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A DESIGN PARAMETER SYNTHESIS DERIVED FROM A
MATHEMATICAL ANALYSIS OF A HYPOTHETICAL
LUNAR FLYING VEHICLE

By William A. Jacqmein, David L. Hall, and Mark K. Craig

SUMMARY

The purpose of this study is to develop design information from a
mathematical analysis of a manually controlled lunar flying vehicle
found in NASA General Working Paper No. 10,079 (ref. 1). The equations
developed in that paper are discussed with respect to feasible vehicle
configurations and the corresponding differences which arise from the
‘use of thrusi-vector as opposed to kinesthetic control. Experimental
data concerning the human-pilot describing function are employed in the
development of a stable region and a region of comfortable control
expressed in terms of vehicle parameters. The equations representing
vehicle parameters are investigated, and favorable lunar flying vehicle
configurations indicated by this analysis are described.
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INTRODUCTICN

This paper is a study of the equations developed in the paper "A
Mathematical Analysis of the Stability of a Lunar Flying Vehicle with
Manual Controls." In that paper, the vehicle eguationsg of motion were
developed using the Lagrange energy equation and were subsequently solved
for the anguler accelerations. The equations were then transformed to
the state-variable matrix notation by use of the Jacobian. Vehicle con-
trol was represented by the experimentally determined pilot describing
function. The vehicle-control and -dynamics equations were combined;
the closed-loop system characteristic equation was then derived and
represented in Hurwitz matrix form yielding the principal minors. This
study enelyzes both the system characteristic equation and the system
open-loop transfer function by means of various algebraic and geometric
stability criteria to derive design-related vehicle parameter informa-
tion.
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SYMEQLS

Ai1 vehicle paraneter term
c damping coefficient
D dissipation function

al ) derivative of ( ) with respect to gq
F control force

G( ) open-loop transfer function

£ gravity
Hn Hurwitz~-matrix principal minor
I moment of inertia
J V-1
Kp pilot gain
k spring constant
Ll directed length from mass-l center of gravity to gimbal point
L2 directed length from gimbal to mass-2 center of gravity
Lc directed length from gimbal ‘to application of control force
M ratio of output to input
M mass
n
Qn general force term .
Q generalized coordinate
r radius of circle



engine thrust

kinetic energy function

general lag-time constant

general lead-time constant

first~order neuromuscular system lag-time-constant approximation
first-order neuromuscular system lag-time constant

time

potential energy function

coordinate of mass n center of gravity
body axis

control-element transfer function

pilot describing function

coordinate of mass n center of gravity
body axis

constant term in A,, vehicle parameter

J

coordinate of mass-2 angular position

gimbal angle

‘matrix determinant

damping ratio of the second-order component of the neuromuscular
system

coordinate of mass-l angular position



e E ML s

AoA! constant term in Ail vehicle parameter
T pilot reaction time lag
-1,1
Yy sin (M)
w general frequency
,f Wiy undamped natural frequency of the second-order component of the

neuromuscular system

al) partial derivative of ( ) with respect to g

Subseripts:

1 mass 1
é e mass 2
?é b body
g ¢ control
é i matrix row designation
;é J matrix column designation
§ N neuromuscular system
QE n integer
A
fi P pilot
Operators:
(") first derivative of ( ) with respect to time

(**) second derivative of ( ) with respect to time

s Laplace transformation operator
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SYSTEM PARAMETER ANALYSIS

Discussion of Equations

The rotational stability characteristics of the proposed manually
controlled lunar flying vehicle are described by the equation (ref, 1)

Tom 5. | - 4
5 TrTys” *+ E (TI * TN) * TITN]S

= 3
+ 5‘(} ~ KiAEETL> + TI + TN] s

" 1'_1 2

+ {1 + KP[AQQ(TL - 2) : Aal‘l‘L]}s

vl sa(n -+, =0 (1)
p|tea ¥ Ao\ " 2/ fF * Kphar < .

