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I. Introduction

The Time/Data 100 is a small digital computer specialized in
time~series analysis.

Its algorithms include the Direct Fourier Transform, the Auto-
Spectral Iensity and the Autocorrelation.

This report will analyze the Power Spectral Averaging Algorithm
[1]. This algorithm applies the Direct Fourier Transform Algorithm to

an input record. Then it squares and adds the real and imagina:y

components of the Direct Fourier Transform and accumulates each successive

output record.

An input record is a 1001 wor: block, where each word has 8 bits.
An output record also consists of 100l words, but has 18 bits per word.

The computer has an oscilloscope and a plotter for analog output
and tapes for digital output but they can only display 8 bits of the
18 bit output word.

The way the Direct Fourier Transform Algorithm operates and the
limited display range of an output word dictated a reed for a scale
factor so that the output data could be analyzed properly.

A scale factor was derived by analyzing the process of computing
the power spectrum of an input data record. Each part of the scale
factor is examined and explained as to why it's needed. The last

section will show some examples to verify the above scale factor.



II, Input Data Factor

Fo is the allowable maximum positive value of the input data,
Fo = F/(data normalization factor)
where F = 127 = 27-1 is the maximum number that the Time/Data 100 can
receive in an 8 bit input word.

The data normalization factor is a number that is multiplied to
the data before it is used as input to the Time/Data 100. It is used
to scale the data so that all of it will be within the + 127 range.
Note that the Time/Data 100 treats the total range as + 1 therefore
the data is agtomatically divided by 127. The factor F arises from
this fact. For example, in our case the data values were so small
that we could multiply them by 10 to achieve greater accuracy.
Therefore Fo = F - (1/10) = 12,7

Fo is squared because the operation was completed before execution

of the Spectral Averaging Algorithm., Therefore F® must be multiplied

to the output dats.




ITI. Input Scale Factor

N1 is the input scale factor,

The Time/Data 100 outputs an 18 bit word for each point in the
Direct Fourier Transform Algorithm, Since the Spectral Averaging
Algorithm only uses 7 bits plus the sign bit of the 17 bits plus the
sign bit output word for its input, the operator must select a 7 bit
range with the amplitude scaling switch that will include the most
significant bits of the 18 bit output word, The selected number on
the amplitude scaling switch corresponds to Nl. This, in effect,

Nl; N1 being the lowest

divides the original word by a factor of 2
ordexr bit number of the 18 bit word that the 7 bits were selected
from., For example, if the most significant bits were from 2° through
211, then by setting the amplitude scaling switch to 5 that bit range
will be chosen for input to the Spectral Averaging Algorithm, So

the original word is dividcd by 25,

Since this is also done before the Spectral Averaging Algorithm,

2N1
the factor is squared. So, 2 must be multiplied.



Iv. Qutput Scale Factor

NZ is the output scale factor.

The Spectral Averaging Algorithm also outputs a 17 bits plus the
sign bit word, but the analog and digital output devices can only
display 7 bits plus the sign bit of a word. So, a dynamic range must
also be selected on the amplitude scaling switch to display the most
significant bit. As in the input scale factor, this has the effect
of dividing the output word by ZNZ. So, ZNZ must be multiplied to

counteract the previous division.

V. Data Shifts

The Time/Data 100 uses an implementaticn of the Rapid Fourier
Transform for the Direct Fourier Transform Algorithm. While trans~-
forming the data, some data folds are used. Of these data folds, two
are sums and they produce 9 bit output words, 8 bits plus a sign bit,
To conform #0 the multiplier requirements, which can only take 7 bits
plus a sign bit, the data must be shifted down one bit. This is done
twice, so the data is divided by 2. This is also done before the

Spectral Averaging Algorithm, so ?* must be multiplied to the output

data.

VI. Averaging Factor

N' is the number of output records that have been accumulated.
The Spectral Averaging Algorithm only adds the output records. So,

to obtain an averaged spectrum, the output data musgt be divided by

the number of accumulated records.
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VII. Algorithm Implementation Factor

The final form of the scale factor had to be derived by analyzing
’ the Time/Data 100's method of computing the average value of the

power spectrum and comparing it to the true value of the power spectrum,

Given a time A, suppose that there exists a continuous function

F(t + \), =-»<t<o, that satisfies the ergodic hypothesis and a square

. window B(t) such that
B(t) =1 for |t| s Tn/2
B(t) = 0 for |t| > Tn/2

B(t) = B (~-t)

\ for some interval of time Tn.

Let h(t 4+ A) = F(t + A) B(t), =-Tn S t £ Tn, Partition the interval

~Tn £ t < Tn into 4N + 1 parts, where N is any integer such that

N = 0 and let At be the length of one partition such that (4N -+ 1) At = 2Tn,
\ Finally, let the discrete function g(k), =2N < k < 2N be the set of

points of h(t) such that they are the midpoints of each partition. Figure ]

describes the partitioned interval. Note that the distance between

two points of g(k) is also A, which is the sampling rate.
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The Dircet Fourier Transform Algorithm assumes that a 1001 point

input vecord is appended by 500 zero pointe on each side., Hence N

is 500 in this algorithm,

S0, the lime/Data 100 Computes the Direct Fourier Transform with

this approximation:

. -12m (JA£) (mAt) »
A P (m) e (1)

rnd

m

(Throughout th%s report the variables j, 1, and m vary from -2N to 2N
i -+,
. D
and édmeans Zd unless otherwise specified.)
~2N
where At is the sampling rate and Af = 1/2 Tn = 1/(4M+1) At

o =121 im/ (4M+1)
ACY) =/, g(m) e
m

The Power Spectral Density Algorithm then computes:
P(I) = A - A% (D),

where * represents the complex conjugate,

e . -
P = ), s g ot THETE/GND
m r

This approximation, however, doesn't use the sampling rate, At,
or the length of the input interval, Tn, in the computation of the power
gspectrum,

Rewrite equation (1):

o

A(JAE) = (1/bt) ;. g(mdt) o~ 12m(JA£) (mii)
m

Express the summation as an integral and replace the discrete

function g{(wAt) by its continuous counterpart F(t+A) B(t)
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Let T

A (E,0) = (1/BY) [ B (eR) B(E) o 2MESE ¢

where the integrals have the limits ~ ® to @; this applies to what

follows.

