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CHAPTER 1
 

INTRODUCTION
 

by 

George W. Cherry
 

This report describes a great deal of the work done at the Draper Laboratory 

in the last three months devising and testing tools and techniques for trajectory 

planning and managem ent and navigation, guidance, and control of the Space Shuttle 

vehicle during the approach and landing phase of its mission. This reporting period 

of the work has emphasized the synthesis and creation of trajectory , planning 

concepts, guidance laws, filter equations, control,parameter optimization algorithms 

and program s, etcetera. Therefore, while the motivation for the work was application 

to the Space Shuttle vehicle, there has been virtually no simulation of the invented 

techniques on Space Shuttle trajectories and dynamics. (In fact, in order to test 

some of the techniques devised for the shuttle, known available jet transport dynamics 

were used; for example, Chapter 5 tested its tcolsion the Convair 880.) It is planned 

that the next period of activity on this project will correct this deficiency. 

In order to obtain an over-view of the major thrust of this report, the-reader 

should consider the factors which could limit the ability of the Space Shuttle to 

follow a given path. 

1. 	 Navigation sensor noise, bias, and drift. 

2. 	 Environmental disturbances. 

a. 	 steady winds 

b. 	 wind shear 

c. 	 wind gust 

3. 	 Space Shuttle dynamics, 

4. 	 Operational limitations such, as air speed, power, fuel, maximum bank 

angle, maximum roll rate, etc. 

5. 	 Limitations on control forces, moments, activities and energy. 

The block diagram in.Fig. 1-1 summarizes the problem areas and references 

the chapters and appendixes where discussions and, hopefully, solutions of the 

problems can be found. 

Chapter 2 deals directly with problem area 1. above and lays the foundation 

for dealing with 2.a. and 2.b. by providing estimates of the steadywind and, hopefully, 
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the wind-shear. - If the wind velocity and wind shear can be estimated, then the 

guidance equations can provide feedforward commands to cancel their effects. For 

example, the crab angle required to follow a: ground track can easily be computed 
by the guidance equations if the state estimator provides a wind estimate. The 

alternative is the less desirable technique of preventing increasing course deviation 

by integral compensation of position error. 

Although no simulation results are available yet, preliminary computations 

predict that even at a range of 6 miles and using the coarse ILS, the optimal 

combination of IMU and scanning beam ILS data will result in position and velocity 

RMS errors of about 15 feet and 0.5 feet/second. Over the runway thr eshold the 

errors will be much smaller and certainly small enough for zero-zero landings 

without a radar altimeter. 

Chapter 3 deals with aspects of problem area 4. above. It addresses itself to 

maximizing range subject to the constraint of a limited fuel quantity and includes 
the glider case by allowing the specification of zero fuel quantity available. While 

re-entry planning for the Space Shuttle vehicle should obviate the need for requiring 
SSV maximum range capability, contingencies 'such as accidents at the intended airport 

or an Apollo 13 type mishap, may make this capability a desirable contingency tool. 

Chapter 4 deals with problem areas 2.a., 3., and 4. above. There are two 

key concepts in this chapter. 

1. 	 The first key concept is the design of reference paths and trajectories 

whose derivatives (velocity), second derivatives (acceleration), and third 

derivatives (jerk), take into account theSpace Shuttle vehicle's dynamics, 

maneuver limitations, maneuver rate limitations, air speed restrictions, 
and so on. Such trajectories offer the significant advantage that the 

SSV, with a suitable control system, can fly such paths extremely 

accurately. 

2. 	 The second key concept is the provision of feedforward signals designed 

to make a simple model of the SSV fly the reference trajectory. (The 

simple problem includes the computation of feedforward signals which 

compensate for the steady wind.) The combination of an essentially 
flyable reference path with feedforward compensation results in close 

adherence of the space shuttle to the reference trajectory. The problem 

of dealing with wind gusts and errors in estimates of the wind velocity 
as well as effects due to the departure of the SSV's transfer function 

from the model's, is delegated to the feedback control system, whose 
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bandwidth and response can be optimized for its share of the control 

problem. In order to understand the relationship of the SSV to the simple 

model, the reader might consider the following analogy: The model is 
the lead aircraft (with perhaps different dynamics and a. somewhat 

different environment from the SSV) in a formation, and the SSV flies 

wing on the model. 

Chapter 5 deals with problem areas 2., 3., and 5. above and closes the loop 

in Fig. 1-1. This chapter describes the theory and a computer program (and some 

results) which can be used to optimize the parameters in the feedback path control 

system. The objective is to provide close. adherence to the reference path in a 
turbulent aerodynamic environment without excessive control surface (or wheel) 

motion. The results are for the Convair 880 but can be extended to the SSV. 

The appendixes contain material on several subsidiary topics, including 

(Appendix D) an error model and coordinate transformation equations for the scanning 

beam instrument landing system. 

Chapter 1 References 

1. 	 MacKinnon, D., Improving Automatic Landing System Performances Using 

Modern Control Theory and Inertial Measurement4, MIT Instrumentation 
Laboratory Report R-628, January 1969. / 

2. 	 MacKinnon, D., Some Applications of Mathematical/Optimization to Automatic 
Landing Systems, MIT Instrumentation Laboratory Report R-651, November 

1969. 

3. 	 Cherry, G.W., MacKinnon, D., DeWolf, B.; A New Approach and Landing 
System: Help For Our Troubled Terminal Areas, MIT Charles Stark Draper 

Laboratory Report R-654, March 1970. 
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CATRMN 7O 348-30
 
SPACE SHUTTLE STATE ESTIMATION
 

DURING APPROACH AND LANDING
 

by
 
Donald W. Keene
 

2.0 Introduction 

The fundamental problem of navigation is to provide accurate indications of 
position and velocity of avehicle so that it can be guided accurately to its destination. 
For the Space Shuttle vehicles the position and velocity estimates must be extremely 
accurate to permit automatic landings under adverse weather conditions. To meet 
this objective, one proposed navigation system for the Space Shuttle vehicles includes 
both an inertial subsystem and a scanning beam microwave ILS receiver which 
interface with the guidance and navigation computer. The inertial system provides 
a self-contained navigation capability that affords extremely accurate short-term 
position andvelocity information but which is subject to long-term drift. The scanning 
beam microwave ILS' on the other hand, provides accurate drift-free measurements 
of position but is incapable of supplying the same high quality velocity data as the 
inertial system. To take advantage of the unique qualities of each system, the data 
from both systems can be combined in optimum fashion to yield results superior to 
either system alone. 

The filtering approach which is used to optimally combine these data is 
presented in Section 2.3. The procedure to be followed here in the estimation of 
The position and velocity is to estimate the errors in these quantities rather than 
the quantities themselves. This indirect method is used since the position and'velocity 
errors change slowly with time and a linear model for the inertial navigator can be 
utilized. The basic philosophy employed in the design of the navigation filters is to 
estimate only those quantities which are slowly varying with time such as position 
and velocity errors, instrument biases, and wind velocities. 

There will be, of course, a need to estimate other dynamic variables such as 
vehicle angular rates and accelerations which are needed for control purposes, but 

As described in Appendix D. 
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undoubtedly these variables will be required at higher rates than are normally 

necessary for navigational purposes. Therefore, the estimation of these quantities 

would be incorporated more e fatively in the design of the control system. 

¢- Accurate estimates -of the wind velocity will be required for two reasons: 

first so that the guidance can plan optimal maneuver strategies and secondly to 

reduce the undesired effects of the wind on the ground track. In order to estimate 

the wind velocities it is necessary that the vehicle be equipped with a true airspeed 

indicator which interfaces with the guidance computer. Procedures for the optimal 

estimation of wind velocity are outlined in Section 2.4. 

2.1 The Equations of Motion 

In this section the equations of motion of the aircraft will be derived relative 

to the runway coordinate system. In Section 2.2 the equations defining the inertial 

navigation system estimates of position and velocity will be derived and compared 

with the results of this section to define the equations for the errors in the indicated 

position and velocity. The error equations will then be used to formulate the navigation 

filter equations for incorporating the microwave ILS position fix data. 

Since the runway coordinate system is an earth-fixed reference frame, it is 

both accelerating and rotating relative to inertial space; thus the acceleration of 

the aircraft can be expressed as: 

a =a, - 2u)ex V-__ex__exe e R - eX~weXRr (2.1-1) 

ard the equation for the position and velocity of the aircraft are: 

k v (2.1-2) 

V a (2.1-3) 

where 

a = acceleration of the aircraft relative to the runway
 

coordinate frame
 

a, = inertial acceleration of the aircraft
 

= velocity of the aircraft relative to the runway
 

coordinate frame
 

R = position of the aircraft relative to the runway
 

coordinate frame
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= position vector of the origin of the runway coordinate 
frame relative to the center of the earth 

.e = angular velocity of the earth. 

In runway coordinates the components of these vectors can be written as: 

R = V = a
 

FooL cos0r I
= 
 We /-cOsL -coSI 

-sinL
 

where
 

L = latitude of the airport 

Or = angle of the runway centerline with respect to true north 
Re = radius of the earthe 

For convenience, define the matrix wx such that 

(0 V = V 
e- x -

It can be easily verified that 

0 sinL -cosL sins 1r 
= Wewtx -sinL 0 -cosL cosOrcosL sinOr cosL cOsOr50 

The centrifugal accelerations can then be written as: 

we X - = [[] 
2 Ij[w-e X-we -Rr 2 0 
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2.2 Modeling the Inertial System 

In this section the equations describing the output of the inertial navigation 

system are derived. It should be emphasized that the equations presented here do 

not necessarily represent the mechanization of the equations employed in the inertial 

navigator; they simply represent a model of the system for use in defining the error 

propagation. 

For the purposes of this analysis we can assume that the accelerometer 

measurements are resolved into a reference frame which is approximately aligned 

with the runway coordinate system. The misalignment between the runway coordinate 

frame and the reference frame is assumed to be small and is represented by the 

matrix: 

E , 

y x 

Thus, the accelerometer measurements resolved into the platform frame are 

f - -a 	 (2.2-1) 

where 

g = acceleration due to gravity
 

b = uncompensated accelerometer bias
 

w = accelerometer noise
 
-a 

The inertially derived aircraft acceleration is given by 
+a' = f 	 g(x', y', z') - 2 (we X V') 

r 	 (2.2-2)- e x -weX R_ -- we x×we X 

and the corresponding position and velocity is given by 

R' = V' 	 (2.2-3) 

V = a' 	 (2.2-4) 

In the equations above 

R' = 	 y:J inertially derived position of the aircraft 

tz' relative to the runway coordinates 

'= • ,1 =inertially derived velocity of the aircraftF relative to the runway coordinates 
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Also, 

[W]
 

ZJ
 H],_WeXwe ' = [Wx] [W.] 

[0W [(,[w] [CxILe xWe x Rr 

To obviate the need of modeling the aircraft accelerations in the state equations 
used to define the navigation filter, we will use the equations which define the inertial 
system errors. These equations are obtained by subtracting Eq. 2.1-1 from Eq. 
2.2-2 to yield 

AR = AV (2.2-5) 

AV' = [E - 1((a, - gE(x,y,z)) - g(x,y,z) + g(x'. y', z') 

- AR + b + -a (2.2-6)wee-2[Iw] AV [uw] [U). 


1 = identity matrix
xLAx 
AR= Ayz:] AI=1 

AVY
AV = 

AV 

The gravity term g Cx', y', z') can be expanded about the actual aircraft position to 

gieg(x'Y,y' ) n4 g(x, Y, Z) - GM (AR - -Eae RA (2.2-7) 
[lia~ 2-Eae) 

ae a12 
-whe re 

G = gravitational constant
 

M = mass of the earth
 

Riae = position vector of the aircraft related to the
 
center of the earth
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'Near the airport 

-ae R 0 e
 

so that 

g(x',y',z') = g (x,yz) + 0 -1 D AR (2.2-8) 
Re 

' 0 + 210 0+2
 

Thus Eq. 2.2-6 can be rewritten as
 

AV=[E - 1]I(a, - g (xyZ)) + -Z [0 -0 ARL0 if 
e 0 +2 

-2 wx1 s V- [wj [udx] +w-a+ (2.2-9) 

If we assume thatthe misalignments are small and thatthe inertial accelerations 
of the aircraft are small compared to g, the term involving platform misalignments 
can be rewritten as 

[E - 1](a 1 - g (xy,z)) C-- g 0 0 (2.2-10) 

where 

If we assume that the uncompensated gyro drift can be modeled as a random-walk 

process then 

= d + [I - E]w (2.2-11) 

(2.2-12)
where = d 

d = gyro drift 

E d = white-noise source of gyro drift 

If high-quality external position data are available for correcting the output 
of the inertial system, then most of the terms appearing in Eq. 2.2- 6 can be neglected. 

For example, if 
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C - 0.0001 rad 

AR - 100 ft (with microwave ILS data) 

AV - 2 ft/sec (with microwave ILS data) 

Re 4 00 m 

W - 7.29 10-5 rad/sec 

b - 0.001 ft/sec 2- (the effect of accelerometer scale factor 
errors would be of the same magnitude) 

then, 
2 

g = 0.0322 ft/sec

= 0.00015 ft/sec 2 

e2
 

2w AV = 0.00029 ft/sece
 
2AR = 0.0000000001 ft/sec 2
 

we
 

Itis apparent that the platform misalignment will be the dominant error source 

under these circumstances. Thus, a reasonable model for the INS is provided by 

the following equations: 

AR = AV 	 (2.2-13) 

AV = g 	 o0 E +w a (2.2-14) 
0 0 

=d 	 (2.2-15) 

d = wd 	 (2.2-16) 

where the earth 	rate term f-E] we can be neglected. 

Hollister 1 has shown that, if external position data are available at intervals 
less than one tenth the Schuler period, it is necessary to estimate the platform 

misalignments (the microwave ILS data rate is 15 times/see). Even though the 

angles may become large, the filter is continuously estimating the velocity error 
which they produce. The main reason for estimating the misalignment angles is to 

be able to navigate accurately in the event that the external position information is 

lost. Thus, if we assume that microwave data are continuously available during 

the approach and landing phase, the equations for the error propagations become 

simply 

AR =AV (2.2-17) 

AV w (2.2-18) 

For this model the effects of platform misalignments, accelerometer errors, and 

computational errors would be treated as an equivalent white noise process wa. 
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2.3 Optimum 	Mixing of INS and Microwave ILS Data 

in filtering the 	microwave ITLS data is based on theThe method to 	be used 
For this approachminimum variance 	estimator as derived by Kalman and Bucy. 2 

are considered to be linear combinations of the state variablesthe measurements 

for the system which are corrupted by additive white noise. Thus 

(2.3-1)m .=Hx+ v 

For the scanning beam microwave ILS the measurements are considered to be 

(2.3-2)In AZ 	 -AZ 

where 

EL' = elevation angle predicted by the inertial navigator
 

AZ' = azimuth angle predicted by the inertial navigator
 

d' = range to the runway predicted by the inertial navigator
 

are the actual elevation, azimuth, and range measurements.and EL, AZ, and d 

Since the measurements are functions of position 

(2.3-3)m HAR + v 

and 

H = 

8h .
 

where -- is given in Appendix D. 

The covariance 	of the measurement noise is defined to be
 

T= [v]
 

where [Vn] is also given in Appendix D. 

It is assumed that the measurements will be made and processed at 1-second 

intervals and that the measurement errors are uncorrelated at this sampling rate. 

The equation of state can be represented in the form 

(2.3-4)S Fx + w 
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If we use Eq. 2.2-13 through 2.2-16 as a model for the system, then 

Ax 0 0 0 1 0 0 0 0 0 0 0 0 

Ay 0 0 00 r 0 0 0 0 0 0 0 

A z 0 0 0 0 0 1 0 0 0 0 0 0 

AV 0 0 0 00 0 0 -g 0 0 0 0 

AV 0 0 00 0 0 g 0 0 0 0 0 

AV 0 0 0 0 0 0 0 0 0 0 0 0 z 
x 0 0 0 0 0 00 0 0 1 0 0 

x 
Cy 0 0 0 0 0 0 0 0 0 0 1 0 

Cz 0 0 0 0 0 0 0 0 0 0 0 1 

d 0 0 0 0 0 0 0 0 0 0 0 0 x 
d 0 0 0 0 0 0 0 0 0 0 0 0 
y
d 0 0 0 0 0 0 0 0 0 0 0 0 

(2.3-5) 

0 

0 

0 

w 
ax 

w 
ay 

w az 
w 0 

0 

0 

Wdx 

Wdy 
Wdz 

If the simpler model (Eq. 2.2-17, 2.2-18) is used, then the state equations can be 

decoupled into three independent relations of the form: 

_L [ F= [ J w [(2.3-6) 

For either model an estimate of the, state and the covariance of the state-vector 

errors are propagated between measurements as 
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x 	 (2.3-7) 

=FP+PF +Q 	 (2.3-8) 

where Q is the power density of the system-noise matrix. 

At the time of each measurement the new estimate is given by 

-= + K(m - HA ) (2.3-9) 

where 

K = PHT [HPHT + Vn 	 (2.3-10) 

P+ = [I- KH] P-	 (2.3-11) 

x = estimate of the state after incorporat.on of the
 
measurement
 

x-	 estimate of the state before incorporation of the
 
measurement
 

and 

P+ = covariance just after the measurement. 

P = covariance just before the measurement 

At this point a few statements can be made concerning the selection of the 

INS model. If Eq. 2.3-5 is used, it should be noted that the platform azimuthal 

misalignment, Ez , is unobservable. This implies that additional instrumentation 

such as a stabilized magnetic compass or radio direction finder would have to be 

incorporated into the navigation system for estimation of azimuthal misalignment. 

Alternatively, Cz could be estimated if the aircraft accelerations could be modeled 

as a function of the applied maneuver commands. The accuracy of this approach, 

depends on howwell the aircraft accelerations can be modeled and upon the magnitude 

of the vehicle-disturbance accelerations. A similar statement can be made concerning 

estimating the vertical misalignments. However, in view of the anticipated, magnitude 

of the misalignments (v1 milliradian) and the rather low accuracy of the magnetic 

or radio direction indicators and inviewof the limited amount of time in the approach 

phase available to filter these data, it does not appear desirable to estimate these 

quantities. The magnetic or radio-compass data could be used instead as a gross 

check on the platform orientation rather than as a means of estimating the 

misalignments. The- ultimate decision as to whether or not to incorporate the 

estimation of the platform misalignments depends on the answers to the following 

questions: 

2-10 
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1) What is the expected value of the misalignments at the beginning of the 

approach phase? 

2) How well can the misalignments be estimated? 

3) How accurate is the inertial navigator without ILS data? 

4) Is there a requirement to perform an automatic landing without ILS data? 

5) How accurate does the platform alignment need to be in order to adequately 

perform the decrab and roll-out maneuvers? 

Irregardless of which model is selected for the navigation filter, it is still 

possible to estimate the accuracy of the position and velocity estimates when 
microwave ILS data are available. Hollister1 has shownthat, if the sampling interval 

AT is less than the response time for the resultant filter (1w n), the continuous 

approximation to the discrete filter can be used to predict the performance of the 
navigation system. For the continuous measurement case the estimates of position 

and velocity errors are given by 

4 A T -1l (m3~2 
SFx+P (m x) (2.3-12) 

and the covariance matrix propagates as 

PHT IP5 =FP+PFT + Q - R HP (2.3-13)n 

where Rn = power spectral density of the external measurement noise. 

If the simplified model is used (2.3-6), the steady- state variances in he position 

and velocity estimates for one axis are given by 

2= J2N 1 / 4 R3/4 (2.3-14) 
r n 

a2 =42 N3/4 R1/4 (2.3-15)
v n 

where N = power spectral density of the equivalent accelerometer noise 

the natural frequency of the filter is given by 

)4 = N 
n Rh 

and the steady-state gains are 

12-O] ]K PHTR/= [T 
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The structure of this filter is illustrated in Fig. 2.3-1. If we assume that 

N = 0.001 ft 2 /sec 3 (this corresponds to a platform misalignment 
of 1 mr) 

Rn = 104 ft2 sec (this corresponds to a measurement taken at 5.5 
miles from the airport using the c-band data) 

then 

* = 15.9 ftr 

= 0.282 ft/sec 
-1 

= 0.0178 secw n 

1 
-- = 56 sec 

According to Hollister a more realistic value of equivalent accelerometer 

noise is: 
-

N = 10 2 ft 2 /sec 3 

In which case, 

ar = 21.2 ft 

a = 0.68 ft/sec 

-1 
secWn = 0.0316 

1 
sec31.6--- n = 

It should be emphasized that, as the aircraft approaches the runway, the errors 

in the position and velocity estimates will decrease. The ultimate accuracy of the 

complemented inertial system would seem to depend on the correlation time of the 

ILS measurement noise. For this analysis it was assumed that the correlation 

time was less than one second. This assumption should be checked as soon as data 

on the microwave ILS is available. 

2.4 Estimating the Wind Velocity 

One of the primary reasons for estimating the wind velocity is to allow the 

guidance to plan optimal aircraft maneuver strategies. It is also desirable to estimate 

the wind velocity so that open-loop or feed-forward commands can be used to cancel 

the undesiralle effects of the wind on the ground track. Without the wind estimates 

the guidance and control system would typically develop positional errors to 

compensate for the effects of the wind. 
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The wind velocity, W, can, be expressed as the difference between the ground 

velocity (V) and the velocity of the aircraft relative to the air mass (V a). Thus 

Wx = Vx -V ax (2.4-1) 

Wy =VVy - Vay (2.4-2) 

where 

_ a = ]al eos0
0 

sin (2.4-3)
L'az l~VaI sine 

and
 

0 = pitch attitude of the aircraft
 

= heading of the aircraft relative to the runway centerline
 

(as measured by the inertial system)
 

It is assumed in this analysis that the sideslip angle, 83, is small and that the 

deviation of the angle of attack, Aa, from the trim angle of attack is also small. If 

these assumptions are not valid,then a and /3 could be measured by appropriate 

sensors, or estimates of a and )Gcould be obtained from measurements of vertical 

and side forces acting on the vehicle. For this approach the model relating the 

aerodynamic forces to the angles a and /3would have to be included in the navigation 

equations. 

In order to construct an estimator for the wind velocity, the true airspeed, 

Vas, (as measured by the air data computer) must-be provided to the navigation 

computer. It is assumed that the error in the airspeed measurements can be modeled 

as correlated noise, thus 

Val = Va s Cas (2.4-4) 

- 1 + w (2.4-5) 
as 7 as as 

as 

Considering the accuracy of the ground velocity data provided by the 

complemented inertial system, it would appear unnecessary to augment the state to 

include a model for the, wind. Instead it would be better (and simpler) to model the 

wind separately and treat the inertially derived velocity as an independent 

measurement. Thus we can define the measurements for this filter as 

m = x- Vas cos Ocos (2.4-6) 
as cos° sinO 

AA 
where Vx , Vy are the estimated components of ground velocity from the output of 

the complemented inertial systems. 
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rhus 

hum Val-CacosCos0 + C as° Cos 0 + (2.4-7)S Va cosc 0cs+C coso0 sin 0 C 
)r in terms of the standard notation 

m =Hx+ 

vhere 

H 

0 
0 
1 

Cos 0 cos1 

cos e sin q j 
(2.4-8) 

a(2.4-9) 

If the wind can properly be modeled as a random walk process, then 

= w (2.4-10)
x wx 

= w (2.4-11) 
y WY 

rhe optimal filter for this system can then be deduced using the techniques presented 

.n Section 2.3. 

Estimation of wind shear (s x , s y) could be accomplished by adding the terms 
xs 

z x V = inertially derived vertical velocity 

z y 

:o the right hand side of Eq. 2.4-10 and 2.4-11, and augmenting the state variables 

:o include the following shear model 

t = ws (2.4-12) 

= W (2.4-13) 

However, it would be undesirable to complicate the wind model unless it could 

je shown that the estimates of wind shear would significantly increase the dynamic 

response of the system. 
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CHAPTER 3
 

OPTIMAL TRAJECTORY MANAGEMENT FOR
 

THE SPACE SHUTTLE
 

by
 

Mukund Desa
 
3.1 Introduction 

Since the weight of the fuel required for post-reentry subsonic cruise is directly 
deductable from the orbited payload and increases the energy requirements during 
reentry, attention is focused on the determination of post-reentry flight paths which 

minimize fuel requirements. The delineation of the subsonic-range capabilities of 

the shuttle, subject to fuel restrictions ranging from zero to amounts sufficient for 
extended cruise, is an essential design and operational consideration. Solution to 

the range-fuel problem must be obtained to 

1. Ensure the capability of the shuttle to meet design specifications. 

2. Determine the operational utility of an existing shuttle. 

Such problems are particularly suitable for formulation within the framework 
of Optimal Control Theory. Optimization problems of this nature often require 

extensive numerical computation. 

