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The analytic description of an orbital navigation program that will 
simulate the estimation of position an6 velocity of an Apollo spacecraft 
while in orbit about the moon or the earth is presented. The inertial 
positions of a series of landmarks are observed and used as the naviga- 
tional information, which is processed by linear filter theory techniques. 
The landmark positions are also estimated and their uncertainties in 
location are reduced. 

The program is applied in this report to the problem of estimating' 
the position and velocity of an Apollo spacecraft while in orbit about the 
moon. Using realistic initial values for the uncertainties in landmark 
positions, it is shown for a typical case that the RMS position and veloc- 
ity estimation errors at Lunar Excursion Module seperation are about three 
times as high as the unrealistic, overoptimistic case of assuming perfectly 
known landmarks. The landmark estimation uncertainties are decreased by 
about two-thirds of their initial uncertainties. 

INTRODUCTION 

The uncertainty in the locations of lunar landmarks will affect the 
accuracy of spacecraft navigation while in lunar orbit. The effect of 
these uncertainties can be reduced by including the landmark vector into 
the system state vector. The resulting nine-component state vector 
includes the three companents of spacecraft position, three of spacecraft 
velocity, and three coqonents of landmark position. Linear filter theory 
(see Appendix A) is then used to abtain the best estimate of spacecraft 
position and velocity along with the best estimate of +.he landmark position. 
As the estimate of the lanbark position improves, it approaches the actual 
positicn with corresponding improvement in spacecraft position and velocity 
estimates. The amount of improvement is limited by the accuracy of the 
optical instrument used in measuring the orientation of the landmark with 
respect to an inertial system with origir! at the spacecraft. + 

Such a scheme for navigation in the vicinity of the moon has two very 
useful functions: 

(1) The navigation function itself, which is of course, the 
immediate problem. 

(2) The mapping function, which enables lu~ar landmarks to be 
determined to a higher degree of accuracy. This means, of course, that on a 
subsequent mission, a set of landmarks that are known to greater precision 
will exist. 

The purpose of this note is to present an analytic description of a 
spacecraft orbital navigation program and a determination of the current 
estimate of Apollo lunar orbit navigational accuracy. 



There are several error sources that  are involved in  lunar orbi ta l  
nhvigation which should be considered. Numerical values assumed for these 
errors are  l i s ted  in  Table I along with the appropriate reference. These 
may be divided into three groups: 

( l j  The landmark location errors 

(2) Navigator bcqyisition errors 

(3) The na-vigation system errors. 

The landmark location errors may also be broken down i2to convenient 
classifications. The f i r s t  source of error is the uncertainty i n  the loca- 
t ion of the landmarks relat ive t o  the moon-fixed system. The second source 
is due t o  the uncertainty i n  the i n e r t i a l  location of the moon (earth-moon 
distance, the orientation of tke  moon on i t s  spin-axis, and the uncertainty 
i n  the spin ra te  of the maon. 

The navigation systen errors are due t o  the inaccuracy of the optical 
instrument even under ideal  conditions, and t o  the mis-orientation of ',he 
ine r t i a l  p'atform. For purposes of t h i s  study both of these errors have 
been lumped into the standard deviation of the instrument. 

The navigator acquisition errors should be considered alone, although 
for simulation pwposes these errors w i l l  be included only i n  the landmark 
location errors. This follows t o  a large extent from the fact that  these 
errors will l ikely affect  the resul ts  most severely by not acquiring the 
landmark properly. 'Riese error3 then show up a s  errors i n  landmark lofa- 
tion. 

There are, of course, other sources of navigator errors t o  which it 
is  d i f f i cu l t  t o  assign numbers. For e x q l e ,  eye fatique, lack of sleep, 
and generalmis-orientation of the  astronaut due t o  h is  new environment; 
a l l  would have effects on the actual navigation. Howevlr, these error 
sources are  not considered i n  the present irrvestigation. 

OPERATIONAL CONSTRAINTS # 

The operational constrains tha t  must be considered i n  the simulation 
are v i s ib i l i ty  and sighting frequency. The o a j  v i s ib i l i ty  constraint 
that  w i l l  be imposed i s  that  the landmark must be sunlit. The closer the 
moon is  t o  being full, the larger i s  the number of landmarks available 
for navigation. Obviously, t h i s  constraint ref lects  i t s e l f  back t o  laurlch 
date and f l igh t  time. 



