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SUMMARY

The analytic description of an orbital navigation program that will
simulate the estimaticn of position ana velocity of an Apollo spacecraft
while in orbit about the moon or the earth is presented. The inertial
positions of a series of landmarks are observed and used as the naviga-
tional information, which is processed by linear filter theory techniques.
The landmark positions are also estimated and their uncertainties in
location are reduced.

The program is applied in this report to the problem of estimating’
the position and velocity of an Apollo spacecraft while in orbit about the
moon. Using realistic initial values for the uncertainties in landmark
positions, it is shown for a typical case that the RMS position and veloc-
ity estimation errors at Lunar Excursion Module sepzration are about three
times as high as the unrealistic, overoptimistic case of assuming perfectly
known landmarks. The landmark estimation uncertainties are decreased by
about two-thirds of their initial uncertainties.

INTRODUCTION

The uncertainty in the locations of lunar landmarks will affect the
accuracy of spacecraft navigation while in lunar orbit. The effect of
these uncertainties can be reduced by including the landmark vector into
the system state vector. The resulting nine-component state vector
includes the three components of spacecraft position, three of spacecraft
velccity, and three components of landmark position. Linear filter theory
(see Appendix A) is then used to obtain the best estimate of spacecraft
position and velocity along with the best estimate of the landmark vosition.
As the estimate of the landmark position improves, it approaches the actual
position with corresponding improvement in spacecraft position and velocity
estimates. The amount of improvement is limited by the accuracy of the
optical instrument used in measuring the orientation of the landmark with
respect to an inertial system with origin at the spacecraft. -

Such a scheme for navigation in the vicinity of the moon has two very
useful functions:

(1) The navigation function itself, which is of course, the
immediate problem.

(2) The mapping function, which enables lunar landmarks to be
determined to a higher degree of accuracy. This means, of course, that on a
subsequent mission, a set of landmarks that are xnown to greater precision
will exist.

The purpose of this note is to present an analytic description of a
spacecraft orbital navigation program and a determination of the current
estimate of Apollo lunar orbit navigational accuracy.
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There are several error sources that are involved in lunar orbital
navigation which should be considered. Numerical values assumed for these
errors are listed in Table I along with the appropriate reference. These
may be divided into three groups:

(1) The landmark location errors
(2) Navigator acquisition errors
(3) The navigation system errors.

The landmark location errors may also be broken down into convenient
classifications. The first source of error is the uncertainty in the loca-
tion of the landmarks relative to the moon-fixed system. The seccnd source
is due to the uncertainty in the inertial location of the moon (earth-moon
distance, the orientation of tkre moon on its spin-axis, and the uncertainty
in the spin rate of the moon.

The navigation system errors are due to the inaccuracy of the optical
instrument even under ideal conditions, and to the mis-orientation of <he
inertial platform. For purposes of this study both of these errors have
been lumped into the standard deviation of the instrument.

The navigator acquisition errors should be considered alone, although
for simulation purposes these errors will be included only in the landmark
location errors. This follows to a large extent from the fact that these
errors will likely affect the results most severely by not acquiring the
landmark properly. These errors then show up as errors in landmark loca-
tion.

There are, of course, other sources of navigator errors to which it
is difficult to assign numbers. For exsmple, eye fatique, lack of sleep,
and general mis-orientation of the astronaut due to his new environment;
all would have effects on the actual navigation. Howevar, these error
sources are not considered in the present investigation.

OPERATIONAL CONSTRAINTS F

The operational ccnstrains that must be considered in the simulation
are visibility and sighting frequency. The only visibility constraint
that will be imposed is that the landmark must be sunlit. The closer the
moon is to being full, the larger is the number of landmarks available
for navigation. Obviously, this constraint reflects itself back to launch
date and flight time.
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The opacecraft is assumed to be in an 80-n.mi. circular orbit. At
this altitude the distance from a spacecraft to a landmark on the horizon
is about 23 degrees [see sketch 1(a)]. In practice, lunar landmarks will
probably be difficult to ideatify and acquire until the spacecraft is much
closer to the landmark than 23 degrees. It will be assumed that no obser-
vation will be made unless the landmark is within a five-degree cone of
the spacecraft, as shown in sketch 1(a). For a five-degree cone it is
assumed that a maximum of about four sightings can be made if the sightings
are approximately one minute apart.

