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ABSTRACT

The. study was performed under the agreements

contained in MSC/TRW Task A-96, Abort Limit Lines

Due to Saturn Launch Vehicle and Apollo Spacecraft

Structural Constraints, Amendment No. 3, Subtask

A-96. 10 - Effect of Aerodynamic Heating on Limit

Lines,

This study is an analysis of the structural fail-

ure limits of the spacecraft components of the Mission

AS-204 launch configuration when the effects of aero-

dynamic heating on structural capability are consid-

ered. The study is limited to slow divergence disper -

lions that are detectable by ground based equipment.

Structural loads were computed by the TRW N -Stage

Computer Program. Skin temperatures were com-

puted using the TRW Ascent Heating Program which
S	 \ was developed for use in this task.
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i. INTRODUCTION AND SUMMARY

i. i INTRODUCTION

The object of this study is to attempt to develop structural failure
limits for the Mission AS-204 launch vehicle when the effect of elevated
temperatures on the structural capability is considered. Previous limits
were derived from simulation cases where failures occurred early in
flight and the effects of aerodynamic heating were assumed to be negligible
(Reference 1).

The structural loads were derived from the TRW "N-Stage" digital
program (Reference i). Temperature histories of the vehicle components
were computed for each of the trajectories using the TRW Ascent Heating
Program (Reference 2). In the early work the complete temperature dis-
tribution for the components that make up the service module - spacecraft
lunar module adapter (SM-SLA) interface and the SLA-IU interface were
computed using the Ascent Heating Program and the TRW Thermal
Analyzer Program (Reference 3). Further analysis showed that only the
Ascent Heating Program was required after the critical components were
identified. The areas of the spacecraft considered in this study are
shown in Figure i -1.

The effects of winds and wind shear on the thermo -structural limits
were evaluated to determine the dependency of the limit lines on wind
variations. The wind profiles used are shown in Figure i-2.

The trajectories that were analyzed were limited to those cases
where the malfunctions result in relatively slow changes in vehicle attitude
and where the variations in the trajectory parameters are readily discern-
ible from the "nominal trajectories. " In all cases analyzed the malfunc -
tions were limited to the gyro drift failure mode.

Ground Rules

The following assumptions were made for the thermo -structural, 	 i
limits portion of the task. These items are in addition to the assumptions

i- i
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used in the trajectory develapment and the determination of interface

loads.

i) The gyro drift malfunctions used to develop the limit
lines were initiated at lift-off. Additional trajectories
with gyro drift initiated late in flight were analyzed to
determine the validity of the limit lines.

2) A single, high-density perturbation of the PF,triek AFB
reference .atmosphere was used.

3) Only downrange dispersions were used in developing the
therino structural limits.

4) Wind profilet with the maximum shear occurring at any
altitude other than approximately 10 km were not considered.

5) 5truc tural strength of the SM-SLA interface was derived
frorri room temperature test data. (See Discussion for
methods used to extrapolate the data to higher tempera-
tures. )	 ,

1.2 SUMMARY

The following conclusions summarize the results of this study.

The SM skin in the SM-SLA interface is the most
critical component for the trajectories considered.

2) The SM skin temperature can be computed using
adiabatic wall techniques (Eckert's method).

3) Use of trajectory parameters (AHI) to predict
skin temperatures is not feasible due to limitations
in determining angle of attack.

4) Use of a single AHI or skin temperature value could
cause a 10 second error in the predicted time of
failure versus the calculated failure time.

5) The use of an inertial velocity-flight path angle
display to detect thermo-structural failures is not
recommended when variations in gyro drift rate and
failure time are considered.

6) The thermo- structural failure line on a relative
velocity-altitude display provides a limit indepen-
dent of atmospheric conditions when the prelaunch
measured atmospheric conditions are used in the
real-time display computations.
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1, 2. 1 Restrictions on the Us +- of Limits

The limiting conditions defined in this report are subject to certain
restrictions due to the assumptions made in the derivation and the limits
imposed on the study. These restrictions are due to the following items;

1) Only a single mode of failure was considered (gyro
drift).

2) The direction of gyro drift was limited to the pitch
plane in the downrange direction.

3) The limit line is only applicable for a power-on
launch vehicle in the lift-off configuration (prior
to abort).

4) Flight in the region beyond the limit line should be
treated as a high risk zone, but not necessarily as
an absolute failure region, since conservatism has
been used in the derivation of the thereto- structural
limits.

c
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2. DISCUSSION

The methods used to generate the thermo- structural limits are
detailed below.

