and is
 
an indication of the convergence rate. However, it also
 
depends on how close the terminal norm for the previous
 

iteration was to the required value of 10- 7
 .
 

The results presented in-Table I are for the relatively
 
large error-bound separation of 106. It is seen that the
 
regularized variables, in either coordinate system, require
 
considerably less computation time per iteration than the
 
unregularized variables. In 
some cases, the time is reduced
 
by a factor of three. The reason for the large saving in
 
time is readily apparent when the combination of time per
 
iteration step and the total number of steps is examined.
 
Although the regularized equations are more time consuming
 
to evaluate, as indicated by the time required per step, the
 
large number of steps taken by the unregularized system of
 
equations quickly causes the total time to 
exceed that of the
 
regularized systems. Table I also indicates that the polar
 
coordinates generally require less computer time than the
 
rectangular coordinates.
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The results shown in Table 2 for an error-bound separa­

tion of 104 agree with those presented in Table 1 and sub­

stantiate the previous conclusions. Again, the regularized
 

variables require less total computer time than the unregu­

larized variables, and the polar coordinate systems exhibit
 

shorter integration times than the rectangular coordinate
 

systems. However, for this error-bound separation, the
 

computation time advantage of the regularized systems has
 

been reduced slightly. Note also that the difference in the
 

total number of integration steps between the regularized
 

and unregularized variables has been reduced. In addition,
 

the number of step-size changes for the regularized variables
 

is less than the number of changes required by the unregu­

larized variables. This is in keeping with the regulariza­

tion theory which predicts that regularized variables will
 

undergo fewer step-size changes than unregularized variables,
 

provided a certain integration accuracy is to be maintained.
 

(For the previous error-bound separation of 106, a comparison
 

of the number of step-size changes is invalid since, in some
 

instances, the lower error bound was never encountered.)
 

The results presented in Table 3 for the error-bound
 

separation of 10 2 generally agree with the results of Tables
 

1 and 2. As in the previous tables, the polar coordinate
 

system requires shorter integration times than the rectan­

gular system. However, for this magnitude of error-bound
 

separation, the integration times for the regularized and
 

unregularized variables are essentially the same. The
 

departures from the previously indicated trend can be
 

explained by examining Table 4.
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Shown in Table 4 are the error-bound encounters for
 
certain integration error tolerances. The top line in each
 

set of four lines represents the upper or maximum allowable
 

error bound. Each succeeding line represents the minimum
 

allowable error for a particular error-bound separation.
 

Thus, the first set of four lines represents the integration
 

error bounds of 10-4 and 10- 6, 10- 4 and 10-8 , and 10- 4 and
 
-0
10-.10 The boundary encounters are plotted as a function
 

of the normalized trajectory time. One of the appropriate
 

symbols, keyed in Table 4, records the encounter of the
 

numerical error magnitude with either of the boundaries.
 
An encounter with the lower bound means the step size will
 

be doubled; an encounter with the upper bound means the step
 

size will be halved.
 

Table 4 indicates that by maintaining the small inte­
gration error-bound separation of 10 2 , the error in the
 
unregularized rectangular variables is such that the step
 

size is doubled three times during the escape trajectory
 
4 6
for the 10- to 10- accuracy limits. Upon increasing the
 

4 -4 -8
error separation to 10 , to give error bounds 10 to 10
 

the unregularized rectangular error becomes less than the
 
minimum acceptable error only twice, with the first boundary
 

6
encounter coming after the 10- bound in the previous case
 
had already been crossed twice. By doubling the step size
 

4
early in the trajectory flight time in the 10- to 10-6
 

case, 7 seconds of computer time were saved per iteration.
 

This time saving was increased to approximately 10 seconds
 
4
when comparing with the 10- to 10-10 accuracy level since
 

the lower boundary for this case was never encountered.
 

Thus, by requiring the rectangular error to be within the
 
4 6 4 81
10- - 10- accuracy level rather than the 10- - i0­
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accuracy level, 253 integration steps were eliminated.
 

Elimination of these 253 steps, each consuming approximately
 

.0276 seconds of computer time, resulted in saving 7 seconds
 

of computer time per iteration. Likewise, by requiring the
 
4 -6
integration error to be within the 10- - 10 accuracy level
 

rather than the 10- 4 
- l0 - I 0 interval, a 10-second saving
 

in computer time per iteration was realized. This same trend
 

appeared in both the rectangular and polar coordinates, for
 

the other error bounds shown. By maintaining the integration
 

error within the smaller error bounds, the total integration
 

time was reduced and made comparable to that for the regu­

larized system.
 