THE SYSTEM EQUATIONS

TLe system configuration is the position and velocity vectors of the
spacecraft (trajectory state) plus the position vector of a single land-
mark while the spacecraft is actually in a position to observe the land-
mark (as defined in the preceding section). When the landmark is not
visible the system will refer to the trajectory state only.

It is assumed that a statistical correlation exists between the
errors in the trajectory state and errors in the landmark position.
However, when a landmark is no longer being observed, it is assumed that
this correlation vanishes because of subsequent measurements on other
landmarks. It is also assumed that the estimated state is close enough
to the actual state so that the two states may be considered tc be 1linearly
related. The deviations of the measured quantities from their actual values
actual values are linearly related to the deviation of the estimated system
state from its actual value (Appendix B). With these last two assumpti.:s
the system may be estimated Ly means of the optimal linear filter theory,
(reference 2). It is further assumed that the correlation matrix of the
errors in a lammark's position is used to initiate the computation when
the same landmark is next observed.

The equations of motion for the actual state are:

x(t) = £(x,t), with the initial conditions x(t)) + €(t) (1)

and for the estimated state

A A
2(1:) = f(x, t), with the initial conditions 3:_(1-,0) = g(to) (2)

where -}E(to) is specified and &(t ) is a vector of random position and

velocity deviations. In reality, EE is impossible to determine. For
purposes of simulation € may be computed from the eigen-values and
eigenvectors of the initial covariance matrix E(t ) and a set of normally

distributed random numbers as shown in reference 3.



The vector x is called the state vector and may be expressed as

X =(5 v x) (32)

when a landmark is being observed; or as

x = (z, v) (3v)

when no observations are being taken.

The covariance matrix of the errors in the estimate of the state may
be propagated by the matrix diff-rential equation,

E(t) = F(t) AE(t) + E(t) FT(t), E(tc) specified ()

The covariance matrix is defined by,

E= £lee) (5)

A
where e=x

- X (6)

From this definition it is seen that E is a symmetric matrix, which for
this problem is 9x9 when a landmark is visible, 6x6 when no landmark is
visible. For convenience E may be broken down into augmented matiices,

-EV EVL.“
E=| (7)
L ELJ

2 4
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EV is the covariance matrix of the trajectory and is considered at all times.
EL is the covariance matrix of the landmark being observed, and EVL is the

matrix which represents the correlation between the errors in the estimate
of the trajectory and those of the landmark.

The matrix F is composed of the partial derivatives of f with respect
to the state vector x. -

When no measurements are being made the state vector is updated by
integration of equation (2) and the covariance matrix by equation (4).
Between measurements on the same landmark on the same orbit, equation (4)
is integrated in it., entirety; between measurements of diferent landmarks
only Ev is integrated.

The optimal linear filter (Appendix A) is employed at a measurement time.
The state is updated by equaticn (A8) and the covariance matrix by equation
(A9). The initial conditions for (2) and (4) are then reset by these updated
values and the integration of (2) and (4) proceeds until the next measurement.

Although the program t» be described refers to using lunar landmarks
as navigational information, the analysis is equally valid for determining
the orbit of a spacecraft about the earth. The coordinate system in which
the state variables are described is as follows: the position and velocity
of the spacecraft (r and v) are in a selenocentric Cartesian coordinate
system. The landmark vector x. is in a selenographic (moon-fixed) polar
coordinate system. When is expressed in its selenographic Cartesian compo-
nents (x') it may be operg%éd on by a transformation matrix A, that will
express it in the selenocentric system, yielding r; = Ax].

By expressing.z in the selenocentric system,

L
x =0 (8)
so that f7, £fg, and f9 of the matrix F in equation (4) are zero. £, o,
and f3 are just the components of v; and fh’ f5’ and f6 are just the

gravitational accelerations due to the primary attrac*ting body (the moon
in this case) plus the perturbations due to other bodies and their
nonhomogeneities.
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THE LINRARIZATION OF THE SYSTEM EQUATIONS

Let the actual trajectory be considered a nominal about which the
equations of motion will be linearized. Taking first order deviations
of equation (2),

SR = F (8§ X#) (0)

<>

where

A
S 2 (¢)= X &)= Xt
(10)

From Appendix B, it is seen that the measured angles "e'l and B, which

are the right ascension and declination of the landmark (sketch 1(b)) with
respect to an inertial system with origin at the spacecraft, are not
linearly related to the state vector but to first order, their deviations
from their actual values are. That is,

A

6 = H §X (11)

Considering only these first-order deviations, it can be stated that
they are related after a measurement at time tl as the truly linea. variables

in equation AS8.

