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A DESIGN PARAMETER SYNTHESIS DERIVED FROM A

l ;
	 MATHEMATICAL ANALYSIS OF A HYPOTHETICAL

LUNAR FLYING VEHICLE

By William A. Jacqmein, David L. Hall, and Mark K. Craig

SUMMARY

The purpose of this study is to develop design information from a
' mathematical analysis of a manually controlled lunar flying vehicle
` found in NASA General Working Paper No. 10,079 (ref. 1). 	 The equations

Y' t
developed in that paper are discussed-with respect to feasible vehicle
configurations and the corresponding differences which arise from the
-use of thrust-vector as opposed to kinesthetic control.	 Experimental

j data concerning the human-pilot describing function are employed in the
development of a stable region and a region of comfortable control

! expressed in terms of vehicle parameters. 	 The equations representing
` vehicle parameters are investigated, and favorable lunar flying vehicle

configurations indicated by this analysis are described.

INTRODUCTION

This paper is a study of the equations developed is the paper "A
? Mathematical Analysis of the Stability of a Lunar Flying Vehicle with

Manual Controls."	 In that paper, the vehicle equations of motion were
developed using the Lagrange energy equation and were subsequently solved
for the angular accelerations.	 The equations were then transformed to
the state-variable matrix notation by use of the Jacobian. 	 Vehicle con-
trol was represented by the experimentally determined pilot describing
function.	 The vehicle-control and -dynamics equations were combined;
the closed-loop system characteristic equation was then derived and
represented in Hurwitz matrix form yielding the principal minors. 	 This
study analyzes both the system characteristic equation and the system
open-loop transfer function by means of various algebraic and geometric
stability criteria to derive design-related vehicle parameter informa-
tion.
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SYMBOLS

A 4i vehicle parameter term

C damping coefficient

D dissipation function

(
dq

derivative of ( ) with respect to	 q

F control force
C

G( open-loop transfer function

g gravity

Hn Hurwitz-matrix principal minor

Z moment of inertia

P pilot gain

k spring constant

L1 directed length from mass-1 center of gravity to gimbal point

L2 directed length from gimbal to mass-2 center of gravity

LC directed length from gimbal to application of control force

M ratio of output to input

M mass
n

Q
n

general force term

.. qn generalized coordinate

r radius of circle
0

n
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T	 engine thrust

T 
	 kinetic energy function

TI	general lag-time constant

TL	general lead-time constant

TN 	 first-order neuromuscular system lag-time-constant approximation

TN	first-order neuromuscular system lag-time constant
l

t	 time

V	 potential energy function

X 
	 coordinate of mass n center of gravity

xb	body axis

Y	 control-element transfer function
c

Y 
	 pilot describing function

z 
	 coordinate of mass n center of gravity

z 
	 body axis

a,a'	 constant term in 
Aij 

vehicle parameter

a	 coordinate of mass-2 angular position

d	 gimbal angle

A	 matrix determinant

CN	
damping ratio of the second-order component of the neuromuscular

system

8	 coordinate of mass-1 angular position
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X,X v constant term in Ail vehicle parameter

T	 pilot reaction time lag

sin-'(')

ex -moral	 encw g	 ^.	 ^,	 y

W undamped natural frequency of the second-order component of the
neuromuscular system

' partial derivative of ( ) with respect to	 q
3q

Subscripts:
1 mass 1

Y

2 mass 2

,g b body

c control

i matrix row designation

matrix column designation

N neuromuscular system

'
a

n integer

P pilot

Operators:

(') first derivative of ( ) with respect to time

second derivative of ( ) with respect to time

s Laplace transformation operator

3

E
_
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SYSTEVI PARAMETER ANALYSTS

Discussion of Equations

The rotational stability characteristics of the proposed manually
controlled lunar flying vehicle are described by the equation (ref. 1)