2. 1 AERODYNAMIC HEATING

An ascent heating program was developed for use in determining the
aerodynamic heating and skin temperatures. This computer program
(Reference 2) was a modification of a program used by -the NASA-M.SFC
for launch vehicle heating (Reference 4). The major modification to the
program was the addition of an option to compute local flow properties
based on pressure distributi^ins obtained from wind tonne, tests and veri-
fied by flight test. This option allowed the computation of leeward side
heating in addition to windward side heating. This capability was required
since the trajectory dispersions were such that different sides of the
vehicle were windward at various times in the trajectory (Figure 2-1). The
equations and methods used in the derivation of local flow properties are
contained in Reference 5. The local flow properties may be computed for
the SM-SLA interface, for the SLA, for the SLA-IU interface, and for the
SIVB.

The basic heating analysis incorporates the Eckert Flat Plate
Techniques (Reference 6) for laminar flow solutions and the Vail Driest
Techniques (Reference 7) for turbulent flow solutions. A heat balance
was performed for a typical model of the service module honeycomb panel
and resulted in transient temperature profiles for the honeycomb face
sheets. The heat balance included internal and external radiation, con-
vection, conduction and heat stored terms.

The 3 sigma dispersed atmosphere which was used for the trajectory
simulations has also been used for the determination of heating rates to
insure compatibility of loads and skin temperatures.

2.2 STRUCTURAL METHODS

The structural analysis presented herein, extends the Reference 1
analyses to include the effects of aerodynamic heating on the vehicle.
This heating results in a degradation of the vehicle structural capability

1
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and causes structural failures in addition to those included in the

Reference i report.

The effects of aerodynamic heating on the launch escape system-

command module (LES-CM) and command module-service module (CM-SM)

ira'-.X.rf,: ces were neglected due to thermal isolation and protection.

The structural capability of the SM-SLA interface at room tempera-

ture was based on the static structural tests presented in Reference 8.

It was assumed that the test loads represent the ultimate room tempera-

ture structural capability of the interface at the maximum dynamic

pressure-angle of attack combination (qa). The ultimate maximum qa

axial load and bending moment were uses' to calculate an equivat,,r%t axial

load capability of 570, 000 lbs. at room temperature. It should be noted

that during the first stage end boost test condition (Saturn V loads), the

SM aft bulkhead prematurely failed at 140/0 limit load instead of the

required 150% limit load. The failure equivalent axial load was calculated

to be 513, 000 lbs. Since, this failure was not due to body loads, but due

to a localized effect, and the basic structural shell did not fail; it was

assumed that the maximum qa equivalent axial load was the room tempera-

ture structural capability of the SM-SLA interface (Reference 9).

T'Ne structural capability of the interface at elevated temperatures

was assumed to be dependent upon the SM outer skin. This assumption

was based on a two-dimensional thermal model, which calculated the

temperature history distribution throughout the interface. It was found

that the SM outer skin was at the highest temperature and its structural

properties were most severely degraded by temperature. This fact is

illustrated in the following figure. The figure presents the thermo-

structural capability of two components in the SM-SLA interface versus

the time of flight for a typical trajectory.

2-2



TIME OF FLIGHT

kFT BULKHEAD
ER CLOSE OUT
5-T6)

OUTER SKIN
78-T6)

THERMO STRUCTURAL
CAPABILITY,
PERCENT OF
VALUE AT 70°F

c

Thus it can be seen that the thermo . structural capability of the SM
outer skin degrades much faster than the SM aft bulkhead outer closeout.
This relationship is also applicable for all interface components.

It was assumed that the SM-SLA interface structural capability was
degraded in the same manner by temperature as the compressive yield
strength of the 7178-T6 aluminum alloy face sheet. Reference 10 was used
to obtain the temperature degradation curve for the material. This degra-
dation curve is based on half (1 /` 2)  hour exposure times and the actual
mission exposure times are much shorter. This will introduce a conser-
vative factor into the capability, since the half hour properties reduce the
equivalent axial load capability at elevated temperatures more than the
short time exposure properties. Figure 2- 24 shows the SM-SLA interface
structural capability at elevated temperature used for this study. The
the rmo- structural zero load capability cut off point at T = 550 0 F was
obtained from MSC/SMD personnel. It is based on deterioration of the
face sheet bond with temperature.