From examination of Table 4, it becomes evident that
 

integration errors in the'regularized coordinate systems
 

propagate differently than do errors in the unregularized
 

systems. Since a feature of regularization is the automatic
 

scaling of integration step size, an increasing radius vector
 

magnitude will automatically increase the step size whereas
 

a decreasing radius vector magnitude will automatically
 

decrease the integration step size. Thus, due to the nature
 

of the Earth escape spiral trajectory, the radius vector is
 

continually increasing, and it is conceivable that the step
 

size will have to be reduced in order to maintain the desired
 

accuracy. From examination of Table 4, it is evident that
 

with only one exception, the integration step size for the
 

regularized variables is always halved. The exception occurs
 

for the 10-4 to 10- 6 error limits using the polar coordinates.
 

In this case, the error is such that the 10-6 boundary is
 

just crossed thereby doubling the step size. With further
 

integration, the error becomes large and the step size is
 

halved again. In all other instances, the lower boundaries
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are never encountered. Since the lower boundaries are not
 

encountered, increasing the error-bound separation limit does
 

not affect the regularized systems and only penalizes the
 

unregularized system by increasing the integration times.
 

An alternative approach to regularization is suggested
 

by the lack of encounters at the lower boundaries for the
 

regularized variables. Since only the upper boundary is
 

encountered, a value *of n < 3/2, in the transformation
 

dr = r-ndt , could be selected. This would keep the step
 

size from increasing so rapidly with increasing values of
 

the radius and thus eliminate the decrease in step size
 

associated with an encounter with the upper boundary. Such
 

a value of n would not eliminate the mathematical singulari­

ties; however, in most normal cases the singularities are
 

never encountered anyway. This concept presents an interesting
 

possibility for numerical integration step size control.
 

All information presented thus far has been associated
 

with the characteristics of the last trajectory generated by
 

an iteration process, that is the converged trajectory. It
 

is of interest to know how the four different cases studied
 

are affected by making certain errors in the initial assump­

tion for boundary conditions (the Lagrange multipliers and
 

terminal time). Table 5 presents information on the number
 

of iterations required and the computer time expended in
 

converging from certain specified initial error percentages
 

in the Lagrange multipliers. Since all possible combinations
 

of the four multipliers and percentage errors represent too
 

many cases to examine efficiently, all multipliers were con­

sidered to be in error by the same percentage for each case
 

studied.
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The results presented in Table 5 indicate that the
 

polar coordinates are less sensitive than the rectangular
 

coordinates to errors in the initial Lagrange multipliers.
 

Table 5 also indicates that regularized variables are less
 

sensitive than the unregularized variables to erroneous
 

initial conditions. Although the number of iterations
 

required to achieve convergence is essentially the same for
 

all cases, the computer time requirements are not. The
 

reason that the regularized variables require less computer
 

time than the unregularized variables may be seen readily by
 

examining Figure 3.
 

Figure 3 shows that the convergence rate of the regu­

larized variables for initial multiplier errors of 8 percent
 

is greater than the respective rate of the unregularized
 

variables. The trend presented in Figure 3 is considered
 

to be representative of all cases given in Table 5. Had
 
Table 5 been expanded to include errors greater than ±20
 

percent, the computer time savings of the regularized
 

variables would probably have been more significant. Note
 

that for results presented in Figure 3 and Table 5, the 

value of the terminal time was not perturbed. This, in 

general, is not realistic. If the problem is such that the 

radius vector increases with time and regularized variables 

are being used, care must be taken in the initial assumption 

for the terminal time. The sensitivity of the terminal 

pseudo time T to errors in the terminal time t in seen 

in Fig. 2. One solution involves continuously monitoring
 

the terminal norm and selecting the terminal time which
 

corresponds to the minimum norm for the first assumption.
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Although for some cases the regularized and unregularized
 
systems may exhibit nearly equal integration times, the inte­
gration accuracy of each system may differ. Since a closed-form
 
solution to the problem considered here does not exist, the
 
error generated by the numerical integration process is
 
unknown. -However, there does exist a constant of motion
 
which may be considered in evaluating the accuracy of the
 
numerical integration procedure. This constant of motion,
 
evaluated at the final time, is given by Equation 5. 
For
 
the example discussed, this constant, referred to I+H,
as 

must be zero throughout the trajectory. Thus, the deviation
 
of l+H from zero is one indication of the inaccuracy of the
 
numerical integration process. It should be noted, however,
 
that the satisfaction of 1+H = 0 is necessary but is not
 
sufficient to insure numerical integration accuracy. Since
 
some of the terms in the expression for 1+H contain combina­
tions of the integrated variables, large error generation
 
in two separate terms could cancel, leaving the impression
 
that numerical accuracy had been achieved.
 

