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CHAPTER 1
INTRODUCTION

by gt
George W, Cherry

This report describes a great deal of the work done at the Draper Laboratory
in the last three months devising and testing tools and techniques for trajectory
planning and managernent and navigation, guidance, and comtrol of the Space Shutile
vehicle during the approach and landing phase ofTits mission, This reporting period
of the work has emphasized the gynthesis and creation of irajectory planning
concepts, guidance laws, filter equations, control, parameter optimizationaigorithms
and programs, etcetera, Therefore, while the motivation for the work wasapplication
io the Space Shuiile vehicle, there has been viriually no gimulation of the invented
techniques on Space Shuttle trajectories and dynamies, (In fact, in order fc fest
some of thefechnigues devised for the shutlle, knewnavailable jet transport cﬁynamics
wereused: for example, Chapter 5 tested its toolswonthe Convair 880.) It is planned
that the next period of activity on this project will correct this deficiency.

In order to obtain an over-view of the major thrust of this report, the reader
should consider the factors which could limit the ability of the Space Shutlle io
follow a given path,

i. Nuvigaiion sensor noise, bias, and drift.
2, Ervironmental disturbances.
B steady winds
b, wind shear
c. wind gust
3. Space Shutile dynamics,
4, Operational lunitations such as air speed, power, fuel, maximum bank
angle, maximurn roll rate, eic,
5, Lamitations on control forces, moments, activities and energy.

The block diagramin Fig. 1~1 summarizes the problem areas and references
the chapters and appendixes where discussions dnd, hopefully, solutions of the

preblems can be found.

Chapter 2 deals directly with problexri ares 1. above and lays the foundation
for dealing with 2.,a,and 2.b.by providing estimates of the steady wind and, hopefully,

11
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the wind-shear, - If the wind velocity and wind shear can be estimated, then the
guidance equations can provide feedforward commands to cancel their effects. For
example, the crab angle reguired to follow a ground track can easily be computed
by the guidance equations 1if the siate estimator provides a wind estimate. The
alternative is the less desirable fechnique of preventing anereasing course devié.tmn
by integral compensation of position error,

Although no simulation results are available yet, preliminary computations
predict that even at a range of 6 miles and using the coarse ILS, the optimal
combination of IMU and scanning beam ILS data will result i position and velocity
RMS errors of about 15 feet and 0.5 feet/second. Over the runway threshold the
errors will be much smaller and certainly small enough for zero-zerc landings
without a radar altimeter,

Chapter 3 deals with aspects of problem area 4, above, It addresses itself to
maximizing range subject to the constraint of a limited fuel quantity and includes
the glider case by allowing the specification of zero fuel guantity available. While
re-eniry planning for theSpace Shuttle vehicle should obviate the need for requiring
S5V maximum range capability, contingencies'such asaccidents at the intended airport
oran Apollo 13 type mishap, may make this capability a desirable contingency tool.

Chapter 4 deals with problem areas 2.,a., 3., and 4, above, There are two
key concepts in this chaptler.

1, The first key concept 1s the design of reference paths and trajectories
whose derivatives (velocity), second derivatives (acceleration), and third
derivatives (jerk), take into account the Space Shuttle vehicle's dynamics,
maneuver limitations, maneuver rate limitations, air speed resirictions,
and so on, Such trajectories offer the significant advantage that the
58V, with a suitable control system, can fly such paths extremely
accurately.

2. The second key concept is the provision of feedforward signals designed
to make a simple model of the SSV fly the reference trajectory. (The
simple problem includes the computation of feedforward signals which
compensate for the steady wind.) The coinbination of an essentially
flyable reference path with feedforward compensation resulis in close
adherence of the space shuitle to the reference trajectory. The problem
of dealing with wind gusts and errors in estimates of the wind velocity
as well as effects due to the departure of the 38V's iransfer function

from the model's, is delegated to the feedback control system, whose
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bandwidth and response can be optimized for its share of the control
problém . Inorder to undersiand the relationship of the SSV to the simple
model, the reader might consider the fdllowing analogy: The model is
the lead aircraft (with .perhaps different dynamics and a, somewhat
different environment from the SSV) in a formation, and the S35V flies

wing on the model.