With the SM-SLA interface thermo- structural capability defined, the
selected trajectories were analyzed for structural failures that occurred

2-3



during the first sta&: boost. For each trajectory under analysis, the

loads at selected bo0y stations were calculated by use of the Reference i

r.omputcr program. The program calculated the rigid body loads at each

body station. To account for flexible body effects, dynamic lead factors

were applied to the rigid body loads. These dynamic load factors were

obtained from MSFC and MSC personnel (Reference i). The factors were

conservatively high and yielded conservative structural loads. A more

detailed explanation of these calculations is contained in Reference i.

The loads were then correlated with the temperatures calculated by the

Reference 2 computer program. These loads and temperatures were then

plotted against the interface the rmo- st ructural capability. A failure v as

determined when the two curves crossed. Figures 2-3, 2-4, and Z-5 pre-

sent three typical trajectories that were analyzed. As can be seen in

Figures 2-3 and Z-5,  the exact point of failure is difficult to determine

because of the erratic behavior of the loads. A finer time step in the com-

puter program would facilitate a more accurate solution. Figure 2-4

shows a typical "no failure" case.

The SLA-IU interface structural capability at elevated temperatures

was determined from Reference 11 in the same manner as for the SM-SLA.

interface. Analysis of this interface indicated that it was less critical

than the SM-SL.A interface. This was attributed to several things. The

temperatures were considerably lower, while the load-capability relation-

ship was approximately the same. Thus, for those trajectories analyzed

no failures were indicated.

2.3 AERODYNAMIC HEATING INDICATOR

An attempt was made to correlate a combination of trajectory

parameters with the skin temperature of the SM-SLA interface. This was

done with an aerodynamic heating indicator (AHI) of the following four.

r

.AHI = J POO VRELdt,

0
2-4
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c	 whe r e,

f)W	 = free stream density, and

V
REL ' velocity of the vehicle with respect

to the wind.

Figure 2-6 shows that the effect of wind on the correlation is large

and precludes the use of this form of AHI. The major cause of the dis-

agreement is the change in local flow properties, and therefore local

heating, due to differences in the angle of attack. It is possible that some

form of the AHI where the angle of attack is included could provide closer

correlation. However, the inflight angle of attack is difficult to obtain

and the accuracy of angles derived from trajectory parameters or the

'I Q-ball" would have to be investigated in more detail.

2.4 TWO DIMENSION THERMAL MODELS

Thermal modelk, of the SM-SLA and SLA-IU interfaces were devel-

oped using a two dimensional radiation - conduction network in conjunction

with the TRW Thermal Analyzer Program (TAP). Nodal locations for the

two interfaces were established on certain interface components to

determine the temperature distribution throughout the structure.

Geometry and nodal networks for the two interfaces are shown in Figures

2-7 through 2- i i. A total of 24 nodes were used for the SM -SLA interface.

Aerodynamic heating rates were determined for several values of

constant wall temperature using the Ascent Heating Program. The

heating rats were input to the TAP program and interpolated based on

the TAP computations of wall temperature.

2-5
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3. RESULTS

The results of the thermo -structural analyses are summarized in
Table 3 -1 which includes a description of the cases analyzed and the condi-
tions at failure, where applicable. The failure limits determined by this
study were derived by considering only a single type of launch vehicle
malfunction and are subject to the limitations imposed by the assumptions
and ground rules.

3. 1 CRITICAL AREAS

Early in the study it was determined that the critical interface was
the SM-SLA interface and the SM skin immediately forward of SM bulkhead
was the critical component due to its sensitivity to aerodynamic heating.
This is logical since the SM outer face sheet is the thinnest skin in the
SM-SLA interface, and the aerodynamic heating is approximately equal
throughout the area. The CM-LES interface was not considered since it
is protected during launch by the boost protective cover "cuffs. " Although
the room temperature structural capability of the SLA-IU is approximately
the same as the SM-SLA interface, the temperatures in that region are
considerably cooler. The maximum temperature in the SLA-IU region
was approximately 3000F, whereas the SM skin was failing at approxi-
mately 470 OF for the trajectories considered. The CM-SM interface was
not considered due to the protection afforded by the SM fairing.

The SM-RCS quad was eliminated from consideration as a critical
component by reviewing the methods used for the design analysis
(Reference 12). The analysis was highly conservative and the design tra-
jectories were similar to those during which SM skin failure occurred in
this study. The skin adjacent to the quads was eliminated as a critical
candidate by using a highly conservative analysis of the heating in this
area and considering the large heat sinks available. Thus, the limit lines
contained in this report are based only on the SM skin temperatures.