The Power for frequency fj is:

P(£,,0) = (L/AE)® [IF (6R) B(E) B(otd) B(de T H E P agar

Engemble averaging is defined by:

T
PUCE) = Lim L[ B(EgM) O
T 2,

there P'(fj) is the average value of P(fj,x) over all pogsible
records,

T ianj(t-s)
P'(fj) = 1lim (1/2T)§ (1/At)? f F(t+\) B(t) F(s+d) B(s)e dsdtd)
T =

Rearrange Terms:

\ 19f, (t=5) T
P'(£;) = (1/At)9JJ B(t) B(s)e Lim (1/2T)JF(9+%) F(t+\) d\dsdt
T ~ ~T

]

t+ A
dr

d\. and 84\ = (s=t) +T



P! (f

$2mf, (t=8) T
) .(1/At)?JJ B(t) B(s) e 378 1im (1/2T)l¥[(s-t)+¢] Flrlardsdr (2)

T =

]

Not¢ that the last expression is the autocovarilance of F(r).
N
Let C(s~t) = lim (1/2T)|F [(s-t) + ] F(1) dr
~T

T - 0

The autocovariance function is also defined by: [2]

¢ @ =[5 e as (3)

~1.2nfo
d

G (f) = f C (@) e g

is the power spectral density function.

Substitute (3) into (2)

- 2" -
p'(£y) = (1/8)° [[B(E) B(s) L2TE (e8I L gy QMETECTE) gt

P(£) = (/A [ a()asfB(t)et 2T ET D ael paye HEESD) g

P' (£) = (L/AF) [ G(E) H(E-E) HE (£4-f) df

3

where H (f) = IB (t) eizﬂft dt

and * repregent the complex conjugate

U () = (LAY [ 6(8) | u(gg-g) [P as (4)

Except for the scale factor, 1/At?, this is the convolution of
the power spectral density with a spectral window.

Compute the spectral window,

H (£,-6) = [ B(t) eizn(fj'féi
™/2 iZﬂ(fj‘f)t
J‘-Tn/Z ¢ e

s

- keiﬂ(fj’f)Tn _e‘iﬁ(fj'f)m\) / izn(fj-f)



Qe
* Tn(cos M0 4+ 1 8in 16 ~ [cos 16 ~ i sin m0]) / 1216
where 6 = (fj*f) Tn

H(fj-f) = Tn sin (m6)/m® = Tn dif ©
Rewrite equation (4)

A PI(E) = [ G(E) T (dif 0)F daf

(A /1) B'(£9) = [ G(£) (dif @)% af (5

The derivation, in effect, stops here. So the spectrum must
be interpreted with a spectral window of (dif 8)?. The window is

pictured in Figure 2,

For the Time/Data 100, we have to replace P'(fj) with the machines

estimate along with the previously defined factors.
2N1 + N2 + 4,
L " L ]
P'(f5) (Fo" 2 IN') B (fj)

where Py (fj) is the machine's power spectral estimate,

Rewriting equation (5):
trdf 22RO +17] i (£ = [ () (aig 0)° as (6)

where A /To® = 4/(4N + 1)°
This can be simplified if the power has a smoothly varying spectrum
and G(f ) is relatively constant around fj. Then, we can approximate

equation (6) by:

(Foa e TR U R Do SV IO PN G(£y) ot

D

where 8£ = [ (aif 0)° df = 1/mn
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([ng o#NL + N2 + 55::] / N' (4N + 1)) Py (£)) m G (fj)

This estimate is, however, for a double sided spectrum, Therefore,
to obtain a single sided spectral estimate, it must be multiplied

by 2, namely

(0 2 M 6w e D) B (£) ~ 6 (£9).
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VIII. Examples and Conclusion

To test the scale factor, some examples are takern from the
rubidium magnetometer experiment on the 0GO-5 satellite that measures
the magnitude of the intensity of the magnetic field.

Two methods were used to analyze the test data. First, by using
the Time/Data 100 Method and second by using the Blackman~Tukey
Method of Power Spectral Analysis.

First, a number of records were accumulated on the Time/Data 100
and the factors were noted. The output was then plotted on the output
plotter.

The same data set was then processed by computer with the Blackman-
Tukey Method. To compare the ‘two methods, the scale factor was computed
and the output from the Blackman-Tukey Method was plotted according
to the scale set by the computed scale factor.

To test all portions of the scale factor, the data was sampled
at three different rates; this change in At brought about a
corresponding change in N1, N2, and N' of the scale factor.

First, the data was sampled at 1 point per 144 ms and graphs 1 and
2 show the results of the Time/Data 100 method and the Blackman-Tukey
method respectively,

Graphs 3 and 4 show the two sampled at 1 point per 1.008 seconds
and 5 and 6 show them sampled at 2.016 seconds.

' Upon comparison, these results clearly show that the scale factor

does produce the correct results.
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