The amount of difficulty and expense involved in the performance optimization 

of shuttle flight paths depends upon the complexity of the model used. In this chapter 
an energy-state model approximation is used which yields useful optimal traje6tory 

information. The computational simplicity of the solutions makes the energy-state 

approach particularly attractive for onboard trajectory management. 

Section 3.2 derives the energy-state model of the shuttle. The results of this 
derivation are then applied to a class of shuttle-trajectory optimization problems 
in Section 3.3. We shall here consider mainly the flights in a vertical plane (ie, 

longitudinal flight). 

Detailed considerations for performance problems involving lateral-flight 

considerations have been limited in the pasP2 3' 24 ) to special cases, such as lateral 

flight in a horizontal plane, which reduce the order of the flight dynamics. With 
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the energy-state approximation, it is possible to consider, with no great added 

complexity, a broader spectrum of performance problems involving lateral-flight 

considerations. 

3.2 An Energy State Model for the Space Shuttle 

Aerodynamic vehicle models range from a simple point-mass quasi-steady 

representation to models that include the deflections of the airframe. It is usually 

adequate to consider the aircraft as a point-mass, because the motion of the vehicle 

around the center of mass and the airframe deflections have little effect on the 

flight path. 

The nomenclature commonly used for a point-mass model is given in Fig. 

3.2-1. For themost part we shall consider only paths contained in a vertical plane. 

The following approximations are also made: 

1) The curvature and the rotation of earth are neglected, since their effect 

on short flight paths at sub-orbital speeds is negligible. 

2) The variation of gravity with altitude is negligible. 

The equations of motion for the point-mass model are as follows: 

T cos ( a+E) - D gm - sin y (3.2-1) 

-gcosljv - T sin(a+c) + L (3.2-2) 
m 

= V sinp (3.2-3) 

= V cos P (3.2-4) 

m -f (3.2-5) 

where 

L = L (h, V, a) = lift 
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V = velocity 

= flight path angle 

h = altitude 

= horizontal rangex 

m = mass 

T = T(Vh) = thrust at maximum throttle 

D = D(V,h,a) = drag 

a = angle of attack 

g = accleration of gravity 

f = f(V,h) = fuel flow rate at maximum throttle 

C = angle between thrust axis and zero-lift axis (assumed given) 

Since both a and c are small, Eq. 3.2-1 and 3.2-2 can be simplified by using 

the small-angle approximation sin( a+c ) --a+, , cos ( a+c ) Z 1. The tangential 

and normal accelerations to the flight path are given by Eq. 3.2-1 and 3.2-2, 

respectively. Equations 3.2-3 and 3.2-4 represent the kinematical relationships in 

vertical and horizontal directions. Equations 3.2-5 is the definition of the fuel-flow 

rate. Except for Eq. 3.2-4, equations of motion do not depend on x, the horizontal 

range. However, x may enter into the performance index or into an isoperimetric 

constraint since 

tf 
X(tf)- x(t0 ) = I V sin r dt. 

to 

Thus, we may eliminate Eq 3.2-4 for the determination of many flight paths. This 

leaves us with a point-mass model with four state variables, V, p, h, and m; and 

one control variable a. 

The flight paths have to be considered subject to some inflight and terminal 

constraints. The experience of various investigators indicates the difficulty and 

complexity involved in the numerical solution of the optimization problem, in dealing 

with such a model involving higher-order dynamics, and in the handling of the 

constraints. We shall briefly consider approximations to the point-mass model 

equations, that may be used in the performance optimization of shuttle flight-paths. 

We shall investigate the energy-state approximation in detail and shall see that 

vehicle-energy is an important and adequate variable in the consideration of flight 

paths. The comparison of the results for an aircraft, considered in Ref. 18, 20, 
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and 21, obtained by using energy-state approximation with the results for "exact" 
(4-state variable) model shows that the energy-state approximation, properly 
interpreted, is adequate for the performance optimization of shuttle flight paths. 

3.2.1 Point Mass Approximations 

For flights confined to subsonic speeds, it is usually adequate to use the. 
quasi-stead point-mass model in which both the components of the accleration are 
neglected. ( 1) This approximation is quite good for slow-moving vehicles where 
1 V2 << gh The omissionof the acceleration terms obviously simplifies the2 max mx 
equations of motion and the performance- optimization problem becomes amenable 
to ordinary calculus procedures (theory of maxima and minima). However, the 
neglect of tangential acceleration leads to the neglect of the change in kinetic energy 
(1mV 2 ) so that only the change in potential energy (mgh) is considered during the 
flight. With the advent of supersonic aircraft, it was recognized that the change in 
kinetic energy in accelerating to supersonic speeds was comparable to the change 
in potential energy when climbing from sea level to altitudes above 50,000 feet. It 
was also realized, since these aircrafts were capable of rapid climb and dive 
maneuvers, that kinetic energy and potential energy are readily interchangable. 
Kaiser(2) used the concept of energy-height (h +V 2 I2g) in discussing aircraft flight 
paths. This concept leads to a simple way of taking into account the acceleration 
of the aircraft. Energy-height can be used as a state variable in place of h or V in 
the equations of motion 3.2-1 to 3.2-4. 

Next in the heirarchy of point-mass approximations is the energy-state 
approximation. In this model, the tangential acceleration is neglected. If nearly 
horizontal flight is assumed (with small flight path angle, ) ),energy (henceforth, 
we shall refer to energy per unit mass or energy-height as simply energy) and 
mass are the only two relevant state variables. If the variation of the mass of the 
aircraft during flight is considered negligible, then energy remains the only relevant 
variable for flight-path considerations in this approximation. The energy-state 

3'4 6 7
approximation has been used by a number of investigators , , ,8) in considering 
minimum time or minimum fuel climbs to given altitudes and velocities. In Ref. 
4,9,10, the optimal-climb problem has been investigated, using similar 
approximations to the equations of motion 3.1-1 to 3.1-4 as in energy-state 
approximation and without using energy as one of the states. It may be noted that, 
on the flight path, energy remains a continuous variable whereas sudden changes in 
h andV, leading to rapid dives or climbs in the flight path, are possible. 

An improvement to the above approximation is to remove the assumption of 
nearlyhorizontal flight paths and consider the flight path angle ),as acontrol variable, 
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with velocity and altitude as state variables. The angle of attack is determined 

from the normal equillibrium equation, viz, L =mg cos p, which results from neglecting 

the normal acceleration. The only substantial difference between this approximation 

and the energy-state approximation is that zoom dives and climbs require finite 

time instead of zero time. 

The next step in the improvement is to drop the assumption of negligible normal 

acceleration. The mass of the aircraft may be approximated as constant or as a 

known function of time. Thus V, h, 1, are the state variables and a is the control 

variable in this approximation. 

The most accurate point-mass model is to treat V, h, . * and ih as state variables 

and a as the control variable. The optimization problem using this model with 

gravity, thrust and aerodynamic forces and inflight and terminal constraints has 
" 

16. The experience of the investigators ( 1 4 
been investigated in Ref. 12, 13, 14, 15, 
15, 17, 18, 19) indicates some of the difficulties involved in the numerical solution 

of a problem of this order (four statevariables). In most cases the method employed 

was the Bryson-Kelley steepest-ascent method. (14.18) . Slow convergence was 

sometimes reported, especially with the maximum range problems. The "indirect" 

method of making initial guesses on the missing boundary conditions was employed 

in Ref. 15, 17, 19. The flight paths- were reported to be highly sensitive to the 

initial guesses, making it difficult to guess the missing boundary conditions so that 

terminal conditions were met. 

Therefore, any reduction in the difficulty of the numerical solution, either by 

improved numerical methods or by making use of the special properties of the 

problem, would be very welcome. With an eye on the latter proposition, we shall 

investigate the approximations to the "exact" model, especially the energy-state 

approximation. 

3.2.2 The Quasi-Steady Approilmation 

Here both components of the acceleration are neglected. We can rewrite the 

equations of motion 3.2-1 to 3.2-4: 

0 = T(h,V) - D(h.Va) - mg siny (3.2-6) 

0 = L(hVa) - mg cosp (3.2-7) 

= V sin? (3.2-8) 
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= V cos y (3.2-9) 

r = - f(h,V) (3.2-10) 

To minimize the time to reach a given altitude, we maximize 

dh
da--= V sin p 

with respect toaat a given altitude, subject to the constraints 3.2- 6 and 3.2-7 which 
determine V and p in terms of h and a. 

FromEq. 3.2-6 and 3.2-8 

dh V[T(h,V) - D(h,V,a)] (3.2-11)
it m g 

Assuming cos Yp 1, Eq 3.2-7 may be used to determine a(v,h); and, for a given 
altitude, find V to maximize the excess power, V(T - D) and, consequently, the rate 
of climb. 

Similarly, to minimize the fuel spent to reach a given altitude, we minimize 

dh 
-= v sin p/f(hV) 

With respect to a, at a given altitude, subject to constraints 3.2-6 and.3.2-7. 

3.2.3 The Energy-State Approximation 

In quasi-steady optimal-climb problems, only final altitude can be specified. 
However, for high-performance aircraft, it is more meaningful to consider optimal 
climb to a given altitude and velocity. The energy derived from the expenditure of 
fuel raises the aircraft's altitude as well as its velocity. The interchangeability of 
the kinetic and the potential energy makes it possible to spend energy to reach a 
given altitude and velocity by accelerating to higher speeds at lower altitudes, then 
trade the excess kinetic energy to reach the given higher altitude. Thus, it seems 
meaningful to view the climb of an aircraft in "energy" space, and to specify the 
energy to be reached in place of altitude and velocity. 

Energy per unit mass, E, can be considered as a state variable and is related 
to h and V by 
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E. = V 2 /2 + gh (3.2-12) 

The time rate of change of E is given by 

. =V- +i-h 

Substituting for V and h, from Eq 3.2-1 and 3.2-3, in the above relation yields 

E V [T(E,V) - D(E,V,a)J /m (3.2-13) 

To maximize the rate of energy change, it is necessary to determine V and a 

in conjunction with the other equations of motion, viz, 5, h, and rn equations. However, 

considerable simplification occurs if the a dependence in Eq. 3.2-13 is removed. 

If we assume small normal accelerations and nearly horizontal flight paths, 

then Eq. 3.2-7 becomes simply 

L(a, E, V) zmg (3.2-15) 

From Eq. 3.2-15, we can express ain terms of E and V, i.e., 

a= a(V,E) (3.2-16) 

Under the above assumptions, we can write down the energy-state approximation 

equations as follows: 

= V [T(V,E) - D(VE)] (3.2-17) 

im 

m = -f(V,E) (3.2-18) 

with h and a determined in terms of V and E by Eq. 3.2-12 and 3.2-16, respectively. 

3.2.4 Mimimum Time to Climb 

To'minimize the time required to go from a given initial altitude and velocity 

to a final altitude and velocity (equivalently, energy), the time rate of change of 

energy must be maximized, ie, 
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maximize V(T-D) for a given E 
V - (3.2-19) 

We have assumed for simplicity that m = constant; m may also be approximated as 
a known function of time. Equation 3.2-19 yields a unique V for a given E (except 
wherewe have two equal maxima for two different velocities for a given E, in which 
case there will be a constant-energy velocity change on the flight path), resulting in 

a feedback law V(E). 

Constant-energy contours may be plotted in the h,V plane as shown in Figi 
3.2-2. In the energy-state approximation, it is possible to move anywhere on a 
constant-energy contour in zero time. ABCDF is a typical minimum-time energy­
climb path, as determined byEq. 3.2-19, starting from energy.position Aand climbing 
to a given energy position F. Note that the segment AB is a path constrained to 

V2 
move along the constraint h > 0 (a state-control constraint E - -- 2! 0), and the 
segment CD corresponds to the situation referred to above, E having two equal 
maxima for two different velocities for a given E. In practical situations, a 
minimum-time path is desired from an initial V,h to a desired V, h. In such situations, 
in general, the optimal path has constant-energy climbs or dives as the initial and 
final phases of the flight. A'B' and FG represent the zoom dive and climb for such 
a flight path. It may be noted that such rapid dive and climb paths violate the 
assumption that cosPz 1. However, the comparison between the "exact" path (obtained 
by using 4-variable point-mass model) and the "energy-climb" path in Ref. 19 and 
20 shows that the "exact" path is very close to the "energy-climb" path, with the 
sharp corners at the beginning and the end of constant-energy zoom paths rounded 
off. The predicted flight times are also comparable. 

The data on lift, drag, maximum thrust, and fuel consumption at maximum 
thrust (which has been approximated here as proportional to thrust) for the aircraft, 
investigated in Ref. 18, 20, and 21, are given in Tables 3.2-1 and 3.2-IT. We shall 
use this aircraft for the sake of illustration of the usefulness of energy-state 
approximation. The initial conditions that will be investigated are as follows. 

h(0) = 500 ft
 

V(0) = 800 ft per sec
 

gm(0) = 36000 lb
 

* 
The only difference from the quasi-steady approximation is in holding E = constant 

instead of h = constant in the maximization of V(T - D). 
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Table 3.2-I 
Maximum Thrust and Fuel Consumption at MaximumThrottle as aFunction of Altitude 

and Mach Number 

Thrust, T(thousands of pounds) 

Mach 
No., M 0 5 15 25 

Altitude, h (thousands of feet) 
35 45 55 65 75 85 95 105 

0 

0.4 

0.8 
1.2 

1.6 

2.0 

2.4 

2.8 

3.2 

23.3 

22.8 

24.5 
29.4 

29.7 

29.9 

29.9 

29.8 

29.7 

20.6 

19.8 

22.0 
27.3 

29.0 

29.4 

29.2 

29.1 

28.9 

15.4 

14.4 

16.5 
21.0 

27.5 

28.4 

28.4 

28.2 

27.5 

9.9 

9.9 

12.0 
15.8 

21.8 

26.6 

27.1 

26.8 

26.1 

5.8 

6.2 

7.9 
11.4 

15.7 

21.2 

25.6 

25.6 

24.9 

2.9 

3.4 

4.9 
7.2 

10.5 

14.0 

17.2 

20.0 

20.3 

1.3 

1.7 

2.8 
3.8 

6.5 

8.7 

10.7 

12.2 

13.0 

0.7 

1.0 

1.6 

2.7 

3.8 

5.1 

6.5 

7.6 

8.0 

0.3 

0.5 

0.9 
1.6 

2.3 

3.3 

4.1 

4.7 

4.9 

0.1 

0.3 

0.5 
0.9 

1.4 

1.9 

2.3 

2.8 

2.8 

0.1 

0.1 

0.3 
0.6 

0.8 

1.0 

1.2 

1.4 

1.4 

0.0 

0.1 

0.2 
0.4 

0.5 

0.5 

0.5 

0.5 

0.5 

Fuel Consumption: f T slugs/sec, where c cg = 2800 sec 



Table 3.2-I1 

Lift and Drag Coefficients as a Functibn of Angle of Attack and Mach Number 

M 0 0.4- 0.8 1.2 1.6 2.0 2.4 2.8 3.2 

2.240 2.325 2.350 2.290 2.160 1.950 1.700 1.435 1.250CL 


CD 0.0065 0.0055 0.0060 0.0118 0.0110 0.0086 0.0074 0.0069 0.0068 
0 

V2S S = 500ft2
L = CLTpCL C 

2 ~1 2 
a2 =CD= CD + flC D CD'IP V2S f = 1.0 

0 



with 

g 32.178 ft per sec 2 . 

Figure 3.2-3 shows the contours of constant excess power, V(T - D), and of constant 
energy on an h,V plane, for the aircraft under investigation. The minimum-time 

path followsthe ridge of the excess-power contours, except when against the constraint 

h = 0. 

3.2.5 Minimum Fuel-to-Climb 

We can replace the independent variable "t" by "im". Dividing Eq. 3.2-17 by 

Eq. 3.2-18, we have, 

dE V(T - D) (3.2-23) 
dm- mf 

It is clear from Eq. 3.2-23 that, to minimize the amount of fuel burned for a given 
change in energy, we have to minimize, dEldmo i.e., 

maximize jV(T- D) J for agiven E. (3.2-24) 

Figure 3.2-4 shows the contours of constant energy-increase per unit of fuel 

burnedYEK . The ininimum-fuel climb-path is also shown. 

3.2.6 Drag Dependence on Load Factor 

As remarked earlier, comparision of a minimum-time path obtained by the 
energy-state approximation with the path obtained bythe "exact" four-variable model 
has shown that ( 1 9 ,20) the maximum V(T - D) curve forms a basic path that the 
"exact" paths follow closely, only deviating to meet initial and terminal conditions. 
The deviations follow closely the zoom-climb or zoom-dive paths of the energy-state 

path but sharp corners are rounded off. 

Figure 3.2-5 shows the variation of drag withmach number, at a given altitude, 
for several different load factors. The variation of drag for different load factors 
is very small for Mach numbers > 1.2. Thus, with the assumption of unity load 
factor (ie, L = rg), errors will be small in the computation of drag for M > 1.2., 

and we expect that the "exact" paths at larger speeds, where D - D0 (E, V) would 
follow closely the energy-state paths. 
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3.3 Optimal Subsonic Trajectory Management for the Space Shuttle 

The estimation of the range capability of the shuttle is important from both 

the design and operational aspects. As a result of the precious nature of the fuel 

reserved for the post-reentry phases of flight, subsonic trajectory management will 

be guided by minimal-fuel and maximum-range criteria. 

In this section two versions of the maximum-range problem are considered 

separately for the sake of clarity. 

1. Maximum range for a gliding flight 

2. Maximum range for a given amount of fuel 

Application of energy-state concepts results in solutions which are illustrated by 

application to the high-performance aircraft, referred to in Section 3.2.5. 

3.3.1 Maximum Range for Gliding Flight 

The 	equations of motion for an unpowered flight (T = f = 0) are; 

dE - VD (3.3-1) 
mdt 

and 

-Xt- v(3.3-2)dt
 

Dividing Eq. 3.3-2 by Eq. 3.3-1, we get
 

dx -m

dE DT 

and the range covered over an energy drop from an initial energy E o to a final 

energy Ef is given by 

(T = f = 0) 

**Minimum fuel for a given range is an equivalent problem. Problem 1 is a special 
case of problem 2. 
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R IndE (3.3-3) 

Ef 

Clearly, to maximize the range R, we have to minimize D(E,V) with respect to V 

for a given E. In the quasi-steady approximation, the minimization of D(h,V) is 

performed with respect to V at a given altitude h and the range is given by 

h 

0
 

R dV (3.3-4) 

hf 

Figure 3.3-1 shows a typical maximum-range glide path. Glide path BCD 

can be reached by a zoom-climb or a zoom-dive from starting points which are off 

BCD. Path CD is constrained to level flight, just above the ground until the stalling 

speed is reached at D. For the optimal glide path, ABCD, the range R is given by 

1% 7 
mdE mV dV (3.3-5)

R -= Dmin(E) + D(V) h= 0 

where 

E 0 = initial energy, 

E I = energy at h = 0 at minimum drag for L = mg, 

E s = energy at stalling speed and L = mg. 

Using a parabolic drag polar, with L = mg, we have 

D =D 0 + DT, (3.3-6) 

where 
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D -- qS
o 
C D o~q

0 

DL (mg) 2 (3.3-7)L C LaqS 

q P (h)V 
2 

= 

If the variation of the coefficients CDo and CLa with M is small, the minimum 

of D with respect to V for a given E or given h occurs at 

D0 DL (3.3-8) 

with 

q - 1 
,mg (3.3-9) 

S Ca 

Using Eq. 3.3-8 and 3.3-9 in Eq. 3.3-6, we have 

D = 2 C D qS = D(mg) (3.3-10) 
0 

Thus, under the simplifying assumption of constant CDo and CLa, the glide 

paths given by the energy-state approximation and the quasi-steady approximation 

are the same and correspond to constant drag and constant dynamic pressure q. 

However, the ranges given by the two approximations are different. The range 

using the quasi-steady approximation is given by 

hO 

dh- m h (3.3-11)
min mm 

whereas the range using the energy- state approximation is given by 

E 

In dE= D (gho + Vo2 _ V) (3.3-12) 

E Dmin Dain 
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that is 

R(E 0 ) L (E -Emining 

2gmm~ 

La 
(3.3-12)

2g - (E0 El) 
0" 

It may be noted from Eq. 3.3-12 that, under the assumptions of constant 

CDo and CLa, range achieved during the glide is 

1) independent of the weight of the shuttle, and
 

2) proportional to the energy lost over this glide path.
 

The difference between Eq. 3.3-11 and 3.3-12 arises because, in the quasi­

steady approximation, the changes in kinetic energy during the flight are neglected 

in comparison with the changes in potential energy. 

Under the assumption of constant CDo and CLa, q is constant, and thus 

V A V 2 ,fl(h) - 2 f8 	 (3.3-13)dh 2 2 

where 

6() 	 1 d~A (3.3-14) 
P dh 

For an exponential model for atmospheric densityfi(h) = constant and 8i- 1/23,800 
-I
 

ft.
 

The relative variation in the kinetic energy and the potential energy of the 

vehicle during the glide is given by 

VdV/dt = VdV ~ 2 (3.3-15) 
gdh Tdt gdh 2g 

by using Eq. 3.3-13. 
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This ratio is nearly equal to one for M = 1.1. Thus, for a glide starting with mach 

no. M >> 1.1, the vehicle initially dissipates mostly kinetic energy against drag 

while maintaining almost constant potential energy (ie, constant altitude). Only 
'towards the end of the glide does the vehicle dissipate its potential energy. 

In most cases, the variation in the coefficients CD, and CLa with respect to 

M is not negligible. Hence, the maximum-range glide path differs from the 

constant dynamic-pressure path. Figure 3.2-2 shows contours of constant drag for 

L = mg on an h, Vplane, for the airplane under consideration here. It also shows 

the "energy-state" optimal glide path determined by the locus of the points where 

constant-energy contours are tangent to constant-drag contours. A four-state­

variable optimal glide path for the same airplane ( 1 8 ) is also shown for a starting 

(Lposition that lies above the I path. The "exact" path follows above and 
under the (!!)m. path, moving closer to it at subsonic speeds and flaring out near 

the ground.
 

3.3.3 Maximum Range for a Given Amount of Fuel 

In equations of motion 3.2-1 to 3.2-4, we considered thrust and fuel flow at 

maximum throttle setting. If there is no constraint on throttle setting, it is obvious 

that maximum range for a given amount of fuel will be achieved by operating at 

less than maximum throttle settings over at least part of the flight. Thrust and 

fuel flow can be expressed as a function of E, V, and ?/, where / is a variable 

defining the throttle setting with the following constraints on thrust. 

0 < T (EV,o) Trmax(EV) (3.3-16) 

In order to maximize range for a given amount of fuel, we have to choose 

V(t) and o(t), so as to maximize 

tf 

R= Vdt (3.3-17) 

t 
0 

subject to the following flight equations: 

dE _V (.-8(3.3-18)
dt = V T(E,V,s) - D(E,V)] 
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E(t ) specified, E(tf) = E s where E. = energy at stalling speed 
and L = mg. 

dt)
 

m(to ) and m(tf) specified.
 

t o0 given, t f free..
 

The above problem can be solved using the calculus of variations. The 

variational Hamiltonian is 

H = v(T - D) _Xnf (3.3-20) 

The influence functions XE and Xm must satisfy 

- _H (3.3-21)dXE 

dt aE 

and 

dam 8Hdm -n (3.3-22) 
dt - Sa 

with the boundary conditions at both ends open. We have H = 0 as a first integral 

on the optimal path, ie, 

V V(T-D) _nf = 0 (3.3-23) 

Vand zfor a given E, XE' and Am are given by the following optimality conditions: 

V arg max H (E, XE , Xna V, (3.3-24) 
V 

subject to the following constraints: 

cl(EV) = Vs(E) - V< 0 (3.3-24a) 

c 2 (E,V) = V- ,A <_ 0 (3.3-24b) 
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The first constraint corresponds to the stalling speed and the second one-corresponds 

to the constraint h> 0, and 

Sr max H (E, XE, m, V,,7) (3.3-25) 

subject to the constraints 3.3-16. 