2 T T s 5 + [7T TT + TN + TTTN s4

+ [12. ('  - KpA22TL + T1 + TN 
S3

_ T _ T	 2+A22 TL 2	 2 A217L s

+K^r
p
, +A21(T - T1 s+KA =0	 (1)p 2	 ^,1` L 2!	 p 21

'51e formulation of this equation using vehicle parameter' terms
A21 and A22 represents a two-mass system manually controlled by

thrust-vector manipulation about a gimbal point. The vehicle is con-
sidered to be mass 1 and the engine, mass 2 (fig. 1). If, on the other
hand, the vehicle is considered to be kinesthetically controlled, the
vehicle is designated as mass 2 and the pilot as mass 1. As a conse-
quence, the pitch angle, which was 6 in the first case, becomes
in the second case. The equation defining the rotational stability
characteristics for this kinesthetically controlled vehicle can be found
by examining the matrix describing vehicle rotational motion (ref. 1)6

*
r:

0
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When the fourth line is rewritten in terms of the gimbal angle d,
the representation of the pitch angle becomes

^ = A416 + A426
	

{3)

Performing a Laplace transformation and rearranging terms yields
the transfer function for the dynamics of a kinesthetically controlled
vehicle

Y _ + A 42 + A
41

c d	 2
S

The transfer function for the dynamics of a thrust-vector-controlled
vehicle, obtained through a similar procedure, is

= 
e _ A22s + A

21
YC T =	 2

s

The equation defining the rotational-stability characteristics of a,
kinesthetically controlled vehicle is, therefore, that of a thrust-
vector-controlled vehicle (eq. (1)), with the exception that A 21 is
replaced by A41 , and A22 is replaced by A42•

The Aij terms represent vehicle parameters extracted from the

state-variable matrix describing vehicle rotational motion. These param-
eters are (ref. 1)

A21 -A23	 Q Iq 
1 + M21 Ml + M2 12 + M1M2"2(Ll + L2

	

+ M1TLlMII2 + M
1M2L2` + M2I2	(6)

A22 -
A24 - ^ cVM

1 + M2^ (1 + M2)12 + M1M2L2(L1 + L2 )	 (7)

r

C^+ )

{5)
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A = A- 1 kM +M M +M T +MML	 +L +M2MTL L41	 43 6	 1	 2)[( 1	 2) 11	 1 2. 1^	 2)	 1 2 12 2

(8)

A
42 `2 

a A
44 - ^ c(M1 * D) (M1 + M2) 1 + M1 2L1(i'1 * L21

)
	 (9)

p=(Ml
+ M	 M I+ M L 2) + I M. T+ M L 2	 (10)
 2) I 22 1	 11/	 1.L 2	 22 )]

The Hurwitz algorithm determines the criteria which the system
characteristic equation (eq. (1)) must satisfy so that stability can be
attained. Th,„ necessary and sufficient condition for equation (1) to be
a Hurwitz polynomial (and, thus, indicative of system stability) is that
the principal minors of the Hurwitz matrix all be positive. The prin-
cipal minors of the Hurwitz matrix, as found in reference 1, are

2 TI + TNJ # TI TN
H1
	^ TIT

2 	 N

(11)

2
T (T

1
 + TN ) + 2 (T1 2 + TN 2)+ TITN(TI + TN + T)

2	 2

C2 TITN,

D	 I . 1- ... t T 2	 1	 T 2,



H M 	1+ K A T- T - A T T

	

3 T	 p 12C L 2,	 it 2 L
2 TITN

	

BET +T +T T+ 	 I N 3 I Kp Ail ITITN(T TO

C 2 TITN)

+ + CTI + TN̂  ` 2 - TL^ - Ai 2 2 r TI + TN^ +TITN	 (13 )

	

42 3 2 I N i2	 ilC L 2,

C2 TITN/

H2 Ail2 (l - PAi?TL/ + T
T + TN

2
+ KpAil jA T T +T +TT

T	 3 i 2 2 C I	 N,	 I N

C2 TITN,

	

Ail TI + TN! TL 2 / 2 
+TITN 

CTL - T)
	 (14)

C	 C	 `

H	 H--- p- it	 (1.5 )S	 2 TITr1

Another method of evaluating system stability employs the open-loop
transfer function

