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PRELIMINARY LAUNCH ABORT ANALYSIS
FOR MANNED APOLIO S-V. MISSTONS

By. Bobbie D, Weber
SUMMARY

"This paper presents & preliminasry analysis of aborts during the
first powered flight portion of the manned Apollo SV mission, from
Ifft-off through insertion into earth-parking orbit. The snalysis con-
siders primarily the capsbility of various propulsion systems on the
gpacecraft to either return the commend modude (CM) and erew safely to
earth immediately following a booster malfunction or to achieve earth
orbit from which the CM and crew can deorbit safely or perform an alter-
nate mission. Although recommendstions are presented for abort mode
definition and durastion based on this analysis, this was not the sole
purpose of the analysis. The primary purpose of the analysis was to
provifle sufficient data to show the spacecraft capghilities and limitg-
tions, so that, if alternatives to the recommendations are considered,
data will be -availeble to welgh the advantages snd disadvantages 'of* the
alternatives. * ’

INTRODUCTION

It is a well recognized fact that the most critical phase of any
manned space flight exists during the launch phase. During the first
few minutes of powered flight the situation is very critical with respect
to reaction time and dictates a very carefully rehearsed dialogue between
the flight controllers and the flight crew. This time-critical phase
is«characterized by an operational emphasis on crew safety. For the
remasinder of the boost phase, when reaction time does not have as great
an effect on crew safety, the flight crew and ground controllers are
more concerned with achieving earth orbit for the purpose of salvaging
some mission objectives and/or returning the crew safely to earth.
This analysis does not attempt to show what might cause a contingency
nor what course the ground controllers and flight crew might follow
upon achieving a contingeney orbit. The following recommended sbort
mode definitions and procedures are designed to provide the optimum
in operational simplicity and crew safety.



DEFINITIONS OF ABORT MODES

Abort Mode I

Abort Mode I utilized the Apollo launch escape system (IES) to
provide & safe separation distance from the booster and automatic entry
sequencing to assure safe recovery of the CM and crew in the event
booster mglfunctions occur from the time the booster is on the pad until
gbout 30 seconds after 8-IT ignition. A thorough trajectory analysis
for ebort Mode I has not been conducted for inclusion in thils paper due
+to the high degree of sensitivity of ebort trejectories with respect
to the IES thrust vector alignment settings which are at this date very
preliminary. However, figuwes l-and 2 4o present the LES configuration
and sequences to be used for Block IL spacecraft. References 1, 2,
and 3 provide sufficient trejectory analysis of this sbort mode and
can be congildered preliminary AS-50L4 data.

Abort Modes TT and TIT

- Abort Mode II does not utilize the spacecraft propulsion systems
for range control, For purvoses of this analysis, as can be seen in
teble I, a short duration service propulsion system (SPS) burn was
gimulgted for booster-spacecraft separstion. This burn was deleted
from the AS-204 separation sequence, and it is not expected that it
will be included in the separaticn sequence for S~V aborts. This
analysis was near completion st the time the burn was deleted.
Therefore, rather than repeat the analysis to conform to current
operationsl procedures and, thus, delsy publicaetion, it was decided to
inelude the burn for sbort Modes IL, IIT, snd IV. Documentation
following the AS-50h preliminary @bort studies will not include the

-simdation of this burn.

Abort Mode IT begins at the time of launch escape tower (LET)
jettison and continues until the full-1ift landing point is 3200 n. mi.
downrange from the launch pad. Due to the high entry deceleration
loads experienced for aborts during this portion of the launch, the CM
will be flown full 1ift into the Atlantic Continuous Recovery Area (ACRA),



The following sequencing will occur in the event e Mode II gbort
is initiated for AS-204A, The - sequencing for all ‘Mcdes of S-V aborts
will be the ssme asg presented in thls paper.

1. The translstion hand controller (THC) will be turned
counter-clockwlse and back to the pre-sbort pogition within 1.7 seconds.
This action will cause the booster to cutoff but will inhibit
booster/commaqd and service module (CSM) separstion; thus allowing
sufficient time for the booster thriust to tail off completely prior
to booster/CSM seperation. Upon receiving the booster cutoff signal,
the dlgltal event timer (DET) will be reset to zero. '

-2, 'The THC will be turned counter-clockwise at 2.3 seconds after
the DET receives the booster cutoff signal.