That 1is,

S 2'(\‘.,).—. S_g({,)+K(t,)[s§(£,)-s_é (¢)] (12)



But,

A A
s€= -2 (13)

A A
since § @  is the deviation of the computed value & from the true

o
value 8. The deviation of the measured angle © from the true value is due
to the noise in the measurement only,

§€= 8-8 =2 (b

So (12) vbecomes
A/ A A
Xtt)-x@=5 4)-x 4+ K[x- 8 +6]

or

A

2= Ry k([ 0-8 +u] (15

The matrix K is computed as in Appendix A.
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THE MEASUREMENT ERRORS

The measurement error vector ¢ may be computed by considering the
magnitude of a normally distributed error vector _d_ perpendicular to ,ﬂ
(appendix B) and also that this error vector is uniformly distributed
between O and 2 Jf about A . This deviation may be expressed.

d=pr
7«,.—.0‘«:/
/lasdé'l})/

where ¥ is normally distributed with zero mean and / is uniformiy distributed.
The errors in the two angles are,

“=F ¥ w L= v w8 (16)

o Y sin 5 (17)

‘3

The elements of R (Avpendix A) may now be determined from the
measurement errors, &, , and o, ,

s 8 ————
o, o %,

The distribution functions of ¥ and A& are,

- rt t 8
/2% ~ce< ¥ <L oo (18)

/
Sfw= Fre ©



jrh;f)“ EE%P , 'RV 4 27 (19)
Therefore,
&= I¢° and &2 = G
z as*6, Z
also,

which says that the errors are independent.
ORBITAL NAVIGATION SIMULATION PROGRAM (NAV)

Observing the form of equation (15) it is seen thai the integrated
values of the estimated state vector mey be used in the state estimaticn
procedure rather than the deviations from a reference or nouminel trajectory.
Equations (2) and (%) are integrated up to the measurement time. At the
measurement time the s*tate vector and the assnociated covariance matrix are

upacted by equations (15) and (A3).

The calculated angles '9\1’ and '9\2 are computad with (Bl4) and (Bl5) from
the estimated trajectory and the current best estimate ¢f the landmark position.
Equation (1) is integrated simultaneously with equation (2) to provide the
actual trejectory, and assumed values of tiie actual landmark yositions are
input. These quantities are necessary in order to compute the actual angles

6, and @, for usz in the estimation equation. cyuation (19).

In the crbital navigation vrogram the covariance matrix E is replaced
by a matrix W, where

£« WW' (20)
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This substitution is made to insure numerical 3tability. The covariance
matrix may not remain positive definite after a large number of computa-
tions. The matrix W is guaranteed to remain at least positive semi-
definite. The entire estimation problem may be forrulated in terms of thc

W-matrix as given in Appendix C, and reference 2.

The covariance matrix is then computed in the program for information
purposes from the W-matrix. The values of RMS position, velocity, and
landmark position that may be given in this paper are computed fraom the

trace of the covariance matrix,

T —
RMS position = VEn + E22 + E33
R 1

RMS landmark

' 1
position ~ v E77 * E88 + E99

The gravity model used in the simulation consists of the moon as the
primary, or reference bcdy; the perturbations due to moon's triaxiality;
the earth; the second, third, and fourth hirmonics in the earth's potential
function; and the sun. The trajectories are computed by the Encke integra-

tion technique.
SIMULATION RESULTS

A computer simulation was made to estimate the position and velocity
of the Apollo spacecraft, at approximately 80 n.mi. altitude circular orbit
above the moon, from sightings on five lunar landmarks on the front side with
3 sightings per landmark. Two runs were made for comparison. In the first
rvn, figure 1, it was assumed that the landmarks were perfectly. In the
second run, figure 2, it was assumed that the landmarks were known only to
the accuracies given in Table 1. Both runs use a .003 radian uncertainty

for the combination of sextant and navigation system errors.
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At four hcurs from Lunar Orbit Inscrtion, which is approximately the
time for beginning of Lunar Excursion Module descent, the RMC position and
velocity for the case of perfect landmarks (figure 1) were 0.34 n.mi. and
1.k fps. At the same time, for the case where the landmarks were poorly
known, (figure 2) the RMS position and velocity were 0.9 n.mi. and 4.0 fous.
Comparison of these results indicates the amount of error introduced if the
landmarks are assumed to be known perfectly.