The relative values of 1+H for converged iterations
 
using the regularized and unregularized systems may be seen
 
by comparing Figures 4 and 5. Figure 4 shows that the error
 
in 1+H for the unregularized polar system is less than the
 
error in I+H for the rectangular system. Figure 5 indicates
 
that the error in l+H for the regularized polar system is
 
larger than the error in I+H for the regularized rectangular
 
system. 
However, at the terminal time, the polar coordinate
 
error is less than the rectangular coordinate error. Note
 
also that the error in 1+H for the regularized polar system
 
is quite constant during most of the integration interval;
 
hence the automatic step-size adjustment associated with the
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regularized variables tends to control the numerical 
error.
 
Figure 4 illustrates that, for the unregularized variables,
 
the error passes from a relatively large value to a relatively
 
small value during the course of the trajectory.
 

CONCLUSIONS
 

Based on the results obtained in this study, the fol­
lowing general conclusion can be drawn. 
 Care in the selec­
tion of the coordinate system used to describe an optimal
 
trajectory can lead to increased accuracy and reduced
 
computation time. In addition, for space vehicles subjected
 
to a continuous thrust force which undergo wide variations
 
in the gravitational force magnitude, significant reductions
 
in computing time 
can be achieved by using a regularized
 

form for the equations regardless of the error-bound magni­
tude employed. In this study, reductions in computing time
 
by a factor of three are obtained in some cases by using
 
regularized variables. 
 In addition, if the Hamiltonian is
 
used as an indication of numerical accuracy, the trade-off
 
between integration time and integration accuracy is
 
apparent. It is shown that regularizing results in an
 
automatic step-size change that produces relatively constant
 
numerical error over the trajectory interval. These results
 
indicate the importance of obtaining more definitive methods
 
for selecting regularization schemes.
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TABLE l.- NUNERICAL INTEGRATION CHARACTERISTICS FOR ERROR BOUND SEPARATION OF 10
6
 

FOR THE OPTIMAL LOW THRUST EARTH -ESCAPE SPIRAL
 

Error 

Allowable Unregularized Regularized 
_____ __ 

(Absolute) Rectangular -Polar Rectangular Polar 

Computation time for 10- 4 - 10 1'9.5 20.6 8.3 7.7 
5integration of state 10- _I0- I1 38.0 21.0 15.2 8.1
 

and perturbation 6 10-12 71.1 42.5 29.4 15.6
 

equations (Seconds) 10- 70
 

Mean computation 

time per integration .0275 .0300 .0304 .0307 

00 step (Seconds) 

- - 10
Number of 10 - I0 702 685 272 251 

integration steps 10- 5 - I0- 1381 702 497 261 

10-6 - 10-12 2594 1403 971 	 508
 

- 4 - 1 0  
Number of step 10 _ 10 0 1 1 1
 
-
size changes 	 10- - i0 2 0 2 2 

10 - 6 - 10 - 12 3 1 2 2 

- 10 "I  
Terminal error 	 10 - .1375 E -10 .4365 E -13 .6228 E -11 .9087 E -12 

norm 	 10-5 - 10 - 1 .1524 E -11 .3681 E -13 .9458 E -09 .8325 E -12 

10 6 - 10- 1 2 .2010 E 	-11 .5336 E -09 .1330 E -08 .2150 E -11 



TABLE 2.- NUMERICAL INTEGRATION CHARACTERISTICS FOR ERROR BOUND SEPARATION OF 104
 

FOR THE OPTIMAL LOW THRUST EARTH ESCAPE SPIRAL
 

Allowable Unregularized Regularized
 
Error 

(Absolute) Rectangular Polar Rectangular Polar 

Computation time for 10- - i0­8 16.4 13.9 8.4 7.7 

integration of state 10­5 - 10­9 27.8 18.2 15.2 8.1 

and perturbation 10­6 - I0­ 0 51.2 31.8 30.1 15.7 
equations (Seconds) 

10- 7 - 10- I1 64.0 37.7 34.0 21.7 

10 - 0 108.6 72.4 60.1 32.1 

Mean computation 

time per integration .0276 .0299 .0307 .0310 

step (Seconds) 