Chapter 5 deals with problem areas 2., 3., and 5. above and closes the loop
in Fig. 1-1, This chapter describes the theory and a computer program (and some
results} which can be used to optimize the parameters in the feedback path control
system. The objective is to provide close.adherence to the reference path ina
turbulent aerodynam:ic environment without excessive control surface (or wheel)
motion. The results are for the Convair 880 but can be extended to the SSV,

The appendixes contain material on several subsidiary topics, including
(Appendix D) an error model and coordinate transformation equations for the scanning

beam instrument landing system.
Chapter 1 References
1, MacKinnon, D, Improving Automatic Landing Svstem Performances Using

Modern Control Theory and Inertial Measurementg, MIT Instrumeniation

Laboratory Report R-628, January 1969,

2. MacKinnon, D,, Some Applications of Mathematical/Optimization to Automatic
Landing Systems, MIT Instrumentation Laborato%y Report R-651, November
1969. .

3. Cherry, G.W., MacKinnon, D., DeWolf, B.; A New Approach and Landing
System: Help For Qur Troubled Terminal Areas, MIT Charles Stark Draper
Liaboratory Report R-654, March 1970,




CHAPTER 2 EN?O - 34839

SPACE SHUTTLE STATE ESTIMATION
DURING APPROACH AND LANDING

by
Donald W. Keene

2.0 Introduction

The fundamental problem of névigation is to provide accurate indications of
position and velocity of avehicle sothatit can be guided accurately toits destination.
For the Space Shuttle vehicles the position and velocity estimates must be extremely
accurate to permit automatic landings u'nder adverse weather conditions. To meet
this objective, one proposed navigation system for the Space Shuttle vehiclesincludes
both an inertial subsystem and a scanning beam micr?‘)\‘nrgve LS receiver which
interface with the guidance and navigation computer. The inertial system provides
a self-contained navigation capability that affords extremely accurate short-term
position and velocity information but which is subject to long-term drift. The scanning
beam microwave ILSY on the other hand, provides accurate drift-free measurements
of position but is incapable of supplying the same high quality velocity data as the
inertial system. To take advantage of the unique gqualities of each system, the data
from both systems can be combined in optimum fashion to yield results superior to
either sj'stem atone.

The filtering approach which is used to optimally combine these data is
presented in Section 2.3. The procedure to be followed here in the estimation of
the position and velocity is to estimate the errors in these guantities rather than
the quantities themselves. This indirectmethodisused since the position and velocity
errors change slowly with time and a linear model for the inertial navigator can be
utilized. The basic philosophy employed in the design of the navigation filters is to
estimate only those quantities which are slowly varying with time such as position
and velocity errors, instrument biases, and wind velocities.

There will be, of course, a need to estimate other dynamic variables such as

vehicle angular rates and accelerations which are needed for control purposes, but

*As described in Appendix D,



undoubtedly these variables will be required at higher rates than are normally
necessary for navigational purposes. Therefore, the estimation of these quantities
would be 1ncorporated more Z%fectwely in the design of the control system.

GL8HG

~ Accurate estimates "of the wind velocity will be required for two reasons:
first so that the guidance can plan optimal maneuver sirategies and secondly to
reduce the undesired effects of the wind on the ground track. In order to estimate
the wind velocities it is necessary that the vehicle be equipped with a true airspeed

indicator which interfaces with the guidance computer. Procedures for the optimal

0%

estimation of wind velocity are outlined in Secticn 2.4.

2.1 The Equations of Motion

in this section the equations of motion of the aircraft will be derived relative
to the runway coordinate system. In Section 2.2 the equations defining the inertial
navigation system estimates of position and velocity will be derived and compared
with the results of this section to define the equations for the errors in the indicated
position and velocity. The error equations will thenbe used to formulate thenavigation

filter equations for incorporating the microwave ILS position fix data.