The formulation of this equation using vehicle parameter terms

A21 and A22 represents a two-mass system manually controlled by

thrust-vector manipulation about a gimbal point. The vehicle is con-
sidered to be mass 1 and the engine, mass 2 (fig. 1). If, on the other
hand, the vehicle is considered to be kinesthetically controlled, the
vehicle is designated as mass 2 and the pilot as mass 1. As a conse-
quence, the pitch angle, which was 6 in the first case, becomes B8

in the second case. The equation defining the rotational stability
characteristics for this kinesthetically controlled vehicle can be found
by examining the matrix describing vehicle rotational motion (ref. 1).

5] [0 2 0 o |[s] [o 7]
9 Ay Ay Ay Ayl |0 Axs
= + by (2)
) 0 0 0 1 8 o | ©
Bl A A Az Ay |8 | Aus
- - . s b g



When the fourth line is rewritten in terms of the gimbal angle §,
the representation of the pitch angle becomes

B = A8+ Aueé (3)

Performing a Laplace transformation and rearranging terms yields
the transfer function for the dynamics of a kinesthetically controlled
vehicle

A,s + A
_Byps + Ay,

c
8

The transfer function for the dynamics of a thrust-vector-controlled
vehicle, obtained through a similar procedure, is

A..s + A
22 21 (5)

2
s

=8 _
. =5"

The equation defining the rotational-stability characteristics of a
kinesthetically controlled vehicle is, therefore, that of a thrust-
vector-controlled vehicle (eq. (1)), with the exception that A is

4 21
replaced by Ahl’ and A22 is replaced by Ah2°

The AiJ terms represent vehicle parameters extracted from the

state-variable matrix describing vehicle rotational motion. These param-
eters are (ref. 1)

Ay, = ~Ayy= -7 ;k(M + M )[(M + M2)12 + M1M2L2(Ll + L2)]

2
+ Ml'I'Ll(MlI o, * M1M2L2 + lez)z (6)

o
i

l ‘ .
pp = =Ry =~ T oMy ¢ Mz)[(Ml + M), + MM Lo (L + Lz)] (7)



My = oAy %zk(ml + Ma)[(Ml * M )Ty 4 MML (T + L?_)] + MlalweTLlaL,‘,}

(8)
1
yp = =By = 5 oMy * Me)[(Ml ¥ Mp)Iy + MMSD, (L) + J"‘e)] (9)
| 2\ | 2
A= (Ml + MQ)EIQMQ(I:L * ML ) + IlM,(T.Q + MJL, )] (10)

The Hurwitz algorithm determines the criteria which the system
characteristic equation (eq. (1)) must satisfy so that stability can be
attained. Th: necessary and sufficient condition for equation (1) to be
a Hurwitz polynomial (and, thus, indicative of system stability) is that
the principal mincrs of the Hurwitz matrix all be positive. The prin-
cipal minors of the Hurwitz matrix, as found in reference 1, are

T
={T_+ 7T + T.T
2(7y + my)
H, = I - N I°N (11)
2 Ty
12 T 2 2
, =T(TI *TN)+E(TI * Iy )+TITN(TI *Ig T)
2 - 2
('é' TITN)
K (12 ) Te
* 5 120l T T - TL) - T (Tt )T
(l T_T
2 T N)

I, (12)



+ %(’I'I + ’I'N) = - TL)] - Aia[%'('l‘l + 'I‘N) + TITI;I} (13)

T
- HaAil[a (1 - KpAieTL) + T+ Ty }

| K_2A

; +__P__'u'_3{A [(T +'I'

| =

(% my)

| LAR4

.; + Ail[(TI s o) (7 - 5) %+ Ty (T - 'r)]} (14)
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k HhK Ay

y H5 (15)
3 TITN

Another method of evaluating system stability employs the open~lo0p
transfer function

K(TS”)( ‘55*1)(“125 *byy) = 6(s) (16)

e+ )y +3) (£ 5 +3)

[%) (o)




Stability in this instance is determined by replacing s in G(s)
with Jjw and plotting the function G(jw) for an increasing w. By
ihe Nyquist criterion, the system is stable if the vector locus of
G(jw) dravn from w =0 to w - +» (in the sense of increasing w)
encircles the point (-1,0) in a counterclockwise direction. If the sys-
tem is found to be stable, its degree of stability can be approximated
by constructing a circle with center on the negative real axis which is
mutually tangent to the function G(jw) and to a line from the origin

at an angle V¥, where y = sin’l(l/M). The degree of stability can be
evaluated using the equation for the radius of the circle

rO =‘2 ' (17)

An indication of the relative stability between two points can be
gained by isolating the ratio of output to input M. An increasing M
decreases the system stability. Acceptable stability requires that
1 <M< 1.4 (ref. 2).