It is secen from figure 2, that the RMS position and velocity increase
between measurements and decrease when a measurement is made, as would be
expected. The net effect of the measurements is a reduction in RMS position
and velocity. From figure 2c it is seen that the RMS landmark uncertainty
also decreases, and the reduction is from just below 8000 feet to less than
3000 feet for the last three landmarks sighted.

CONCLUDING REMARKS

The analytic description of an orbital navigation program has been
presented. This program will estimate the position and velocity of a
spacecraft while in orbit about some central body usirg as navigational
information the observed inertial positions of landmarks located on the
central body. At the same time the program estimates the position of the
la.ndmarks with respect to a coordinate system fixed in the body.

This program has been applied to the problem of determining the orbit
of the Command and Service Module between the times of Lunar Orbit Insertion
and Lunar Excursion Module separation. It is shown that if the landmarks
are assumed to be perfectly known, overoptimistic estimates of RMS positicn
and velocity of the CSM at LE separation will occur. Using realistic
values of landmark uncertainties, the RMS position and velocity at LEM
separation are about three times as high as for the same case using
perfectly known landmarks. The landmark RMS positions are decreased by
about a factor of two-thirds from their initial value.
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APPENDIX A

THE OPTIMAL LINEAR FILTER

Given the linear dynamic system

X=F)X , t 20 (A1)

Where 6(!‘*0) .x.f(t‘))‘:,ﬂ(d} is known and the

& i(&) -/lllo))( 2(0) "/ll(O))T) = £ (t,) is given

the system (Al) is observed through

O =H{)x + o (a2)
made at discrete times. O is white gaussian noise, with zero mean,
E(x) =0

aso E(R(E)A(T)) = §(t-7)Rl2)

and

o) = BT >0

A
The best estimate of the initial conditions for (Al) are X (€,)

which are given. The best estimate at a later time t, for x is,

1

Xty = $(4,,4.) % (4 (43)



A-2
where,

f(t,t.wf'(t)gu,t.), det.. = 1

The error in the estimate is defined as,
A
ety = X()- x(¢) m

The covariance matrix E is defined as,

E(t) = 6(_e_(t)§rct)) Elt) >0 (45)
which is the solution to the Riccatti equation,
E(t) = FILE(E) » E(£> F(t) (46)
which is integrated with the initial conditions,
E(t,) =& to)e7(t,)] (A7)

If a measurement is made at t
to be,

12 the best estimate for x is assumed

.’.".\’U,)* l?té,)+ K(f,)[_a':'(é,).-é\({,; (A8)
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~ A
where & (¢,) is the measurement at t:1 and é(f,) =/ (‘{,)ls what the
measurement is expected to be.

The covariance matrix is updated at tl by
»”

EL)=£EL)- K )H)E(R,) (A9)

The optimum value of the weighting matrix X ( f, ) is,

Ktd,)= £EC)#T(IM(L,) (a10)

where,

M) =HIEQINT(E,) +R({) (A11)

K(tl) is optimum in the sense that it minimizes the trace of E(tl),
i.e., it minimizes the sum of the mean squared errors in the estimate of x.

After the measurement, equations (A3) and (A6) are re-initialized and then

integrated to the next measurement time t2.



since there are two measurements and the state vector is a1 nine vector.

APPENDIX B
FORM OF THE H MATRIX

The H matrix for this problem is a two-by-nine augmented matrix,

Specifically,

A7
éﬁz’:]}

(B1)

The vectors _é, and -/'t are associated with the angles 9, and 93,

respectively.