Since the runway coordinate system is an earth-fixed reference f_rame, it is
both accelerating and rotating relative to inertial space; thus the acceleration of
the aircraft can be expressed as:

a2 = 20XV -oXuXR-egXgXR (2.1-1)

and the equation for the position and velocity of the aircrafi are:

[bge

¥ (2.1-2)
vV =a (2.1-3)

where

acceleration of the aircraft relative to the runway

o
I

coordinate frame

inertial acceleration of the aircraft

velocity of the aircraft relative to the runway

< Jp

coordinate frame

o
n

position of the aircraft relative to the runway
coordinate frame



—B‘r = position vector of the origin of the runway coordinate

frame relative to the center of the earth

w, = angular velocity of the earth.

-=e

In runway coordinates the components of these vectors can be written as:

X x X
R = v y 2 y
| Z | Z z
r -
%1%
Zy T aIy
| Re | o |
cosl. cosy
W T w, -cosL: cos (,!;r
-sinl,
where
L = latitude of the airport
¢r = angle of the runway centerline with respect to true north
R_ = radius of the earth

e

For convenience, define the matrix W, such that

Wo V = w ¥V

<] X

I can be eagily verified that

0 sinl
-ginl. 0
cosL: sin ¢r

The centrifugal accelerations can then be writien as:

X
_ 2
W XW X R = [wa y
z -4
2
wXwXR = [W:I 0
—g e =r X
-R
. =
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-cosL sin ¢r
-cosL cos glar
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2.2 Modeling the Inertial System

In this section the equations describing the output of the inertial navigation
system are derived. It should be emphasized that the equations presented here do
not necessarily represent the mechanization of the equations émployed in the inertial
navigator; they simply represent amodel of the system for use in defining the error
propagation.

For the purposes of this analysis we can assume that the accelerometer
measurements are resolved into a reference frame which is approximately aligned
with the runway coordinate system. The misalignment between the runway coordinate
frame and the reference frame is assumed to be small and is represented by the

matrix:
1 —EZ Ey
E = . Ez‘ i "EX
- € 1
¥ X

Thus, the accelerometer measurements resolved info the platform frame are

1 ZI-E](Q‘I -s_g(x,y,z)) '*'h'*'l"a (2.2-1)
where
g = acceleration due to gravity
b = uncompensated accelerometer bias
w_ = accelerometer noise

a
The inertially derived aircraft acceleration is given by
a' =Lf+glx!,yh 2 - 2@, X ¥
"W Xw XRBR'-w Xw X R, (2.2-2)
and the corresponding position and velocity is given by
R' =¥ (2.2-3)

V' o= a (2.2-4)

In the eguations above

Mo
R' = |¥y' = inertially derived position of the aircraft
- relative to the runway coordinates
Fot
yro= |3 = inertially derived velocity of the aircraft
oy J relative to the runway coordinates

2-4



Also,

e

To obviate the need of modeling the aircraft accelerations in the state equations
used to define thenavigation filter, we will use the equations which define the inertial

system errors.

2.2-2 to yield

where

AR = AV

>
<
I

-2[wx] AV - o, | [0 ] AR +D+w,

= identity matrix

mx‘—x
AR = [y'-¥
jz' -2
—l'_
Vx vx
AV = (V! -V
| -
_Vz Vz

¥ = [=-1(G - gya)) - gy, + gl 3, 2

These equations are obtained by gubtracting Fq. 2.1-1 from Tq.

(2.2-5)

(2.2-6)

The gravity term g (%', y'. z') can be expanded about the actual aircraft position fo

give

where

w2 0

glx,y',2') =

gravitational constant

mass of the earth

GM

Bl

3R

ad

position vector of the aireraft re’~*ed to the

center of the earth

2-5
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_ _ _—ae —
J(on

glx, vy, z) - I

2

)

(2.2-1)



'Near the airport

o
—ae =0
..Re
so that
-1 0
glx'y',z") =g x,y,2) + R—g 0 -1 0 AR (2.2-8)
¢ 0 0 +2
Thus Eq. 2.2-6 can be rewritien as
- 6

av =[E-1)(z; - g xy.2) + = |0 -1 o| ar
© o 0o 42

-2 ["”x] AV - [wx:l I:wx] AR +b+w, (2.2-8)
If we assume that the misalignments are small and thatthe inertial accelerations

of the ajrcraft are small compared to g, the term involving platform misalignments

can be rewritten as

0 -1 0
[E - I](_g,[ -E(x,y,z)) 2 g 1 0o o0]|e (2.2-10)
6 0 0
where
€
X
€ = |€
= y
€