Number of 10- 4 - 10- 8 585 460 272 251 

integration steps 10- 5 - 10­9 993 606 497 261 

10­ 6 - 10-10 1862 1080 971 508 

10- - 10-I 2327 1254 1088 709 

10- 8 - 10­12 3957 2417 1991 1049 



NUMERICAL INTEGRATION CHARACTERISTICS FOR ERROR BOUND 
SEPARATION OF 10

4
 

TABLE 2.-


FOR THE OPTIMAL LOW THRUST EARTH ESCAPE SPIRAL (Concluded)
 

Allowable Unregularized Regularized 
Error 

(Absolute) Rectangular Polar Rectangular Polar 

Number of step 10- - 10-8 2 2 1 1 

size changes 10 - 5 

-6 
_ 10 -

-10 
.3 

4 
1 
3 

2 2 

10 - 7 - i0 - l 4 2 3 3 

10 - 8 - 10 - 1 2 5 3 4 4 

-
Terminal error 10 - 10 .5603 E -10 .1265 E -10 .6228 E -11 .9087 B -12 

norm 10 - 10 .1849 B -11 .5304 E -13 .9438 E -09 .8325 E -12 

- I .5328 E -09 .1330 E -08 .2510 E -11 
10-6 - 10 1 .1766 E -11 

-7 -11 .5336 E -09 .1244 E -08 .2406 E -11 
10 _ 10 1413 E -11 

2 .2042 B -11 
10 8 - 10 .1378 E -11 .6035 E -09 .1258 E -08 




TABLE 3.- NUMERICAL INTEGRATION CHARACTERISTICS FOR ERROR BOUND SEPARATION 
OF 102
 

FOR THE OPTIMAL LOW THRUST EARTH ESCAPE SPIRAL
 

ArlowabeError Unregularized Regularized 

(Absolute) Rectangular Polar Rectangular Polar 

Computation time for 10 - 10- 6 9.4 7.5 8.3 6.1 

integration of state 10­5 - 10­7 17.3 10.6 15.4 8.1 

and perturbation 
equations (Seconds) 

10­6 
10
e0 " 7 

_10- 8 

-0 

_ 10­9 

26,6 

36.4 

15.5 

26.3 

30.1 

33.8 

15.7 

21.7 

10­ a ­ 10 66.8 40.6 61,6 32.6 

10 - 9 - 10 - 1 1 105.5 60.7 119.1 61.2 

I0-ID I_0-1 147.1 102.5 132.7 77.8 

Mean computation 

time per integration .0279 .0301 .0307 .0307 

step (Seconds) 

Number of 10­4 _ 10­6 332 241 272 193 

integration steps 10­ 5 - 10­ 7 611 345 497 261 

10­6 - 10­ 8 954 514 971 S08 

10- 7 - 10­ 9 1314 869 1088 709 

10-s - 10 1 0  2423 1363 1991 1049 

10 -9 - 101' 3757 2039 3884 2038 

10 O10 10-12 5235 3467 4555 2582 
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TABLE 3.- NUMERICAL INTEGRATION CHARACTERISTICS FOR ERROR BOUND SEPARATION OF 102
 

FOR THE OPTIMAL LOW THRUST EARTH ESCAPE SPIRAL (Concluded)
 