The spacecraft is assumed t o  be in  an 80-n.mi. circular orbit .  A t  
t h i s  a l t i tude  the distance from a spacecraft t o  a landmark on the horizon 
is  about 23 degrees [see sketch l(a)]. In  practice, lunar landmarks w i l l  
probably be d i f f i cu l t  t o  ideatify and acquire u n t i l  the spacecraft is much 
closer t o  the landmark than 23 degrees. It w i l l  be assumed that  no obser- 
vation w i l l  be made unless the landmark is within a five-degree cone of 
the spacecraft, as shown i n  sketch l ( a ) .  For a five-degree cone it is 
assumed that  a maximum of about four sightings can be made i f  the sightifigs 
are approximately one minute apart. 

T1.e system configuration is the position and velocity vectors of t h e  
spacecraft (trajectory s ta te)  plus the position vector of a single land- 
mark while the spacecraft is  actually i n  a position t o  observe the land- 
mark (as defined i n  the preceding section). When the landnark is not 
vis ible  the system will refer t o  the trajectory s ta te  only. 

It i s  assumed tha t  a s t a t i s t i c a l  correlation exists  between the 
errors i n  the trajectory s t a t e  and errors i n  the  landmark position. 
However, when a landmark i s  no longer being observed, it is assumed that  
t h i s  correlation vanishes because of subsequent measurements on other 
landmarks. It i s  also assumed that  the estimated s t a t e  is  close enough 
t o  the actual s t a t e  so tha t  the  two s ta tes  may be considered t c  be l inearly 
related. The deviations of the measured quantities from the i r  actual values 
actual values are l inearly related t o  the deviation of the estimated system 
s ta t e  from i ts  actual value (~ppendix B). With these last two assurmptiL.;s 
the system may be estimated by means of the optimal linear f i l t e r  theory, 
(reference 2). It is further assumed that the correlation matrix of the 
errors i n  a lanmark1s position is  used t o  i n i t i a t e  the computation when 
the same landmark is  next observed. 

The equations of motion for the  actual s t a t e  are: 

;(t) = f (x , t ) ,  with the i n i t i a l  conditions x(to) + 4 ( t  ) - - - - - 0 

and for the  estimated s t a t e  

A A A 
x( t )  = f(x,  t ) ,  with the i n i t i a l  conditions x(to) = x(to) - - - - (2) 

where z ( t o )  is  specified and g ( t o )  is a vector of ranaom position and 

velocity deviations. I n  real i ty ,  i s  impossible t o  determine. For 
purposes of simulation E may be cwmuted from the eigen-values and 
eigenvectors of the  i n i c a l  covariance matrix ~ ( t ~ )  and a s e t  of normally 

distributed random numbers as shown i n  reference 3. 
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The vector - x is called t h e  s t a t e  vector and may be expressed as 

when a landmark is being observed; o r  as 

when no observations are being taken. 

The covariance matrix o f t h e  er rors  i n  the  estimate of the  s t a t e  may 
be prapagated by the matrix d i f f e r en t i a l  equation, 

~ ( t )  = ~ ( t )  ~ ( t )  + ~ ( t )  ~ ~ ( t ) ,  ~ ( t ~ )  specified 

where 

'The covariance matrix is defined by, 

From this defini t ion it is seen t h a t  E is  a symmetric matrix, which fo r  
t h i s  problem i s  9x9 when a landmark is vis ib le ,  6x6 when no landmark is 
vis ib le .  For convenience E may be broken down in to  augmented matrices, 



EV is the covariance matrix of the trajectory and is  considered at all times. 

EL is  the covariance matrix of the landmark being observed, and is the 

mstrix which represents the carrelation between the errors i n  the estimate 
of the trajectory and those of the landmsrk. 

The matrix F i s  composed of the partial derivatives of f with respect - 
t o  the s ta te  vector x.  - 

When no measurements arc being z~ade the state vector is updated by 
integration of equation (2) and the covariance matrix by equation (4), 
Between measurements on the same laadmark on the same orbit, equation (4 )  
is integrated i n  it;; entirety; between measurements of difcerent landmarks 
only $ is integrated. 

The optimal linear filter (Appendix A) is employed at a measurement time. 
The s tate  is updated by equaticn ( ~ 8 )  and the covariance matrix by equation 
( ~ 9 ) .  The initial conditions for  (2) and (4) are then reset by these updated 
values and the integration of (2) and (4) proceeds unt i l  the next measurement. 