Z

If we assume that the uncompensated gyro drift can be modeled as a random-walk
process then
=d+ [1-E]w, (2.2-11)

:l'vd (2.2‘12)

ORNEY

where

4 gyro drift
W = white-noise source of gyro drift

If high-quality external position data are available for correcting the output
of the inertial system, then most of the terms appearing in Eq. 2.2-6 can beneglected.
For example, if



€ ~ 0.0001 rad
AR ~ 100 fi (with microwave ILS data)
AV ~ 2 fi/sec (with microwave ILS data)
R ~ 400 m

e -5
w o~ 7.28 10 ° rad/sec

b ~ 0.001 ft}'secz- {the effect of accelerometer scale factor
errors would be of the same magniiude)

then,
g = 0.0322 ft/sec?
AR = 0.00015 £t/ sec?
e
2w AV = 0.00029 £t/ sec?
wi AR = 0.0000000001 ft/sec?

Itis apparent that the platform misalignment will be the dominant error source
under these circumstances. Thus, a reascnable model for the INS is provided by
the following equations:

AR = AV (2.2-13)
0o -1 0 .

AV =g 0 0| €+w, (2.2-14)
0

£ =d (2.2-15)

d =Wy (2.2-16)

where the earth rate term [I-E] w_ can be neglected.

Hollisi:erl has shown that, if external position data are available at intervals
less than one tenth the Schuler period, it is necessary to estimate the plaiform
misalignments (the microwave ILS data rate is 15 times/sec). Even though the
angles may become large, the filter is continucusly estimating the velocity error
which they produce. The main reason for estimating the misalignment angles is to
be able to navigate accurately in the event that the external position information is
lost. Thus, if we assume that microwave data are continuously available during
the approach and landing phase, the equations for the error propagations become

simply
AR = AV (2.2-17)
AV = w, (2.2-18)

For this model the effects of platform misalignments, accelerometer errors, and
computational errors would be treated as an equivalent white noise process W

2-7



2.3 Optimum Mixing of INS and Microwave ILS Data

;I‘he method to be used in filtering the microwave ILS data is based on the
minimum variance estimator as derived by Kalman and Buc:y.2 For this approach
the measurements are considered to be linear combinations of the state variables
for the system which are corrupted by additive white noise. Thus

m =Hx+ v (2.3-1)

For the scanning beam microwave ILS the measurements are considered to be

=1, -EL _
1
m =|AZ -AZ (2.3-2)
gt -d
where

EL' = elevation angle predicted by the inertial navigator

AZ' = azimuth angle predicted by the inertial navigator

d' = range to the runway predicted by the inertial navigator

and EL, AZ, and d are the actual elevation, azimuth, and range measurements.

Since the measurements are functions of position

m = HAR + v (2.3-3)
and
dh
H R

where "g% is given in Appendix D.

The covariance of the measurement noise is defined fo be
7wt = Vo]
n
where [Vn] is also given in Appendix D.

Tt is assumed that the measurements will be made and processed at 1-second
intervals and that the measurement errors are uncorrelated at this sampling rate.

The equation of state can be represented in the form

x =Fx+w (2.3-4)

2-8



T we use Eq. 2.2-13 through 2.2-16 as a model for the system, then

Ax 0 001 060G 00O GO O
Ay 0000 1' 00 ©0 00 0 0
Az O 00 0 01 0 000 0 0
ISA 00 0 0 0 00 -g 000 0
av, 00000 Og 0000 O
av 0 0 0 0 0 00 0 0O 0 O
= e, F = 0O 00 0 0 00 00 1 00
c O 00 00 00O 00O 1 0
y
e, 0O 0000 0O0 0000 1
d_ 000 00DO0O0 0 O0UO0GO O
d, 0 00 00 0O 00O 0 O
a 00 00 00O 00O 0 O
L 2 B J
(2.3-5)

ax

W

ay

W

- az

¥ 0

0

0

de

L

wdz

If the simpler model (Eq. 2.2-17, 2.2-18) is used, then the state equations can be
decoupled into three independent relations of the form:

X = F = w = (2.3-6)
AV 0 v w
X

For either model an estimafe of the. state and the covariance of the state-vector
errors are propagated between measurements as

2-8



x =¥F% (2.3-7)
S = T
P =FP+PF +@Q {2.3-8)
where Q is the power density of the system-noise matrix,
At the time of each measurement the new estimate is given by
4" =% +K(m - HE) (2.3-9)
where
-1
K =PHT [HPHT ' ] (2.3-10)
Pt = [1-xH] P~ (2.3-11)
ﬁ'l' = estimate of the state after incorporation of the
measurement
g_ = estimate of the state before incorporation of the
measurement
and
P¥ = covariance just after the measurement.

P

covariance just before the measurement

At this point a few statements can be made concerning the selection of the
INS model. If Eq. 2.3-5 is used, it should be noted that the platform azimuthal
misalignment, € - igs unobservable. This implies that additional instrumentation
such as a stabilized magnetic compass or radio direction finder would have to be
incorporated into the navigation system for estimation of azimuthal misalignment.
Alternatively, EZ could be estimated if the aircraft accelerations could be modeled
as a function of the applied maneuver commands. The accuracy of this approach.
depends on how well the aircraft accelerations can be modeled and upon the magnitude
of the vehicle-disturbance accelerations, A similar statement can be made concerning
estimating the vertical misalignments. I-iowever, inview of the anticipated magnitude
of the misalignments (&1 milliradian) and the rather low accuracy of the magnetic
or radio direction indicators and inview of the limited amount of time in the approach
phase available to filter these data, it does not appear desirable to estimate these
guantities, The magnetic or radio-compass data could be used ingtead as a gross
check on the platform orientation rather than as a means of estimating the
misalignments. The- uliimate decision as to whether or not to incorporate the
estimation of the platform misalignments depends on the answers to the following

questions:

2-10


http:incorporat.on

1) What is the expected value of the misalignments at the beginning of the
approach phage?

2) How well can the misalignments be estimated?

3) How accurate is the inertial navigator without ILS data?

4) Isthere a requirement to perform an automatic landing without ILS data?
5) How accurate does the platform alignmenineed tobe in order to adequately

perform the decrab and roll-out maneuvers?

Irregardless of which model is selected for the navigation filter, it is still
possible to estimate the accuracy of the position and wvelocity estimates when
microwave ILS data are available. Hol]isterl has shown that, if the sampling interval
AT is less than the response time for the resultant filter (1 lwn), the continuous
approximation to the discrete filter can be used to predict the performance of the
navigation system. For the continuous measurement case the estimates of position
and velocity errors are given by

£ -r2+ru’ R (m - Hy) (2.3-12)

and the covariance mairix propagates as

T 1

P =FP+PF!+Q-PH R_'HP (2.3-13)

where Rn = power spectral density of the external measurement noise.

If the simplified modelisused {2.3-6), the steady-state variances in the position

and velocity estimates for one axis are given by

012, =J§N1"4Rg/"" (2.3-14)

03 =J7 n3/4 R}IM (2.3-15)

where N = power speciral density of the equivalent accelerometer noise

The natural frequency of the filter is given by

and the steady-state gains are

N

T -1 _
Rn—

K =PH

2-11



The structure of this filter is illustrated in Fig. 2.3-1. I we assume that

N =0.001 ftzl sec3 (this corresponds to a plaiform misalignment
of 1 mr)
Rn = 104 ftz sec (this corresponds to a measurement taken at 5.5
miles from the airport using the c-band data)
then
o =159 ft
r
LA 0.282 ftf/sec
_ -1
w, = 0.0178 sec
= 56 sec
Wn
According to Hollister1 a more realistic value of equivalent accelerometer
noisge is:

N =102 ftzlsec3

In which case,

0. = 21.2 ft

¢ = 0,68 ft{sec
v

w = 0.0316 sec !
n

Tul_n = 31.6 sec

It should be emphasized that, as the aircraft approaches the runway, theerrors
in the position and velocity estimates will decrease. The ultimate accuracy of the
complemented inertial system would seem to depend on the correlation time of the
ILS measurement noise, For this analysis it was assumed that the correlation
time was less than one second. This assumption should be checked as socon as data

on the microwave ILS is available.