3. The CSM will separate from the booster L seconds following
booster cutoff. At this time, the four aft-firing service module (SM)
reaction control system (RCS) jebs will begin firing to achleve a safe
separation distance from the booster.

4. The CSM will begin meneuvering to the CM/SM separation .
attitude (small-end-forward (SEF) end sbove the loeal horizontal) 2k
seconds after booster cutoff,

5. The (M will separate from the 8M L5 seconds after boostexr cutoff.
At this time it is expected that the CM will be unstable and any
exslsting attitude rates will be arrested with the CM RCS.

6. The CM will orient to the entry attitude 55 seconds after
boogter cutoff.

7o The CM should be oriented to the entry ettitude (big-end-forward)
100 geconds after booster cutoff.

Abort Mode III will employ SPS retrograde burns to avoid land
landings. Abort Mode III will begin when the full-lift{ landing point
is 3200 n. mi. downrange from the lsunch pad. During this portion of
the launch, entry deceleration loads resulting from sborts are not as
eritical as during the Mode IT portion. Therefore, range control to
avoid African impscts using lift-vector orientation can be employed.
A11 entries, following a Mode IIT sbort, will normally be half 1ift
with the 1ift vector rolled left of the full-lift position. -Therefore;
the firgt Mode IIT landing point will be uprange of the discrete recovery
area (DRA) (intersection of the pre-asbort orbit plene and 3200 n. mi.
range) and south of the pre-abort orbital groundtrack. When the half-
1ift landing point is downrange from the DRA and in Africa, the SES
will be fired retrograde until the half-1ift landing point is 3200 n. mi.



downrenge from the launch pad, This burn will be of any magnitude
greater than 2 seconds. (Current operstional procedures dictate
that no burns less then 2 seconds will be performed.) TFor aborts
from the nominal trajectory the burn could be as long as 160 seconds.
Figure 3 shows the spacecraft attitude to be employed for both
retrogrede end pogsigrade burng in leunch abort situations requiring
8PS burms. After the half-lift landing point is safely across Afries,
near recovery ares 1B, Mode IIT eborts will result in landings in the
Tndien Qcean. For the nominal 720 launch azimuth the Indian Ocesn
landing srea will be located at 8200 n. mi. domrange from the launch
pad. Finally, ebort Mode III would be performed only in the event an
immediate return to earth is desired or in the event very dispersed
conditions exist from which the spacecraft is incapable of achleving
orbit.

The following will be used for Mode IIT sborts:
l. BSeme ag for Mode II.
2., Same as for Mcde II.
3. Saome as for Mode II.

k., Twenty-four seconds after booster cutoff the CSM will begin
maneuvering to the SPS retrograde attitude (see fig. 3).

5. At booster cutoff plus 125 seconds the Mode IIT SPS buxm will
be performed via the SCS AV mode which will maintain the CSM inertisl
atbitude corresponding to the relative attitude at SPS burn initiation
throughout the burn.

6. The sequencing following the SPS burn will be the same &s 4
through 7 for Mcde IT except the time will be referenced to SPS cutoff
rather than hooster cutoff.

Aboxrt Mcde IV

Abort Mode IV will utilize the SES to achieve a minimum perigee
orbit. Mode IV gborts will be performed when the 8PS has the capability
of achieving a T75.0=-n. mi., perigee assuming the spacecraft has not
descended below 75.0-n. mi. altitude between the time of ebort (booster
cutoff) and SPS cubtoff upon achieving the 75.0-n. mi. perigee. Also,
the Mode IV SPS burm is to be initiated at cutoff plus 125 geconds.



Finelly, & sub-mode exists for abort Mode IV. When .sufficlent
time exists for the ground controllers to compute and relasy to ‘the
crew sn apogee kick meneuver {posigrade msneuver applied at apogee of
the pre-abort orbit) designed to ralse perigee above 75.0 n. mi., this
maneuver will be employed in lieu of the 8PS Mode IV -burn gt booster
cutoff plug 125 seconds.