Although the program t ~ ,  be described refers t o  using lunar landmarks 
as navigational informstion, the analysis is equally val id  for determining 
the orbit of a spacecraft about the earth, The coordinate system i n  which 
the state variables are described is as follows: the position and velocity 
of the spacecraft (r and v) are i n  a selenocentric Cartesian coordinate 
system. The landmrEk veczor % is i n  a selenographic (moon-fixed) polar 
coordinate system. When 3 is expressed in  its selenographic Cartesian compo- 
nents (5) it may be opera ed on by a transformation matrix A, that w i l l  - 
express it i n  the  selenocentric system, yielding cL = q. - 

By expressing sL i n  the selenocentric system, 

SO t h a t  f7, fg, and f of the matrix F in  equation (4) are zero. fl, f2, 9 
and f are Just the c&nents of v; and f4, f5, a d  f6 are just the 3 - 
gravitational accelerations due to  the primary attracting body (the moon 
in  t h i s  case) plus the perturbations due t o  other bodies and their  
nonhomogeneities. 



THE LIWfiIZATION Or' THE SYSTEM EQUATIONS 

Let the actual trajectory be considered a n d n a l  about which the 

equations of motion w i l l  be linearized. Taking first  order deviations 

of equation (2), 

where 

FYom Appendix B, it is  seen tha t  the measured angles G1 and 7J2 which 

are  the r ight  ascension and declination of the landmark (sketch l ( b ) )  with 

respect t o  an ine r t i a l  system with origin at the spacecraft, are  not 

l inear ly  related t o  the s t a t e  vector but t o  first order, t he i r  deviations 

From the i r  actual values are. That is, 

Considering only these f irst-order deviations, it can be stated t h a t  

they are  related a f t e r  a measurement at time tl as the t ru ly  line= variables 

i n  equation ~ 8 .  

That is, 



A A 
since b 9 is  the deviation of the computed value @ from the true 

F, 
value 8. The deviation of the measured angle 8 from the true value is  due - - 
to  the noise in the measurement only, 

So (12) becomes 

The matrix K i s  computed as in  Appendix A. 



THE MEASURGMENT ERRORS 

The measurement error vector a may be cmputed by considering the  

magnitude of a normally distributed error vector d perpendicular t o  4 - 
(appen&x B) and also t h a t  t h i s  error vector is uniformly distributed 

between 0 and 2 # about # . This deviation may be expressed. 

where 8 is  normally distributed with zero mean and / i s  uniformly distributed. 

The errors i n  the two angles are, 

The elements of R (A~pendix A )  may now be determined fro3 the 

measurement errors, Q, , and , 

The distribution functions of a a d P  are, 



Theref ore, 

- 0 -  d 

o s p d  an' 

also, 

which says that the errors are independent. 

ORBITAL NAVIGATION SUURTI;ATION PROGRAM (NAV) 

Observing the Tom of equation (15) it is seen thai tine integrated 

values of the estinatied s t a t e  vector may be used i n  the s t a t e  estimatien 

procedure rather thlm the d ~ d - a t i o n s  frcm a refensence or nclminal trajectory. 

Equations (2)  m d  { 4 j  are  integrated up t o  +.he measurement time. A t  the 

measurement time the &ate vector and the assqciated covariance matrix are 

uputed by equations (15) and ( ~ 3 )  . 
A A 

The calculated angles 8,, and 0 are computea with (El&)  and (Bl5) from 
4- 2 

the estimated traJectory and tk. current best estimate cf the landmark position. 

Equation (1) is intep-ated simultaneously with equation (2)  t o  provide the 

a c t w l  t r r  jectcrry, and ass-aed values of tiie actual Landmcu k r9eitions are 

input. These quanti-iies are  necessary i n  oraer t o  compute the actual angles 

el and e2 for w; i n  the estimation e ~ u a t i ~ n ~  cqa t ion  ( 5). 

In  the ~ r b i t a l  mvigation program the covariance matrix E i s  replaced 

by a matrfx W, wfieze 



This substitution is made to insme numerical stability. The covariance 

matrix may not remain positi-,-e definite after a Large number of camOIPPmta- 

tions. The matrix W is guaranteed to remain at least positive semi- 

definite. The entire estimation problem laay be formulated in terms of the  

W-matrix as given in Appendix C, and reference 2. 