Human-Pilot Describing Function

The determination of the range of values assigned to the parameters
of the human-pilot describing function is prerequisite to a numerical
analysis of a man-vehicle system. The experimentally determined ranges
of these parameters, as established by Skolnik (ref. 3), are the
following: ‘

G’a-in, Kp L] L] . L] L] . L] L . . . L] [ ] ™ L] L ] [ ) [ ] * 0.6 to 250'0

Lead time, TL [ ] e [ ] [ ] [ ] L ] L] L) . [ ] * L ] L[ ] [ ] L ] L ] ‘ 0.0 to 5.3
Lag ‘time’ TI [ ] [ ] L ] L] L] [ ] L ] L ] » * L[] L ] [ ] L ] L[] . . 0.0 to 25.0
Reaction time, T « « o o o o o o o ¢« + ¢ « + « 0.1 to 0.k

Neuromuscular lag time, T, « « « o« o o« « « « » ' 0.1 to 0.7

It has been established by McRuer (ref. U4), however, that neuro-
muscular lag time has little effect upon the pilot describing function.
Consistent with this, McRuer demonstrates that a lag time of 0.1l yields
results of good accuracy.

Reaction time 1t is influenced by the complexity of the task, as
well as by such tenuous perameters as fatigue, vibration, display
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system, et cetera. Single-axis control experiments concerning human-pilot
describing functions generally utilize a reaction time of approximately
0.15.

Experimental evidence indicates that the pilot is more satisfied
with the control characteristics of a system when certain conditions
have been met. At present, no precise data exist on exactly what
constitutes this comfortable control system with respect to parameter
definition. Various experiments, however, have yielded useful general
observations. The most satisfactory system appears to be one in which
the pilot acts as a simple gain and does not utilize the equalization
constant, lead-lag compensation. Experimental evidence indicates that
the pilot prefers small values of lead, lag, and gain if this situation
cannot be attained. Of these parameters, a small lead time appears to
be the most decisive in the determination of what constitutes a com-
fortable control system. According to these general observations, a
comfortable control region can be approximated by limiting the range
values of the pilot parameters to the following:

) Gain 9 Kp L ] L] L L] L] [ ] [ ] L] L] L [ ) . L] [ ] L L [ ] L] L] [ ] L ] 0 L] 6 to 5 L] 0
;3 Lead time 3 T o [ ] L] [ ] . [ ] L ) [ ] . [ ] L] L] L] L L L) ] 0'0 to 1.0

= L
- Lag time, Tp « ¢ v v s e v s s v e e o o s o v . 0.0%05.0
I. ReaCtion time, T o & o o o ¢ s o o o o o o o o o o 0,15
% Neuromuscular lag time, T._ « « ¢ « o« o o o o o o o 0.10

M
y
S
o
t
,‘7 1
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Development of Graphs

Principal minors ‘of the Hurwitz matrix (egs. (11) to (15)) can be

used to develop meps of stable regions in the Ail-Ai2 plane, by hold-

ing the human-parameter wvalues constant while selecting an arbitrary
value of Ail and subsequently solving for the value of AiZ' which

yields a minor value of zero. Trends established by all points gen-
erated in this manner (fig. 2) determine the boundary between the
positive and negative values of the minor and, thus, by the Hurwitz
criterion, designate the periphery of stability in the Ail-Aia " plane.

Stability is attained in a region where each of the Hurwitz minors

has a positive value associated with its Ail-A12 coordinate .location
(fig. 3). 'The summation of each of the stable regions associated with
a fixed set of human-parameter values over the entire spectrum of these
values yields a stability map that is applicable to any given set of
human parameters (fig. U4). A similar procedure is followed in
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the development of a stability map for the special case of human-

parameter values which are within the previously established comfortable
region (fig. 5).