Although the two-dimensional thermal models were used in the early
part of the study, it was determined that an option of the Ascent Heating
Program to compute the temperature of a honeycomb panel was more than

i (adequate and was used in the final determination of SM skin temperatures

3-1
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A

for the structural analysis. The temperature distribution of the outer skin

of the SM-SLA interface for a typical condition is shown in Figure 3 1,

3. 2 THE RMO—STRUCTURAL LIMITS

The thermo -structural limits for the gyro drift failure modes may

be displayed in a variety of ways. Analysis has shown that it is not possi-

ble to isolate the structural failure into an independent structural loading

condition or to a single value of skin temperature. Attempts were made to

utilize various displays to depict the limits. The rinost promising of these

are the inertial velocity-flight path angle, and the altitude-relative velocity

displays.

3, 2. 1 Inertial Velocity-Flight Path Angle Display

The thermo -structural limits are shown on a display of inertial

velocity - inertial flight path angle display in Figure 3-2. The limits are

shown for the no wind, head wind, and tailwind conditions. Variations of

the trajectories and the limits due to use of the wind envelopes or the wind

profiles in a specific direction were negligible excerpt for one case in which

rapid divergence of the launch vehicle occurred at 94 seconds when the

head wind profile was used with the 660 degree per hour drift rate trajec-

tory. Structural failure for the same drift rate with, the head wind

envelope occurred at 112 seconds due to thermo-structural failure. Sim-

ilar cases probably exist when wind profiles with high values of wind shear

are combined with high drift rates. This type of failure should probably

be classified as a rapid divergence failure and must be detected by meth-

ods other than the the rmo -structural limits on a trajectory parameter

display.

Three trajectory cases (124, 125, and 126) were used to determine

the validity of the limit on the velocity-flight path anj!,;le display. These

trajectories were developed by using a zero gyro drift rate from lift-off to

80 seconds and then introducing a high drift rate throughout the rernainde;,

of the first stage boost. The rates were 900, 1100, ^!tnd 1300 degrees per

hour for cases 124, 125, and 126, respectively. The velocity-flight path

angle histories for these trajectories are shown on Figure 3-2. Cases 125

and 126 (1100 and 1300 deg/hr) penetrated the limit on this display at

133. $and 130 seconds, respectively. However, exaniaination of the

3-2
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Cstructural loads and skin temperatures shows that neither of these cases

would fail. The load-temperature relationships for the three check cases

are shown in Figure 3-3. The inertial velocity-flight path angle display is

therefore not recommended for use in determining thermo- structural

failures.

3.2.2 Relative Velocity-Altitude Display

The effect of winds on the the rmo -structural limit line display can

be eliminated if a relative velocity-altitude display is used. This display

could be derived from tracking data and atmospheric properties measured

prior to launch. The thermo- structural failure limits are shown in

Figure 3 -4 for cases including those with winds.

The three check cases are also shown in Figure 3-4. None of the

three cases violated the the rmo -structural line on this display, although

Case 126 approaches the limit at 140 seconds after lift-off. This case

would probably cross the limit if the analysis was continued beyond 140

seconds, This phenomenon can also be seen in the load-temperature

relationship (Figure 3 -3).

¢	 3. 2. 3 Other Displays

Attempts were made to correlate 5M skin temperatures with the

time of failure, but this system was not feasible since selection of a sin-

gle value of skin temperature would cause an approximate error of 10

seconds in the prediction of failure. Use of a single value of the AHI also

will cause a 10-second error in predicting the failure.

C

%	 1

3-3



,IL
O

A

L
H

7
E
x
ro

E
S ►. ►.

•o ^ oc u u
y m O

O
O

O
O

Ir N O M
K Y

y u u u
u

.^:
V
,^

Y
N

Y
K

Y
V7

4 O O o
0

la„ ^ Y
E

v

E
v
E

G. v F F H
V
O

V
o

o ° co 00 ,°O
►.

V 00
f+ ro OC

W
OC
u Y

'D V v
O O o

ry

W

V
41

V
40

vm

'r' M

K

O
 va

O OY

0
A

8 V VI v

Y

C

n

Y

n :z vi H M

W> Q o 0 o
^ a:

So

3

wo
y^
M x .,	 .n	 a	 D

» ^ M C C ad

E^ ao

0
0

t 'OG

r- e^	 a	 '^ 'O N —

^+ r	 ao	 o ^ d d•

O rt ^ M N O	 O M
r t- M r N ^- M r ,•,`t	 !' ^' •!' N	 t	 t	 f' `t

" * N -t r -t 0% w r^

Id .O 14 C O vi N ui M

a

a
w
0

cd

M

4)