Allowable
 
Error Unregularized Regularized
 

(Absolute) Rectangular Polar Rectangular Polar
 

- 4 - 6Number of step 10 - 10 3 3 1 3 

size changes 10 - 5 - 10 - 7 4 3 2 2 

- 810 6 - 10 - 6 4 2 2 

- 7 - 910 _ 10 S 3 3 3 

I0- - i0-10 6 S 4 4 

10 - 1
9 - I10- - I0 8 6 4 5 

10 10 10 12 7 5 5 5 

-4 - 6
Terminal error 10 - 10 .2197 E -08 .9750 E -13 .6228 E -11 .1527 E -13 

norm 10- 5 - 10- 7 .1515 E -10 .1676 E -08 .9438 E -09 .8325 E -12 

10 - 10-8 .1826 E -10 .2231 E -09 .1329 E -09 .2150 E -11 

7 910 - - 10 - .2580 E -11 .5122 E -09 .1244 E -08 .2406 E -11 

- - 10
10 a -i0 .1133 E -11 .5962 E -09 .1258 E -08 .2042 E -11 

10- 9 - 10-11 .1624 E -11 .6061 E -09 .1260 E -08 .2054 E -ii 

I0-O- 10-12 .1560 E -10 .6081 E -09 .1259 E -08 .2005 E -11 



TABLE 	4.-INTEGRATION ERROR BOUNDARY ENCOUNTERS FOR VARIOUS ERROR BOUND
 
SEPARATIONS FOR THE OPTIMAL LOW THRUST EARTH ESCAPE SPIRAL
 

UNREGULARIZED 	 REGULARIZED 

RECTANGULAR POLAR 	 RECTANGULAR POLAR 

10 10 s 

- ,1 0 - a a 	 , / "- 1o/ - -.1 F-

10" 
 10 

10 1 0 m, a , -O 1 - -)aaa0-l-_a - ­

-S0
 

-
10 	 10ma a a - - - a -0 

10-a 10 - a 

-9llo I911 

10 -1aa - 10 - - - -- a­

10 	 10 

l8101 m1 > 	 10- 8 ma> amc mm* 


10--0
10 

10 a anw a a a a a 10 2 
0I" - 1 1
I III III IiI I I 10
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 

NORMALIZED ORBIT TIME 	 NORMALIZED ORBIT TIME 

14T -6 E 4 -8 1-4 T 	 10 COMMON TO ALL CASES0 10 TO 10 0] 10 TO 10 c4 10 TO 10 CiONTALCSE 



TABLE S.- INITIAL ERROR INFLUENCE ON THE CONVERGENCE CHARACTERISTICS FOR
 

UNREGULARIZED AND REGULARIZED RECTANGULAR AND POLAR COORDINATES
 

FOR INTEGRATION ERROR BOUNDS OF 10- 5 TO 1o- 9
 

Unregularized Regularized
 

Initial Rectangular Polar Rectangular Polar
 

Error Iterations Computation Iterations Computation Iterations Computation Iterations Computation
 

In X Required For Time (min) Required For Time (min) Required For Time (min) Required For Time (min)
 

Convergence Convergence Convergence Convergence
 

+20 6 2.9 5 1.5 6 1.7 5 0.8 

0.8+.6 5 3 5 1.5 6 1.7 5 

.............................................. ............ ...................... ..............................................................................................................-­

+12 5 2.4 4 1.1 5 1.4 4 0.6 

+ 8 5 2.4 4 1.1 5 1.4 4 0.6 

+ 4 4 1.8 4 1.1 5 1.4 4 0.6 
............... ........................................... .. . . . - -- - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - -- - - - - - - - - - - - . . . . . . . . . . .
 

0 0 0.06 0 0.04 0 0.04 0 0.03 

-4 S 2.3 4 1.2 5 1.7 4 0.6 

-8 6 2.9 4 1.2 6 1.7 4 0.6 

-12 9 4.7 4 1.2 13 4.2 4 0.6
 

-16 7 3.5 4 1.1 6 1.7 4 0.6 

.............................................................................................................................. ........................................................... 
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Figure 1.- Optimal low thrust Earth escape 
spiral trajectory for T/M = 0.1 
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Figure 2.- Real time vs regularized time for 

the optimal low thrust Earth escape spiral trajectory 
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APPENDIX A
 

RECTANGULAR COORDINATES - UNREGULARIZED
 



RECTANGULAR COORDINATES - UNREGULARIZED
 

The equations of motion for the unregularized rectangular
 

coordinates are:
 

TX
 _ 1x u 

r3 MV 

U = 

where 

S= X2+ Y2 

x V2 + X2 

u v 

V gravitational constant 

T = thrust 

= mass flow rate 

A-I
 



The Buler-Lagrange equations are:
 

x = 
U U 

x = 
v V 

*xu 3p(xX + YXv)x 
u 3 5r 2? 

*v 3jj(X u + YXv)y 

v r3 r 

TX
 
M M
 

A-2
 



The coefficients for the perturbation equations (nonzero
 

terms) are:
 

3 5
ax r r


5rY 
-3p1xy
 

Dy T 5
 

Tk
 

i 0
T [X3u 

RXX 1.
3X MX 3
 

v
U

axv _ 3x
 

x 5x
 
r
 

3 5
ay r r 


a 7 TX
 
3M M2
 

3
Uu MA


A-3
 



___T 

v 

v 

2 

-

3 1.0 

___ - 1. 2 

V 

- - 1.0 

3m 

ax 

6vixX u 

5 

3p(xX,U + yX X) 5 u~x+4 ) 

3mu 

ay 

31iyXu 

r5 

r r 

3vixX 

T5 

r 

l15p(xXX + yA )xy 

7 

D__ 

u 

3px 

r 

2 

3w 3wxX v 31y + US(Xu+Y )xy 
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3 v 6lyxv 3v1(xX u+ yXw) 1SP(dx + Ax)2 , 

v 3pxy 
5 

u rs 

3A ir 3 3ry5 

m 2TX 

U MX 

TX 

A-5
 



The terminal boundary conditions in the unregularized
 

rectangular coordinates are:
 