To determine the optimal value of ., it is useful to evaluate 

BH = XV ST -mf (3.3-26) 
&I ~ E m a"- l0 

Now, from Eq. 3.3-23, provided f 0, 

Xm~I =1VT-) (3.32) 

using Eq. 3.3-27 in Eq. 3.3-26, we have 

aH -m-ST 1[V + V (T- D) af 
7 = E ma fE m j­

(3. 3-26a) 
= 	 E- 1 D+A -I-n f V 0 

EWTi o L BJ 

where 

A =-T+f ST/So 
Sf/S 

Since XE> 0 and f > 0, 

sgn - = sgn D + -A , f 0 	 (3.3-26b) 
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Now 

BT/aS IV E 8T 

Bf18/ IV, E 8f V,E. 

and 

aT 

The sign and magnitude of A depend on the variation of T with respect to f. 

For example, for the curve labelled c in Fig. 3.3-3, we have 

T 8T 
Tf <<-­

and consequently A > 0. 

If the variation of T is linear with f as shown by curve b in above sketch, 

then A = 0. 

We shall first consider the case of A > 0. 

In Fig. 3.3-4, BC represents a maximum-range flight path with full throttle 

and DD'E represents a maximum-range glide path. AB is a constant-energy zoom 

dive from starting position A to the maximum range path with full throttle. From 

Section 3.2.2, on a maximum range glide path (T = 0), 

NEDmin IE (3.3-28) 

and 

aD =0. 

On a maximum total range path, initially X. >> m/D, so that 811/8. > 0. Thus T = 

Tmax until a point C -onthe flight path is reached where XE has decreased to such 

a value that 
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XE 1 
mm ] 

At this stage, two possible modes of operation must be considered. The first 

(on the glide path), where bH/a <0 (note, foralternative is to move to a point D 

f=0, bH/8; is given by Eq. 3.3-26, with XE = m/Dmin and Am given by Eq. 3.3-27 

evaluated at point C) and consequently T = 0 and 6D/6V IE = 0. Once we are on the 

glide path, the rest of the flight path is the same as the maximum-range glide path 

since, on the glide path, H/8n < 0 for all V for a given E. Since 8H/8 > 0 at C. 

the second alternative at C is to continue the flight with T = Tmax' to a point C' 

where XE has decreased to such a value that 

"E - 1
 
m D+A
 

where A > 0, and is evaluated at T = Tmax' For the first time on the flight path, 

8H/a; = 0 and the possibility exists of operating at intermediate throttle settings, 

0 <_ T (E, V,; ) < Tmax(E, V). 

In such. a case V and o are determined from 81H/a = 0 and 6H/6V = 0. If this 

leads to the glide path (ie, to = have to chooseintermediate-thrust path T 0), we 


that mode of operation that gives us better range for a given amount of fuel. If,
 

however, the intermediate-thrust path does not lead to the glide path, then the
 

possibility of operating at intermediate throttle settings is ruled out and the total
 

maximum range path will be a full-throttle flight followed by a glide, as shown by
 

the path ABCDE.
 

Now let us consider the case of A < 0. If the magnitude of A is large enough, 

then we may have XE/m = I/(D + A) satisfied at some point on the flight path before 

point C is reached. In this case, we have to rule out the possiblity of an optimal 

path with full throttle followed by a glide; since, to reach a point where XE = m/Dmin, 

we have to operate at full throttle and this is non-optimal since XE/rm < I/(D + A) 

on this section of the path. Thus we are left with the only alternative of operating 

at intermediate throttle settings with B1H/So = 0 and 8H/ bV = 0, until either XE = 

m/Dmin at T > 0 (in which case the thrust takes a jump to T = 0) or we reach the 

glide path with T = 0. The magnitude of A may not be large, in which case XE may 

reach a value equal to m/Dmin with XE/m < 1I(D + A). In this case, the comments 

for the case A > 0 obtain. 
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For the aircraft under investigation here, data on fuel consumption at partial 
throttle was not available. So, a linear variation in thrust with I was assumed, ie, 

T(E,V, 7)1= Tmax (E,V) 

and 

;1Tmax(EV)
f(E,V,q) = (3.3-29)c 

where c = specific fuel consumption (c is assumed to be constant over the portions, 

of h,V plane of interest). 

Under assumption 3.3-29, we have from Eq.3.3-26. 

Hz 4 0. (3.3-30) 

8H 
From the optimality condition 3.3-25, we have forT> 0, T = 

for- < 0, T = 0; and for aH- , we havethe possibility of operatingforsome time 
at intermediate throttle settings, between T = 0 and T = Tmax * 

8H
 
For the case when- = 0, from Eq. 3.3-30 we have 

\AE/m = 1/D (3.3-31) 

Also the optimality ccndition 3.3-24 gives us 

T V-D (3.3-32) 

when constraints 3.3-24a, 3.3-24b, and 3.3-16 are not effective. 

On a path that satisfies Eq. 3.3-31 and 3.3-32, we should have 

S- m) = 0(3.3-33)
dt E 

or 

dXE ID dE +D dv\+T= 0 

dt E K-E 
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Using in the above, Eq. 3.3-18, 3.3-21, 3.3-23, 3.3-31, and 3.3-32, we get 

dV -V + c D (3.3-34) 
cit -C mc.+VE) 

For the aircraft under investigation, it was found that the path, as given by Eq. 

3.3-33, starting from a point on the full-throttle path, where XE/rm = l/D, does not 

lead to the glide path. Thus, the operation at partial throttle is ruled out under the 

assumption 3.3-29. 

If we assume the variation of CD and CL with respect to M to be small, we 
0 

can reach the same conclusion in another way. On a full-throttle path, the value of 

at the point where 8H/8 71 = 0, is smaller than the value of )E on the glide path.XE 
As seen in Section 3.3.1, hE remains constant (= m/Dmin )cn the glide path. Thus, 
if a path, operating at intermediate-throttle settings with SH/S7 = 0 and &H/SV = 0, 

is to take us from the maximum-range full-throttle path to the maximum-range 

glide path, we should have on this path, 

d?,EdE > 0 (3.3-35) 

Now, on this path 

dXE O
 
dt SE
 

= _&(V+ BV(T_- D) ­

=XE SD 

=-V B 

gD hv 

(Dg0 - DL) (3.3-36) 

where 

p~h 

As seen in Section 3.3.1, D0 = DL on a glide path, -and D0 > DL below the glide'path 
in an h,M space. In view of this, we find from Eq. 3.3-36 that dXE/dt < 0 at all 

points on the path operating at parial-throttle settings with 8H/8 0 = 0 and al/V = 

0. Thus, in view of the contradiction with Eq. 3.3-35, we find that the operation at 

partial throttle is ruled out, under the assumption of constant CD0~anad CLa. Thus, 

the maximum-range path consits of a full-throttle path followed by a glide. 
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Since the amount of fuel is specified, it is often convenient to use the amount 
of fuel expended as the independent variable for the full-throttle portion of the path. 

Let 

At= m 0 - m (3.3-37) 

represent the amount of fuel mass used. Dividing Eq. 3.2-17 by Eq. 3.2-18 and 

using Eq. 3.3-37, we get 

dE _V(T - D) (3.3-38)
dp mf 

E(O) specified (3.3-39) 

The range can be expressed as 

R f f dp (3.3-40)0 

where'uf = amount of fuel-mass to be used in the flight. 

The maximization problem can be solved by using the calculus of variations 
approach. The variational Hamiltonian for this problem is 

H =V-+XV( - D) (3.3-41) 

f_ E mf 

The optimality condition is 

V = arglVax H(E, V, -E' Id (3.3-42) 

where V is subject to the constraints 3.3-24a and 3.3-24b. 

The influence function, ?,E, is determined by the following equations, when 
the path is not on either of the constraint boundaries: 

=
d 8H (3.3-43) 

When the path is against one of the constraints, 

d\E 8H* (3.3-44) 
dt - E 

where 

H* H+ vC1c + V2 c 2 (3.3-45) 
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In Eq. 3.3-45, ui = 0 for CiE(E, V) < 0, i= 1 or 2; and for Ci(E, V) = 0, i = 1 or 

2, corrsponding vi is given by 

8HVr
 

The boundary condition for kE at 1 = If is 

kE( ) D mf (.-6Dmin(lif)
>(E/1) Inf (3.3-46) 

where Dmin represents the minimum drag with respect to V for a given E. The 

glide path starting from E(/,f) is the maximum-range glide path. 

Thus we have to solve a two-point boundary value problem which involves 

solving simultaneouslytwo differential Equations 3.3-38 and either 3.3-43 or 3.3-44, 
with boundary condition 3.3-39 and 3.3-46 and V determined by the optimality 

condition 3.3-42. The boundary-value problem can be easily solved, for example, 
by guessing the missing boundary condition XE( u = 0). Each value of P =0) 

corresponds to a certain amount of total fuel-massuf, used, and thus it is possible 

to sweep out maximum-range paths for different amounts of fuel by selecting different 

values ofE(,= 0) and solving differential Eq. 3.3-38 and 3.3-43 (or 3.3-44) forward 
until boundary condition 3.3-46 is satisfied and determining V at each stage by the 

optimality condition 3.3-42. 

Figure 3.3-5 shows the Mach no./altitude path for maximum total range using 

2100 lb of fuel, obtained by using the energy-state approximation. Initially, the 
maximum total-range path starts out closer to the minimum-fuel energy-climb path. 

(This is apparent from Eq. 3.3-41, and also, since initially XE(u) is larger and 

decreases as the flight progresses.) As the flight progresses, the path starts 
diverging away from the minimum-fuel path, but still progressing towards higher­

energy levels to take advantage of the greater glide range that can be obtained by 

starting the glide from higher-energy levels. At the end of the powered flight, 
there is a short constant-energy zoom-climb to the maximum-range glide path. A 

Mach no./altitude path obtained by using the four-variable model(1 8 ) under similar 

conditions is also shown in Fig. 3.3-5. The"exact" pathis close to the "energy-state" 
path, but lies above it throughout the h,M space. The maximum-range glide paths 

are the same as those shown in Fig. 3.3-4. The ranges shown on the figure have 
been calculated for flight ending at h = o in both cases. However, the "exact" path 

flares out near the ground to use up the kinetic energy for gaining extra range, and 
the path terminates on the ground at lower velocity. For the energy-state path, if 

we consider a constant-lift slow-down path near h = 0 ending at the same velocity 
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as that for the "exact" path, then the total range equals 2.30xlO6 ft. This value is 

within 4% of the range obtained on the "exact" path. 

Figure 3.3-6 shows the fuel, X., and the range histories during the flight for 

the maximum total range "energy-state" path of Fig. 3.3-5. Only about one-third 

of the total range is gained on the powered flight. Note thatXE is relatively insensitive 

to the starting point of the glide path. Figure 3.3-7 shows the range vs altitude 

profiles for the maximum-range path corresponding to that in Fig. 3.3-5. 

Figure 3.3- 8 shows the Mach no. /altitude paths for maximum total-range paths 

for 1800 lb and 2400 lb of fuel. Only one maximum-range glide path using 2400 lb 

of fuel is shown. The glide path using 1800 lb of fuel is very close to that of 2400 

lb. Figure 3.3-9 shows the total range vs fuel used for the maximum-range paths 
shown in Fig. 3.3-5 and 3.3-8. 

3.3.4 Conclusions 

We have seen that energy of the vehicle is an important variable to describe 
the state of the flight. The reduction in the order of the flight dynamics in energy- state 

approximation leads to considerable ease in the solution of optimal-flight paths and 
also to valuable insight into their nature. Flight-path constraints are particularly 

easy to handle using the energy-state approximation. Most of the flight constraints, 

which may arise due to structural, propulsive, aerodynamic, flight-path, and other 
considerations, are in the state-control inequality constraint category. In the 

energy-state formulation such constraints are relatively easy to handle numerically;. 

whereas, in the "exact" (4-variable) model, these limitations are mainly on the 

state-variables and these are rather difficult to handle numerically. 

Besides optimal-climb problems, the following maximum-range problems 

applicable to the shuttle have been investigated using energy-state methods. 

1) Maximum range for a gliding flight 

2) Maximum range for a given amount of fuel. 

We have seen that the maximum-range paths for the aircraft (which have been 

used in this chapter for illustrative purposes), using energy-state model and "exact" 

model (4-variable), compare very well. 

For a gliding flight, we.find that the maximum-range glide-path follows a 
*( ie, involving both the state and control variables.) 
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minimum drag path. In the case of the space shuttle, the range achievable by a 
gliding flight merits important consideration, inview of the direct trade-off between 
the deliverable orbital payload and the amount of fuel reserved for subsonic flight. 
The energy of the vehicle at the start of the glide and the L/Dmin ratio of the 
vehicle are the important factors affecting the maximum-glide range. The effect 
of the weight of the vehicle is relatively unimportant. 

In the case of the maximum-range problem for a given amount of fuel, the 
optimal trajectory consists of a powered flight followed by a glide. The initial 
phase of the flight is powered, operating at full throttle except towards the end 
when operation at intermediate throttle may occur. The gliding flight forms the 
final phase. Figure 3.3-10 indicates the maximum-range capability that we may 
expect for a subsonic shuttle flight, for flights starting from two different initial 
energy positions. It may be seen that the range capability of the shuttle not only 
depends on the amount of fuel available, but also on the energy of the shuttle at the 
beginning of the subsonic phase. We may expect that most of the range would be 
achieved over the glide phase of the maximum-range path, in view of the small 
amount of fuel and little excess-power capability (which requires T - D > 0) of the 
shuttle over most of the flight path. 

For a given E(t = 0), the maximum-range capability can be investigated by 
solving the Euler-Lagrange equations of Section 3.3.3 for different values of XE(t = 
'0). Minimum amount of fuel necessary for the-range capability that may be required 
for a given subsonic shuttle-flight can be determined easily by iterating on XE(t = 

0), until the required range is achieved. Earlier experience (25) indicates that the 
functional dependence of XE(t = 0) on total range, xf, is usually smooth and thus the 
number of iterations required would be small. Thus, the optimal path can be 
determined with considerable computational simplicity, and on-board computation 

may be feasible. 

To conclude, the energy-state approximation, properly interpreted, is adequate 
for determining optimal trajectories for the Space Shuttle for various operating 
conditions during its subsonic flight. By reducing the order of the flight dynamics, 
a computationally simple formulation is achieved which readily incorporates flight­
path constraints. This simplicity raises the possibility of on-board computation. 

In addition to its operational role in trajectory definition, the energy-state 
approach is invaluable during the early stages in shuttle design to determine the 
effect of various design parameters on the operational capability of the shuttle. 
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SECTION 4
 

SPACE SHUTTLE
 

GUIDANCE DURING APPROACH AND LANDING
 

by
 

George W. Cherry
 

and
 

Barton DeWolf
 

The function of the space-shuttle guidance system in the approach and landing 
phase is to generate control-system signals that will cause the vehicle upon entering 
the ILS coverage Volume to acquire the localizer and glide planes, flare, decrab, 

touchdown, and finally roll out along the runway. 

In this section we outline certain guidance concepts which should enable the 
system t&,serve this function. Approach trajectories are discussed in subsection 

4. 1, and guidance laws for following specified trajectories are discussed in subsection 
4.2. Guidance concepts for flare, are discussed in subsection 4.3. 

4.1 Planning The Approach Trajectory 

Approach trajectories must satisfy initial and final boundary conditions and 

must not require maneuvers, maneuver rates, or engine performance beyond the 
vehicle's capabilities; but otherwise the trajectories may be selected to secure some 
specified advantage (for example, the saving of fuel). This section describes the 
philosophy of trajectory planning by working out a scheme for ground-track planning. 
It is necessary to control ground track because the final ground track must be 
coincident with the extended runway center-line. (A later section will deal with 
ground-track following, a control process which should take the steady-state winds 

explicitly into account.) 

4.1.1 Constraints on the Ground Track 

This section describes some of the constraints on ground-track planning. 
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Figure 4.1-1 illustrates an idealized approach to the runway center-line. 
," - . 3 r r 

The shuttle flies a straight lTheLbetween.'A al .Lpoint B, in anticipation of 
intercepting the final approach course, the shuttle is instantaneously (ideally) rolled 
to a bank angle, 0, which causes the shuttle to turn about X with radius-of-curvature 

R. If the point B, the point X, and the radius of curvature R are properly chosen, 
the shuttle can roll (instantaneously) to the wings-level orientation at point C and 

proceed perfectly along the final approach course to landing, touch-down, and roll-out. 

There are physical limitations on the location of X and B, however. This section 

describes these limitations. 

Ground-track planning involves lateral-acceleration profile planning or the 
allocation of some part of the lift vector to the horizontal plane. On straight-line 

ground tracks, no part of the lift vector is allocated to the horizontal plane, but 
when the ground track is curved, as during the transistionbetweentwo intersecting 
straight-line ground tracks, some part of the lift vector is allocated fo the horizontal 

plane and the vehicle is banked more or less away from wings-level flight. 

If the turn is coordinated (no side-slip and no skid), the radius of curvature 
of the turn, the airspeed, and the angle-of-bank, are related as follows. 

tan - g(4.1-1)
gR 

This equation is easily derived by reference to Fig. 4.1-2, which depicts the lift 
vector (tilted away from the vertical) of an aircraft flying away from the reader 
and turning to his left. if the-vehicle turns without slipping or skidding, the lift 

vector must be anti-parallel to the resultant of the centrifugal and gravitation forces. 

centrifugal force = Mv 2/R
 

gravitational force = Mg
 

tan ( = centrifugal force/gravitational force 
S= V2/g(4.1-1) 

If the aircraft is to maintain altitude during the turn, there is a constraint on 
the magnitude of the lift vector also. 

L cos= Mg = W (4.1-2) 
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or 

L =_/W 2 + (Mv 2/R) 2 (4.1-3) 

If the aircraft were maintaining altitude before the turn, 

L = W (before turn) (4.1-4) 

it must generate more lift during the turn in order to continue to maintain altitude. 

L = W/cos 0 (during turn) (4.1-5) 

The additional lift can be calculated by subtracting Eq. 4.1-4 from Eq. 4.1-5. 

AL = W(sec -1) (4.1-6) 

Since 

2
L =cs v 

L 2 
(4.1-7) 

the additional lift must be provided by increasing C L or v or both. In order to 

increase v, power must be added (thrust must be increased). In order to increase 

CL, the angle of attack must be increased. But, increasing the angle of attack 

increases CD and D and, therefore, requires an increase in thrust and power. A 

power limitation therefore precludes an arbitrarily small R (unless it is permissible 

to lose altitude during the turn). It is sometimes possible to negotiate a gentle 

turn, without losing altitude and without increasing power, by continually increasing 

the angle-of-attack and accepting the loss in airspeed. For moderate bank angles, 

up to 20 degrees, say, this strategy can be adopted with no or little loss in altitude. 

If the aircraft is flying near the stall speed, this strategy would not be acceptable. 

Finally, if the landing is dead-stick (engine throttles back or off), the flight 

path angle must be depressed. The tangent of the flight path angle is 

tan 0 = CD/CL (4.1-8) 

Since CD and CL are functions of angle-of-attack, we can plot angle of glide versus 

angle of attack. This function (shown for the Orbiter 245 configuration) is illustrated 

in Fig. 4.1-3. If the aircraft is flying the minimum flight-path angle on a straight 
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leg, it must steepen its flight path during a turn. The greater loss of altitude per 
unit time during a turn must be considered in trajectory planning. 

Figure 4.1-4 illustrates a family of constant-radius transition turns betwei 
the leg of heading Oi and the final approach leg of heading Of. Transition turn A is 
undesirable because the aircraft does not return to the wings-level orientation and 
fly straightuntil reaching the runwaythreshold. Transition turns like D and sharper 
turns (like E) may be undesirable because of several reasons 

1. Too great a bank angle may be required. 
2. If it is a powered landing and if it is desired to maintain altitude, too 

much power may be required. 
3. If it is a dead-stick landing, too large a sink rate may develop. 
4. If the aircraft is flying slowly, the stall margin may be violated. 

The range of permissible radii of curvature may be computed. Consider 
Fig. 4. 1-5. Suppose that Xis the minimum acceptable straight-in final approach 
to the runway. 

Then 2 =A- X (4.1-9) 

and a maximum radius of turn can be computed as shown in the figure. This leads 
to the following inequality statement for R 

R < ftan Of- 0, 1/2) (4.1-10) 

An equation for minimum radius of curvature can be computed from Eq. 4.1-1 if 
the maximum bank angle is limited. 

R > v2g tanomax (4. 1-11) 

combining Eq. 4.1-10 and 4.1-11 yields the permissible interval for R 

v/2g < <tan (lf - 0i1/2) (4.1-12) 
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Equation 4.1.12 does not take explicitly into account factors 2, 3, and 4 alluded to 

above in setting a minimum radius of curvature. As a practical matter, since approach 

speed is usually fairly consistent, these constraints can be translated into amaximum 

permissible bank angle. 

The equation of constraint on R, Eq. 4.1-12, allows a value of R to be chosen 
from the permissible interval which secures some specified advantage. Some 

examples of payoff functions that might be optimized are 

1. 	 Minimize fuel. 

2. 	 Minimize altitude lost in the dead-stick case. 

Criterion I is discussed in Reference 1. 

Other criteria may be used for choosing R from the interval. Some examples 

are 

1. 	 Use a standard bank angle, say 30 degrees. 

2. 	 Control time-of-arrival at the runway threshold. (This criterion may 

be useful for increasing the capacity of a heavily used runway - but it 
is not very applicable tb the Space Shuttle landing) 

3. 	 Help solve the vertical-control problem by losing a specified amount of 

altitude during the turn. 

This section has described some of the considerations for ground-track 
trajectory planning. Additional research on ground-track planning and vertical­

trajectory planning is under way. 

4.1.2 	Designing A Flyable Approach Trajectory 

A key concept in this chapter is the design of reference trajectories which 

are realistically flyable; i.e., trajectories whose curvature, rate of change of 

curvature, and second derivative of curvature, take into account the Space Shuttle's 

maneuver, maneuver-rate, and maneuver-acceleration limitations. In Section 4.1.1 

we discussed the bank-angle limitations on vehicle maneuvers and how these 

limitations constrain the radius of curvature of the nominal transition turn onto the 

final approach course. We must also take into account the roll-angle dynamics of 

the Space Shuttle, and design reference transition turns which do not require too 
large a rate-of-change of the radius of curvature. The ground-track traces shown 

* The curvature of a path is defined as the reciprocal of the radius of curvature of 
the path; therefore, the tangent of the bank angle, Eq. 4.1-i, is directly proportional 
to the curvature of the path. 
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inFig. 4.1-1 and 4.1-4 are examples of trajectories which are essentially"unflyable" 

because they violate this consideration. Consider the trajectory in Fig. 4.1-1. 

Between B and C the "aircraft" flies a finite-radius-of-curvature path, of radius 
R; at C, the "aircraft" instantaneously rolls out to wings-level flight and flies the 

infinite-radius-of-curvature path from C to touchdown at D. The real vehicle, unable 
to roll to wings-level flight instantaneously at C, would not acquire the final approach 

course accurately. The trouble is that the "trajectory design" in Fig. 4.1-1 did not 
take into account the roll dynamics of the vehicle, which may reasonably accurately 

be described as 

2+ u 2M=21(t) + 2tw t) .(t) c(t) (4.1-13) 

where wo, the undamped natural frequency, and , the damping ratio, are determined 

from the autopilot-vehicle-dynamics combination of the Space Shuttle system. If 

the roll dynamics are critically damped (t = 1) and #c(t) is a unit step command, 

the roll-angle response to @e(t) (the solution to Eq. 4.1-13) is 

0(M = I - e-'t(l +WO~t (4.1-14) 

We will take account of the roll dynamics and the limitations of the autopilot­

vehicle system by insisting in our trajectory design that the required lateral 

acceleration vary between that required for straight-line flight and that required 

for curvilinear flight in the manner described in Eq. 4.1-14. To be conservative 

and to ensure that the vehicle can follow the trajectory so designed, we will take 

care to use a value of woin our trajectory design which is lower than that of the 

Space Shuttle design. 

Consider Fig. 4.1-1 again. An instant before reaching point B, the "aircraft" 

is flying straight and undergoing anet centrifug acceleration of v 2 I1R with respect 
to the reference centers for the turn, the point X (X e , Y c). Upon reaching point B, 

the "aircraft" is expected to roll instantaneously to a new bank angle; to project a 

component of its lift vector into the horizontal plane, and by this abrupt maneuver 

generate enough centrifugal acceleration in the horizontal plane to cancel v2 /R. 