Redefinition and subsequent verification of these stability maps
can be undertaken using the Nyquist criterion. Procedure dictates that
the term s in the system open-loop transfer function G(s) (eq. (16))
be replaced by Jw and that G(Jw) be plotted for an increasing W,
holding all other terms constant (fig. 6). The previously discussed
extension of the Nyquist procedure (eq. (17)) provides a means of expres-
sing the ratio of output to input M as a function of the Ai vehicle

J
parameters (fig. 7). In so doing, regions of stability defined by the

ratio of output to input can be compared to those defined by the Hurwitz
criterion (fig. 8).

A qualitative indication of the interaction between the system-
damping coefficient c¢ and the system-spring constant k is presented
in figure 9 for the specific lunar flying vehicle configuration depicted
in figure 10. The interaction was developed by estimating vehicle char-
acteristics corresponding to the stability boundary in the Ail-Ai2

plane. Values of Ail and Ai2 were then calculated using these char-

acteristics and were subsequently set equal to the Aij values of the

nearest point on the boundary of the stable region. The Ai equations

J

(eqs. (6) to (10)) were then solved for k and c. Points were selected
along other portions of the stability boundary and the process was re-
peated. This procedure was followed for lunar flying vehicles (both
kinesthetically and thrust-vector controlled) of various masses and iner-
tias over the same range of Ai values.

J

SYSTEM CONFIGURATION ANALYSIS

The state~variable-matrix equation describing vehicle rotational
stability (eq. (2)) represents a gimbal-controlled two-mass lunar flying
vehicle. Equation (2) imposes the constraint, however, that the centers
of gravity of both masses be on the same side of the gimbal. Therefore,
the applicability of this equation to cases in which the centers of
gravity are on different sides of the gimbal point must be determined.
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The state-variable matrix is derived from application of Lagrange's
equation

3T 3T
Q, = g't'(aq:)" T 39 + gv (18)
4 Y Y

The kinetic energy function Te is

+ 2L é(i ‘cos O - 2

cos B - 7. sin B)

g cos(o

I .
B):l + 2§ (19)

The dissipation function for rotational motion betwsen two bodies
is

. Sl T A P T o N . Py
P it e o S T A O ST LI S P
i A e a5 P8, P L AR B R A R s i

D= % (6 - §)° (20)

T e

The potential energy function is expressed by

V =MegZ +M2g(Z; + L, cos 6 + L, cos B)+5§-(e-s)2 (21)

1841 17"
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Referring to the kinetic energy term T, (eq. (19)), the equations
describing the velocity of mass 2 in relation to mass 1 are

X, = X, + L,8 cos 6+ LZB cos B (22)

Z,=1%, - L,6 sin 6 - LB sin § (23)

These are the critical relations in determining the applicability
of the kinetic energy term to a configuration in which the center of
gravity (c.g.) of one mass is above the gimbal point, and the c.g. of
the other is below the gimbal point. In an arbitrary configuration
(fig. 10), the vectors representing the motion of the gimbal point
with respect to mass 1 and the motion of mass 2 with respect to the
gimbal point are both negative in the X and Z directions. The second
and third terms of X2 and 22, therefore, should be negative. 1In

figure 10, Ll’ L2, 8, and B are also negative. Substitution into
equations (22) and (23) yields

x2 xl - Lle cos 0 - L26 cos 8 (24)

5 =% =L@ siné - LB sin B (25)

Ne
L]

Formulation of the relative-velocity equations from the configura-
tion dynamics yields the same results. The relative-velocity equations
(and hence, their conjugate kinetic energy term) are, therefore, in-
dependent of two-mass c.g. distribution about the gimbal point.

Investigation indicated that only the magnitude of the damping
term D (eq. (20)) would be altered by the proposed configuration
extension. Similarly, the potential energy relation V (eq. (21))
need be considered only to the extent that the point of zero potential

energy must be redefined to occur when L, and L, are 180° apart.
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The general force term Qh of the Lagrange energy equation

(eq. (18)) varies in form if the centers of gravity of the two masses
are on different sides of the gimbal. Originally

Q, = - TL, sin(e - 8) (26)

Q=-F1L, (27)
Qs =T sin B + F_ cos @ .(28)
Q, =Tcos g -F_ sin® (29)

If, however, one center of gravity is above the glmbal point and
the other below, the resulting Q terms are

Q = - TL; sin(e - B) (30)

Q, = F L, (31)
Q3 =T sin B - F, cos 6 (32)
Q, =T cos B+ F_ sin 6 (33)

Examination of the‘equations describing vehicle rotational motion
(eq. (2)), however, reveels that the F, term affects only the con-

stant added to the matrix and, hence, does not influence the system-
characteristic equation.