KTLs + 1 - 2 s + 1) CAi2s + Ail!
Y Yp =	 _ G(sc	 sTls+1. TNs+ll 2s+1

P



Stability in this instance is determined by replacing s in G(s)
with jw and plotting the function GQ w) for an increasing: W. By
the Nyquist criterion, the system is stable if the vector locus of
G Q w) drawn from w = 0 to w -* tw (in the sense of increasing w)
encircles the point (-1,0) in a counterclockwise direction. If the sys-
tem is found to be stable, its degree of stability can be approximated
by constructing a circle with center on the negative real axis which is
mutually tangent to the function G(jw) and to a 'line from the origin

at an angle	 where	 = sin-'(I/M). The degree of stability can be
evaluated using the equation for the radius of the circle

M
r 	

M` - 1

An indication of the relative stability between two points can be
gained by isolating the ratio of output to input M. An increasing M
decreases the system stability. Acceptable stability requires that
1 < M < 1.4 (ref. 2).

Human-Pilot Describing Function

The determination of the range of values assigned to the parameters
of the human-pilot describing function is prerequisite to a numerical
analysis of a man-vehicle system. The experimentally determined ranges
of these parameters, as established by Skolnik (ref. 3), are the
following:

Gain, K . .	 .	 0.6 to 250.0
P

Lead time, TL 	. 	 0.0 to 5.3

Lag time, TI	0.0 to 25.0

Reaction time, T	 0 0 0 0 6 . . . . . . . .	 0.1 to 0. 4

Neuromuscular lag time, T,,	 .	 0.1 to 0.7

(17)

It has been established by McRuer (ref. 4), however,
muscular lag time has little effect upon the pilot descril
Consistent with this, McRuer demonstrates that a lag time
results of good accuracy.

Reaction time T is influenced by the complexity of
well as by such tenuous parameters as fatigue, vibration,

that neuro-
Ding function.
of 0.1 yields

the task, as
display

0

^.	 __ me-+.^ as .Ns_-P. . x'W-F-W
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system, et cetera. Single-axis control experiments concerning human-pilot
describing functions generally utilize a reaction time of approximately
0.15.

Experimental evidence indicates that the pilot is more satisfied
with the control characteristics of a system when certain conditions
have been met. At present, no precise data exist on exactly what
constitutes this comfortable control system with respect to parameter
definition. Various experiments, however, have yielded useful general
observations. The most satisfactory system appears to be one in which
the pilot acts as a simple gain and does not utilize the equalization
constant, lead-lag compensation. Experimental evidence indicates that
the pilot prefers small values of lead, lag, and gain if this situation
cannot be attained. Of these parameters, a small lead time appears to
be the most decisive in the determination of what constitutes a com-
fortable control system. According to these general observations, a
comfortable control region can be approximated by limiting the range
values of the pilot parameters to the following:

Gain,	 K	 . . . . . . . . . . . . . . . . . . . . . 0.6 to 5.0
P

Lead time, TL	. .	 . .	 .	 .	 0.0 to 1.0

Lag time, TI	.	 0.0 to 5.0

Reaction time, T . . . . . .	 0.15

Neuromuscular lag time, TN 0 0 t . . . . . . . . .	 0.10

Development of Graphs

Principal minors "of the Hurwitz matrix (eqs. (11) to (15)) can be
used to develop maps of stable regions in the Ail Ail plane, by hold-

ing the human-parameter values constant while selecting an arbitrary
value of Ail and subsequently solving for the value of Ai2, 

Which

yields a minor value of zero. Trends established by all points gen-
erated in this manner (fig. 2) determine the boundary between the
positive and negative values of the minor and, thus, by the Hurwitz
criterion, designate the periphery of stability in the Ail -A12plane.

Stability is attained in a region where each of the Hurwitz minors
has a positive value associated with its A

il 
Ai2 coordinate.location

(fag. 3). The summation of each of the stable regions associated with
a faxed set of human-parameter values over the entire spectrum of these
values yields a stability map that is applicable to any given set of
human parameters (fig. 4). A similar procedure is followed in



F

..._	 ,

ll

the development of a stability map for the special case of human-
parameter values which are within the previously established comfortable
region ( fig. 5).