= 	 2 i 
+
H1 O.S(x y) "r 


r3 mu
 
H2 = X u
 

2 U p
 

r3 

H 3 Ix v 	 ixu
 

tiuy 

H4 	 v x 

H 5 = x	M
 

H PTX1 


H = 1.0 	 ]3 (XXu + YXv) T U v 
r 



The time derivatives of the terminal constraints are:
 

H1 =Uu + vv + r 
 (ux + VY)
 

r3
 
3ruuw(ux + vy) r3u
r u u u
 

2 r3u u r 

3rvw (ux + vy) r 3 33 - 3 
A u x v ) rv rw V r wu2 

3 vlix - + 

A Co wuv wuy
v 
 x 
 x x2
 

A 5 
 M
 

A6 

A-7
 



The nonzero elements of the 

au9BH 1 

- V 

u 

9H1 

-matrix 

Z 

are: 

311I _ lix 

8Y r3 

-X -3 

9H px 

H3rcu 

ax -

-- U + 

r u 
U 

lix 2 

aH2 

ay 
3rmuyu 

px 

U 

- 1.0 

MH2 

u 

r3u 
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H3 
av 

3 Ur 3wu 
4x 

MH3 

ax 

3rw xv 
u xui 

lix 

r 3wv 

2 
'Lx 

OH 3 3rw yv 

3 .0 

3H3 3 

MH4 

@x 

= UY 

x 2 

aH4 

y 

@H4 

H4 

ayW _ 

wu 

--­

yx 

v 

- 1.0 

5 

ax 
M 

- 1 .0 
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--

DH 6 
-u °u
 

MH6 
v v 

@H6 31i(xXu + yv)x vXu 

ax 5 3 
r r 

9H 6 3i(xA u + yXv)y Pv 
ay r5 3r 
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 2TX
 

3H 6 _ lx TXu
9x 3 M?
 

u r 

ax 
__ - -I l 

3 MA 
. v 

v r 

OH 6
 

@H 

-o 6 -v 

SH6
 

v 
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APPENDIX B
 

RECTANGULAR COORDINATES - REGULARIZED
 



RECTANGULAR COORDINATES - REGULARIZED
 

The equations of motion for the regularized rectangular
 

coordinates are:
 

Tr 3 X
 

uT = -x + 3(ux + vy)u T u
 
2y 2 	 Mx 

Tr3 

vi - _y + 3(ux + vy)v Txv 
2r 2 

-? ­uM
 

xl = U
 

y' = V 

where
 

,2 	 2 

r = x~l+yX2r 

A = A2+X,
 

U V
 

= gravitational constant
 

T = thrust
 

S = mass 	flow rate
 

B-1
 



The Euler-Lagrange equations are:
 

X, 
u 

= - w 
u 

X T = 

v 

- w 
v 

U 

3(ux + vy)wu 

2r2r 2 

3(xXu 

r 

+ yXv)x 
2 

, 
= 

= Pxlv + 
3(ux + vy)wv 

2r 2 
3p(X u + Y2v]y 

A' = Tr 2X 
SM2 

B-2
 



The coefficients for the perturbation equations (nonzero
 

elements) are:
 

ul 3ux + 3(ux + vy) 
-2r 2r 2 

@u2 3uy
 
3v 2r 2 

3u2
au, 3(ux + vy)ux 3TrxA 
XZr2 r4
72 4 tAx 

-U
_ 3uv 3(ux + vy)uy 3TrYXu
Dy 2r 2 r 4 ­

au,' Tr 3 xu
 
am M2x
 

aUl 
 Tr 31.0
 

TTr3 Lx o
_U 


3
axv MA
 

-v 
 3vx
 
U -2r2 
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Wv' _3vy + 3(ux + vy) 
Dv 	 2r 2r2 

av' 	 3uv 3(ux + v)vx 3TrxXv 
2r2 4ax 	 r MX
 

3v 2V ' 3 (ux + Vy)Vy _ 3TrYXv 
2r 2 4ay 	 r MA
 

T3l 

av, Tr 3A

aM M2A
 

Tr A 1
 
Bu MA3
 

Tu­
- 1.0 

__' 

av 

- 1.0 

aM' 38x 

2r 

aM' 

TY 

3 y 
2ri1/2 
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ax, 
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- 1.0 
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w 

V 
- 1.0 
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au 
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2r2 

m'u 

av 

3Yu 

2r 2 

awu 

ax 

3um 
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3 (ux 

-

+ vy)xw 
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3liXA 
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u 3vixX+ 
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9u _ 3vxy 