Thus, a term-by-term anélysis of the Lagrange energy equation shows
the system-characteristic equation to be independent of the distribution
about the gimbal point of the centers of gravity of the two system masses.
The characteristic equation can, therefore, be used without restriction
to indicate preferable vehicle configurations.
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Stability maps (fig. 4) generated by the Hurwitz criterion reveal
that a necessary, but not sufficient, condition for the realization of

vehicle gtability is that parameter terms Ail and A12 have the

same sign. Keeping this in mind, a useful generalization as to system

preferability can be concluded from an examination of these Aid terms
(egs. (6) to (10)). 1In simplified form they are
- ‘
Ay = ok ) (34)
= +
Ay = ta'k £ ) (26)
- '
Ah2 to'c (37)
The factors which influence the sign associated with an Aij
quantity are the sign and relative magnitude of L, and L_. The

1l 2
system spring constant k 1is neglected, because a system in which the
pilot will not be called upon to input a spring-constant value is
preferred. A preferable vehicle configuration, therefore, requires
that the signs of o and A be the same in order that the signs of

A;, end A, be the same (a stable system). Figure 10 is an ex=-

ample of an unpreferable system. Assuming this configuration to be
kinesthetically controlled, the applicable vehicle parameter terms
are Ahl and Ahz' Mass 1 is the center of gravity of the man;

mass 2 is the center of gravity of the vehicle, and the gimbal point
is the man's ankles. Ccnsidering Ll to be greater than L2, which

is normelly the case, results in a system similaer to current kines-

thetic control vehicle simulators. When Ll and L2 are substituted

into equations (6) to (10), the resulting relations are

Ahl ok - A (38)

Ahz = e (39)
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Because the signs of a and A are different, the pilot must
input some spring-constant value to attain stability; consequently, the
configuration is considered unpreferable. Figure ll presents arrange-
ments of centers of gravity and gimbal points which are considered
preferable by the previously esteblished criteria; some, of course,
are physically unrealistic.

RESULTS

Stability Maps

Stability maps (fig. 2) describing the zero lines of the Hurwitz
minors reveal, in accordance with theory, that minor Hh is the deter-

mining minor. If Hu is positive, each of the other minors is also
positive. The zero line of minor Hh always passes through the origin

in the Ail-A12 plane. The stable region, therefore, does not transcend

the sbscissa and, thus, exists either entirely above or below the Ail

axis. Consistent with the positive minor stability criteria is the
fact that the last term of the system-characteristic equation KIPAil

must be positive (Kb and A;; must have the same sign). A negative
K As

is indicative of divergeat and, thus, unstable motion. Since Ail and

AiE must have the same sign, the vehicle parameters must place Ail

creates a root with positive real part in the solution, which

and Ai2 values in the first quadrant for stability to be attained,

if the pilot adopts a positive gain. If the pilot inputs a negative
gain, on the other hand, stability requires that vehicle parameters
Ail and A12 be in the third quadrant. A vehicle whose AiJ param-

eters place it in the second or fourth quadrant will be unstable.
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Minor Hh is.described by

= -——2—— —-— -1.:- ’
H, Hy 5 T,y [Aia * Ail(TL 2)]
(2 TITN)
T
- H A [2 (1 - KpAie'I‘L) + T+ TN:H
K 2A11 .
+ — '
3 ZAiQ [2 (Tr * Ty) * TITN]
(2 TITN)

* Ail[(TI * TN)(TL - ) * IrTy(Ty - T)]} (%)

The equation is unchanged if Kp, Ail’ and Aiz each have the

same sign. DBecause minor Hh is the critical term in stability deter-

mination for both the first and third quadrants, the steble regions in
each of these quadrants are of the same area (fig. 4).