The follgwing will 'be uged for‘Mbde IV aborts:
1. éame-as Mbge IT. | |
2. Bame as Mode II.

3. Same as Mode II.

L, The CSM will begin maneuvering to the SPS posigrade sttitude
(flg. 3) 2L seconds after booster cutoff.

Y5, At booster cutoff plus 125 seconds the Mode IV burm will be
initiated and will be performed using the SCS AV mode. The SPS will
burn -until the (CSM has achieved a 75.0-n. mi. perigee.

DISCUSSION AND RESULTS

Simulation Constants

The enclosed dats are the resulbs of three-degrees-~of-freedom
digiltal compuber simulations. The spacecraft propulsion system charac-
teristics that were ‘used can be found in reference L. BReference 5
contains the (M serodynsmic configuration usged. The launch vehicle ref-
erence trajectory used was that for the nomlnal.Te launch azimuth
found in reference 6. The sequence of events for this trajectory is
presented in tgble II. The J-2 engine tailoff characteristics given in
reference T were used in simulating both the S-IX and S-IVB tailoff as
indicated in table T.

Nominal Launch Trajectory Parameters

Figures b4 through 8 pregent various nominal lavnch vehicle tra-
jectory parameters as given in reference 6. Figures L and 5 present
the nominael range versus altitude and the nominal altitude versus
inertial velocity, respectively. These figures, when compered to fig-
ures for AS-20hk (ref. 1), are characterized by the absence of the high



loft necessary for maximum paylosd in the S-IB trajectories. This is
also apparent when figure T (inertial veloeity versus inertial flight-
path angle) is compared to a similar figure for AS-20k (ref. 1).iIn that
the flight-path angles for AS-50L are not nesrly as.negative as those
for the AS~20L4 trajectory. Whenever possible, the launch sbort date
has been presented as functions of inertial velocity at abort - (booster
cutoff) with time of sbort presented as a secondary scale. If & more
gecorate reading of time of abort is desired, this can be obtained from
figures 6(a) and 6(b) which present inertial velocity, inertisl flight-
path angle, renge, and altitude as functions of ground elapsgd time (g.e.bs)
from lift-off. Wigure 8 presents the groundtrack for the 72 azimith
launch trajectory.

Abort Modes IT and ITT

Figure 9 presents the groundtracks for various launch azimuths
from the pad to the Indian Ocean. On this figure it can be seen that
all the groundtracks intersect at 180° inertial central angle from the
pad. AL one time this inbtersection point was considered for the only
Mode III launch abort recovery ares and was therefore designated as the
TORA (Indian Ocean Recovery Area). However, the advantage in the sim-
plicity of having only one Mode III recovery area, the earth-fixed co-
ordinates (longitude, A, and 1atitude,¢) of which would be independent
of launch azimuth, was out-weighed by its disadvaniages. BSome of the
disadvantages are;

1. VWhen performing maneuvers required to land at the IORA, the
pogt-abort perigee was near or greater than the Apollo Guidance Com-
puter's (AGC) reference altitude, - This meant that in the event the
crew lost ground-voice contact the AGC might be unable to aid them in
performing a Mode I1I abort maneuver.

2. The abort maneuver, if not performed exactly as computed, Te-
sulted in very large landing-dispersions.

3« If it were required to perform a posigrade burn to the ITORA,
the horizon would not bhe in daylight for late evening launches. Since
g lit horizon isg necessary for initial thrust vector orientation, the
crew would either be ungble to align the thrust vector or a misalignment
would result in large landing range dispersions.



Range of landing %s presented as a function of longitude of landing
for aborts from the 72~ azimuth lsunch trajectory in figure 10.

The gecdetic latitude and the longitude of full-lift landing points
resulting from Mode II gborts are presenbed in figure 1L,

The effect of CM serodynamics on renge is shown in figurés 12

and 13. Figure 12 shows the landing distances from the launch pad
for free-fall gborts from the nominal trejectory for full-, half., and
zero-1lft entries asg functions of inertial velocity at gbort. TFipure 13
Presents the footdrint length and distence from the half-lift landing
point to the footprint tee as functions of inertigl velocity at abort.