TX 2 
v I 
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(ou 2r 2 
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aw,v 
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3w xV 

2T 2 

D_'V 
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3 wvyV_ 
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2 1/2 
2MrT 
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NI3 

Tr3/2 x 
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U1 M2X 
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The terminal boundary conditions in the regularized
 

rectangular coordinates are:
 

r
v 2 ) -
H = 0.5(u2 + 
3 r r 

uw
 
H2 = X u 

u u
U lix 

H3 = x 

-v 
wuy/x )
 
H4
 '/2
 

r 

H5 xM 

+ (Uwu + vt)
dX + YXv) TX 

H = 1.0 - 363 ,4
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The time derivatives of the terminal constraints are:
 

HI (uu' + vv') l.S(u2 + v2)(ux + vY) + K, (ux + vy)
3
3 r
r5 


H2 , uln u&l u2
 

r


Ht = At - __u2X X ~2
 

2 u- lixiA 

v I to Vw UVw
H3 V, 7 u TXu + l u
 
H' V 2 


W? Oiy til v tiyw,= u + 1.(5 + vy)
r xr3/2 xr3 2 
 x2r3/2 
 r7/2 

HI = X1, 

H6 0
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POLAR COORDINATES - UNREGULARIZED
 



POLAR COORDINATES - UNREGULARIZED
 

The equations of motion for the unregularized polar
 
coordinates are:
 

* 	Vv2 __1 - TX1
 

p 2 MX
p
 

TX
 
*uv UV Tv
V 	= 

p MA
 

p 	= u 

* V
 
P 

where 

p = radius 

u v 

p 	= gravitational constar 

T 	= thrust 

= 	 mass flow rate 

A	 C-I
 



The Euler-Lagrange equations are:
 

U p v u 

v p u v 

v 21A u 

U p v 3 
p 

_- v "IV
 
v p u p3 

M
2
 
C­
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The coefficients for the perturbation equations (nonzero
 

terms) are:
 

@u 2v
 
v-p
 

ap V2 +31
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 T ul
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The terminal boundary conditions in unregularized polar
 

coordinates are:
 

H, = 0.5(u 2 	 + v 2 ) - P
 

2
 

u -P
H2 


2 

H = XM
 

HS =X
 

H 1.0 + UuT 
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The time derivatives of the terminal constraints are:
 

1p 2
 

2 22
 up u up w 

2 2 

= vp 23 U__ - 2uvpwuU - vp 03 

3 v - ' 

4 V 

A6 = 0 
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aH

The nonzero elements of the matrix are:
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POLAR COORDINATES - REGULARIZED
 



POLAR COORDINATES - REGULARIZED
 

The equations of motion for the rkegularized polar
 
coordinates are:
 

v2 3u2 Tp3x

ut v + 3u P
 

P zp - ­

f T Mx 

6' = 6 
M1 /2 

where
 

p = radius 

22 
U V 

4 =gravitational constant
 

T = thrust
 

$ = mass flow rate
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The Euler-Lagrange equations are:
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The coefficients for the perturbation equations (nonzero
 
terms) are:
 

au' 	 3u
 
p
 

au' 	 2v
 
vp
 

au' V 2 3u2 
 3Tp 2A
 

Tp3
aU, 


M x 

X2
Tp
au' - = - - 10 u 
- RA 2U x [ 

Ut Tp3uA A
 
FrU 

v 

-	

MA3 

avt -v 

av P 

2 ?
V uTp
 
P2 
 MX
 

D-3
 



aV ' Tp31v 

u Mx 3 

3v' TpA X 1.0 

u 91--1.M v 

3xr' -I o 
api 1.0 

96 1 
v p 

ae' v 
p 

am, 3 -'!/2 
ap p 

U a v 
v p 

u v 

p 

axt uI V 

D-4
 



9x'I 
T - 1.0 

ax'x 
V Ul 

av o 

V U 

3p 2p 

ax
V 

v 
p 

ax, 

v 

U u = U.2p 

u v 

Bv p 

9w,' 
u V 

3uw 
u 

ap p2 2p2 

wl' 
__u= -p 

U 

awl 

3w0' 
u 3u 

u 2p 

D-S
 



v.U ­

u 2p 

W 

*WF 

vw 

p2 

3ucn 

2 

aw, 

V 
-w 

p 

11­

@M_ 

Zv3/2 

- 3Tp 

aX' Tp /2X 

D-6
 



I ' Tp x/2X 

3xv M2x
 

D-7
 



The terminal boundary conditions in the regularized polar
 

coordinates are:
 

H = 0.5 (u2 + v 2 ) ­1 
3 pP 

uw
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The time derivatives of the terminal constraints are:
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3(u2 + v2)u + Pu 

4 22 p p 

H2 TIP u pu + lp2 u 

Vtx I V VU UVW 

H4 
3 
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V 

U5 
1io pp 

U 

H; Xv v 
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The nonzero elements of the 'H matrix are
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APPENDIX E
 

NORMALIZED VALUES
 



NORMALIZED VALUES
 

In order to enhance the numerical integration accuracy, all
 

numerical calculations were made in a normalized system.
 