Redefinition and subsequent verification of these stability maps
can be undertaken using the Nyquist criterion. Procedure dictates that
the term s in the system open-loop transfer function G(s) (eq. (16))
be replaced by ,jw and that G(jw) be plotted for an increasing w,
holding all other terms constant (fig. 6). The previously discussed
extension of the Nyquist procedure (eq. (17)) provides a means of expres-
sing; the ratio of output to input M as a function of the A ii vehicle

parameters (fig. 7). In so doing, regions of stability defined by the
ratio of output to input can be compared to those defined by the Hurwitz
criterion (fig. 8).

A qualitative indication of the interaction between the system-
damping coefficient c and the system-spring constant k is presented
in figure 9 for the specific lunar flying vehicle configuration depicted
in figure 10. The interaction was developed by estimating vehicle char-
acteristics corresponding to the stability boundary in the 

Ail-Ai2
plane. Values of Ail and A 1 

were then calculated using these char-

acteristics and were subsequently set equal to the Ai, values of the

nearest point on the boundary of the stable region. The A ij equations

(eqs. (6) to (10)) were then solved for k and c_. Points were selected
along other portions of the stability boundary and the process was re-
peated. This procedure was followed for lunar flying vehicles (both
kinesthetically and thrust-vector controlled) of various masses and iner-
tias over the same range of Aij values.

SYSTEM CONFIGURATION ANALYSIS

The state-variable-matrix equation describing vehicle rotational
stability (eq. (2)) represents a gimbal-controlled two-mass lunar flying
vehicle. Equation (2) imposes the constraint, however, that the centers
of gravity of both masses be on the same side of the gimbal. Therefore,
the applicability of this equation to cases in which the centers of
gravity are on different sides of the gimbal point must be determined.
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The state-variable matrix is derived from application of Lagrange's
equation

n dt
+ 	 + av	 (18)

V&Y 7qn aqn aqn

The kinetic energy function T  is

T 
=Ml X2+Z2 +Tl62

e 2	 1	 1,	 2

+ M2 X 1 2 +Z12 +L 26 2 +L 2^2
2	 1	 2

• 2L16(X1 cos A - Z1 sin 6)

• 2L2^(il cos B - Z1 sin a)
I2 .2

• 2L1L26^ cos(8 - 0) + 2	 (19)

The dissipation function for rotational motion betwc-en two bodies
is

The potential energy function is expressed by

V = M1gZ1 + M2
C

g Zl + L1 cos 6 + L2 cos 	 + ^ (A - S)2
	

(21)

N
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Referring to the kinetic energy term T e 
(eq. (19)), the equations

describing the velocity of mass 2 in relation to mass 1 are

X2 = X1 + L19 cos 9 • + L 2 cos ^	 (22)

Z2 Z1 - L18 sin 8 - L 
2 
A sin ^	 (23)

These are the critical relations in determining the applicability
of the kinetic energy term to a configuration in which the center of
gravity (e.g.) of one mass is above the gimbal point, and the e.g. of
the other is below the gimbal point. In an arbitrary configuration
(fig. 10), the vectors representing the motion of the gimbal point
with respect to mass 1 and the motion of mass 2 with respect to the
gimbal point are both. negative in the X and Z directions. The second
and third terms of X2 and Z2 , therefore, should be negative. In

figure 10, L19 L2 , A, and S are also negative. Substitution into

equations ( 22) and ( 23) yields

d

X2 = X1 - L16 cos b - L2^ cos a	 (24)

Z2 = Z1 - L18 sin 8 - L2S sin B	 (25)

Formulation of the relative-velocity equations from the configura-
tion dynamics yields the same results. The relative-velocity equations
(and hence, their conjugate kinetic energy term) are, therefore,in-
dependent of two-mass e.g. distribution about the gimbal point.

Investigation indicated that only the magnitude of the damping
term D (eq. (20)) would be altered by the proposed configuration
extension. Similarly, the potential energy relation V (eq. (21))
need be considered only to the extent that the point of zero potential
energy must be redefined to occur when L  and L 2 are 180° apart.
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The general force term Qn of the Lagrange energy equation

(eq. (18)) varies in form if the centers of gravity of the two masses
are on different sides of the gimbal. Originally

Q1 = - TL1 sin(6 - s)	 (26)

Q2 = - F c 
L 
c
	 (27)

Q3 = T sin B + F  cos 6	 (28)

Q4 T cos 0 - F  sin 9	 (29)

If, however, one center of gravity is above the gimbal point and
the other below, the resulting Q  terms are

Ql = - TLl sin(6 - S)	 (30)

Q2 = F c 
L 
c	 (31)

Q3 = T sin - F  cos 6	 (32)

Q4 = T cos 0 + F  sin 6	 (33)

Examination of the equations describing vehicle rotational motion
(eq. (2)), however, reveals that the F  term affects only the con-

stant added to the matrix and, hence, does not influence the system
characteristic equation.