The idealized profile of total lateral acceleration (computed with respect to X in 

the rotating frame) is depictedinFig. 4.1-6. Also depictedin Fig. 4.1.6 is arealizable 

acceleration profile (based on a critically damped second-order response to a 

step-change command). 

In order to formulate the realizable total acceleration profile in mathematical 

terms which permit a complete specification of the trajectory, we propose the 

following model 
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(t) = A [e t1) -W(t- t1 e-(t-t1)1 
+ B
 

+ D [e-W(t 2 t) + W(t2 - t)e-"t2- t)] (4.1-15) 

It is simple to determine the values of A, B, and D which satisfy the following 

boundary conditions 

= 2/r continuity of acceleration at t1 (4.1-16) 

i(t 2 ) = 0 course constraint (4.1-17) 

= v2/r 2 continuity of acceleration at t2 (4.1-18) 

where 

tI =tB (4.1-19) 

t 2 =t C (4.1-20) 

rI = r(tI ) (4.1-21) 

= r(t 2 ) (4.1-22) 

It is Eq. 4.1-15, with A, B and D appropriately chosen, which is plotted (curve a) in 

Fig. 4.1-6. However, with only three degrees of freedom (the parameters A, B, 

and D), Eq. 4.1-15 cannot, in general, satsify 

r(t 2 ) = rD = R (4.1-23) 

as well as Eq. 4. 1-16, -17, and -18. Therefore, we add a linear term to Eq. 4. 
1-15 with an additional degree of freedom, the multiplier C. The new equation 

(defining T = t 2 - t, and E = e-W 2 - tl) for convenience) and its first and second 

integrals are: 

(t) = A[e'-W(t-t) + W(- t1) e-W(t-ti)] 

+ B
 

+ C(t - t1 ) 

" El e-W(t2-t).+ u(t 2 - t) e-W(t2 - t)] (4.1-24) 
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r1	 )= 

+ Aj[ - e W(t-ti)] /W- (t - t Ie -( i 

+ B(t - t i ) 

+ C(t - t1)2/2 

D12 [e-"t 2 -t) - r]w -ET + (t, - t)e -w(t 2 -t) J (4.1-25) 

r(t) r, + Pl(t- tI ) 

+AJI (t - t1 ) [2 + eW(t-ti)] 1w - 3 [1 - e-W(t-ti)]/w2J 

+ B (t - t1 )2/2 

+ C (t - tl)3/6 

4-	 Dj3 [e w(t2 0 - E]/w2 - ET/w - E~t - t1 )(21w+ T) 
+(t2 - t)e-w(t2- )/01 (4.1-26) 

We can now develop four linear equations of constraint for the four parameters 
A, B, C, and D. 

Combining Eq. 4.1-16 and 4.1-24 yields 

v2/r 1 = F(t 1 ) = A + B +D(E +TE) 	 (4.1-27) 

Combining Eq. 4.1-17 and Eq. 4.1-25 yields
 

0 0 r 
°A[2(1 /W-T]+ BT
 

+ CT 2 / 2 + D [2(1 - E)Iw - El'] 	 (4.1-28) 

Combining Eq. 4.1-23 and 4.1-26 yields 

- (r 1 + TI) = A[T(2 + E)w - 3(1 - E)/w2] + BT 2 /2 

CT 3 /6 + D[3(1 - E)/w 2 - 3ET/w - ETT2] (4.1-29) 

and, finally, combining Eq. 4.1-18 and 4.1-24 yields 

v 2 /r 2 = F(t 2 ) = ACE + wTE) + B + CT + D (4.1-30) 
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The solution to Eq. 4.1-27, -28, -29, and -30 is 

A r 

1T -B r 2 r 1 (4.1-31) 

C r 2 (r I + T'i) 

D 2 

where 

11 0 E +wTE 

2(1 - E)/ - TE T T 2 /2 2(1 - E)/w - ETT- 2(4.1-32)T(2 + E)/w 2 T 2 /2 T 3 /6 3(1 - E)/w 2 

-3(1 - E)/1w -3ET/O - ET 

E +wTE 1 T 1 

Trajectory planning proceeds, first, by choosing the radius and center of 
curvature for making a reference transition turn; second, by computing A, B, C, 
and D fromthe reference boundary conditions at t = t I and t 2 ; and third, by generating 

the reference trajectory F(t) and i(t) from Eq. 4.1-24 and 4.1-25 for feed-forward 
commands and r(t) from Eq. 4.1-26 for position feedback commands. 

In Chapter 2 of this report, a state estimator is described which obtains 
estimates in a runway Cartesian coordinate system. In Section 4.2 of this chapter 
the equations for computing feed-forward and feedback commands for the autopilot 

are described; they are also based on a runway Cartesian coordinate system. In 

order to generate the Cartesian coordinates of the reference ground track we must 
generate the polar coordinates of the ground track, adding a e(t) specification to 
the r(t) specification. The same kind of analysis which we have just applied to r(t) 
can be applied to 0(t). The result is 

61 
A " 


B T 1 62 - 61T (4.1-33) 

C 02 - (01 + 01 T) 

D 
 92
 

and 4(t), 6(t), and e(t) are generated from equations with the same form as those in 

Eq. 4.1-24, -25, and -26 respectively, using, of course, the A, B, C, and D from 

Eq. 4.1-33. 

4-15 



The equations which convert from polar coordinates to the runway Cartesian 

coordinates are straighlt forward. (See Fig. 4.1-7.) 

x = x + r cos 0 	 (4.1-34) 

y = Y + r sin e 	 (4.1-35) 

= i 	 cos 9 - rO sina (4.1-36) 

Y isinO +r6cosO 	 (4.1-37) 

rr 62 ) cosO - (2i4+ rg) sine 	 (4.1-38) 

- r 6	 2 ) sino+(20+r)cosO (4.1-39) 

The boundary conditions for Eq. 4.1-25 and Eq. 4.1-26 are chosen as follows. 

V2/r (4.1-40) 

(4.1-41)2 	 =0 

= v 2 Ir 1 (4.1-42) 

-v =T 1 w+[(T w)2 w2+v2]1/2 (4.1-43) 

_v 2 = T 2 .w_+ [(1 2 " w)2_ w2 v 2] 1/2 (4.1-44) 

041 = 0 (4.1-45) 

(4.1-46)6l = v1Ir 1 

62 = (4.1-47)v 2 1r 2 

g2 = 0 (4.1-48) 

and (r 1 , 01), (r 2 , 62) are specified by the ground-track planning program. Equations 

4.1-43 and 4.1-44 require some explanation. The vector M1 is a unit vector in the 

direction of the straight-line course approaching the transition turn; it is the direction 

of segment A-B in Fig. 4.1-1. The vector T 2 is the- analogous vector for segment 

C-D in Fig. 4.1-1. Since we do not want to constrain ground speed (there is a 

constraint on ground track but not on the rate of progress along that track), vI and 

v2 ' the ground speeds along the tracks T 1 and T2 are computed from the estimated 

wind velocity, w, and the desired airspeed, va. Equations 4.1-43 and 4.1-44 are 

derived in Section 4.2. 

We have in this section described ground-track trajectory planning and 

reference-trajectory generation for accurate course following and course acquisition. 

We have deferred the discussion of wind compensation to the next section, 4.2. 
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4.2 Guidance along the Approach Trajectory 

In this subsection we attempt to define guidance laws that will enable the space 

shuttle vehicle to follow a specified approach trajectory. Inthe preceeding subsection, 

a way of defining approach ground-track trajectories in terms of straight-line 

segments and curvilinear transitions was presented. Inasmuch as other types of 

approach trajectorie§ might be ultimately selected as best suited for the orbiter 

vehicle, we shall seek guidance laws that would be applicable to any type of trajectory, 

assuming onlythat thetrajectory has been selected so as tonot require unreasonable 

or unrealizable control actions. It will be more convenient in this subsection to 

consider trajectories specified in terms of arc length as a parameter rather than 

time. Control in time along the trajectorywill not ordinarily be of interest, although 

it might be advisable during turning maneuvers in order to simplify the guidance 

problem. We shall consider in particular the powered-flight case, although several 

of the results would be applicable to the engines-off approach problem. 

Both feed-forward or open-loop guidance and feedback are required if the 

specified approach trajectories are to be followed accurately. Feed-forward guidance 

is required so that the vehicle will begin maneuvers at the proper time without 

waiting for position errors to develop. Feedback is required to correct for wind 

gusts and wind shear, errors in the estimated mean wind and vehicle state, and 

inaccuracies in modeling the control system and vehicle response to open-loop 

commands. 

4.2.1 Feed-forward Guidance 

In developing feed-forward guidance laws one tries to answer the question: , 

Given a desired flyable trajectory, given that the vehicle is initially positioned on 

the trajectorywith the proper velocity, acceleration, roll, pitch, and yaw, and given 

estimates of the current wind components as one proceeds, what should the 

control-system signals be in order to enable the vehicle to fly along the trajectory 

as accurately as possible in the absence of any further information about the vehicle 

state? If accurate wind estimates are available and if satisfactory feed-forward 

guidance laws can be developed, then the feedback system should have to correct 

only for relatively small errors. 

One method for developing feed-forward guidance laws is suggested by the 

fact that, at any given point along the trajectory, the required velocity and acceleration 

with respect to a ground-fixed coordinate frame for remaining on the trajectory is 

completely determined by the trajectory direction cosines and curvature and by the 
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vehicle's speed with respect to the ground. The required heading and pitch angle 
of the velocityvector as measured with respect tothe ground can be easily calculated. 
Furthermore, if a steady wind is present which translates the vehicle at a constant 
known velocity, it is easy to calculate the required heading and pitch angle of the 
velocityvector as measured with respect to the moving air mass. This information 

togetherwith some assumptions about thevehicle's sideslip angle and angle of attack 
is sufficient to determine the relevant state parameters. !Certain of the state 
parameters (e.g., roll, roll rate) for this imaginaryvehicle could then be fed forward 
into the actual-vehicle control system as explicitly commanded quantities. 

In an actual case, of course, the wind is neither steady nor known, and the 
procedure must be modified. We assume that the translational velocity of the aircraft 

due to wind can be modeled as a nonstationary, vector random process with a mean 
value that varies slowly in time. Furthermore, we assume that the navigation filter 
will be able to provide reasonably accurate estimates of the components of the mean 
translational velocity due to wind. Open-loop control system signals can then be 
derived by solving for the state of an imaginary vehicle which moves along the 
given trajectory in a constant wind equivalent to the estimated mean wind at that 

time. 

We shall refer to this hypothetical vehicle which moves along the given 
trajectory exactly as the reference vehicle. In addition to providing a reference 
for calculating feed-forward guidance commands, it will serve as a reference for 
the feedback system as we shall see in subsection 4.2.2 below. 

Let us suppose that we would like to utilize wind estimates to obtain feed-forward 

control-system commands which will enable the vehicle to fly with given airspeed 
v a along a given trajectory as accurately as possible. In order to implement the 
above strategy, we must first obtain equations for the velocity, acceleration, and 
attitude of a reference vehicle at some arbitrary point along the trajectory in a 
constant wind field. 

The velocity and acceleration of the reference vehicle can be expressed as 
functions of the vehicle velocity due to wind w, the airspeed va' and quantities 
describing the curve at the arbitrary point. Let us suppose that the curve is given 
in terms of the arc-length parameter s as measured from some origin. Any point 
along the curve may then be specified by the vector r(s): 

r(s) = x(s)i + y(s)j + z(s)k (4.2-1) 
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where i, j_ and k are unit vectors in the ground-fixed x, y, and z directions, 

respectively. The velocity and acceleration are found by differentiating: 

v = L ds dsJ + dJ (4.2-2) 
jE- ds- dkds-1 

a = i + + dzd - + -I 

d2-2 dd2x. d2 ]+ 	 21 EXi2p + k (4.2-3)
Lds ds dsJ 

One can express these equations in a somewhat more compact form by making use 

of some notation commonly used in differential geometry. 2 The partial derivatives 

dx/ds, dy/ds, and dz/ds will be recognized as the direction cosines of the curve, 

and the bracketed factor in Eq. 4.2-2 is a unit vector T tangent to the curve. In 

Eq. 4.2-3, the bracketed quantity in the second term can be shown to be directed 

along a unit vector N, the principal normal to the curve, and to have magnitude 

equal to the curvature x. Making these substitutions and noting that s = v, we obtain 

v = vT 	 (4.2-4) 

a =&T +v 2 KN 	 (4.2-5) 

It remains to find an expression for v and + in terms of the vehicle velocity due to 

wind w., the airspeed va, and its rate of change 4 a" This can be accomplished by 

noting that the total velocity of the vehicle is the sum of the velocity due to the 

wind w and the velocity vector relative to the moving air mass va Thus. 

v - w = v 	 (4.2-6)-a 

which can be squared to obtain 

2v 2 -2T wv+w 2 =v	 (4.2-7)a 

The 	solution is 

v T.w (T_.w)22 w2]+v /2 	 (4.2-8) 

where the plus sign is chosen for the radical so that v approaches +va when the 

wind vanishes. This equation simply states that the total velocity along the trajectory 

is the sum of the projection of w along the trajectory and the projection of va along 

the trajectory. An equation for i can be obtained by differentiating (note that P = 

KvN): v(N- w)(T- W) + vaz a" =KvN.w + va2va/ (4.2-9) 
2 _ w 2 + V 1(Tw)
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The velocity and acceleration of the reference vehicle moving along the trajectory 

at any specified airspeed in a constant wind field can now be found by substituting 

Eq. 4.2-8 and 4.2-9 into Eq. 4.2-4 and 4.2-5. 

Alternatively, the airspeed va and its rate of change ra can be written as a 

function of the velocity measured with respect to the ground. In some situations it 

is more convenient to specify a ground-track velocity and vary the airspeed 

accordingly. For reference, let us include these expressions. 

[v 2 1 / 2  V = - 2 vT.w + w2 (4.2-10) 

vv - vT-w -Kv 2N-w 
Va = 2- 2 2]/2 (4.2-11) 

Next we seek expressions for the attitude of the reference vehicle, given the 

trajectory and some assumptions about the sideslip angle and the angle of attack. 

We assume that vehicle turns are coordinated such that the sideslip angle is always 

zero. Let us assume for the time being that the angle of attack is also zero. We 

can then determine not only the pitch and yaw angles of the vehicle, but also the 

roll angle. 

The pitch angle o and yaw angle 0 for this case are shown in Fig. 4.2-1. 

Since sideslip angle and angle of attack are zero, the vehicle is aligned along the 

airspeed vector v a. One has 

V - w 

tan = Y Y (4.2-12) 
x x 

V -W 

sin -- vz z (4.2-13) 
V 

a 

where v. and w. indicate the i t h component of the vectors v and w.1 1 

These equations express the well-known fact that, in order to follow a given 

path in space, vehicle heading and pitch must be adjusted to compensate for the 

wind. 

An expression for the roll angle 0 can be obtained as aresult of the requirement 

that turns be coordinated. The lateral equation of motion in body coordinates is in 

general 

+ rU - pW - g sin4 cos & =>Y/m (4.2-14) 
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,here U, V, and W are the components of the airspeed in the x, y and z body axes, 

espectively, p is the x-component of the angular -velocity vector, r is the z-component 

f the angular velocity vector, Y represents assorted forces acting on the vehicle 

a the y-direction (except gravity which has been explicitly included) and m is the 

aass. As a result of the above assumptions concerning sideslip angle and angle of 

ttack, V and W are zero. Since the wind field is constant and since there are no 

erodynamic or thrust forces acting laterally, the right-hand side of Eq. 4.2-14 

aust vanish. As a result one has 

rva - g sin q cos 0= 0 	 (4.2-15) 

ut it is also true that 

r sin4 + cos 0 cos 0 	 (4.2-16) 

;liminating r, one finds 

tan 4 = a o (4.2-17) 
g cos 0 + Vao 

'or horizontal flight this reduces to the familiar coordinated-turn expression 

tan J 	 (4.2-18) 

The required roll angle can thus be calculated from 6, 4, and 0. The latter two 

Luantities can be obtained by differentiating Eq. 4.2-12 and 4.2-13: 

(v - Wx)ay - (vy - wy)a 	 (4.2-19)x 


2
 
-w x)2 + (vy- wy)(vx 


S 	 . (Vz - wz)a a z (4.2-20) 
w.)2 +(vy _wy)2I2v avw x 

The attitude of a vehicle moving along the trajectory at constant airspeed in 

constant-wind field with zero sideslip angle and zero angle of attack is thus given 

)y Eq. 4.2-12, 4.2-13 and 4.2-17, with the use of Eq. 4.2-19 and 4.2-20. 

Feed-forward control-system commands can now be obtained in real time by 

idvancing the reference vehicle along the desired trajectory with a velocity given 

)y Eq. 4.2-8, and then calculating the reference-vehicle state using the above 
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equations. Whenever components of wind are required in the equations, the estimated 

wind components are used. Certain of the reference-vehicle state parameters (for 

example, roll angle, vertical velocity) are then fed into the actual-vehicle control 

system as explicitly commanded quantities. The actual quantities fed forward will 

depend on the control-system configuration. 

The problem with the above procedure is that no account has been taken of 

the actual-vehicle response characteristics. A commanded quantity is not obtained 

instantaneously as required for accurate trajectory following. Considerable position 

errors can develop even when the trajectory has been carefully designed to be flyable. 

This difficulty can be resolved if the vehicle response characteristics are 

known and can be modeled. The combined autopilot-aircraft response to a commanded 

roll angle 0c, for example, is often assumed to be given by the second-order transfer 

function 
2Ce s+2 WO¢s+ (4.2-21) 

or the equivalent differential equation 

-42w#4, +w~# Q=O (4.2-22) 

If the desired response is 0(t) as calculated from Eq. 4.2-17, then the command 

to control system which compensates for the vehicle lag is just 

24 1 (4.2-23) 

The required derivations #(t) and M(t)can be obtained bynumerically differentiating 

the desired roll-angle profile 0(t). 

Let us give some examples to illustrate the use of these equations. 

Some plots of roll angle calculated from Eq. 4.2-17 for level flight at constant 

airspeed on a constant-radius turn with various wind speeds are shown in Fig. 4.2-2. 

These plots give an indication of the increment in roll angle required to compensate 

for the wind. Trajectories must be planned so that the roll angle will not exceed 

design limits, even under extreme wind conditions, as mentioned in subsection 4.1 

above. 

Some plots of roll angle for the same turn calculated for flight along a curvilinear 

transition of the type discussed in the previous subsection (with w = 1 rad/sec) are 
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shown 	in Fig. 4 .2-3c. The difference in radial distance between these trajectories 
and the constant radius trajectoryis shown in Fig.4. 2-3a. The airspeed is constant 

before and after the turn, but is allowed to vary during the turn as shown in Fig. 
4.2-3b. The boundary conditions are met and the required roll anglevaries smoothly 

through the turn as desired. 

The ability of equations like Eq. 4.3-23 to compensate for actual-vehicle 

response characteristics was investigated by simulating on the computer (an XDS 
9300) 	the flight of a model vehicle through a right-angle turn. The model vehicle 
has second-order roll-command characteristics as given by Eq. 4.2-21 and 4.2-22 

with 1.2 and wo = 1.8 rad/s, and first-order airspeed-commafid characteristics 
with a time constant of 1.0 s. A first-order equation corresponding to Eq. 4.2-23 

was used to calculate the commanded airspeed. Limits were imposed on the ability 

of the 	model vehicle to follow roll-angle commands as follows 

10I model < 40 deg 

I*Imodel< 10 deg/s 
2
 

Imodel< 10 deg/s
 

Three 	types of trajectories were then used to make the right-angle turn: 

1. 	 A constant-radius trajectory with a 7000-ft radius of curvature and 

278-ft/s airspeed as shown in Fig. 4.2-2. 
2. 	 A curvilinear transition trajectory such as that illustrated in Fig. 4.2-3 

withw = rad/s. 

3. 	 A similar curvilinear transition trajectory with w = 0.5 rad/s. 

Three different constant wind conditions were investigated (wy = 0, 50, and 100 
ft/s, respectively). Position error was defined- to be the difference between the 
reference-vehicle and model-vehicle positions. Trajectory-following accuracy was 

evaluated by calculating both the rms three-dimensional position error erms through 

the turn, and the lateral position error ey at the completion of the turn. 

The results are shown in Table 4.2-. Large errors develop when the 

constant-radius trajectory is flown because of the limits imposed on vehicle response. 

The transition-type trajectory with w = I rad/s works well in the absence of wind, 
but otherwise requires maneuvers in excess of vehicle limits; and objectionable 
errors develop. By increasing the time constant on this type of trajectory (W)= 0.5 

rad/ s), a situation is reached in which the trajectory-following ability of the guidance 

laws is quite satisfactory. The results presented in this table indicate that guidance 
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Table 4.2-1 

Position Errors as a Function of Wind and Type of Trajectory; 

Type 

of 

Trajectory 

Constant Radius 

Transition Type 
= 1 rad/s 

Transition Type 

w = 0.5 rad/s 

900 Turn 

Wind 

(ft/s) 

0. 
50: 


100. 


0. 
50. 

100. 


0. 

50. 

100. 

Terminal 

e erms y
 
(ft) (ft)
 

359.7 -488.3 
520.2 -697.5
 

717.3 -980.0 

3.2 0.6 
78.7 -107.6 

242.1 -334.5
 

3.4 8.5 

6.2 6.1 

6.9 16.3 
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laws of the type presented in this section are able to ensure accurate trajectory 
following as long as the trajectory does not require maneuvers beyond vehicle limits, 
and as long as the winds and vehicle response characteristics are known. 

Some modifications to the above equations should be made when the angle of 
attack is nonzero. The situation is shown in Fig. 4.2-4 with a negative roll angle. 
When the angle of attack a is small, the modified heading and pitch angle can be 
written: 

0* = 0 + a sin (4.2-24) 

0* = O+ a cos 9 (4.2-25) 

Modifications to the roll-angle calculation can also be made, but Eq. 4.2-17 is probably 
accurate enough for our purpose. 

Reference-vehicle state parameters other than those calculated above can be 
obtainedin like fashionif required bythe control system. For example, innegotiating 
a turn at constant airspeed, the angle of attack must be increased to increase the 
lift and prevent the vehicle from losing altitude. The thrust nust be increased to 
balance the drag caused by the increased angle of attack. If the lift and drag 
coefficients are known explicitly as functions of the angle of attack, then the required 
increase in angle. of attack and thrust can be calculated and fed forward into the 
vehicle control system. 

Two advantageous features of the type of feed-forward guidance discussed in 
this section should be pointed out. First, the equations are applicable to any type 
of trajectory providing only that the derivatives of the trajectory as required in 
Eq. 4.2-2 and 4.2-3 exist and can be calculated. Mode switching is not required in 
the guidance laws,. although it may occur in the course of defining the trajectory. 
Second, the compensation for the wind takes place in a uniform fashion throughout 
the course of the trajectory. For example, the same procedure is used during 
curved portions of the trajectory as on straight portions. 

4.2.2 Feedback 

The purpose of feedback in the guidance equations is to correct for position 
errors that develop due to inaccuracies in the feed-forward guidance commands, 
wind gusts, navigation errors, and so forth. Position errors with respect to the 
reference vehicle must be kept small if the feed-forward guidance is to function 

properly. 
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Closed-loop control-system signals are obtained by adding to the open-loop 
signals terms proportional to the difference between reference-vehicle position and 
estimated actual-vehicle position, resolved in a suitable set of coordinate axes. 
One logical choice for the axes would be the actual-vehicle coordinate system, since­
the maneuvers required to correct the errors are separable in a convenient fashion. 

Errors in y-position are corrected by adding a feedback term to the commanded 
roll angle. Errors in z-position are corrected by adding a feedback term to the 

commanded pitch angle, or vertical velocity. Errors inx-position are best corrected 
by adding a feedback term to the reference-vehicle airspeed, inasmuch as it is 
likely that only lateral tracking accuracy with respect to the desired trajectory 
will be required for the orbiter vehicle. This avoids the need for any throttle 

variations in the actual vehicle due to longitudinal position errors. 

The use of lateral position-error signals in the .actual-vehicle control system 
will be discussed further in Chapter 5. 