The covariance matrix is then amputted in the program for information 

purposes From the W-matrix. The values of FUS position, velocity, and 

landmark position that may be given in this paper are cmquted frat the 

trace of the covariance matrix, 

RXS position = 
VEU + E22 + E 33 

RMs lan-k - 
position 

The gravity model used in the simulation consists of the moon as the 

primary, or reference bcdy; the perturbations due to moon's triaxiality; 

the earth; the second, third, and fourth hrsaronics in the earth's potential 

ALqction; and the sun, The trajectories ere computed by the Encke integra- 

t ion technique. 

SIMULATION RSiUU!S 

A computer simulation was made to estimate the position and velocity 

of the Apollo spacecraft, at approximately 80 n.mi. altitude circular orbit 

above the moon, from sightings on five lunar landmarks on the front side with 

3 sightings per landmark. Two runs were made for comparison. In the first 

rrn, figure 1, it das assumed that the landmarks were perfectly. In the 

sec,~nd run, figure 2, it -as assumed that the landmarks were known only to 

the accuracies given in 'Fable 1. Both runs -use a ,003 radian uncertainty 

for the cambination of sextant and navigation system errors. 



A t  four hcrtrs from b a r  Orbit Insz,rtion, which is approximately the 

t i m e  for  beginning of Iunar &cursion -Module descent, the R l C  position and 

velocity for  the case of perfect landmarks (f igure 1 )  w e r e  0.34 n o d .  and 

1.4 I-. A t  the same time, far the case where the Irrndmarks vere poorly 

mawn, (figure 2) the RMS position and velocity were 0.9 n .d .  and 4.0 f_Ds. 

Camparison of these resul ts  indicates the  amount of error introduced i f  the 

landmarks are assumed t o  be known perfectly. 

It is seen f r a m  figure 2, that the  position and velocity increase 

betveen measurements and decrease when a measurement is made, as vould be 

expected, The net effect of the  measurements is a reducticxi in RMS position 

and velocity, Wan figure 2c it is seen tha t  the RMS L a n k k  uncertainty 

also decreases, and the  reduction is fram just belar 8000 feet t o  less than 

3000 feet for  the last three landmarks sighted. 

The analytic description of an orb i ta l  navigatfon prqgram Pias been 

presented. This program w 5 l . l  estimate the position and velocity of a 

spacecraft while in orbi t  about some central  body usird as navigational 

information the observed inertial positions of landmarks located on the 

central body. A t  the same time t h e  prqgram estimates the position of the 

landmarks with respect t o  a coorciinate system fixed i n  the  body. 

This program has been applied t o  the problem of determining the orbi t  

of the Caaaaand and Szrvice Module between the times of Lunar Orbit Insertion 

and Lunar Excursion Module separation. It is shori that  if the landmarks 

are assumed t o  be perfectly knuwn, overoptimistic estimates of FMS position 

and velocity of the CSM at LEI.! separation w i l l  occur, Using r e a l i s t i c  

values of landmark uncer t~ in t ies ,  the RMS position and velocity at U24 

separation are  about three t ines  as high as for  the same case using 

~ e r f e c t l y  known landmarks. The lan-k RMS positions a re  decreased by 

about a factor of two-thirds from the i r  i n i t i a l  value. 
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APPENDIX A 

THE OVTIWL JiINBU F'ILTER 

Given the linear dynamic system 

&(,~(*d) is knoun and the 

the system ( A l )  is observed through 

is given 

made at discrete times. 01 is white gaussian noise, with zero mean, 

€(a)  -0 

and 

8 )  * zT(t) > O  

A 
'lac best estimate of the i n i t i a l  conditions for ( A l )  are 3 ($4) 

which are given. The best estimate at a la t er  t i m e  tl for x is, 



where, 

The error in the estimate is defined as, 

The covariance matrix E i s  defined as, 

which is the  solution t o  the Riccatti  equation, 

which is integrated with the initial con6itions, 

If a measurement is made at tl, the best estimate for xis assumed 

t o  be, 



N 

where 8 ( 4, ) is  the  measurement at t and - 1 - a(i8)mxB(4,ks what t h e  
measurement is expected t o  be. 