Thus, a term-by-term analysis of the Lagrange energy equation shows
the system-characteristic equation to be independent of the distribution
about the gimbal point of the centers of gravity of the two system masses.
The characteristic equation can, therefore, be used without restriction
to indicate preferable vehicle configurations.
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Stability maps (fig. 4) generated by the Hurwitz criterion reveal
that a necessary, but not sufficient, condition for the realization of
vehicle stability is that parameter terms A il and Ail have the

same sign. Keeping this in mind, a useful generalization as to system
preferability can be concluded from an examination of these Aid terms

(eqs. (6) to (10)). In simplified form they are

A21 = *ak ± X	 ( 34)

A22 = ±ac
	 ( 35)

A41 ±a'k ± a	 (36)

A42 = +a' c	 (37)

The factors which influence the sign associated with an Aii

quantity are the sign and relative magnitude of L 1 and L2 . The

system spring constant k is neglected, because a system in which the
pilot will not be called upon to input a spring-constant value is
preferred. A preferable vehicle configuration, therefore, requires
that the signs of a and X be the same in order that the signs of
Ail and Ail be the same (a stable system). Figure 10 is an ex-

ample of an unpreferable system. Assuming this configuration to be
kinesthetically controlled, the applicable vehicle parameter terms
are A41 and A42 . Mass 1 is the center of gravity of the man;

mass 2 is the center of gravity of the vehicle, and the gimbal point
is the man's ankles. Considering L1 to be greater than L2 , which

is normally the case, results in a system similar to current kines-
thetic control vehicle simulators. When L 1 and L2 are substituted

into equations (6) to (10), the resulting relations are

(38)A41 =ak- X

A42 0 ac



if

Because the signs of a and X are different, the pilot must
input some spring-constant value to attain stability; consequently, the
configuration is considered unpreferable. Figure 11 presents arrange-
ments of centers of gravity and gimbal points which are considered
preferable by the previously established criteria; some, of course,
are physically unrealistic.

RESULTS

Stability Maps

Stability maps (fig. 2) describing the zero lines of the Hurwitz
minors reveal, in accordance with theory, that minor H4 is the deter-

miniig minor. If H4 is positive, each of the other minors is also

positive. The zero line of minor H always passes through the origin

in the 
Ail-Ai2 

plane. The stable region, therefore, does not transcend

the abscissa and, thus, exists either entirely above or below the Ail

axis. Consistent with the positive minor stability criteria is the
fact that the last term of the system-characteristic equation pAil
must be positive (K and Ail must have the same sign). A negative

K pAil creates a root with positive real part in the solution, which

is indicative of divergent and, thus, unstable motion. Since Ail and

Al2 must have the same sign, the vehicle parameters must place Ail

and A 
1 

values in the first quadrant for stability to be attained,

if the pilot adopts a positive gain. If the pilot inputs a negative
gain, on the other hand, stability requires that vehicle parameters
Ail and Al2 be in the third quadrant. A vehicle whose Ai

, 
param-

eters place it in the second or fourth quadrant will be unstable.
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Minor H4 is.described by

K
H4	 T	 2 H3 

2 TTTN Ai2 + Ail`Th DI
` 2 TITN/

- H2Ail [ET (1 pAi2TL) + TT + TN

2
K A.

+ p it 
3 Ail 2

 (TI + 
TN) 

+ T1TN

`2 T1TN/

+ Ail
( 
T
1
+ TN)(TL - 2, 2 + TITN(TL T,	 (l )

The equation is unchanged if Kg , Aii , and Ail each have the

same sign. Because minor H4 is the critical term in stability deter-

mination for both the first and third quadrants, the stable regions in
each of these quadrants are of the same area (fig. 4).