. During the S-IIL stage of flight, & booster malfunction resulting
in & slow trajectory divergence from the nominal might place the crew
in veyy ‘unsafe regions of flight. Those regions defined by very low
velocities and very high flight-path angles are characterized by the
high deceleraition loads that are experienced if an abort is performed.
The regions defined by very low velocities and very low flight-path
angles are characterized by the lack of sufficient time to properly
orient the CM to the correct entry attitude following abort initiation
and service module (SM) separation. TFor these reasscons limitations
have been pleced on these regions of flight. First, a slow trajectory
divergence will be allowed provided sufficient time from abort initia-
tion (booster cutoff) to entry interface (300 000-ft altitude) is
available for aborts from the trsjectory. This limit is that 100 sec-
onds of free fall be available sbove 300 000 ft. Second, the divergence
wiill be allowed if aborts from the trajectory will result in no greater
than 16 g during entry.

Figure 1k, which presents the time of free fall above 300 000 ft
as a function of inertial velocity at ebort, indicates that the limit
of 100 seconds is never violated for aborts from the nominal trajectory.

Maximum entry load factor is presented as a fuinection of inertial
velocity at abort for full-l1ift, zero-lift end half-1ift entries in
figure 15. It can be seen that aborts from the nominal trajectory
never exceed the 16-g limit for full-lift entries.

Although it has been egtablished that the maximum entry load level
shall be limited to 16 g, the time spent above a lower g level should
be considered. Figure 16(a) presents the time above various g levels
during entry for Mode II aborts-from the nominal trajectory. Figure 16(b)
(taken from ref. 8) presents the maximum time that can be allowed above
a glven g level before crew safety is affected. When comparing the two
figures, note that for no time of sbort from the nowminal trajectory is
the crew safety limit (effect of transverse g) violated.



Figure 17 presents the 100-second time of free fall (:FF) limlt

and the 16-g limit as functions of inertial velocity and inertial flight-
path angle. Alsc, the half-lift 16.g limit and times of free fall of
150 and 200 seconds are presented. i

Figure 18 indicates the effect of CM aerodynamics on range by
presenting landing renge as & function of ipertisl veloecity end inertisl
flight-peth angle at ebort for full-lift entries (fig. 18(a)), half-
1ift entries (fig. 18(b}), and zero-lift entries (fig. 18(c).

As mentioned previocusly, at one time it was considered 1o have the
gingle Mode IITI launch gbori recovery area in the Indian Qeesn, One
of the reasons for selecting this ares was that very preliminary deta
indicated that if retrograde burns were performed to land at the DRA
there would not have been sufficient T to orient the CM prior to

entry. However, this i1s presently not a problem for sborts from the
nominal ftrajectory as indicated by figure 19 which presents SPS burn
time (retrograde) required to land at the DRA and the TFF remeining

after the required retrograde burn as functions of inertial velocity
at abort.

Figure 19 was derived from figures 20 and 21 which present CM
landing range and TFF remaining above 300 000 £t for various SPS range

control burns as functions of inertial velocity at gbort.

It has been considered to use the SM Reaction Control System (RCS)
to avoid African impacts in the event the SPS falls. Figure 22 shows
the RCS posigrade range control capebility by presenting the landing
range following a 5h0-second RCS burn at 100 percent effective thrust
(four thrusters firing full time) as a function of inertial velocity at
abort. Retrograde burns were not considered due %o the lack of suf-
ficient TFF in that portion of the trajectory where the retrograde burn

would need to be employed. Various delay times were considered for
initistion of the RCS burn but the results were negligible when compared
to the nominal minimum delay time (125 seconds from booster cutoff).

Abort Mode IV

Figure 23 presents the SPS burn time and SPS AV required to achieve
8 75.0-n. mi. perigee as functions of inertial velocity at abort for
aborts from the nominal trajectory. An gbort from the velocity where
Mode IV SPS AV is zero requires only that the sepsration sequence pre-
sented in table I be performed to achieve a 75.0-n. mi. perigee. This
figure also shows the first time of abort to be at a velocity of
22 753 fps. This corresponds to & ground elapsed time of 536.0 seconds.