From sketch 1(b) it is seen that

:gll(/) l.s/.z

Taking the first variation,

59,:(39‘- Y ,

But /: _4"4 and, Ay = ”'.xlf
’
S/:ﬁs-}‘ -S_/!;
Substituting Bt into B3,

XA .g—< )8_4.+()9¢)HSZ¢

(.a/,Z

(82)

(B3)

(Bk)

(BS)
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It is desirable to obtain § X L in selenographic latitude, ,a ,
longitude, A, and altitude, ¥ , rather than in cartesian form.
Yig= (BmrA) e _u eas A
Xi2 « (BmrrA) Cos e 2 A
Xls = (RmrA) sirnu

Taking the variation,

-

§ 'Kt’] - 12, aos A -JL[; ﬁ"} /val LY
SXig|a | ~Ussr 2 Xy Yg el | S
§xs | Bubressa o 2y tnrl| \ 5 A

or in vector-matrix notation,

5."!—2 = B8X, (B6)

Substitute B6 into BS,
§6, = - (aa‘)f/» + (39, RES X, (B7)

Define, 5[ . - ( 26 ,.) (88)
) 2

4’ ( g;gz) pe < -4 P8 (59)

C(’rﬂ-‘a (B10)
B7 becomes
7 r
§6: = 4; 6"'* ¢ &S v §Y,
T
-[4 o 4]5x - 4 VX
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since

§6:[56/ 50 = ;,. Sx
S'Qz -3 (R11)

which is the same form as (A2) except for the noise. To first order, the
expected deviation from the true value of the measurement vector is linearly

related to the deviation in the state vector.

sé_-l/é‘_i (12)

wherc

|
8
D |
1o
x
ﬂ
I

47
H= |4 & i B _é: 2 |

l
~

(B13)

The only vectors in H that are really necessary sre é, and é,

since _C, and Q g3 are zero and _4, and .d 3 are related by an orthogonal
transformation to é, and Az . From P8 it is seen that we need only the
partial derivetives of 9’ and 9‘ with respect to the components. These
are readily obtainable from the geometry, since from sketch 1,

(B1k)

- |
we/: ?cﬂafﬂl

N\

Yy
?

e < B15)
s 8, : 2 /2.77,“ (B15)

)
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Therefore, 1L may be stated that,

s = ( _’:i , =, 0 (126)
4 7 4

87 = (Ll | At _Z__)

- L (mL7)

The orthogonality of the measurements &, and €, is immediately
verified from Bl6 and Bl7 by noting that,

6, 4, =0 (B18)



APPENDIX C

CONVERSION OF COVARIANCE MATRIX TO W-MATRIX FORMULATION

Recause of numerical inaccuracies, that is, round-off and truncation
errors, the covariance matrix E may not remain positive definite after many
computational cycles. It is convenient to replace E by a matrix W such
that,

E = WW (c1)
The W matrix is guaranteed always to be at least positive semi-definite.
The entire estimation problem may conveniently be formulated in terms of
the W matrix.
The Ricecatti equation (4) used to propsgate the covariance matrix

tetween measurements becomes,

{1= W (c2)

W' o= W' (c3)
where
sTs = 1 - zM'z" (cb)
7 = WH (c5)
M=27+R (c6)

K = WZM (c7)



TABLE I

ERROR SOURCES MOR UNBOARD LUNAR
ORBITAL NAVIGATION

(A1l errors are 1§ values)

1. Landmark Location Frrors:

(a) Uncertainty i:. moon-fixed (selenographic) system.*

ARC Dist. Horizontal Vertical
From (0°, 0°) Error ror
0° 259 meters 98C meters
30° 670 meters 1000 meters
62° 1190 metexrs 820 meters

(b) Landmark inertial orientation errors:¥¥

(1) Moon axial orientation 500 meters eacn

in landmark latitude,
longitude, and

(3) Earth Moon vector altitude.

(2) Moon rotation rate

2. Acquisition Error by the Navigator:¥**
1000 meters each in landmark
latitude, longitude, altitude

3. Navigation System Errors:
() Inaccuracy of sighting instrument:*¥*
(b) Misalinement of IMU
(¢) ZLack of target resolution
Total error = 3 m rad (1¢=)

¥Reference 1
*%XReference k4
*¥*¥Aggumed realistic values.
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SKETCH 2a.- The measurement geometry.
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