The comfortable region (fig. 5) is defined by the estimated region
of comfortable control as derived from the previously developed restrained
pilot parameters. The comfortable region is located near the origin and
quite close to the approximate stability limit, rather than in the center
of the stable area. An increase in the damping constant appears to be
all that is necessary to vary the Ail parameter values from the sta-

bility borderline to the comfortable region. Although the magnitude of
this increase varies from case to case, preliminary investigations indi-
cate it to be large.

A qualitative analysis of the interaction between the system-damping
coefficient and the spring constant (fig. 9) reveals that, as the system
masses and inertias are increased, larger values of the damping coeffi-
cient and spring constant are necessary to maintain system characteristics
corresponding to a specific point in the . Aij plane.

_--I
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Stable-Area Dependence Upon Pilot-Describing Parameters

The complexity of definition involved in vehicle-describing terms
Aij necessitates that only general observations be made concerning the

dependence of stability maps upon pilot-describing parameters. The first
of these parameters, pilot gain, 

P 
inversely affects the stable region.

As 'predicted by .theory, an Increase in the absolute value of the gain
reduces the stable area. In a, similar manner, an increase of the lag-
time constant TT also increases the area within the stable border. The
largest stable areas are approached as the lag-time constant approaches
its upper limit of 25 An increase in the lead time T y tends to move

the stable area toward the A 	 thus reducing the range of Ail
values.

Nyquist Pilots

Redefinition of stability criteria in terms of Nyquist, plots pro-
vides a means of verifying results obtained by previous methods. Such
a verification reveals the system to be conditionally stable; the gain
can be increased or decreased to yield system instability. In accord
with the previously established pilot-parameter range, the maximum gain
allowing system stability is approximately 5 (fig. F).

The previously discussed extension of the Nyquist procedure
(eq. (17)) provides a means of expressing the ratio of output to input
M as a function of the 

Aij 
vehicle parameters. Such an expression

is presented in figure 7 for the pilot-preferred simple gain situation.
A ratio of output to input in excess of 4 corresponds to the Hurwitz
criterion 

Aij 
vehicle-parameter stability borderline. Figure 8 is an

extension and simplification of the correspondence between the stability
limits deterr,iined by the ratio of output to input M and the stability
limits deteru.ined by the Hurwitz criterion. Since acceptable stability
requires that 1 < M <- 1.4 (ref. 2), the vehicle parameter-established
stable region: contains only a small region in which acceptable stability
is actually obtained. In the remaining area, the transient oscillatory
response in the ratio of output to input is too extreme to be desirable.
Thus, the majority of the area within the Hurwitz stability map has a
very small degree of stability.

0-1

10
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CONCLUSIONS

Tentative conclusions, which are pertinent as parameters in the
design of a lunar flying vehicle, can be drawn from this work.

1 Vehicle-describing parameters Ail and A 
1 

should have the

same sign. For this reason, stable regions of equal area exist in
quadrants one and three of the A'il A,i2 plane (fig. 4).

2. The stable region is large to the extent that few restraints
can be placed on vehicle characteristics without a knowledge of the
system spring and damping constants.

3. The degree of stability in much of the stable region is very
small (fig. 8).

4. A stable region exists where the pilot can act as a simple
gain.

5. The estimated region of comfortable control within the
stability map is located close to both the origin and the stability
limit (fig. 5).

6. The area of acceptable system response (fig. 8) indicates
that a small value of the Ail vehicle parameter is preferable.

Because an increase in inertia of the controlled element decreases
the value of Ail , large values of inertia are not necessarily

`	 detrimental. Of primary importance, however, is the relationship
between inertia and the other system parameters (mass, thrust, length).

?. Stabilization of an unfavorable thrust-vector vehicle con-
figuration requires smaller values of the system spring and damping
constants than does stabilization of an unfavorable kinesthetic
vehicle configuration.

8. A kinesthetically controlled vehicle configuration allows
less freedom in vehicle-design definition because the physical pilot
parameters (mass, length, inertia) cannot be adjusted to meet stability
criteria.

9. Certain favorable vehicle configurations present themselves
(fig. 11).
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