..O

H

Y
M

.^ Y
w M
A ^

l" A l" .n o N a0
.-• F.	

s N r d

V Y

E 15;

r 0.
'O 	v 40 O O -t

.L:	 M M O

w^

ar Y Y Y	 ^ 6, 6. Y

N	 7	 7 7	 a 7 7
y	

O O	 O ^^, M w	 O ^n O u', O Ln O M1 u^ ^ M

0 m `^	 ^^ N ro ro ro ro a0 O N o O— O CO Un 'a A ro ro
r o, o	 .0 co 00 00 ,o •• O •- o

V) v k. l+. w lw .p un V Un f" p Ln p Un lw l4 ^+ L4

0 0 0 O	 0 0 0 0
z z z z	 z z z z

Y

E Y
	 -t Ln ^4 Ln a r w ao -t

"' OI	 ^	 .. ...	 ..	 ...

w w w	 w w a a w w a. aL	 w
H

o	 ^
u c c c c 3 3 3	 a 3 3 3 3 3 3 3 3

3 .^ z z z z {. = z z z = Z 2 2 H F F H z z z 0
A	 ^

U

ro w
p^ ^ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	 0O N O O O	 O O O O O O ^ O .D O ^ ^ ^ .p O
^+	 r t u1 N	 N N M `! D a D a O -f D	 -• N

M N
o v
y A N .r a0 O .^ N M d' !' V1 .O r a0 O O + N d' Ln .p w

S. z

H

3-4



1000

800

U-
p
W 600
cc

W
~ 400
Z
Y
V)

200

t

z;

,##III I

ORWARD

0Q
12
	 8	 4	 0	 4	 8	 12

DISTANCE FROM STATION X A 838.0 (IN)

Figure 3 - 1. Temperature Distribution - SM-SLA Interface - Typical

c

3-5



N	
p	 ­O	 N

(030) 31ONd HlVd 11401l3

3-6

0

H

I§
co q

N

M
v
L+

CO

i77
•

0— cc ct
S =

cy-
S =

.
_

o : 0 C7 C7 ^' C7	 1
0

W
W

W W .W

Nit:
'' ch

^. .. ,

7'11 î
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4. RECOMMENDATIONS

The the rino- structural limit determined by this :3tudy should not be

used for any abort initiation cue until the possibility of more restrictive

limits detailed below is investigated further. Use of the limits,

within the constraints of Section 1. 2. 1 for determining thce region where a

structural failure has a high probability of occurrence ins valid.

It is recommended that the study be continued, since the feasibility

of detecting structural failures at elevated temperatures has been demon-

strated by this study.

4.1 MORE RESTRICTIVE LIMITS

For the flight regime considered in this study, it is possible that

other limitations exist that are beyond the scope of this study. Such

limits could invalidate portions of the study especially in those cases

where no failures are indicated, such as gyro dilft rates less than

300 degrees per hour. Limitations which should be examined before the

thermo- structural limits are considered valid are as follows;

1) Thermo- structural limits for other failure modes
should be determined.

Z) End-boost transient loadings should be studied to
insure that those cases in which no inflight thermo-
structural failure is indicated will survi. ie the end
boost loads when the elevated temperatures are
considered.

3) The region just prior to the thermo- structural limits
should be investigated to determine the capability of
the vehicle to survive the loadings due to abort and
the engine shutdown. During the abort sequence
additional loads are imposed due to the dynamics of
the vehi -41 c. and the asymmetrical thrust which results
from	 in the shutdown rates of the various
engines.

4) The minimum altitude for the start sequence of the
J-Z engine Should be determined to insure those
failure cases where no structural limits are violated
will be able to go through a coast period and reach
the minimum altitude at the proper time.

4-1



An atte:r.►pt was made to determine the limiting conditions from
which the launch could be completed to place the spacecraft in a nominal
orbit. Figure 4-1 shows the first stage inertial velocity-flight path angle
relationship for (1) a dispersion of the nominal trajectory where use of
all the propellants (including reserves) was required to reach the orbit,
and (Z) a dispersion of the nominal trajectory where the vehicle tumbled
during staging due to the loss of control. Also shown in Figure 4-1 is the
thermo- structural failure line for zero winds. A comparison between the
two limiting conditions shows that the thermo- structural limit is in a
flight regime where the mission would probably be terminated due to, the
inability to reach a nominal orbit. The thermo-structural line does

indicate that the flight cannot be continued and that a Mode I abort would

be required prior to reaching this limit.

i

0

0
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