Figures 2L through 27 show comparisons of various trajectory pa-
rameters for the Mode IV SPS burns for times of abort (ta) at

536.0 seconds ge.e.t. (first time of abort the Mode IV SPS burn achieves
B 75.0-n. mi. perigee) and at 535.9 seconds g.e.b.  Figure 2% (range
versus altitude) indicetes that the burn at 535.9 seconds descends
slightly below 75.0-n. mi. altitule during the SPS burn. The minimwm
altitude during the SPS burn (Ffor ta = 535.9 seconds) was abproximately

74.6 n. mi. ocecurring sbout 2200 n. mi. downrange from the launch pad.
It was at this point the burn casme near to achieving the 75.0-n. mi.
perigee. However, at this point the spacecraft was at a perigee and
the subsequent burn only rotated the line of apsides lowering the peri-
gee, as more AV was applled, and raising the apogee. This effect can
be seen in figure 25 which presents perigee alititude and apogee alti-
tude s functions of inertial velocity for “the two Mode IV SFS burns
(at t, = 53%6.0 seconds and t, = 535.9 seconds). Inertial flight-path

angle and time of free fall as functions of inertial velocity for the
two Mode IV SPS burns are presented in figures 26 and 27, respectively.

As indicated by figure 3, the initial thrust vector alignment for
posigrade and retrograde burns will be 31l. T between the line of sight
to the horizon and the X-body axis at SPS initiation. Also, the SPS
abort burns will be performed using the stabilization and control sub=-
system (SCS) AV mode which will hold the inertial attitude corresponding
to the initial thrust vector aligmment attitude. The effect of holding
the 1nert1al attitude is shown in figure 28 which presents the pitch
above the local horizontal as a function of inertial velocity for the
Mocde IV SPS burn at ta 535.9 seconds.

The apogee altitudes and true ancmalies following the Mode IV SPS
burn required to achieve a 75,0-n. mi. perigee are presented as functions
of the inertial velocity at abort in figure 29.

One of the most critical operaticnal procedures that might occur
following an abort initistion are those required for orbit determina-
tion, maneuver caleulation, and relaying informetion to the crew prior
to losgs of ground-to-air voice contact. The most reliable voice link
between the ground controllers and the crew would be via a ground based
site. Figure 30, which presents downrange distance from the pad at
abort, at Mode IV SPS burn initiation, and SPS burn termination as
functions of inertial veloeity at abort, indiecates the amount of time
available to perform the required operastional tasks prior to Bermuda
loss of signal.

The Mode IV data generated in this study assumed a 125-second
delay from booster cutoff to SES ignition and that the initial thrust
vector glignment would be 31.7 bhetween the X-body axis and the line
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of sight to the horizon. Both assumptions were based on the opersticnal
procedure to be used for the AS-204 mission. However, there was: some.
doubt as to whether the same procedures would be optimum for AS-50L.
After examining various delay times end initiel thrust vector orienta-
tion angles, it was found that both assumptions were optimum for AS-50L.
PFigure 31 presents the 8PS burn time required to achieve g T5.0-n, mi.
vacuum perigee as a funetion of delay time from booster cutoeff for
various times of abort. Figure 72 presents the 8PS burn time required
to achleve a 75.0-n. mi. perigee as a function of the angle between

the X-body axis and the line of sight to the horizon for various sbort
times. Tt has been suggested on AS-204 that the Mode IV 8PS burn should
be performed as soon as possible, ‘even prior to the minimum delay time
of 125 seconds. Note that upon examining various delay times for Mode IV
aborts during the late S-IT phase of flight snd the early S-IVB phase,
8PS burns following delay times less than 125 seconds could not achieve
a 75.0-n. mi. perigee; whereas, the SPS burns following the 125-second
delay did achieve a T5.0-n. mi. perigee. For these cases the 8PS burns
following delay times less than 125 seconds were initiated either prior
to apogee or at apogee.

Figure 3> presents the apogee altitudes resulting from Mode IV
8PS burns which were initiated with various initial thrust vector align-
ments .

All Mode IV data mentioned previously were genersted assuming the
abort was inltiated from the nominal AS-50k launch trajectory. Figure 3k
presents the SPS Mode IV AV required to achieve a 75.0-n. mi. perigee
as a function of inertial velocity and inertiasl flight-path angle =t
booster cutoff. The data generated for this figure assumed various
Tlight~-path angle dispersions at the nominal velocity and altitude.