4.3 Flare Guidance Laws 

A variety of flare-guidance laws have been proposed and a fair percentage of 
these have been flight-tested. One commonly used flare law programs descent rate 
as an exponential function of altitude (the descent rate decays exponentially to zero 
at an altitude reference plane belowthe runwayplane). The Air Force has flight-tested 
alaw which commands a small (about 1 degree) flight-path angle at the flare-initiation 

altitude. Reference 3 gives a law presently being simulated at NASA/MSC. This 
section gives a guidance law derived at MIT/DL which allows an arbitrary amount 
of shaping of a flare reference trajectory which satisfies the boundary conditions 
of matching the vehicle's state at the flare-initiation altitude and matching the desired 

terminal boundary conditions. Furthermore, this law limits the value of the terminal 
total acceleration which results in constraining the terminal attitude and crab angle 
of the aircraft. Because it is desirable to have the aircraft touch down before 

passing the flare-antenna location, the intersection of the flare path with the runway 
should be constrained thus 

r2 = 500 i +o+Ok (ft) (4.3-1) 

y 2 = 160i+ 0j + 2k (ftls) (4.3-2) 

might represent a reasonable touchdown boundary condition (located 500 feet before 
the flare antenna). 
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These equations are derived very much in the spirit of Reference 4. However, 

they are used to generate a reference trajectory for position feedback and the 

derivatives of the reference trajectory for position feed-forward signals. Unlike 

the application of Reference 4 to Apollo, the reference trajectory will not be 

periodically re-computed. 

The boundary-value statement of the flare problem is 

Given: r(t 1 ), V~t1 ), T = t 2 - ti 

Find P(t) such that 

r(t2) = id (for example, Eq. 4.3.1) 

v(t 2 ) = y (for example, Eq. 4.3.2) 

(t 2 ) = Y d 

A solution to this problem is 

(t) = a+b(t2 

k 

- t) + 
n-i 

R ffn (t) (4.3-3) 

where 

.a= 4 (Y2 -_Vl)/T - 6 (r 2 - r1 - Tv1)/T 2 (4.3-4) 

b = 6 (v 2 - Vl)/T2 + 12 (K2 - K1 - Tv 1 )/T 3 (4.3-5) 

fn(t ) = (t2 _ t)n- - 2 (n + 2) (t 2 -t)n/nT 

+ (n + 2) (n + 3) (t2 - t)n+/n(n + I)T 2 (4.3-6) 

The fn(t) are interesting because 

t2 fn t) dt = 0 (4.3-7) 

tI •
 

ft 2 [ft fn(s) ds] dt = 0 (4.3-8) 

tI t1I
 

and, therefore, the iinEq. 4.3-3 are arbitrary (they have no effect onthe achievement 

of the terminal boundary conditions) and may be used to shape and optimize the 

flare trajectory. The reference trajectory generated by Eq. 4.3-3, -4, and -5 is 
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r(t) = I + (t - t1)vI +a(t - 1)2/2 

+bIT2 (t - tQ)/2 -T 3 /6 + (t 2 - t)3/6] 

k 
+ c t)n+l /n(n - ­gn[(t2 + 1) 2(t 2 t)n+2/n(n + 1)T 

n = t) 

+ 	(t 2 - t)n+3/n (n + I)T21 (4.3-9) 

x(t) = ri +a(-t t 1) + b [T2/2 - (t 2 - t ) 2 /2]
 

k
 
+ 	 I c[- t 2 - t)n/n + 2 (n+ 2) (t2 - t)n+l/n (n P 1)T 

n l 

-	 (n + 3) (t2 - t)n+2 /n (n + I)T 2 ] (4.3-10) 

Since 	all the fi(t) except fl(t) are zero for t = t 2, we have 

i(t 2 ) 	 =a+ Ll 

Hence, if 

c 1 = _t 2 )- a 

we can specify the terminal acceleration 

i(t 2 ) 	 = :d 

As a practical matter, the higher-order f.(t) will not beused. It is interesting 
to note, however, that any trajectory that satisfies the boundary conditions can be 
developed by the expressions given here; in other words, the fi(t), if a sufficient 
number of them are used, can span function space. 

In resolving the errors in..following the reference trajectory, the error along 
the path can be ignored and time-of-touchdown not constrained. 
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CHAPTER 5
 

APPLICATIONS OF OPTIMIZATION THEORY
 
TO SPACE SHUTTLE TRAJECTORY CONTROL
 

IN THE SUBSONIC REGIME
 

by
 

Duncan MacKinnon
 

and
 

Paul Madden
 

5.1 Introduction 

During the subsonic phase of the return to earth, the Space Shuttle will be 
guided with respectto atrajectory which returns itto the terminal area and, ultimately, 
to the runway. Guidance relative to the reference trajectory presents the system 
analyst with problems quite distinct from trajectory synthesis. A control system 
is required which operates on the position, velocity, and acceleration errors between 
the simplified vehicle model and the actual shuttle, producing effector commands. 
which tend to minimize the error magnitudes. Such a control system is generally 
a linear transformation, which may include dynamics. This chapter discusses energy 
and accuracy considerations associated with the design of the feedback path..control 
system and computer-oriented synthesis procedures based on parameter optimization 

theory.
 

The design procedures are illustrated by application to the vertical and lateral 
position control system of a transport aircraft, the Convair 880 described in 

Appendixes B and C. 

5.1.1 Trajectory Control System Requirements for Subsonic Flight 

The requirements for trajectory control in the subsonic flight regime are 
outlined in Table 5.1-I. At Mach numbers between 1.0 and 0.3, thevehicle is guided 
relative to a trajectory which satisfies minimal fuel and maximum range 
considerations discussed in Section 3.1. At lower velocities the shuttle is assumed 

to be in the approach-and-landing configuration. 
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Sensitivity, analyses . provide bi 'is for path control system accuracy 
requirements for both flight velocity.reg4mg4ccuracy requirements between Mach 
1.0 and 0.3 will undoubtedly be less stringent than the trajectory precision necessary 
during final approach and automatic landing. 

Table 5.1-I
 
Control System Requirements for Subsonic Flight Regimes
 

Velocity Desirable Qualities

(MachNo.)
 

1.0-0.3 Moderate precision guidance relative to range optimal 
trajectories
 

Minimization of control energy a prime consideration 

0.3-0.0 High precision guidance 
(approach


and landing) All-weather approach and landing capability
Control energy minimization a secondary consideration 

What is the price of accurate guidance? Accurate guidance demands higher 
feedback gains. As a result, effector response to disturbing atmospheric phenomena 
and sensor noise is increased. This results in increased expenditures of fuel, an 
expensive shuttle commodity. It seems reasonable, therefore, to perform a study 
that will lead to the minimization of effector control energy while, still satisfying 
path accuracy requirements in a worst-case environment. The study should result 
-in the description of the required vehicle effectors and the control laws associating 
the effector commands with the trajectory errors. 

5.2 Stochastic Control System Design Using Parameter Optimization 

An outstanding problem associated with the design of aerodynamic vehicle 
control systems is the large number of parameters which commonly define the control 
law. This complexity is a result of the number of available feedback variables and 
a variety of effectors. Such multiplicity results in an extremely tedious design 
process if conventional cut-and-try procedures are applied. To circumvent this 
difficulty, systematic parameter optimization techniques are utilized. The solutions 
generated by parameter optimization are optimal -kith respect to the selected 
performance index. By suitably scanning the performance index basic performance 
limitations associated with the selected control law structure, effector size and 
type, and control energy limits may be identified. Such information is extremely 
valuable at this stage of the space shuttle program since it can lead to vehicle 
modifications which will improve overall performance. 
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The following sections will introduce methods for determining the behavior 
of a physical system subject to stochastic disturbances, formulate a parameter 

optimization problem, and investigate the necessary conditions for the existence of 
an optimal solution. 

Unlike the linear optimal control approach,(1, 2, 3) the parameter 
optimization techniques will not require the measurement or estimation of all the 

elements of the state vector of the vehicle and its control system, nor precise 

knowledge of the time history of environmental disturbances. 

5.2.1 Response of a Linear System to Stochastic Inputs 

In order to facilitate this analysis, the characteristics of the response of a 
linear system to stochastic inputs must be delineated mathematically. Consider 

the system of linear differential equations 

= Fx + Gu (5.2-1) 

wherexis a vector describing the state of the system, and u is a vector of Gaussian 
white noise inputs; u is assumed to be uncorrelated with the state x. The matrix F 
describes the structure of the system, while the matrix G indicates the manner in 

which the distrubances act on the system. 

The covariance matrix X of x is defined by the relationship 

X = E(xx') (5.2-2) 

where E is the mathematical expectation operator. It is apparent that X is a symmetric 

matrix, a property which may be used advantageously in computations. 

The value of X satisfies the matrix differential equation 

X =FX+XF'+GQG' (5.2-3) 

subject to the boundary condition 

X(O)= X0 (5.2-4) 

where X 0 is the value of X at t = 0. 
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Of prime interest in control system investigations are time-invariant or 

stationar systems. A linear system of the form (Eq. 5.2-1) is time-invariant if 

the matrices F and G are constant. If the system is time-invariant and asymptotically 

stable, and if the correlation matrix Q is also constant, the matrix X will approach 

a constant as t -4-a'. This implies that the derivative _ of X vanishes as t -* r or 

that the final value of X satisfies the set of linear algebraic equations. (4 ) 

FX + XF' + GQG' = 0 (5.2-5) 

The process is then said to be statistically stationary in the limit t--o . 

The solution of 5.2-5 is conveniently obtained by transformation to a set of 

ordinary linear algebraic equations which are then solved using any one of a multitude 

of standard techniques. 

Since the diagonal terms of X represent the mean-square values of the state 

elements responding to the istochastic disturbance, X provides the basis for 

formulating an optimization problem which leads to the minimization of system 

response to stochastic inputs subject to penalties on the expended control energy. 

5.2.2 Problem Formulation for Stochastic Response Minimization 

Let the performance index, J, be defined as a linear combination of the diagonal 

elements of the covariance matrix, X. Such a performance index may be expressed 

in the form 

n 

J = ai xii (5.2-6) 
i=1, 1 1 

where 

> 0 i =1,n (5.2-7)a i 

The elements of a are selected to reflect the control goal. For example, the 

association of nonzero values of a. with the trajectory error and the effector output1 

results in a solution which minimizes the mean-square value of the trajectory error 

subject to a penalty on effector activity. 

Such an assumption is valid over a small range of vehicle velocities. Each speed 
regime must be investigated separately and control system parameter values suitably 
scheduled. 
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For analytical purposes 5.2-6 is conveniently expressed in the equivalent form 

J = trace CX (5.2-8) 

where n 

trace CX. > (CX) (5.2-9) 
i=1 ii 

and 

c 0 i = (5.2-10)lJai i jj 

If it is assumed that the system of Eq. 5.2-1 are stationary so that X is the 
solution of 5. 2-5,the optimization problem may be described 

Definition of the Problem: 

Find a set of parameters, p, which minimizes the performance index 

J = trace CX (5.2-11) 

subject to the constraint 

FX + XF' + GQG' = 0 (5.2-12) 

where 

p is vector of adjustable parameters 

F is a matrix which is a function of the parameter vector, p 
X is the covariance matrix of the system state vector x 

Q is the covariance matrix of the white noise process, u 
G is a matrix specifying the coupling between the system and the 

stochastic disturbance vector, u. 

5.2.3 The First Necessary Condition for the Existence of a Weak Relative Minimum 

In the calculus of functions of a single variable, the necessary condition for a 
weak relative minimum is the vanishing of the first derivative of the function with 

respect to the variable. In the case of functionals such as 
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J = trace CX (5.2-13) 

the general concept of a derivative can be extended using the Calculus of Variations. 

A parameter value popt is said to produce a weak relative minimum if the 

change in J for small perturbations, Sp, in popt satisfies the following inequality: 

J(Pot + p)_> J(Popt) (5.2-14) 

The necessary condition for the existence of a weak relative minimum in J may be 

deduced by expanding the perturbation 6J due to 6p in a Taylor's series. 

6J = 6p'Jp + higher-order terms in Sp (5.2-15) 

The notation Jp signifies the gradient of J with respect to the elements of p. 

pp
 

= " (5.2-16) 
p pa i 

If &p is sufficiently small, the higher-order terms in Sp may be neglected and 6J 

approximated by 

6J = &p'J . (5.2-17) 

In order to satisfy the inequality it is apparent that Jp must vanish for p = popl" 

Jp(Popt) = 0 (5.2-18) 

This condition is called the First Necessary Condition of the Calculus of Variations. 

5.2.4 The Canonical Equations of the First Variation 

In the problem defined in Section 5.2.2 the minimization of the performance 

index is carried out subject to the constraint imposed by the system dynamics in 

Section 5.2.1. These restrictions may be introduced byadjoiningthe constraints to 

the performance index through the artifice of a Lagrange Multiplier Matrix, P. (5) 

The performance index is then written 
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J = trace [CX+P FX+Xr' +GQGI] (5.2-19) 

The first variation in the performance index may then be written by considering 

perturbations in P, X, and p. 

SJ =trace &P F+ XF' + GQG'] 

+ trace 6X C + PF + FIP] 

+trace > 26piPXiF' (5.2-20)i=1l 8Pi1 

The last term may be identified as 

Op'Jp = trace > 26piPX AF (5.2-21)
Si=l Pi 

where each element of the vector J is defined 

a =- J (5.2-22) 

= trace 2PX-1- F' (5.2-23) 

Since thematrices -k F are relatively easy to compute, Eq. 5.2-23 provides
api
 

a convenient basis for evaluating the gradient, Jp, of the performance index. 

In order for the first variation to vanish with respect to arbitrary perturbations 

in Sp, 6X, and 5F, the following set of Canonical Equations of the First Variation 

must be satisfied. 

Canonical Equations of the First Variation 

FX + XF' + GQG' = 0 (5.2-24) 

PF + F'P + C = 0 (5.2-25) 

J = 0 (5.2-26) 

5.2.5 Satisfaction of the Necessary Conditions 

The generation of weak relative minima is accomplished by a series of 

systematic operations which lead to a solution of the Canonical Equations. 
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Simultaneous solution of Eq. 5.2-24 to -26 is generally not attempted; however, 

Eq. 5.2-24 to -25 is usually satisfied at each iteration. A description of the more 

common parameter optimization algorithms is found in Appendix A with an illus­

trative example. 

5.3 Optimization of a Vertical Positon Control System 

Precision vertical guidance for the Space Shuttle is particularly important 

during the terminal phases of approach and landing. Beyond the terminal area, 

where accuracy is not a prime consideration, it is important to make the best use 

of the available control energy to minimize the fuel consumed in trajectory realization. 

This section considers the optimization of vertical-control-system trajectory 

accuracy subject to penalties on control-effector activity. Vertical-control-system 

configurations utilizing elevators and direct-lift spoilers are explored using 

parameter optimization techniques and some simulation results are presented. 

5.3.1 Vertical Trajectory Control 

The vertical velocity, i, of an aerodynamic vehicle is related to the path velocity 

vp, the angle of attack a, and the pitch angle & by the equation 

Z vp [a-eJ (5.3-1) 

for small angles. The i may be modified by changing any combination of the variables 

a, 0, and vp. In conventional systems the velocity Vp is normally held constant by 

the airspeed control system or autothrottle. This convention will be adopted in 

this investigation. The vertical-control variables are thus 0 and a. 

The conventional method of achieving trajectory control utilizes the vehicle 
7 ) elevators' The elevators produce a pitching moment about the y body axis. 

Control of 0 is achieved by varying the pitching moment produced by the elevators. 

In order to satisfy the equation of static equilibrium, the aircraft weight W must 

balance the vertical component of lift L in the steady state. 

L cos [0-a] = W (5.3-2) 

Thus a change in a is required if e is changed. Since the airspeed v is constant, 
p

the change in lift is produced by a change in the angle of attack, a. The change is 

approximately proportional to the pitch perturbation 

a= K., a (5.3-3) 
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where Kae is a positive constant less than unity in magnitude. Combining 5.3-3 
and 5.3-1 gives 

z Vp[Ka0- 1]0 (5.3-4) 

Since IKaej < 1, the steady-state change in vertical velocity is proportional to the 

negative value of 0. 

Another useful effector for vertical trajectory control is the direct-lift 
3 

'Aspoiler. 2 , spoiler is generally a plate hinged at its leading edge to the top 

surface of the wing. When retracted, the spoiler is flush with the normal surface 

of the wing and has no effect. When extended, the spoiler disturbs-the airflow over 

the wing, reducing the coefficient of lift. Since v is constant, the lift is also reduced.p 
This reduction in lift is countered by an -increasein angle of attack which is roughly. 

proportional to the spoiler deflection, 6s 

z Kass 6s (5.3-5) 

Since the spoiler, correctly placed, produces very little pitching moment. 0 

remains essentially unchanged; and since v is constant, the change in angle ofp 
attack must produce a change in . Assuming 0 = 0, the static relationship for £ 

becomes 

VpKa s 6s (5.3-6) 

In a control system the average deflection of the direct-lift spoilers is maintained 

at a fraction of the maximum spoiler range to permit positive and negative corrections 

in vertical velocity. 

The range of 0 is approximately ±6.0 degrees in the approach and landing phases; 

thus, pitch-angle control can produce rather large changes in vertical velocity as 

opposed to the rather small changes which can be achieved by direct-lift mode- spoiler 
actuation. Direct-lift spoilers do offer the advantage of fast response. Thus, a 

vertical-position control system using direct-lift spoilers can cope more effectively 
with high-frequency components in the stochastic environment. Direct-lift spoilers 

also put the correcting force where the disturbance acts, thereby reducing str-i+,,ral 

loads. 

It seems reasonable to attempt to combine the desirable properties of pitch 

angle and direct-lift spoiler control by using pitch attitude to effect gross changes 
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in trajectory while the direct-lift spoilers are used to counter high-frequency 

environmental disturbances. This goal may be achieved by using a control law 

which operates on z, , 0,0 and q to produce elevator and spoiler commands 

simultaneously. The spoiler command is then passed through a high-pass filter 

which removes the low-frequency components which characterize gross changes in 

vertical path. 

5.3.2 Vertical Trajectory Control System Structure 

- The control laws for the elevator and direct-lift spoiler inputs were assumed 

to be of fixed structure. The structure does not necessarily represent the 

configuration of the final control system but indicates how a structurally similar 

conventional system may be improved by the addition of direct-lift spoilers and 

parameter optimization. The elevator servo command 6ec of the form 

6 ec = plz + p2 ' + p3 E + P4 e + p 5 q (5.3-7) 

The elevator control loop can provide vertical-control and/or pitch-attitude 

stabilization. The high-pass spoiler-command filter is assumed to have the form 

ja' 
jW+ of (5.3-8) 

where wf is a constant. If cof is sufficiently small (less than 0.1 rad/s), the filter 

will have negligible effect on the response of the system to stochastic disturbances 

and may be omitted from the analysis for the moment. The direct-lift spoiler servo 

input is 

Ssc = P6z + P7i + P8z (5.3-9) 

z, z, and 2 are perturbations in vertical position, velocity, and acceleration. The 

pitch rate, q, and angle, 0, do not appear in 5.3-9 because the spoilers are assumed 

to produce a very small pitching moment on the vehicle. 

The feedback variables z, , and E represent perturbations from the desired 

trajectory discussed in Chapters 3 and 4. The perturbations are measured by the 

integrated IMU-Radio Aid navigation system presented in Chapter 2. Pitch attitude 

may be furnished by processing IlVU gimbal angles. The pitch rate q is usually 

measured by a body-mounted rate gyro. 
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5.3.3 Some Preliminary Results for the Vertical Position Control System 

To illustrate the application of parameter-optimization techniques to vertical­

control system synthesis a vertical controller using elevators and direct-lift spoilers 
was investigated. 

The performance index was selected to minimize vertical-path deviations 

subject to penalties on the mean-square elevator and spoiler servo deflections. 

J WzE(Z 2 ) + wE(S2 ) + 2 ( .3-1) 

The parameter wz was held constant; we and ws were adjusted to vary the 

mean-square values of the elevator and spoiler deflections. 

The effect of varying the permissible levels of effector activity was investigated, 

utilizing three configurations. 

1. Elevators only (P 6 = = = 0)P 7 P 8 

2. Elevators for pitch-attitude control, spoilers for vertical-position control 
= =(Pl P2 P3 = 0) 

3. Elevators and spoilers (all parameters nonzero). 

Residual spoiler coupling into the pitch rate q equation was cancelled by adding a 

term proportional to 6s to the elevator command in Eq. 5.3-8. A more detailed 

discussion is found in Appendix C. 

The performance index was minimized for arangeof w0 and wa. The resultant 
mean-square vertical errors versus mean-square control-surface deflection are 

delineated in Fig. 5.3-1. These results show the remarkable dependence of 
mean-square vertical-path deviation on configuration. Spoilers alone produce the 

poorest control performance. An elevator-based control system can potentially 
reduce the maximum rms path error by a factbr of 10. A hybrid system using 

elevators and spoilers can achieve a further reduction of at least 2, depending upon 

the maximum activity limits assigned to the spoilers and elevators. 

Some responses of optimal vertical-position control systems are given in Ref.8. 

5.4 Optimization of a Lateral Position Control System 

Accurate lateral guidance is extremely important during approach and landing 
since permissible deviations in lateral touchdown dispersion are much smaller than 
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those along the runway surface. While precise lateral guidance outside the terminal 
area is probably not as critical, adequate levels of lateral control must be maintained. 

This section discusses the design of a lateral-control system featuring aileron 
and differential- spoiler effectors. 

5.4.1 Lateral Trajectory Control 

Control of the position of the aircraft in the horizontal plane relative to the 
model position is accomplished by performing coordinated turns. If an aerodynamic 
vehicle is rolled about its longitudinal axis, a horizontal component of the lift vector 
results. If the sideslip anglefi is maintained at zero, a yaw rate, 0, must be established 

to maintain equilibrium 

P 

where v is the steady aircraft velocity relative to the air mass and g is the 
gravitational constant. The resultant yaw rate alters the direction of the velocity 
vector. If Om is the model-heading reference, the lateral velocity of the shuttle 
relative to the model is 

= Vp sin(0- V) (5.4-2) 

Roll-angle control is achieved by establishing moments abouts the longitudmal 
axis. Such mom ents may be produced byailerons or spoilers, operated differentially. 

Ailerons and spoilers are equally effective for controlling roll rate. Turn 
coordination, however, is more simply produced with differential spoilers which 
results in a drag-produced yawing moment which aids the establishment of the desired 

yaw rate. 

Ailerons are often designed for high-speed flight. Since their effectiveness 
varies as the square of the airspeed, it is often essential to provide spoiler 
augumentation to achieve adequate levels of low-speed control. 

Since the shuttle will use spoilers as well as ailerons, it is likely that a hybrid 
lateral-control system with both types of effectors will be used. 
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5.4.2 Lateral Trajectory Control System Structure 

Ailerons and spoilers are quite similar from the roll-dynamics point of view. 

Thus, it was decided at the outset to use similar control laws for both effectors. 
The aileron and, spoiler effector commands 6 ac and 6 are linear combinations of 

the lateral position y, velocity , acceleration y, and roll b, and roll rate p errors 

between the aircraft and model states. 

- p1 2 + p 3Y + P 4 0 +
6 = Ply P6ac pypypyp +P 5 p 

6 sc = p 6 y + p 7 + p 8Y p 9 + Pl0 p (5.4-4) 

Thus, up to 10 parameters must be defined during control synthesis. In addition, 

turn coordination must be assured by the computation of appropriate rudder 

commands.
 

Turn coordination was provided by closure of an additional control loop on 

yaw rate which also provides dutch-roll mode damping. The desired roll angle, 

O0, is
 

cO
 

= [Ply+ P2k +P 3 y]P-4
 

+ [p6 y + p7 + p8 1 (5.4-5) 

so that the coordinated turn rate is
 
g%
 

r Z g (5.4-6) 
P 

If the rudder command is 

= Pll[rc-r]rrc (5.4-7) 

the rudder will operate to make rz rc.
 

The translation-error variables y, Y, and j are provided by the integrated
 

IMU-Radio Aid navigation system discussed in Chapter 2. Roll angle is provided
 

by processing IMU gimbal angles, and roll rate is usually measured with a
 

body-mounted rate gyro.
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The effector commands are fed to-control actuators which are'modeled by 

first-order lags. The surface deflections are inputs to a set of linear vehicle equations 

which are detailed in Appendix C. 

5.4.3 Some Preliminary Results for the Lateral Control System 

Parameter optimization techniques were used to minimize the performance 

index 

w1 ) + w E(S) + waE(&a) + 2 (5.4-.9)wE(y 

The parameters Wy and wr were held constant and w s and wa were varied to explore 

a range of solutions. 

Two configurations were investigated. 