The covariance matrix is  updated at tl by 
w 

The optimum value of the  weighting matrix 4, ) is, 

where, 
H(~ , IE (~ , )x  r ( e , ~  + i P ( f , )  

~ ( t ~ )  is optimum i n  the  sense t ha t  it minimizes the  t race  of ~ ( t ~ ) ,  

i.e., it minimizes the  sum of the  mean squared errors  i n  the  e s t i r a t e  of x ,  

After the  measurement, equations ( ~ 3 )  and ( ~ 6 )  are re - in i t i a l i zed  and then 

integrated t o  t he  next measurement t i m e  t2. 



A?'VENDIX B 

FORM OF THE H MATRIX 

m-e H matrix for th i s  problem is a two-by-nine augmented matrix, 

since there are two measurements and the state vector is 3 nine vector. 

Specifically, 

h and b, are associated with the angles 8, and 4 The vectors -, 

respectively. 

From sketch l ( b )  it is seen that 

g = &+(#I i s < z  

Taking the first \-ariation, 

wit #'l &-A and, 
/ 

L &4 - A-XL 
I 

PO, Sp = )46z4 - && 

Substituting Bh into B3, 

6 4  + 



It is desirable to obtain 6 s,, in selenographic latitude, ,& , 
longitude, a, and altitude, 4 , rather than in cartesian form. 

d z  (* ,+A) -,a - A  
~ t r  ( * !L+A)  a h  A 
Z;, - ( Rm 9 A, Jhp 

Taking the variation, I \ 

or in vector-matrix notation, 

Substitute I36 into B5, 

t 
Define, . h i *  -($$ 

B7 becomes 



since 

which is the same form as @) except for t h e  noise. To first order, the  

expected deviation from the true value of the measurement vector i s  l inearly 

related t o  the deviation i n  the s t a t e  vector. 

where 

H =  e . 

The only vectors i n  H tha t  are  rea l ly  necessary are b, and 
0 

since f, and ca are  zero and -, d and , d 8 are  related by an orthogonal 

transformation t o  b, - and 4, . From PB i f  is seen that  we need only the 

pa r t i a l  derivetives of 9 and with respect t o  the components. These 

are  readily obtainable from the  geometry, since from sketch 1, 



B- 4 

Therefore, 1t may be stated that, 

The orthogonality of the measurements 8, and is immediately 

verified from m6 m,d ~ 1 7  by noting that, 



APPENDIX C 

CONVmSION OF COVARIANCE MATRIX TO W-MA'TRIX FORMULATION 

Recawe of numertcal inaccuracies, that is, round-off and truncation 

errors, the covariance matrix E may not remain pooitive definite after many 

computational cycles. It is convenient to replace E by a matrix W such 

that, 

The W matrix is guaranteed always to be at least positive semi-definite. 

The entire estimation 2roblem may conveniently be formulated in terms of 

the W matrix. 

The Riccatti equation (4) used to propagate the covariance matrix 
between measurements becomes, 

The covariance matrix is upkted when a measurement is taken by 

where 

The optimum weighting matrix K takes the form, 



TABLE I 

ERRON SOURCES FOR W H ~ D  LUNP-R 
ORB1 TE.L MAVIGATI ON 

(-211 errors m e  l8' values) 

1. h ~ d m a r k  Location Frrors: 

(a) Uncertainty i: moon-fixed ( selenographic ; system.+ 

ARC Mst .  
*om (00, oO) 

Horizontal 
Error 

253 meters 

670 meters 

1190 meters 

(b)  Laniinwk i n e r t i a l  orientation errors:** 

(1) Moon ax ia l  orientation 

(2 )  Moon rotat ion r a t e  

( 3 )  Earth Moon vector 

2. Acquisition Error by the Navigator:*** 

1000 meters each i n  landmark 

lat i tude,  longitude, a i t i tude  

3. Navigation System Errors: 

( )  Inaccuracy of sighting instrment:** 

(b)  Misalinement of IMU 

( c )  Lack of target  resolution 

Total error = 3 m rsd (1r) 

Vertical 
Error 

980 meters 

1000 meters 

820 meters 

500 meters each 
i n  landmark l a t f  tude, 
longitude, and 
a l t i tude.  

*Beference 1 

-Reference 4 
-Assumed r e a l i s t i c  values. 
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SKETCH La.- Observational limits. 
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sKEmz 2a. - The measurement geometry. 