Figure 35 shows the Mode IV SPS AV required to achieve & 75.0-n. mi.
perigee &nd the apogee kick AV required to achieve a 75.0-n. mi. perigee
as functions of inertial veloeity and inertial flight-peth sngle at
abort. The line through the intersection of the Mode IV and apogee
kick AV lines represents a performance tradeoff; i.e., in the region
gbove this line it would be less expensive to perform a contingency
orbit insertion at apogee of the pre-sbort orbit rether than at 125 sec-
onds after boogter cutoff. Also, for any Vi, Y; along this line the time

to apogee is 125 seconds. As mentioned previously, it was found that
SP3 Mode IV burns following an abort during the early S-IVB phase
performed prior to apogee or, at apogee could not achieve a 75.0-n. mi.
perigee. It can also be seen by figure 35 that apogee kicks which are
initiated less than 125 seconds after booster cutoff require wmore AV
to achieve a T5.0-n. mi. perigee than the Mode IV SPS burms initisted
125 seconds after booster cutoff. This would indicate that an optimm
true anomaly exists for performing the Mode IV SPS burn and that this
optimum true anomaly is greater than 180°.



]

Although a performance tradeoff for performing apogee kicks as
opposed to Mode IV burns at booster cutoff plus 125 seconds does exist,
there 8lso exists operational time limits which-would disallow the
tradeocff line shown on figure 35 to be used as a cue for performing one
type of contingency orbit insertion as opposed to the other. Presently,
the flight controllers have estimated that it would require approximstely
3 minutes to switch the real-time computer from launch phase (the

.computer mode -in which the Mode IV SPS AV is computed) to orbit phase
(the computer mode in which apogee kicks are computed), compute the
required apogee kick maneuver, and relay the information to the crew.
Figure 36 presents various times to apogee from booster cutoff as
functions of inertial velocity and "inertiel flight-path angle at booster
cuboff. One of these lines will be used as a cue for switching from
one contingency orbit insertion mode to ancther {1.e., above the line
apogee kKicks will be performed; below the line Mode IV SPS burms will
be performed at cutoff plus 125 seconds). With the insertion ship in
the Atlantic locsbted such that the ship!'s acquisition occurs hefore loss
of contact with Bermuda, the ship should have contact with the space-
craft approximately 3 to 4 minutes afier loss of contact with Bermuda.
Therefore, it does appear feasible that the ground controllers could
compute an apogee kick maneuver and relay the information to the crew
via the insertion ship.

Figure 37 presents time to S-IVB cutoff as a function of inertial
velocity for the nominal AS-50L4 launch trajectory.

Figure 38 presents a portion of scale 2 and scale 3 of plotboard Ia
and offers several limit lines and information lines as candidates for
plothoard Ia.

CONCIUSIONS

This analysis has been conduected to provide recommendstions for
dlaunch abert procedures and definitions of the abort modes for
5=V missions. Unless otherwise notified these recommendations will
be incorporated in volume II (abort studies) of the preliminary abort

and alternate mission document for AS-50k to be published in the near
future.



As previously indlcated the primaery launch abort modes, following
IET jettison, are Modes II and IV. Abort Mcde IIT should be consldered
a backup abort mode availsble for immediate return to esrth In the -
event the spascecraft is not allowed to either achieve or continue to
an earth-parking orbit.

Sufficient data have been presented to compare alternate sbort
procedures and abort mode definitions with those presented.



PARLE I.- SEPARATION SEQUENCE USED TO SIMULATE

F - . S

: SN e
ABORT MODES II, ITI; AND IV .

13

Event

Time from ebort initilation,
3 a sec }
Booster cutoff, 1 :
begin J-2 tailoff 0.00
End J-2 talloff,
begin RGS + X 1.84
End RCS + X,
begin SPS separation 6.00
End SPS separation,
begin CSM coast 8.00
Begin SPS abort meneuver if
required

125.00

lThrust decay for each J-2 engine of the S-II stage was assumed to be
the same as the single J-2 engine in the S-IVB stage.

for the engines was assumed to have cccurred simulbteneously.