1. Ailerons only (P 6 -. PI 0 = 0) 

2. Spoilers only (p.I -P p5 = 0) 

The mean-square lateral error for various control-surface deflection weightings 

is shown in Fig. 5.4-1. This shows that the rms lateral error can be improved by 

at least a factor of two, using spoilers instead of ailerons to effect roll control. A 

hybrid system reflecting activity limits on 6a and 6 will undoubtedly show an even 

more dramatic performance improvement. 

To illustrate the response characteristics of parameter-optimized lateral 

control systems, a reference design based on an autoland system for the Convair 

880 and an optimized, spoilers only, lateral control system were compared. The 

parameter values for the two systems are given in Table 5.4-1. The responses of 

the two systems to a gust input are shown in Fig. 5.4-2 - 5.4-4. Note the scale 

changes on y and ' in Fig. 5.4-2. The well-damped response characteristics which 

appear to be typical for systems synthesized using parameter optimization are 

presented in Fig. 5.4.-5 and 5.4-6. 

5.5 Conclusions 

Aerodynamic vehicle-control systems are complicated by a large number of 

potential feedback variables and effector combinations. As a result, even the simple 

trajectory-control laws presented in the preceding sections required the definition 

of up to 11 parameters. Thus in such systems it is essentially hopeless to apply 

trial-and-error design procedures to the solution of the stochastic optimization 
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Table 5.4-I 

Parameter Values For The Reference and Optimized Lateral Control Systems 

Parameter REFERENCE OPTIMIZED 

-0.0191 -3.69P6 


-0.1 -23.41
P7 

0.0 -11.64P8 


P9 -0.853 -2.89
 

P10 -0.526 -7.05
 

P11 5.25 2,58 
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Fig. 5.4-2 	Position, Velocity and Acceleration Errors in Response to 
Gusts for the Optimized and Reference Systems. Note the 
Change in y and Scales. 
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problem in section 5.2-2. Systematic parameter optimization using variational 

algorithm s offers an answer to these problems. 

By scanning optimal solutions for a range of control-surface activity levels, 
itis possible to define the best mixof effector types fora particular flight condition 
and control objective. The delineation of tradeoffs between effector activity and 
the achieved level of control provides invaluable information for the initial definition 
of the Space Shuttle as well as essential data for the design of a control system for 

an existing vehicle. 

In addition to the ability of parameter optimization to handle complicated 

control-system design, an additional advantage is apparent in the time-domain 

response characteristcs of the resultant control systems. Desirable features, such 

as short rise time and small overshoot, appear to evolve automatically during the 
solution of the stochastic optimization problem. 

In summary, it appears that parameter optimization can play a valuable role 

throughout the development and design of the Space Shuttle vehicle and its trajectory­

control systems. 
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APPENDIX A
 

NUMERICAL OPTIMIZAfION ALGORITHMS
 

by
 

Duncan MacKinnon
 

A. 1 Introduction 

The parameter optimization problems discussed in Chapter 5 may be solved 

using awide variety of numerical techniques. This appendix provides a description 

of a variety of optimization procedures which have yielded satisfactory numerical 

solutions. The algorithms are applied to a simple example fof:omparison. 

A.2 Numerical Optimization Techniques 

The field of numerical-optimization encompasses a large number of different 

algorithms and applications. To a large extent, the application of numerical 

optimization techniques to the solution of practical engineering problems is a 

relatively recent phenomenon arising from the development of high-speed, large­

scale, electronic digital computers which are capable of performing the optimization 

computations in a reasonable length of time. 

A review of the algorithms presented in the following sections reveals a 

structural commonality shown in Fig. A. 2- 1. Each algorithm requires the computation 

of the value of the performance index, J, and the gradient, Jp, of J with respect to 

the parameter vector, p. These calculations are conveniently performed using the 

canonical equations of the first variation in Section 5.2. 

Thevalue of X is obtained by converting Eq. 5.2-24 to an equivalent algebraic 

equation of the form 

Ay = b (A.2-1) 

Equation A.2-1 is then solved for y using the Gaussian Elimination process. X 

may be constructed from y by a suitable linear transformation. The performance 

index is then calculated from Eq. 5.2-6. 
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The gradient of the performance index J with respect to the parameter vectorP 
p may be calculated analytically using Eq. 5.2-23. The Lagrange Multiplier matrix 
P is the solution of Eq. 5.2-25 which is amenable to the same methods of solution 
as Eq. 5.2- 24. The matrix F' is often poorly conditioned, in which case an acceptable 
gradient vector is calculated from the relationship 

6p ) i =J(Pi + - J(Pi - 6p)(A2)
 
J&p. 26Pi (A.2-2)
Pi 


The following sections describe six algorithms for systematically generating minima. 

A.3 The Method of Steepest Descent 

Perhaps the most basic method of minimizing the value of a function is the 

method of steepest descent,(1 4 ) which is based on the Taylor series expansion of 
the variation &J in the performance index due to a small perturbation, 6p, in the 

parameter vector. If 6p is sufficiently small, the value of 6J is approximately 

equal to 

SJ = 6p'Jp (A.3-1) 

Suppose the change in Sp is equal to 

Sp = -CJp (A.3-2) 

where Cis a positive number. If E is selected so that 6p is small, the approximation 
A.3-1 is satisfied. Then 6J becomes 

6J Z -J' pJ (A.3-3) 

Since the inner product of Jp with itself is always positive, the perturbation SJ is 

negative and the value of J(p + 5p) will be less than the value of J(p). This process 

may be iterated to produce a monotonically decreasing sequence of values for J. 

Since the sequence is continuously decreasing, the algorithm always converges to a 

minimum, providing such a minimum exists. 

A flow diagram of a steepest-descent algorithm is shown is Fig. A.3-1. The 
variable NIC counts the number of successful iterations (W < 0) while NHC keeps 

track of the number of iterations in which the size of 6p is too large to satisfy 
approximation A.3-1. If 6p is ,too large, c is halved and the evaluation of J is 
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repeated. The algorithm terminates when NIC or NHC exceeds the maximum values 

NIM or NHM respectively. 

A.4 Method of The Average Gradients 

One of the important problems associated with the, method of steepest descent 

is the "ivalley problem". Such a problem occurs if the orientation of the direction 

of maximum-descent path is approximately normal to the gradient vector at the 

current value of p. If the step size is too great, the value of p is transferred to the 

other side of the "valley" where a similar situation is often encountered. The 

algorithm maythus continue to traverse back and forth across the "valley", converging 

very slowly to the minimum. This difficulty may be advoided by using a direction 

which is the average of the current gradient and the gradient used in the last successful
( 1 5 )

iteration. 

A flow diagram of the average-gradient algorithm is shown in Fig. A.4-1. 

The previous gradient, JPS, is equal to the present gradient initially so that the 

first step utilizes the steepest-descent algorithm. 

A.5 The Generalized Method of Newton Raphson( 1 2) 

Convergence rates can usually be improved by considering the second as well 

as the first variations in the performance index. The expanded perturbation in J 

due to 6p is then of the form 

6J Z p'Jp +-p'J Sp (A.5-1) 
p 2 pp 

where J is the matrix of second partial derivatives of the performance index J.PP 
J is evaluated by finite differences or by using a combination of finite differences 

and closed-form generation of Jp . If the variation in J is required to vanish, 

6 Jp-l= . (A.5-2) 
pp P 

Since the approximation A. 5-1 is onlyvalid for small Sp, the step size is controlled 

by introducing a positive constant 6 writing 

6p j-I-iA (A.5-3)
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A.6 

If the performance index is quadratic in p and c is equal to unity, the algorithm 

will converge in one step to the * In any case, the algorithm willoptimum value. 

exhibit one-step convergence if p is near popt' The algorithm is illustrated in 

Fig. A.5-1, 

Method of Conjugate Gradients(18) 

This numerical technique is a systematic optimization procedure which displays 

some of the favorable characteristics of the Newton Raphson algorithm without the 

necessity of inverting the matrix of the second derivatives, Jpp. If the performance 

index, J, is quadratic in the parameter vector, p, the method will minimize J in 

steps, where f is the dimension of p. 

The algorithm operates by generating a set of "J - orthogonal" or "J 

conjugate" vectors ql,... q, in the 2-dimensional Euclidean solution space. The 

matrix J must be positive definite, in which casepp 

=qi q -l >0 (A.6-1) 

As a result, it can be shown that any vector p can be expressed as a linear 

combination of the vectors q1 . qj 

p > I q. (A.6-1) 

where 8i is a scalar. If p0 is the initial value of p, p0 can be expressed in terms 

of the optimal value popt and the basis vectors by writing 

2 
(A.6-3)

[popt - POI = ._ 8qi, 

where 

[Popt - PO i]'Jppqi (A.6-4) 
qiJppqi 

Since the performance index will be essentially quadratic in &p when p is near 

Popt. 
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The problems of finding the minimum thus reduces to the determination of the 
conjugate directions q, ..... q, and the Fourier coefficients fl ...... p. 

A convenient set of "J pp-conjugate" basis vectors may be constructed on the 
gradient vectors, Jp, using the following iterative procedure 

p+l = -pi + aiqi (A.6-5) 

where 

J
qiP.
 
' qpJ I i (A.6-6) 

1 .pp I 

The value of ai is conveniently generated by. minimizing the performance index, J, 
along the straight line p = pi + ai qi. The value of a which minimizes J is ai. The 
new basis vector is generated by orthogonalization with respect to the subspace 

spanned by the vectors q ..... qi. 

qi+l = - Jpp+ iq (A.6-7)i 


where J' JP.~ P.il 
Pi+ j 
 (A.6-8)
 

Pi
Pi iJ1 

The result is a sequence of operations whid systematically satisfies the relationship 

2 
Popt = p0 + aiqi. (A.6-9) 

The algorithm is illustrated in Fig. A.6-1. 

A.7 Method of Davidon ( 1 7 ) 

Another optimization technique which shares a number of the properties of 
the Conjugate Gradient method was. suggested by Davidon ( 1 7 ) and further develoDed 
by Fletcher and Powell. (15) The algorithm searches iteratively for a matrix H 

which defines the optimum step size. 

6Popt = -HJp (A.7-1) 
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The matrix H is the inverse of the second variation matrix Jpp. 

(A.7-2)H =J 1 . 
- pp 

from a point Pi with gradient Jp(pi) theThe procedure is as follows: starting 

algorithm minimizes J with respect to a scalar C where 

= pi + cHi Jp(pi) 	 (A.7-3)p 

the optimum value of p is designated pi+,. 

Let 

(A.7-4)si = Pi+i - P1 

(A.7-5)ri = Jp (Pi+,) Jp(Pi) 


then refined according to the relationshipThe matrix H.1 is 

s.s. Hisis. H. 

Hi+ 1 = . 1 1 1 (A.7-6) 
s.r.

1 
riHi'ri11] 

The process is then repeated. 

It is possible to. show that, if the initial H is positive definite (H1 = I for 

result in a reduction in J when theexample), the direction Hi p(pi ) 	will always 

is performed. Thus the algorithm generates a
minimization with respect to c 

monotonically decreasing sequence of J's and convergence to at least aweak relative 

be shownminimum is assured. If the performance index is quadratic in p, it can 

a minimum in iterations, in which case thethat the algorithm will converge to 
- 1 

terminal value of H is J
pp 

It is apparent that the algorithm will also have quadratic convergence properties 

*vhen p is very close to popt' A flow diagram of the method is shown in Fig. A.7-1. 

The Method of Powell, 1 4 ) 

This method -is similar to the methods Of Cohjugate Gradient and Davidon, in 

can be achieved in f steps where 2 is the dimension of the as much as convergence 
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Fig. A. 7-1 Method- of Davidon. 
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parameter vector if the performance index, is quadratic in p. There is also no 

necessity to evaluate the matrix of second derivatives J 
- pp 

In this method, each iteration requires one-dimensional minimizations down 

n linearly independent directions, d1 , d2 . d. As a result of these minimizations, 

a new direction d is defined, which is linearly related to the coordinate values obtained 

during these minimizations. If d satisfies certain conditions, d replaces one of the 

original directions and the process continues. 

kt h In general, for the iteration, the last k-i directions used are conjugate. 

For quadratic functions,if p1 is the minimum in the direction d., and P2 the minimum 

along a direction parallel to d., then P 2 - p1 is conjugate to d (parallel tangents). 

The initial choice must be linearly independent. This implies that the matrix 

D of column vectors d. 
1 

D = [dl, d2..... d ] 	 (A.8-1) 

must be nonsingular (D =# 0). The algorithm illustrated in Fig. A.8-1 is not the 

original statement of Powell, but the technique now generally adopted. 

The convergence tests indicated in Fig. 4.8-1 are as follows: 

" Define 	 Jl = J(p 1 ) and J2 +l = J(pj+I ) 

Find 	 integer m, i< m< n, so thatJ (pm-1) -J (pm) is a 

maximum, and 

Define 	 A J (Pm 1) -J (pm) 

Calculate 	 J 2 = J( 2 Pn+i - P1). 

if 	 J 2> J 1 

or if 	 [j 1 - 2Ji+i + J2][jl - J41 - AJ_> -2A [J1 - J2] 2 

then set = P +IP1 


and use the same set of directions, dl, Id2. . . . . d. If neither holds, accept a new 

direction defined as 

d PS+l - p,
 

and update the direction matrix as indicated. 
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ETESTS SATIFICD EI p + 

Pn + 1"P I 

- [d , - din 1,din+ 1 1.. 
S d ­

dI1 .l 
d] 

D Do 
NIC - NIC+I 

ENDYESIC NIM ?JNO 

Method of Powell. 
Fig. A. 8-1 
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A. 9 A Simple Illustrative Example 

The foregoing material is best illustrated by application to a simple exam­

ple which is characterized by a fixed control structure which operates on a subset 
of the components of the state vector. The system is subject to an exponentially 
correlated disturbance. 

Consider the block diagram in Fig. A. 9-1 which may be interpreted as a 
position control system. The vehicle equations of motion are subject to a zero­
mean, exponentially correlated stochastic disturbance x4 which produces random 
fluctuations in acceleration x2 . The effects of the random variable u are counter­
acted by a control force x3 . The control law is defined by the adjustable parameter 

p1 . 

The object of the parameter optimization is to minimize the mean-square 
position response E (x 2 ) subject to a penalty on the mean-square control force
E (x3

2 . 

minimize E(x1 
2 ) + E (x 3

2 ) (A. 9-2) 

The system mat be represented by 

x Fx + Gu (A. 9-3) 

x1
 

x2 

Sx3 (A. 9-4) 

x 4 

uvec u (A. 9-5) 

0 -1 1 1(A. 9-6)
F= 
 i -I0 -10 
 0
 

0
L 0 01 
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Fig. A. 9-1 Position control system with fixed control structure and a stochastic 

disturbance. 
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The performance index J has the form 

J trace CX (A.9-7) 

where 

cI c 0 0 

C = 0 0 (A.9-8) 
0 0 1i 

0 0 0 0 

X1l x12 
 x13 x14
 

X X21 x22 x23 
 x24 (A.9-9)
 

x31 x32 x33 
 x34
 

x41 X42 
 x43 x44
 

The computations are initiated with a set of parameter values'which result in 

an asymptotically stable solution. Initial solution stability is mandatory if positive 

definite solutions for X and P are to exist. The initial value for p1 was 

P1 = -3.0 (A.9-10) 

The initial position, velocity, and effector response to a white noise disturbance 

are shown in Fig. A.9-2. The optimal parameter value was 

P1 = -13.87 (A. 9-11) 

The corresponding responses for the optimal system are shown in Fig. A.9-3. 

The mean-square values of the initial and optimal solutions are shown in Table 

A.9-I. 
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Table A.9-I 

Initial and Optimal Mean Square Values. 

x 

INITIAL SOLUTION 

0.766 

OPTIMAL SOLUTION 

0.129 

x2 

x3 

0.0805 

0.148 

0.0652 

0.311 

x4 0.500 0.500 

The convergence characteristics of the various optimization algorithms may 
be compared by plotting J and the length of the gradient vector, I p and p1 as 

functions of the iteration number NIC. These characteristics are illustrated in 

Figs. A.9-4, A.9-5, and A.9-6. The initial value of the step-size control variable 

was. 2.0. Computation was terminated at the end of 10 iterations. 

Some 	conclusions may be drawn from these results: 

1. 	 The Steepest Descent and Average Gradient algorithms appear to converge 
rapidly when p is some distance from popt (Jp large). Convergence 

near the optimum value is very slow (Jp small). 

2. 	 The quadratic convergence algorithms, Newton Raphson, Conjugate 
Gradient, Davidon, and Powell converge very quickly when p is near 

Popt and if the problem is quadratic in p. However, more care must be 

taken in their application to insure solution stability. 

A. 10 	 Selection of the Optimization Algorithm 

The control scientist must select an algorithm from the preceeding array to 
solve the problem at hand. The choice is usually determined by considerations 

such as: 

1. 	 Convergence rate 

2. 	 Numerical errors 

3. 	 Computation time 
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Fig. A. 9-4 Performance index versus iteration number.
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Initial optimization from a suboptimal starting solution is efficiently carried out 

using the Steepest Descent* or Average Gradient algorithms which display a high 
rate of convergencewhen p is some distance from the optimumvalue. As the optimum 

is approached, the slow convergence of Steepest Descent and Average Gradient 

algorithms weighs heavily in favor of algorithms such as Newton Raphson, Conjugate 

Gradient, Davidon, and Powell, which display high rates of convergence where p is 

in the vicinity of popt. justifying the increase in computation time per iteration. 

Numerical problems often preclude the application of the Generalized Newton 

Raphson technique as a result of errors arising in the estimation and inversion of 

the matrix Jpp , 
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Considerable success has been achieved using accelerated versions of Steepest 
Descent and Average Gradient (i.e., with algorithms which increase C). 

A-24
 



APPENDIX*4 N7OrS4 3 -5
 
NONLINEAR VEHICLE MODELS*
 

by
 

Paul A. Madden
 

B.l Introduction 

Initially, the nonlinear aircraft and trajectory equations are presented without 
derivation. A reference frame and axis system is then defined, followed by the 

development of asetof perturbation equations. The latterserveas themathematical 

model for simulation of aircraft flight in a noisy atmosphere from an unaccelerated 

reference flight con-ition. 

All assumptions and simplifications are discussed during development of the 

equations. The linear aerodynamic model is outlined as is the manner in which 

ground effect and aerodynamic noise are incorporated. Tables listirtg all the equation 

coefficients and values for these coefficients pertinent to a spe ffic approach-to­

landing flight condition are presented. 

Them ethod of simulation of random aerodynamic noise, including wind shear, 

is presented and also the additional equations necessary to represent the elastic 

degrees of freedom of a flexible aircraft. 

Finally, linearization of the nonlinear equations is discussed with particular 

longitudinal and lateral models being delineated in a further appendix. 

Simulation of a large Space Shuttle in the landing-approach flight condition is­

essentially identical to simulation of any large aircraft in this flight condition. 

The requirement that any developed Space Shuttle should demonstrate flight 

characteristics similar to a conventional large jet transport in the landing approach 

is further evidence of this near identity. 

All the elements essential to the simulation of the one are necessary for,the 

simulation of the other. 

When physical and aerodynamic characteristics of the space shuttle are better 

defined, therewill be for the most part a one-to-one exchange with like parameters 
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of the jet transport. This will be so if simulation of the rigid-body response only 
is involved. Depending upon the Space Shuttle configuration, there may be more orle . .'I ..ft fin 
less sinmlaiftyirhejma6iner Ln~in h the flexible modes are simulated and in the 
actualhelastic-mode response. ^ t 

B.2 The Aircraft Nonlinear Equations of Motion 

The general rigid-body nonlinear equations of motion have been derived often 
in the literature, for example in ref. 1, and will not be rederived here. The equations 
are written with respect to an orthogonal set of axes fixed in the aircraft. The 

convention adopted for the axes, Euler angles, and rates is defined in Fig. B.2-1. 

The equations are 

Lift 

Z = -mg cosecos@+ m (W + PV - QU) 
Drag 

X =mgsini+m (U+QW-RV) 

Side Force 

Y = -mgcosesin0+m (V+ RU- PW) 

Pitch
 

M = BQ+ RP (A- C)+ E (P 2 _ R 2)
 

Roll 

L =AP- EH+QR (C- B) - EPQ 

Yaw 
N = - EP + CR + PQ (B - A) + EQR (B.2-1) 

Euler angle rate equations 

[4 0 1 [Cos04Pm 
] sin tan& cos o tane Q (B.2-2) 

0 sin 0sece cos sec' [R 

Trajectory equations 

The aircraft trajectory equations require that the orientation of the aircraft 
be specifically defined and this is done in Fig. B.2-1. It should be remembered 

that the trajectory equations are written with respect to an inertial frame which is 
not necessarily earth-fixed. To obtain the trajectory of the aircraft in earth-fixed 
coordinates, the velocity of the inertial frame with respect to earth must be added 

vectorially to the following inertial velocities. 
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F sin0 sine cosJ cos0 sine cos 
I s oq -Cos$ sinlj +sin$ sinji 

=[:ose sinI sin sine sin cos0 sinG sinJV (B. 2-3)S+coseD cosI -sine cosq) 

L-sine sine cos9 cos0 cose 

Choice of Inertial Frame 

The only stipulation upon choice of the inertial frame is that it be unaccelerated. 

For simulation of quiet-atmosphere aircraft response, the simplest set of equations 

result when the inertial frame is chosen to be earth-fixed. However, for simulation 

involving a noisy atmosphere, the most convenient equations evolve when the inertial 

frame is fixed in the unaccelerated air mass associated with the reference steady- state 

flight condition. 

Choice of Axes 

The equations set down in the preceding sections are valid for any orthogonal 

axes fixed in the aircraft, with origin at the mass center, and known as body axes. 

Any set of body axes may be chosen but it is most convenient to choose 0 
x 

such that it points in the direction of motion of the aircraft in a reference condition 

of steady symmetric flight. In this case, the reference values of V and W are 

zero, and the axes are termed stability axes. These are the axes adopted in the 

derivations of following sections owing to their resulting simplifications in the 

equations of motion and aerodynamic force expressions. 

B.3 Perturbation Expansion of the Equations of Motion 

Changes in the time-dependent variables from the reference steady-flight 

condition are now introduced in the manner, 

U(t) = U0 + u(t) (B.3-1) 

similarly, the aerodynamic forces and moments (including thrust components), 

X(t) = X 0 + AX. (B.3-2) 

It is understood that an effective aerodynamic perturbation is the sum of a 

component due to inertial response of the aircraft and a component due to aerodynamic 
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noise, viz., 

u(t) = ui(t) + un(t) (B.3-3) 

Reference Flight Condition 

The initial reference state is restricted to unaccelerated flight in an 

unaccelerated atmosphere. The adoption of a stability axes set defines 

V0 0 

W.0 = 0 (B.3-4) 

Some additional assumptions have been made about 'the initial reference state. 

Although not essential, they considerably simplify the equations of motion with no 

important loss of generality. These further assumptions involve the initial values 

of aircraft pitch, roll, and yaw rates and aircraft roll attitude, all considered zero. 

qo, pO ro = 0 

0 =0 (B.3-5) 

The Perturbed Equations of Motion 

Substitutionbf the expressions for perturbed quantities, adoption of a stability 

axes set, and cognizance of the further assumptions (eq. B.3-5) lead to the following 

equations 

Z 0 + ZZ= -rngcose cos$ +m (w+pv- qu- qU 0) 
X 0 + AX = mgsin9 + m (a+ qw- rv) 

Y0 + AY = -ag cose sin$ + mQ ({+ rUo + ru- pw)
2 

AM B-+ rp(A- C) + E (p2_ rM 0 + 

L + A - Er + qr (C - B) - pqE 

+ AN -Eh + Ci + pq (B -. A) + qrE (B.3-6)N0 

The reference flight condition is extracted by setting the perturbation quantities 

equal to zero 

Z 0 +mg coso 0 = 0 

X 0 -mg sino= 0 

MO= 0 

SL0 =0
 

No = 0 (B.3-7) 
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substitution of Eq. B.3-7 in Eq. B.3-6 and neglect of second-order terms lead to 

the perturbation equations which may be written 

AZ mg cose 0(l - sece0 cose cosh) + m (v + pv - qU0 - qu)
 

AX = mg coso0 (sec 0 sine - tan 0 )+ in (ii - rv)
 

AY= -mg cose sin#+ in (+ rO0 + ru)
 

AOM = 4
 

AL A4 - i
 
AN =-E + Ci (B.3-8)
 

It should be noted that, in view of Eq. B.3-3, quantities like qu, pv, are not 

'necessarily small (second-order). An approach to landing in a noisy atmosphere 

involves flight through turbulence and a wind gradient (shear), the sum of which 
constitutes terms like un. The response of the aircraft is such that the effective 

aerodynamic perturbationexpressed as Eq. B.3-3 is always small. Inasmuch as un 

is constituted of a fluctuating component (turbulence) superimposed upon what may 
be a large drift component due to wind shear, the inertial quantity ui will be nearly 

equal in magnitude but opposite (in sign) to un. It is the inertial quantities that are 

involved in the terms qu, pv referred to above. 