The comfortable region (fig. 5) is defined by the estimated region
of comfortable control as derived from the previously developed restrained
pilot parameters. The comfortable region is located near the origin and
quite close to the approximate stability limit, rather than in the center
of the stable area. An increase in the damping constant appears to be
all that is necessary to vary the AiZ parameter values from the sta-

bility borderline to the comfortable region. Although the magnitude of
this increase varies from case to case, preliminary investigations indi-
cate it to be large.

A qualitative analysis of the interaction between the system-damping
coefficient and the spring constant (fig. 9) reveals that, as the system
masses and inertias are increased, larger values of the damping coeffi-
cient and spring constant are necessary to maintain system characteristics
corresponding to a specific point in the A, plane.

i}
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Stable-Area Dependence Upon Pilot-Describing Parameters

The complexity of definition involved in vehicle-describing terms
A, necessitates that only general observations be made concerning the

iJ
dependence of stability maps upon pilot-describing parameters. The first

of these parameters, pilot gain Kp inversely affects the stable region.

As predicted by theory, an increase in the absolute value of the gein
reduaces the stable area. In a similar manner, an increase of the lag-
time constant TI also increases the area within the stable border. The

; largest stable areas are approached as the lag-time constant approaches
o its upper limit of 25. An increase in the lead time T, tends to move

L
the stable area toward the Ai axis, thus reducing the range of Aie
values.

1

PR

o

R

Nyquist Plots

Redefiniticn of stability criteria in terms of Nyquist plots pro-
vides a means of verifying results obtained by previous methods. Such
a verification reveals the system to be conditionally stable; the gain
can be increased or decreased to yield system instability. In accord
with the previously established pilot-parameter range, the maximum gain
allowing system stability is approximately 5 (fig. 6).

ot e, 2

The previously discussed extension of the Nyquist procedure
(eq. (17)) provides a means of expressing the ratio of output to input
M as a function of the Aij vehicle parameters. Such an expression

is presented in figure 7 for the pilot-preferred simple gain situation.
A ratio of output to input in excess of 4 corresponds to the Hurwitz
criterion Aij vehicle-parameter stebility borderline. Figure 8 is an

extension and simplification of the correspondence between the stability
limits deterriined by the ratio of output to input M and the stability
limits deteruined by the Hurwitz criterion. Since acceptable stability
requires that 1 <M g 1.4 (ref. 2), the vehicle parameter-established
stable regior. contains only a small region in which acceptable stability
is actually cbtained. In the remaining area, the transient oscillatory
response in the ratio of output to input is too extreme to be desirable.
Thus, the majority of the area within the Hurwitz stebility map has a
very small degree of stability.
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CONCLUSIONS

Tentative conclusions, which are pertinent as parameters in the
design of a lunar flying vehicle, can be drawn from this work.

1. Vehicle=describing parameters Ail and A12 should have the

same sign. For this reason, stable regions of equal area exist in

quadrants one and three of the A,,-A,, Pplane (fig. 4).

2. The stable region is large to the extent that few restraints
can be placed on vehicle characteristics without a knowledge of the
system spring and damping constants,

3. The degree of stability in much of the stable region is very
small (fig. 8).

4, A stable region exists where the pilot can act as a simple
gain.

5. The estimated region ¢f comfortable control within the
stability map is located close to both the origin and the stability
limit (fig. 5).

6. The area of acceptable system response (fig. 8) indicates
that a small value of the Ail vehicle parameter is preferable.

Because an increase in inertis of the controlled element decreases
the value of Ail’ large values of inertia are not necessarily

detrimental. Of primary importance, however, is the relationship
between inertia and the other system parameters (mass, thrust, length).

T. Stabilization of an unfavorable thrust-vector vehicle con-
figuration requires smaller values of the system spring and demping
constants than does stabilization of an unfavorable kinesthetic
vehicle configuration.

8. A kinesthetically controlled vehicle configuration allows

‘less freedom in vehicle-design definition because the physical pilot

perameters (mass, length, inertia) cannot be adjusted to meet stability
eriteria.

9. Certain favorable vehicle configurations present themselves
(fig. 11).
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c.g. of mass 1

c.g. of mass 2

Figure 10.- Vehicle configuration with one mass above
and the other mass below the gimbal point.
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