The units of normalization are given in Table E-I. The
 

unit of length corresponds to one Earth radius and the unit
 

of velocity to the circular velocity at one Earth radius.
 

The unit of mass was chosen to be 5000 kg. The remaining
 

are such that consistent dimensional
normalization units 


properties are maintained.
 

Table E-2 gives the normalized values of the constants
 

common to all of the coordinate systems investigated.
 

Since these constants are normalized, the units are
 

indicated by the general notation of L for length,
 

T for time, and M for mass.
 

Tables E-3 and E-4 present, respectively, the normalized
 

values of the initial and terminal states for all coordinate
 

are
systems investigated. Again, the dimensions indicated
 

by the general notation.
 

E-I
 



TABLE E-i. - NORMALIZATION UNITS
 

Unit Value 

Length 0.63781450 x 107 m 

Velocity .79053881 x 10 4 m/sec 

Time .80680985 x 103 sec 

Mass .5000 x 104 kg 

Force .48991644 x 105 (kg-m)/sec2 

TABLE E-2. - NORMALIZED VALUES OF CONSTANTS 

Constant Value 

Thrust 0.10205822 x 10 1 ML/T 2 

Mass flow rate .16336057 x 10­ 5 M/T 

Gravitation .10 x 101 L3/T
2 
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TABLE E-3. - NORMALIZED INITIAL CONDITIONS
 

Rectangular 	 Polar
 
Variable
 

Unregularized Regularized Unregularized' Regularrzed
 

TIME(T) 0.0 0.0 0.0 0.0
 

u(L/T) 0.0 0.0 0.0 0.0
 
1 


v(LIT) 1 0.97728258 0.10470436x10 0.97728298 0.10470436x10'
 

x(L) 0.10470395xi0' 0.10470395x101 0.10470595xl0' 0.10470395x10' 

y(L) 0.0 0.0 0.0 0.0 

m (M) 1.0 1.0 1.0 1.0 

1

u(T2/L) 0.29606237x101 0.2960491xlO 0.29608441x101 0.29601179x10'
 

2 

2	 -0.979173910

2 -0.97927892x10 -0.97975524xi02

X,(T /L) -0.97928073x102 


2 	 2 3
 
wu(T/L) -0.95538761x10 -0.10234806103 -0.95538506x10 -0.10240578x10


wv(T/L) 0.27633966x0' 
 0.29604389x01I 0.27635833xi01 0.29607177xlOI
 

XM(T/M) 0.78700772102 
 0.786974280102 0.78700659-102 0.78709925-102
 

TABLE E-4. - NORMALIZED TERMINAL CONDITIONS 

Rectangular 	 Polar
 
Variable
 

gnregularized Regularized 	 Unregularized Regularized
 

0.70145336102 
 0.23063301xi02
0.23063345I02 


u(L/T) 0.26064303 0.64876389101 0.30879017 0.76866563-10'
 

TIME(T) 0.70145389-102 


2 
 0.92887282-101
0.37315096
v(L/T) -0.40823787 -0.10162287xi0
 

x(L) -0.26111336x10 
1 -0.26114617x10 

1 0.85254035xUO1 0.5254079x0% 

y(L) -0.81156958x00I -0.81154810x0' 0.23250630X10
2 0.23250559-10' 

M(M) 0.99988541 0.99988541 0.99988541 0.99988541 

A (T
2 /L) -0.52721878102 -0.52718636×002 -0.62460890102 -0.62461087x102 

X(T2/L) 0.82576800x102 0.82578870x02 -0.75479544x02 -0,75479381x102 

(T/L) 

v,(T/L 

XMT/M) 

0.85237112 

0.26492650101 

0.2242333' 0 
12  

0.21220771x102 

0.65946501×I02 

0.49770030x10 
- l O 

0.27830104x00 

-0.18643186x10 
- 14 

0.14723466x0 
- 1 

-0.69276707xi02 

0.3550718810 
- 12 

-0.16084963x10 
- 12 
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