1.4 The Aerodynamic Forces and Moments 

A general force or moment change from the reference flight condition is 

represented by a Taylor series expansion 

AF (or M) = g'x + -lx'Ax + higher-order terms. 

The first term of the expansion constitutes the quasi-steady (or linear) 

aerodynamic model where g is the vector of first-order derivatives (the stability 

derivatives) and x is the state vector. 

All derivatives are evaluated at the reference flight condition; their 
nondimensional forms are usually referred to as the aircraft stability derivatives 

arising from their u'se in classical aircraft stability analysis. The stability 

derivatives together with triin aerodynamic quantities constitute the conventional 

characterization of the aircraft aerodynamics at a particular flight condition. 

Ground Effect 

An extraordinary aerodynamic perturbation occurs when the aircraft 

approaches close to the ground. 
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Inthis situation the ground plane inhibits the normal downward-induced flow, 
increasing the lifting efficiencyof the aircraft. Associated with this effect is usually 

a nose-down pitching moment which correction reduces to some extent the gain in 

lifting efficiency. 

The nonlinear aerodynamic corrections are accomplished in the following way. 

Changes in affected stability derivatives are approximated-by
 

AC = K(Cige - Coge )
 

where 

Cige is the coefficient value in full ground effect 

Cogs is the coefficient value out of ground effect 

and K is given bya parabolic function typical of the aircraft type. For the subsonic 

jet transport class 

K - 0.52 s2 - 1.21 s + 0.75 

where s is the aircraft altitude in semi-spans. 

In addition to the derivative changes, there are net changes in the trim values 

of both lift and drag. 

B.5 Equations of Motion as Mechanized in the Digital Simulation 

Substitution of the aerodynamic force and morn ent changes into the perturbation 

equations (B.3-8) results in the following quiet-atmosphere aircraft equations of 

motion 

Lift 
1 [C'P C + u 

-C q
 
-+C Se6e +C6te
 e + C6 s s 

+ C 9P + CqnqU + CAtAt 

+ CL (I - sece 0 cos e dose) 

+ <ACL + ACD>*l 

*<> terms are finite when aircraft is in ground-effect; zero otherwise. 
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Drag 
- Cu +Caa + C 6 + Crr0 

+ CAtAt + CL 0 (sece 0 sine - tan8 0 ) 

+ <ACD + ACLa>] 

Side Force 

-L-8tCi + Crr+ Cpp 

+ CL (sec 0 cos() sin ) 

+C s + C 6r +C 6ar 

+ C6trbtr + Cruru] 

Pitch 

= -- uu+ C&&+ c a 
e e 

Cqq +CS +Ce 6 e Aee 

+ C teSte + Cs s + CAt A ] 

+ <ACrn > 

Roll
Rol = [C,8, + Cp+ C + err 

+ C6a6a + C 6sS + C sr r 

+ C tata + C tr tr] 

Yaw 

r [C96+ Cpp + Chp + Crr + C a6a 

6+ C SsS + C6 r r + Cutaa+ C StrJtr ] (B.5-1) 
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Perturbations due to Aerodymanic Noise Input
 

a =-[ an+ Nqqn N un+ N&ni
 

Aia -L[Nu +N
 

C
=[Nf8n + Nrrn + Nppn]
 

A {[NuUn±+ Nan +N%(n +Nqqn]
 

c N99 +'~ + Nrnj
±Npp 


A =l[N8n + NPn + Nrr] (B.5-2) 

Hinge Moment Equations 

The dynamics of the aerodynamic effectors downstream of the control servos 

are represented by the hinge-moment equations. The space shuttle, may employ 
direct force or aerodynamic effectors or a combination of both. 

The hinge-moment equations associated with the aerodynamic effectors and 

servo tabs of a conventional aircraft are 

.Elevator 
+ 6 +6e = HE a HE e H e HE te te-

Aileron 

6 a = HAsB +16HAppP + HA&6aa&a + HA a +a+H6tat 5ta 

Rudder 

r = HR/R + HRrfr + HR6r6r +HR.6 r + HR-6tr (B.5.3)
r 6 rr r $trt 

where 

6 6te = e_s 
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6 tr = Sr - r 

and ea 6r ae the elevator, aileron, and rudder c6ntrol-servo outputs respectively. 

Control Surface Actuators 

The aileron, elevator, and rudder control surface actuators are all modeled 
bya second-order system with t n = 2.86 cps and damping ratio of 0.7. The transfer 

function of these servos is 

S 
- 324
 

6c s 2 + 25.4s+ 324
 

The spoiler surface actuator is modeled by a first-order system with a time 

constant of 0.1 second. 

Variables and Coefficients Defined 

Define
 

a = w/U 0
 

8= 
v/U 0 

The variables a and 6 are referred to as angle-of-attack and sideslip angle 
respectively; a small-angle assumption is implied. 

The equations of the previous section have been divided into longitudinal and 
lateral sets which for most aircraft are only weakly coupled for small rotational 

rates of motion. 

Let/u, a, and 7- be defined by
 

Longitudinal Lateral
 

/a 2m/PSU 2m/PSb
 

a (/P a 

7r E/2U0 b/2U0 

Coefficients of the previous equations are defined in tables B.5-I and B.5-I 
in terms of the aircraft geometry, inertia constants, reference flight condition, and 

stability derivatives. 
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c 

Table B.5-1
 

Coefficients Defined for the Longitudinal Equations
 

quation 

oefficien- Lift Drag Pitch 

C -[Cz - 2,] -2rp/U 0 U21yy 

C -C -C C
 
a zama
 

-T[2p+c ]--c 
q z mq 

C u [2CL - C z q/U 0 -[C x + CL0tane0]/U 0 Cmu/U 0 o qu 

C6 -C z C
 
6 te 6 te
-9SC Z s- sC mM6 te 

C -C -C Cm 

Cfl 2rp* 

Cqu - 22ru]UO2 -/-.. 2 

CAt sin a/(1/2)PU 0 S -cosa,/(l/2)pU0S zg (1/2)pU0 r S 

- 2r---Cr8 

C & r C I n
 

C 6 e -Cg
 e 

Na -C-C Cm 
aCz xa n
 

N -7-C --- 7-C
 
q zZq mq 

+N u [2CL0 - Cza I/u 0 - [-Cx 2CL0tane0 ]1/0 Cm u u0 

Na -- C z-- i-Cm
 

q
 

*p defined for the lateral equations. 
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Table B.5-II
 

Coefficients Defined for the Lateral Equations
 

Equjation 

Coefficie Side Force Roll Yaw 

C 2 p 1xx r-2Izz 

C C C C 

Cr -[Cyr - 2] rC 2 r rCnr 

Cp 
 rCyp 7-CIp TCnp
Cy CA
 
C6a 
 6a 
 Ia 
 na
 

C6ta 
CI 6 ta ntaC CC 

C6r' CY8r Isr CnSr 

C
 r 6tr 6 
Cn 6tr 

C C s C6s Cn6s 

C u -2/U 0 - - - - -

C --- -- 21 

p zx 

N C Cg C 

N r rCr 7-Cnr 

N -C Cp -Cnp 
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Ytiysical and aerodynamic characteristics of the aircraft adopted for the space 

shuttle simulation appear in Appendix C. 

B.6 Structural Flexibility 

When separation in frequency between the elastic degrees of freedom and the 

rigid-body modes is not large, significant coupling can occur. 

The coupling can arise directly from the aerodynamic forces generated by 
aircraft rigid-body response or indirectly through control-system response to 

sensors mounted upon the flexible structure. The latter coupling has -generally 
been the most important for large aircraft in the low-airspeed, landing-approach 

flight condition. 

While there are several ways in which the dynamic equations of elastic motion 
may be formulated, the method chosen for the simulation was to represent the 
deformation of the elastic aircraft in terms of its normal modes of free vibration. 
This is a direct approach which requires prior knowledge of the normal modes and 

their frequencies. 

Equations of Elastic Motion Assuming Normal Modes 

For n modes, the deflection from the principal axes is 

w() =iqi(t) i = l,n3
(B.6-1) 

where Oi are the normal modes and qi are the generalized coordinates. 

The generalized coordinates are determined from then second-order equations 

(neglecting structural damping) 

4i +U)i2q. Q. i - l,n (B.6-2) 
i i I 

which may be transformed into the 2 n first-order equations 

+
f= -2q 1 

1 

i. fi i = Itn (B.6-3) 
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where Mi, Q. are the generalized mass and generalized force, respectively, 
of the i mode; fi is a transformation variable. M. and Qi are defined 

Mi = f fr2mds 
S 

Qi = FOFjds (B. 6-4) 

The simple form of Eq. B.6-2 was the direct result of the choice of normal 
(orthogonal) modes; the resulting simplification being the inertial and elastic 
decoupling of the equations. Further, the equations of elastic motion are decoupled 
(inertially and elastically) from the rigid-body modes which are, m fact, the zeroth 
normal modes of the eigensystem. 

The equations, nevertheless, are coupled aerodynamically. This is because 
the generalized force Qi is a function of qi, 4i(all i) though its dependence upon the 
elemental normal force, Fn, acting upon the aircraft. F n includes only aerodynamic 
forces because of the property of inertial independence of normal modes, and hence 
independence from the rigid-body degrees of freedom. 

Further, F need include only symmetric aerodynamic forces if the particular 
mode 0, is symmetric, and only antisymmetric forces if i is also antisymmetric. 

There is additionally aeroelastic coupling back to the rigid-body equations 
because the elastic deflections cause aerodynamic force perturbations that must be 
included in the forcing of the zeroth mode equations just as the rigid aircraft response 

forces the elastic modes. 

Evaluation of F n is, by far, the most difficult chore in the aircraft dynamic 

simulation. Expressions for the aerodynamic forces due- to aeroelastic effects, 
and similarly the importance of nonlinear aerodynamic effects, are highly 
configuration-dependent. Unsteady aerodynamic effects that involve attenuation and 
lags to the airforces must, in general, be included. However, for the lowest structural 
frequencies which may be of primary concern to the control and guidance problem, 
a quasi-steady approximation can usually be made that neglects the small phase 
lag and is modified to include an attenuation factor. As the frequencyof the structural 
mode of concern increases, so does the phase lag and attenuation of the associated 
airforces and their inclusion is of importance. However, the response of these 
higher-frequency modes may not be of central concern. 
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Similar difficulties arise in the evaluation of airforces associated with 

higher-frequency gust inputs. 

Currently, the CV880 digital simulation includes the two lowest frequency 

symmetric flexible modes with frequencies of 1.6 and 4.4 cps, respectively. Inclusion 

of phase shift in evaluating the aeroelastic damping at these frequencies produced 

no discernable change in response as compared to that obtained using the simpler 

modified quasi-steady theory. However, unsteady aerodynamic effects associated 

with gust inputs may be more important. 

B.7 Atmospheric Noise 

B.7.1 Introduction 

The theory of flight through atmospheric turbulence has been extensively 

developed by many researchers and reported upon in many references. Of particular 
3 

are those of Etkin1 , and Foss and McCabe. 4 
relevance 

Essentially, for typical operating speeds of aircraft, the gust field is assumed, 

to have random spatial variation but to be frozen in time. It is further assumed to 

be locally homogeneous and isotropic so that only two power spectral density (PSD) 

functions are necessary to describe the statistics of the three gust-velocity 

components. 

Variation of the longitudinal and vertical gust velocities over the span of the 

aircraft is neglected,- allowing all three velocity components to be written solely as 

functions of the longitudinal axis coordinate. 

B.7.2 Statistical description of atmospheric turbulence 

The one-dim ensional PSD functions used to describe the statistics of low-level 

turbulence are
 
2(W) w 1 (B.7-1) 

--< ) I+ ( L-T )I 

w21 0 / 7jT1y+ 1wU 

2K222,3(W(i9zi0)' +$w B72 

where (DI (w), ( 2, 3 (L), are the PSD functions of the longitudinal, lateral, and vertical 
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gust velocities respectively and where w 2 is the mean-square gust velocity in 
2 g,(feet/sec) U 0 is the flight velocity in feet/sec, L is the scale of turbulence in 

feet, and w,is the frequency in radians/sec. 

The spectrum D2,3 (W)may be approximated by 5 

0 L 2 (B. 7-3)(3172,O) + (WJ- U0 

The digital simulation makes use of the PSD functions given by Eq. B.7-1 and 
B.7-2. However, the linear models take advantage of the simpler first-order 
approximation for 0 2 , 3 (w) given by Eq. B.7-3 

B.7.3 Simulation of atmospheric noise 

Simulation of atmospheric noise implies the generation of time-varying 
functions whose statistics duplicate the spectrums of continuous atmospheric 
turbulence.
 

Exponentially correlated noise may be modeled by passing Gaussian white 

noise through a suitable shaping filter whose dynamics adjoin the existing system 
providing a new system subject only to white noise input. 

Let the continuous white noise autocorrelation function be given by 

(-) = Q6(r-) (B.7-4) 

then its PSD function is 

0(wM = 1(B.7-5) 

If Gaussian white noise is passed through a filter F, its output has the PSD 

given by 

0 (w) = IFI 2=i(W) (B.7-6) 

For a' the output is 
J)0n (W Q 2n 2 + () (B. 7-7) 
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Equivalence of Eq. B.7-7 and the assumed empirical turbulence spectrum, 

provides the values of correlation time and Q necessary to reproduce the spectrum. 
For $2,3(w)given by Eq. B.7-3, this equivalence provides 

1 * L 

Q" 2w (a)ga (B. 7-8) 

The filter equation may then be written 

n = a(w - n) (B.7-9) 

where n is the correlated noise output and w the Gaussian white noise input. 

Evaluation of the constants involved in a second-order filter necessary to 
reproduce the spectrum, for example, given for $2,3(w) by Eq. B.7-2 follows in a 

directly analogous manner. 

It is not possible to provide a continuous, signal reptesenting Gaussian .white 

noise in a digital simulation. The digital equivalent is a discrete series of uncorrelated 

random amplitude steps. For this step sequence, the autocorrelation function is 

= a(r) 171/AT) i.I AT (B.7-10)fu2 (1 ­

0 in> AT 

where a,2 is the mean-square value of the random step amplitudes and AT is the 

discrete time step. The associated PSD function, defined as 

0(7-) e-Wjdr(W)= 4o (E.7-11) 

is given by 

$2 rsin(LAt) + j (sin(wAT) - wAT cos (wAt)) (B.7-12) 

Considering only the long wavelengths (W<< 27), a small angle approximation may 

be used to give 

<
$(W) =a 2 At W< iT (B.7-13)217At 
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Equivalencing the above discrete-step approximation for the'PSD of the white noise 
input with the previously given (Eq. B.7-5) continuous function provides 

2 Q/AT (B.7-14) 

For the example that led to the result for Q expressed by Eq. B.7-8, the root-mean­
square value of the random-step amplitude would be 

= I a I(B. 7-15) 

A block diagram, Fig. B.7-1, shows the operations which lead from a 

machine-generated random number sequence to a time history of gust velocity. 

B.7.4 Effective Aerodynamic Noise Perturbations 

The sequence of operations discussed in the last section and shown schematically 
in Fig B.7-1 leads to a time history of the three uncorrelated gust-velocity 

components ul, u 2 , and u3 . 

A vertical gust produces an angle-of-attack disturbance and, because of its 

varying intensity along the length of the aircraft, an effective pitch disturbance. 
Similarly, a lateral gust-velocity component produces a sideslip and effective yaw 

disturbance. 

The pitch and yaw disturbances may be approximately represented by effective 

pitch and yaw rate perturbations respectively, if the higher-frequency gust compo­
nents are not admitted in evaluation of these effective rates. This is equivalent to 
the requirement that the gust component vary nearly linearly along the effective 
aerodynamic length of the aircraft. This requirement may be met with a lowpass 

unity-gain filter introduced in series. The break frequency of the filter is selected 

such that the shortest wavelength admitted is no less than about eight times the 
effective aerodynamic length of the aircraft. If wbis the break frequency, then 

Wb - 2TUO/Ami n (B.7-16) 

with Xmin equal to 8 times the aircraft length. 

In general, it has been observed ' 3 that neglect of the short wavelengths has 
negligible effect upon rigid-aircraft response; the energy content of these spectral 
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Generator Correlated 

Filter Atmospheric 
Sigma = 1 F noise 

Mean 0 

Figure B. 7-1 Discrete step sequence to generate time correlated 
atmospheric noise component. 



components is relatively small. Their inclusion, however, is of importance in the 

forcing of aircraft elastic modes. 

It is recalled that the empirical PSD functions are functions of the longitudinal­

axis coordinate only; spanwise variations in gust intensity are thereby neglected. 
It is not easily possible to simulate this variation with rigor. It may be approximately 

accounted for, however, by considering a span-averaged gust intensity. 4 The factor 
K is defined 

K [-0.3 -(i+ )] b<L (B.7-17) 

where b is the wing span and L is the aircraft length. The factor K operates upon 

the mean-squ re gust intensity providing a span-averaged value. This is the gust 
intensity used when evaluating the verticaland longitudinal gust-velocity components. 

For the CV880M aircraft, K = 0.968. 

The aerodynamic noise perturbations may now be expressed as functions of 

the gust-velocity components ul, u 2 , and u3 . 

un = 1un U1 

an =u 3 /U 0 

an = u3 /U 0 

8n = u 2 /U 0 

qn =(-(3)f /U 0 

r = (u 2 )f/U 0 (B.7-18) 

where the subscript f refers to the lowpass filtered component. 

Inaddition to the above turbulence-induced components of aerodynamic noise, 

there exist also wind-shear-induced components. It is assumed that there is no 
mean vertical-velocity component to the air mass. The variations in mean air-mass 

velocity from the reference flight condition values'due to wind shear must be added 

vectorially to the components un and Rn of B.7-18. The wind-shear-induced 
components are evaluated as the difference between the current mean wind speed 
(w mean), developed in the next subsection, and the initial flight condition value. 
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B.7.5 Wind Shear 

Operation of aircraft at low altitude involves flight in the thick turbulent 

boundary layer that extends from the surface of the earth up to an altitude of between 

600 and 1500 feet, depending upon the mean wind speed at altitude, meteorological 

conditions, and ground terrain. 

Wind shear has been modeled in basically two alternate ways. One involves 

constant wind shear between set altitudes, the wind-shear values and altitudes being 

input as data, and the other involves a wind shear inversely proportional to altitude 
resulting in the classical logarithmic velocity profile. The first model may be 

made to approximate the latter to any degree, depending upon the number of piecewise 

linear segments chosen. 

In both models,, the mean wind speed at altitude is specified and is constant 

above a specified altitude; the latter is chosen depending upon the strength of the 

former. A low wind-speed velocity profile is assumed to begin at about 600 feet 

while that for a strong wind may begin at about 1500-feet. 

Assuming a one-segment model, the mean wind speed at any altitude h is 

given as 

Wmean =(W ) 0 - (h0 -) 	 (B.7-19) 

where 7w is the constant wind shear and subscript 0 indicates the initial values. 

For the logarithmic model, the relationship is 

"5 + 5.75 logl 0(h/r	 0 )  (B.7-20) 
oWmean = (W n0 5 + 5.75 logl 0 (h0 /r ) 

where r 0 is a scale 	of the surface terrain roughness. 

B.7.6 Estimation of the Turbulence Integral Scale Length and Intensity 

At low altitudes, the turbulence resembles that in boundary layers adjacent 

to rough surfaces and is strongly affected by the terrain. The turbulence scale 

and intensity are a function of altitude, the gust field being, in general, neither 

homogeneous nor isotropic. The latter model, however, is probably the only acceptable 

B-21
 



one at the present moment. Etkin, 3 after basedPanofsky, suggested that, upon 
experiments over relatively smooth terrain, the turbulence lengthscale may be 
approximately given by 

L " 0.9 h (B.7-21) 

up to 1000-foot altitude. 

A semi-empirical relationship3 for the variation of mean-square gust intensitywith altitude and terrain roughness in unstable meterological conditions is 

2 

g= [0.226(wmean/log 10(h/r0) (B.7-22) 

where (w mean) is the mean wind velocity at altitude h and r 0 is the scale of terrain 
roughness. Typical values of for low trees, crops, water orr 0 snow field are 10, 
1, and 0.1 feet, respectively. 

The simulation provides for an alternative model in which both gust intensity 
and turbulence scale length are constant-valued'inputs. 

B.8 Linear System Models 

Linear control system studies depend upon the availability of acceptable linear 
models. The nonlinear aircraft and trajectory equations of previous sections can 
be linearized by application of a small-angle approximation and neglect of the 
nonlinear nertial-coupling terms. The latter grow to significant magnitude only 
after prolonged flight through a wind-shear condition; their exclusion in no way 
invalidates the equations for control-system studies. 

Two linear models may be identified; both have been constructed to evaluate 
system response to turbulence. They are constituted as follows: 

Aircraft longitudinal equations of motion 

Z (altitude) trajectory equations 
Control-surface actuator servos 

First-order noise correlation equation for a (vertical) gusts. 
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Aircraft lateral equations of motion 

Y (lateral) trajectory equations 

Control-surface actuator servos 

First-order noise correlation equation for.j (side) gusts. 

Someadditional simplifications were made to render themodelsmore tractable 

in demonstration of the parameter optimization approach to system design. 

In both models, the hinge-moment equations associated with aerodynamic 

servo-tab-driven effectors were bypassed with the assumption of direct servo-driven 

effectors. The space shuttle may employ either direct force or aerodynamic effectors 

or a combination of both. A further simplification was the substitution of first-order 

for second-order actuator servo models. In all cases, perfect-state information 

was assumed in the feedback paths. 

Insomuch as the linearized trajectory equations are linear combinations of 

the aircraft state equations, their inclusion implies redundancy. Consequently, the 

aircraft state equations were rewritten in term s of vertical and lateral acceleration 

rather than angle-of-attack (a) and sideslip (,6). The explicit equations for the latter 

two variables were dropped. 

All models were evaluated with a variety of control-law structures involving 

combinations of feedback variables to the specific effector(s) chosen for control of 

aircraft response. 

Further assumptions and simplifications specific to the individual models are 

mentioned in Appendix C, where the models are fully delineated. 
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APPENDIX C 

LINEAR VEHICLE MODELS'Q 

by
 
Paul A. Madden
 

C.l Introduction 

Notation common to this Appendix and Appendix B is firstly introduced in 

section C.2. Then the major dimensions, physical constants, and aerodynamic 
characteristics of the Convair 880M in a specific landing-approach flight condition 
are presented. This particular aircraft and flight condition serve as the basis for 
the space-shuttle landing simulation. The data listed in this section are derived 

from Ref. 2, inwhich the chosen flight conditionwas referred to as Flight Condition 1 

(FCI). 

The major dimensions at&4ztsted in Table C.3-I. The flight condition is defined 

in Table C.3-II and the relaf'dircraft physical and aerodynamic characteristics 
also appear in Table C.3-II. 

Two linear models designed to evaluate aircraft response to turbulence are 

developed in section C.4. Theymay be identified as a longitudinal model to evaluate 
response to vertical gusts, and a lateral model to evaluate response to side gusts. 

The models are constituted by the linearized aircraft and trajectory equations, 

the servo actuator equations, and the noise correlation equation. After incorporation 
of the specific control law, the equations are set in the state-variable form: 

=Fx+Gw 

C. 2. Notation 

X, Y, Z components of the external aerodynamic force on the aircraft 
M, L, N components of the external aerodynamic moment on the 

aircraft 
P, Q, R components of aircraft angular velocity 
p, q, r perturbations in P, Q, R 
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U, V, W components of aircraft velocity vector 

u, v, w perturbations in U, V, W 

0, IP Euler angle set 

e, ,perturbations in E, 0, t 

A, B,-C . mxjr.onents of inertia about the x, y, z aircraft body 

i "" i z -kJerespectively 
xx' y7 Z Aj 
yz product of inertia about y and z axes 

E product of inertia about x and z axes 
xz
 

F ]product of inertia about x and y axes 

xy 

in mass of aircraft 

g acceleration due to gravity 

P air density 

M Mach number 

S reference wing area 

b wing span 

c mean aerodynamic chord 

z vertical displacement of engine thrust vector from 
aircraft cg. 

a angle between the thrust vector and aircraft longitudinal 
body reference axis; 

6 aircraft aerodynamic effector angle 

At thrust perturbation 

Subscripts 

0 reference unaccelerated flight condition 

i inertial 

n aerodynamic noise 

e elevator 

te elevator tab 

a aileron 

ta aileron tab 

r rudder
 

tr rudder tab 

s spoiler 
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Stability Derivatives 

The aircraft stability derivatives are represented in standard NASA notation. 