The thrust decay
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I
TABLE 1I.- SEQUENCE OF EVENTS FOR THE LAUNCH PHASE OF AS-50k

.

(First Launch Opportunity)

o TPime from .. Geodetic latitude, |..
Event . 1iftofe, longitude, Aitiz;de’

‘ minigec deg’ e
Lift-0ff 00100 28,608 - 80,60k 0
8-IC cutoff 02:38.561. 28.8L45 - 79.763 33
S-IT ignition 02 :h2,106 28,866 - T9.686 35
IET jettison 03:13.87k 29.060 - 78.966 ho
S-II cutoff 08:49.305 31,834 - 64,668 103
5-IVB first

ignition 09:0%.393 31.868 - 6L.%94 103
8-IVB first

cutoff (in-
. sextion to

earth parking

orbit) 11:135.850 32.634 - 55.053 103




IMODE | Q-BALL ——»,

PITCH CONTROL MOTOR .——#

CAMNARD DEPLOYED

{*—_TOWERUET)TISON MOTOR

4
— RESULTANT THRUST VECTOR,
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Figure 1.- Launch escape vehicle configuration,
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ELS ARMED DROGUE CHUTES

TOWER AND BOOST DEPLOYED
CANARDS -
DEPLOYED COVER JETTISONED (16 SEC)

(11 SEC) (14.025 SEC)

P/C N

MOTOR

IGNITED S MAIN CHUTES

TO 61 SEC . DEPLCYED

AFTER 2800-FEET ALTITUDE
LIFT-0FF <+ 0,01 SEC

bL/E APEX COVER
MOTOR JETTISONED
IGNITED (14.425 SEC) _
( )]
“r\(. ! . 53J AQ
X :
5\\ _&‘;J’ J ‘

(a) Mode la aborts - from the pad to 30 000-feet altitude,

Figure 2.~ AS-504 LES abort sequences for different altitude regions,
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TOWER AND BOOST
COVER JETTISONED
23 300-FEET
ALTITUDE + 0,01 SEC

APEX COVER
JETTISONED BY

23 300-FEET ALTITUDE
+ 0.41 SEC

CANARDS
EFFECT AND DAMP
TURN-AROUND

MANEUVER

DROGUE DEPLOY
23 300-FEET ALTITUDE
+2.00 SEC

CANARDS
DEPLOYED
(11 SEC}

ELS ARMED
(14 SEC)

MAIN CHUTES DEPLOYED
10 200-FEET + 0.01 SEC

L/E
MOTOR
IGNITED

@ | 2
/(b) Mode 1b aborts - from 30 000~ to [20 000~feet altitude,

Figure 2.~ Continued.
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JETTISON TOWER
AND BOOST COVER

. APEX COVER
23 300-FEET ALTITUDE  ,-1T1SONED BY

+ 0,01 SEC 23 300-FEET ALTITUDE
+0.41 SEC -

"MANUALLY ESTABLISH
50/SEC PITCH RATE

ELS ARMED

(14 SEC)
DROGUE CHUTES DEPLOYED
23 300 FEET + 2.00 SEC

L/E
MOTOR
IGNITED

MAIN CHUTES DEPLQYED
10 200 FEET + 0,01 SEC

Flgure 2,~ Concluded,

8r
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RETROGRADE ATTITUDE

LOCAL
HORIZONTAL

POSIGRADE ATTITUDE

HORIZONTAL

NOTE: SPS RETROGRADE-AND POSIGRADE MANEUVERS WILL NORMALLY BE INITIATED AT
BOOSTER CUTOFF PLUS 125 SECONDS FOR ALL LAUNCH ABORTS REQUIRING SPS
MANEUVERS. THE ATTITUDES PRESENTED ABOVE ARE THE REQUIRED SPACECRAFT
ORIENTATIONS AT SPS'IGNITION. THE SUBSEQUENT ABORT MANEUVER WILL BE
CONTROLLED VIA THE SCS; WHEREBY, THE SCS SHALL MAINTAIN THE INERTIAL
ATTITUDE WHICH CORRESPONDS TO THE RELATIVE ATTITUDE AT SPS IGNITION.

Flgure 3,- Spacecraft altitude required at SPS Ignition for launch abort maneuvers,
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