C.3-	 Major Dimensions, Physical and Aerodynamic Constantsof the CV880M 

Aircraft 

Table C.3-I. Major dimensions of the Convair 880M jet transport. 

Dimension 

Wing area, sq ft 2000.0 

Wing span, ft 118.3 

Wing mean aerodynamic chord, ft 18.94 

Mean distance of engine thrust axis below cg, ft 1.0 

Incidence of engine thrust axis, deg 0 

C.3.1 	Stability Derivatives 

Some additional stability derivatives associated with the longitudinal equations 

are here additionally defined (for a stability-axes set). 

Lift	 2(ML2/1 - MC z 

C 	 =-(C + )
Za 
 D 0 

Czq= -CL
 
q q
 

Cz -CL 

Drag 

C = -2(CD0 + CL 00) - MCD 

C =C _CD 

xa Lo a 

Pitch 

C mn =MCmM 
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Table C.3-11
 

Physical and Aerodynamic Characteristics
 

Basic Flight Condition
 

UO, ft/sec 280.0 

Mach number 0.25 

Dynamic pressure, lb/ft 2 92;6 

Air density, slugs/ft 3 0.00238 

Mass, slugs 3913 

Weight, lb 126,000 

4.32
tire deg 

Flaps, deg 30 

Undercarriage Up 

Ix 1.15 

Stability axes, 1 2.45 

million slug-ft 2 Izz 3.59 

Ix 0. 

Longitudinal Derivatives OGE IGE 

CL 0 0.68 

S C 0.0799 

T CL 4.52 5.51 

A CL 7.72 7.67 
q 

B CL 0.213 

1 C 0.0532 
L6te 

L C -0.4 

1 C 0.0 

T CD 0.295 0.471 

Y CD 0.0368 

Cma -0.903 -0.843 

A C -12.08 -11.98 

X C 
q 

-4.13 

E C 0.0 
mu 

S C -0.637 -0.767 
m$e 

C -0.0174 

e 
C 

m6 te 
-0.159 -0.192 

C 0.034 
m5
 

s 
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Table C.3-11 (Cont.)
 

Physical and Aerodynamic Characteristics
 

Basic Flight Condition 

Lateral Derivatives OGE 

-0.1961 

0.1983 

-0.381 

0.0226 

-0.0384 

-0.0056 

0.00266 

0.0405 

0.1387 

-0.1852 

-0.0485 

-0.0958 

0.0172 

0.0 

-0.0192 

0.0129 

-0.877 

0.0 

0.2155 

0.0467 

0.0 

0.0 

-0.0315 

S 


T 


A 


B 


I 

L 

I 

T 

A 

X 

E 

S 

C R 

C r 

C 

C 

C 

C 
B ta 

C 

' tr 
C 

C 

Cn 
r 

nnp
 

Cn , r
 

Cns
C 

a
 
C a 


nta
 

Cnj 

tr
 
Cn 
6s 

C 

C .0.385 
Yr
 

C 
yp 

C y 6 r 

C 
Y5 tr 

C 
YSa 

C 
YSta 

C 
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C.4 	 Linear Models 

C.4.1 Linear 	Longitudinal Model Subject to Vertical Gusts 

The 	linearized longitudinal perturbation equations may be written 

u = CuU+ Caa + Cq0+ Ca an+ CS 6+ C At t (C.4-1) 
n s 

Cu a q a n C6 6 e 6 S 4 5 8 te (C.4-2) 
n Ce +Cte~t 

=Ca aC&+Cqq an n +C n n + 5e e +CSte Ste 

+CS s &s+ Cg e + CAtAt (C.4-3) 

=q
 

where 	u is measured in fps, g in deg/sec, and e in degrees. 

The 	control variables are defined as 

Se - elevator 	angle, deg
 

tab angle, deg

Ste 	 - elevator 

- direct lift spoiler angle, deg6s 

At -	 engine thrust, lb. 

The coefficient values corresponding to the approach-to-landing flight condition of 

section C.3 are shown in Table C.4-I. 

Airspeed Control 

The low-frequency airspeed control dynamics are essentially decoupled from 

the short-period longitudinal dynamics; it is primarily the latter that are of concern 

when evaluating response to vertical gusts. Consequently, an airspeed control is 

postulated. 

Reduction of the Order of the State 
With the assumption of airspeed control (u, u = 0), the A Eq. C.4-1 provides 

an expression for the change in thrust required to maintain 6I = 0. This expression 
= is substituted into Eq. C.4-2 and C.4-3, together with the substitution, u 0. 

The further assumption that -theaerodynamic effectors are directly controlled 

by the servo actuators bypasses the dynamics associated with aerodynamic servo 

tab controlled systems (the hinge-moment equations); the elevator tab terms, 6 te' 
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Table 0.4-1
 
Coefficient Values of Aircraft Longitudinal Equations of Motion
 

C 	 -0.0271u 

Ca 18.15 

C0 -32.2 

C 0. 

C 0. 

C 	 0.
6 te 

C 6 s  	 -1.737 

C At 	 0.000255 

Ca 18.15 
n 

C 	 0. 

C. 	 0. 
a 

9 	 0. 
e 

-0.000855 0. 

-0.778 -1.288 

0. 

0.955 -0.586 

-0.036 -0.909 

-0.009 -0.227 

0.0678 0.0485 

0.414 x 10 

-0.778 -1.288 

0. 	 -0.586 

0. 	 -0.201 

0. 	 -0.000845 
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are consequently dropped from Eq. C.4-2 and C.4-3. 

A feedforward path is provided to the elevator to negate pitch directly due to 
spoiler displacement. 

Trajectory Equations 

The relevant linearized trajectory equations are 

= U 0 (6 - q) /57.3 (C.4-5) 

= to(r) dr (C.4-6) 

z = Ji 1(r) dr (C.4-7) 

It is observed that Eq. C.4-5 is a linear combination of Eq. C.4-2 and C.4-4. 
Because angle-of-attack (a) is not required as a feedback variable (it being generally 
difficult to measure), the equations are rewritten in terms of vertical acceleration, 
z, rather than a. Substitution of Eq. C.4-2 into C.4-5 provides an expression for 
a in terms of ! and the remaining aircraft state variables. This expression is 
substituted into the remaining equations involving a. 

Surface Actuator 
The surface actuator servos were all modeled by first-order systems with a 

time constant of r= 0.1 sec. 

The servo equations are 

S =-!( 6 c - 6e) (C.4-8)
 
e 7r e e
 

s _1-.-- cs- s (C.4-9)
 

Aerodynamic Noise Correlation Equation 

The first-order noise correlation equation was developed in Appendix B, section 
B.7, and is repeated here 

1 
a = -(w - ) (C.4-10) 

where 

an is the angle-of-attack disturbance, deg 
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T is the noise correlation time, sec 

w is the Gaussian white noise innut 

A vertical gust produces an angle-of-attack disturbance and, because of its 

varying intensity along the aircraft, an effective pitch disturbance. 

The latter may be approximated as an aerodynamic pitch-rate disturbance, 

qn' providing the gustwavelength is such that the gust velocityvariesnearly linearly 

along the effective length of the aircraft. As explained in Section D. 7 of Appendix B. 

this restricts the validity of the approximation to gust wavelengths longer than about 

eight times the effective aircraft length. However, because most of tae gust-energy 

content is associated with the lower frequencies, it is probable that little error is 

involved when all frequencies are present in qn, at least for the evaluation of 

rigid-aircraft response. The resulting simplification is a linear relation between 

an and qn viz., 

qn n 

- (W - a n (C.4-I) 

The alternative to the above approximation would be provision of a filter to 

operate upon an before application of Eq. C.4-l1. It is likely, however, that the 

aircraft itself is a satisfactory filter of the higher-frequency response involved. 

Control-law Structure 

The control-law structures evaluated may be identified as (1) conventional 

elevator control, (2) diret-lift-spoiler control with pitch-attitude control, and (3) a 

combination of (1) and (2). They may be delineated 

Pitch axis Z axis 

(1) q, 0, z, i, E to elevator 

(2) q, e to elevator z, £, Z to direct-lift spoilers 

(3) q, &, z, i, E to elevator z, , £ to direct-lift spoilers 

Consider the control law structure associated with (3).The servo commands 

are 

(C.-12)
e pl z+P2 +P3'+P4 +p5 q 

C-9 



c = 6z+P + p8H (C.4-13) 

where pi are the system feedback gains. 

State Variable Formation 

The system equations, functionally dependent upon parameters pi, may be set 

in the state variable form 

= Fx + Gw 

where w is a one-dimension white noise driving term and x is an [8, x 1] state 

vector identified as 

q 
0 

z
 

x = z
 

6e
 

Ss 
6
n
 

For the specific control law structure defined by Eq. C.4-12 and C.4-13, the [8 x 

8] dimension F matrix and the [8 x 1] G matrix may be identified in Table C.4-I. 

C.4.2 Linear lateral model and subject to side gusts 

The 	linearized lateral perturbation equations may be written 

06 6 r + Catrtr + C Gn (C.4-14)=Cff+CCrr+CC 

p =C i+Cpp+ er+ C 6 CS 6t CC6tr6ra+C & +C'r~r+CS + 

+C C8 n (C. 4-15) 
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Table C.4-11 

F Matrix and G Matrix 

[8x 8] F Matrix 

-0.7019 0.0521 0 0 0.0345 -0.8416 -0.0758 -0.473 

1.0 0 0 0 0 0 0 0 

0 0 0 1.0 0 0 0 0 

0 0 0 0 1.0 0 0 0 

F : -3.6216 -0.01138 3.29p 6 3.26P 7 -0.8534 1.931 -3.2734 3.1533 

-1.747P5 -1.747P 4 -1.747p, -1.747p 2 +3.29p 8 

-1.747p 3 

I0.0P 5 lO.0p 4 10.0pl lt0P 2 lO.0P 3 -10.0 0 0 

-O. 9 P6 -0.9p 7 0.9p 8 

0 0 10.0 10.0P 7 10.0P8 0 -10.0 0 

0 0 0 0 0 0 0 -0.807 

[8 x ] G Matrix 

0.473 

0 

0 

0 

G= 0 

-3.1533 

0 

0 

0.807 



r Cfi+Cpp +Cr+C +C C 6r 

(C. 4-16) 
+ C 6tr + Cl6n 

(C. 4-17)p 
= r (C. 4-18) 

where if , and are measured in degrees, p and r in degrees/see. 

The control variables are defined 

- spoiler deflection, deg6 s 

- aileron deflection, deg6a 

Its - aileron tab deflection, deg 

- rudder deflection, deg 

6tr - rudder tab deflection, deg 

6r 

Coefficient values corresponding to the approach-to-landing flight condition 

of section C.3 are listed in Table C.4-11. 

Reduction of the order of the state 

As for the longitudinal model, the aerodynamic effectors are assumed directly 

controlled by the servo actuators; the aileron and rudder tab terms are consequently 

dropped from Eq. C.4-14, C.4-15, and C.4-16. 

Trajectory equations 

The relevant linearized trajectory equations are 

= U0 (-+ r)/57.3 (C.4-19) 

SY7(r) dr (C.4-20) 

0 

t 
y X0(r)dr (C.4-21) 
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Table C.4-1fI
 

Coefficient Values of Aircraft Lateral Equations-of Motion
 

Coefiien Ap 

C -0.1485 

C -0.987 r 

C 0.P 

C 0.1105 

C -0.00534s 


C 0. 

C6 t 0.a 


C 0.0364 

C 0.00792 
6 tr 

' -0.1485Cln 

r 

-3.73 0.842 

0.8 -0.239 

-1.52 -0.0626 

. 0. 

0.771 0.0785 

-0.73 0.1045 

-0.1065 0. 

0.43 -0.581 

0.0505 -0.117 

-3.73 0.842 
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Evaluation of the linearized trajectory state involves a linear combination of 
the aircraft state equations, as seen from Eq. C.4-19. To avoid linear dependence, 
the equations are rewritten in terms of 'F rather than fl. To do this, a similar 
procedure of substitution to that outlined in'the previous section is followed. 

Surface actuator servo models 

All surface actuator servos were modeled by a first-order system with a 
time constant of 7-= 0.1 see. 

The servo equations are 

== (l/r)(, - 6 ) (C. 4-22) 
a a 

= (1/7X6S - S) (C. 4-23) 

6r = (l/r)(&r - r) (C. 4-24) 

Aerodynaniic noise correlation equation 

Following section B. 7 of Appendix B, the first-order noise correlation equation 
is written 

n = (1/T) (w - )6 ) (C. 4-25) 

where 

On is the sideslip gust disturbance, deg. 

T is the noise correlation time, sec. 

w is a Gaussian white noise imput 

Control law structure 

The following control law structures were evaluated: 

Roll axis Yaw axis 

(1) P, #, y, ', 5 to ailerons r7to rudder 

(2) P, 7,y, . to spoilers r to rudder 

y, to spoilers 


and ailerons
 

(3) p, # Y, r to rudder 
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Turn coordination feedforward to the rudder was additionally provided 

in all the above control structures. 

Consider the control structure associated with (3) above. The aileron 
servo command is written 

C =4 + + + +a =Pl y P 2 P3Y P 4P P5 (C.4-26) 

Assuming anidentical servo actuator for the spoiler, its displacement is given 
by 

s = K s 6 a (C.4-27) 

where K s = -2.84 for the CV880 aircraft. 

The rudder servo command is 

6c = P6(-r + r) (C.4.28)r 

where rc is the commanded yaw rate for turn coordination. 

State variable formulation 

With the control law structure defined by Eq. C.4-26 and C.4-28 the aircraft, 
trajectory, servo-actuator, and noise-correlation equations may be set in the 

state-variable form 

= Fx + Gw 

where the state vector x is given by 

P
 
r
 

Y 
y
 

x 

6a
dr 

n
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Table C. 4 -IV 

F Matrix and G Matrix 

F Matrix 
-1.52 0.473 -2.89 0 0 5.18 -3.3 -0.483 0 

-0.0626 -0.1653 0.653 0 0 -1.17 -0.0325 -0.3746 0 

1.0 0 0 0 0 0 0 0 0 

0 0 0 0 1.0 0 0 0 0 

0 0 0 0 0 1.0 0 0 0 

F= 0.744p4 1.765P6 0.744 p 5 0.744p, 0.744P 2 0.744P3 

+0.5541 +0.0412 -0.2227 -0.7374 -1.7886 0.581 

-0.203P 4 p6 /p 5 +0.7089 -0.406p 6 -0.203plP6 /p5 -0.203P2P6/p 5 -0.203P 3 P6 /p 5 

io.OP4 0 10. OP5 10. Op1 io.OP2 io.OP3 -10.0 0 0 

0 -1.15p4 p6 /p5 10*.OP 6 -2.3P 6 -1.15plP 6 /p 5 -1. 15P 2 p6/p 5 -1.15P3 P6 /p 5 0 -10.0 0 

0 0 0 0 0 0 0 0 -0.807 

m G Matrix 

0 

0 

0 

0 

G-- 0 
-0.581 

0 

0 

0. 801 



Appendices B and C References 

1. 	 Etkm, B., "Dynamics of Flight", Wiley, 1959. 
2. 	 "CV880M Data", Lear Siegler Report ADR-595. 
3. 	 Etkin, B., "Theory of Flight of Airplanes in Isotropic Turbulence - Renew 

and Extension", AGARD Report No. 372, April, 1961. 
4. 	 Foss, K., MeCade, W., Gust Loading of Rigid and Flexible Aircraft in 

Continuous Atmospheric Turbulence", (MIT) WADC Technical Report 57-704, 

January, 1958. 

C-17
 



Appendix D 

THE SCANNING BEAM MICROWAVE ILS 

TRANSFORMATION EQUATIONS AND ERROR MODEL 

by 

George W. Cherry
 

and 

Donald W. Keene 

The scanning beam microwave ILS is an advanced radio navigation which 

provides precision azimuth elevation, and -range data, to approaching and landing 

aircraft. A prototype embodying many of the principles of the new system is presently 

undergoing successful testing at the Federal Aviation Administration's National 

Aviation Facilities Experimental Center (NAFEC). The Radio Technical Commission 

for Aeronautics (RTCA) has formed a special committee for specifying the data-sLgnal 

format and the performance parameters of the new system. The new system could 

replace the current VHF ILS equipment as the international landing system as early 

as 1975. RTCA is endeavoring to make the new ILS compatible with all users ­

general aviation, civil airlines, military aircraft - and with all type of aircraft ­

wide-bodied jets, supersonic transports, VTOL, STOL, etc. It is anticipated that 

the microwave ILS will be utilized to provide the precision navigation data required 

to meet the all-weather landing requirements of the Space Transportation System. 

The technical concept, which RTCA Special Committee 117 has chosen for 

tne new ILS, uses ground-transmitted, scanning planar beams. There are at least 

two scanning beams associated with each ILS runway - an azimuth beam and an 

elevation beam. The ground transmitters angle-encode the transmissions to the 

aircraft. As the ground-transmitted scanning beams sweep past the aircraft ILS 

antenna, the airborne ILS receiver receives, decodes, and sends to the guidance, 

computer the azimuth or elevation angle it obtains. The azimuth 'and elevation 

transmissions are time- or frequency-multiplexed. There will be a precision DME 

transceiver associated with the azimuth-beam transmitter; thus, the new ILS will 

provide 3-D navigation information relative to the runway. The scan frequency 

tentatively chosen is 15 scans per second. 
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The frequency bands likely to be used are C-band (5.00 to 15.7 GHz) and Ku-band 

(15.4 to 15.7 GHz). For runways serving sophisticated users or CAT IIIA-c landings, 

both frequency bands may be used: anarrow-beam, limited-angle coverage Ku-band 

"fine" system, and a wide-angle coverage C-band "coarse" system. See Fig. D-l 

for the possible location of the various antennas and a tabulation of the accuracies 

and angle coverages of the "fine" and "coarse" systems. 

The C-band elevation antenna is located at the typical glide-slope aiming point 

of most aircraft. Some runway configurations would have only this elevation antenna. 

The Ku-bdnd elevation antenna is used for CAT III landing flare control on 

better-equipped runways. It is located farther from the runway threshold so that 

the aircraft will not pass the flare antenna before final runway contact. The accuracy 

with which the flare-initiation altitude can be inferred from the "fine" elevation 

beam and the precision DME signals is quite high. See Fig. D-2 for a plot of this 

error versus flare-antenna displacement. Notice that the rms altitude error due 

to 0.035-degree rms error in elevation angle and 25-ft rms error in DME range is 

only slightly in excess of two feet for a flare-antenna displacement of 3500 feet. 

The geometrically optimum location of the flare antenna locates this transmitter 

too close to the runway threshold to control flare through touchdown. 

MAeasurement Geometry 

Figs. D-3a and D-3b illustrate the ILS measurement geometry relative to the 

runway coordinate system. If the elevation antenna displacement from the runway 

center line is ignored, the following relationships are valid: 

EL = h1 (X, y, z, d o ) = tan-(-0) (D-la) 

AZ = h2 (x, y. z, do =tan-'(d0-._x) (D-lb) 

2 y 2d = h3 (x, y, z, d 0 (d 0 - x) +y +z (D-ic) 

Note that these relationships are valid for both the glide-slope antenna and the flare 

antenna; the geometry differs only in terms of the displacement D 0 . 

The corresponding inverse relationships are:
 

d2 2 2
co(Z (o EL i 2 1i2(L 

= cos(EL) d0 cos(EL) - cos(AZ)Vd2 (cs2(EL) + sin2 (EL) cos 2 (AZ) - d2 sin2(EL)
 

Cos2(EL) + sin2(EL) cos 2 (AZ) (D-2a)
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Azimuth Scanners & DMEFlare Control AntennaGlide Slope Antenna 
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15 / sec Coverage: ±900 or ± 600Scan Frequency:Scan Frequency : < 15 / sec 

Frequency: C - Band Frequency: Ku - Band 	 C- Band Accuracy z0.20 

Ku - Band Accu racy -0. 020 

Fig. D-I Scanning Beam Antennas: Locationi, Coverage, Accuracy 



500 

707I 1 	 I I1 1 

6 	 60hd doT	 90 j 

U.I5 	 oc / 50 

c 	 H - 70f'L
4 -/ 	 40 

S/ 	 i 
J, V 	 / 30 
U

-	 20 

-a(do 	 10 
--------------------------------. 	 -""I 1 

0_~­00 II iI I I 
0 1 2 3 4 5 6 7 8 9 10 

Runway i. Runway 
End do (Thousands of Feet ) Th reshold 

Fig. D-2 	 Flare Antenna Elevation Angle and Root-Mean Squared Altitude Error - Shown as a Function of 
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Fig. D-3 Geometry of Aircraft Position 
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d0 cos(AZ) sin2 (EL) + cos(EL) Vd2(cos 2 (EL) + sin (EL)cos2(AZ))- d2 sin2CL) 
y = siri(AZ) cos 2 (EL) + sin2 (EL) cos2(AZ) (D-2b) 

s ( E L)[d 0 co - cos(AZ)/d 2 (cos2 (EL) + sin2 (EL)cos 2 (AZ))- d2 sin2 (EL) 
z =os3(EL) +sin 2 (EL) cos 2 (AZ) 

(D-2c) 

The differential relationships between measurement deviations and the position
 

deviation are summarized in the following equation:
 

6mr F Ibn 6x (D-3)
&xJ 

where 

8(EL)1
 
Sm = (AZ)
 

6d 

zx 

2 + 2 0 2 2x+x + Z 

6h yd O - x0-xy 
2 2 x) 2 2Sx (d _x) 4_y (d0 - + y 

x- d0 y z 

(d 0 - x)2+ y2+ z 2 d0 - x)2 +y2+ z 2 V(d0 x) 2+y2+ z2 

The exact relationship (Eq. D-2a, b, c) could be used to establish the initial 
position fix upon aqusition of the ILS signal. The differential relation (Eq. D-3) 

will be used for incorporating measurements in the navigation filter estimates. 
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System Accuracy 

The anticipated accuracy of the air-derived data for the scanning-beam 

microwave ILS is summarized in Fig. D-l..F or comparison, the perforfiance 

requirements for the developmental system at NAFEC are summarized in Table 

D-I. Note that this system includes a precision-approach radar capability. Ground 

tests have confirmed that the range, elevation, and azimuth accuracies are within 

the specified tolerances. Data compiled from a series of flight tests conducted at 

NAFEC have yielded the following results (from Reference D.1): 

0.0280Elevation-angle error, rms 

0.0210Azimuth-angle error, rms 


Range error, rms 75 ft
 

The elevation azimuth, and range errors are uncorrelated with respect to 

each bther and are essentially uncorrelated from measurement to measurement. 

Thus the covariance matrix for the measurement errors can be written as: 

?KEL 
2 0Vn 	 0 orAZ 0 

0 2d0 

where 'EL' aAZ' and ad can be considered constant over the space scanned by the 

microwave ILS. Flight tests have also shown that the measurement errors are 

substantially unaffected by multipath propagation. 

REFERENCE FOR APPENDIX D 

FederalD. 	1 Advanced Scanning Beam Guidance System for All Weather Landing, 


Aviation Administration Report No. RD-68-2, February, 1968.
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Table D-I 

Air-Derived Guidance-Signal Characteristics 

Elevation angle error Standard deviation of less than 0.03 degree 

Azimuth angle error Standard deviation of less than 0.05 degree 

Range error Standard deviation not exceeding 100 feet or I 

percent of range, whichever is greater 

System range 15 miles from touchdown 
Elevation angle coverage 0 to 10 degrees 

Azimuth angle coverage ±5 degrees of runway centerline 

Azimuth clearance coverage 5 to 35 degrees each side of runway centerline 
DME coverage ±5 degrees of runway centerline 

Radar-Operation Performance Requirement 

Range (for a 20-meter square target, 

10 mm/hour uniform rainfall 

over the path) 

Elevation 9 miles 

Azimuth 13 miles 

Accuracy Adequate to define a point target ona 3.0-degree 

glide slope at 2000 feet from the glide-slope 

origin to within ±1 5 feet in azimuth and elevation 
and ±50 feet in distance. 
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