2.4 Estimating the Wind Velocity

One of the primary reasons for estimating the wind velocity is to allow the
guidance to plan optimal aireraft maneuver strategies. Itis also desirable to estimate
the wind velocity so that open-loop or feed-forward commands can be used to cancel
the undesirable effects of the wind on the ground track, Without the wind estimates
the guidance and control system would typically develop positional errors to

compensate for the effects of the wind,
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The wind velocily, W, can _b'e expressed as the difference between the ground
velocity (V) and the velocity of the aircraft relative to the air mass (ya). Thus

W, =V _-V__ (2.4-1)
wW_ =V _-V 2.4-
Y ¥ ay ¢ 2)
where
Vox lVal cos g cosy
v, = Vay = Val c?se sin{ (2.4-3)
vaz [Va[ sin 9
and

o = piftch attitude of the aircrafl
¥ = heading of the aircraft relative to the runway centerline

(as measured by the inertial system)

It is assumed in this analysis that the sideslip angle, 8, is small and that the
deviation of the angle of attack, Aq, from the trim angle of attack is also small, If
these assumptions are not valid,then ¢ and 8 could be measured by appropriate
sensors, or estimates of @ and 4 could be obtained from measurements of vertical
and side forces acting on the vehicle. For this approach the model relating the
aerodynamic forces to the angles ¢ and 8 would have fo be included in the navigation

equations.

n order to construct an estimator for the wind velocity, the true airspeed,
vas’ (as measured by the air data computer) must-be provided to the navigation
computer. Itis assumed that the errorin the airspeed measurements can be modeled

as correlated noise, thus

Ival =Vas t € (2.4-4)
‘ 1

€ S - € +W (2.4-5)
as T as as

Considering the accuracy of the ground velocity data provided by the
complemented inertial system, it would appear unnecessary to augment the state to
include a model for the wind. Instead it would be better (and simpler) to model the
wind separately and treat the inertially derived velocity as an independent
measurement. Thus we can define the measurements for this filler as

Fa¥
vV, -V, cosbcos i/

m = A (2-4"6)

Vy- Vg cosé sin )
A A
where V_, V y are the estimated components of ground velocity from the output of

the complemented inertial systems.
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Chus

V_- |V_.| cos@costy+ € _ cospcosy €4
m = X | a| as ; + Vg (2,4-7)
V- |Val cos6 costi+ €  coso siny €}
y
r in terms of the standard notation
m  SHx+ »
vhere
g = 1 0 cosogecosd (2.4-8)
0 1  cosesing
W
X
x = W (2.4-9)
y
€ag

' =w (2.4-10)
W = (2.4-11)

The optimal filier for this system canthen be deduced using the technigues presented
1n Section 2.3.

Estimation of wind shear (sx, Sy) could be accomplished by adding the terms

vV, = inertially derived vertical velocity

:0 the right hand side of Eq. 2.4-10 and 2.4-11, and augmenting the state variables
0 include the following shear model

S, T Wgy (2.4-12)

Sy = Wsy (2.4-13)

However, it would be undesirable to complicate the wind model unless it could
se shown that the estimates of wind shear would significantly increase the dynamic

response of the system.
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CHAPTER 3

OPTIMAL TRAJECTORY MANAGEMENT FOR
THE SPACE SHUTTLE

by

Mukund Desai
3.1 Introduction

Since the weight of the fuel required for post-reentry subsonic cruise is directly
deductable from the orbited payload and increases the energy regquirements during
reentry, attention is focused on the determination of post-reentry flight paths which
minimize fuel requirements, The delineation of the subsonic-range capabilities of
the shuttle, subject to fuel restrictions ranging from =zero to amounts sufficient for
extended cruise, is an essential design and operational consideration. Solution to
the range-fuel problem must be obtained to

1. Ensure the capability of the shuttle to meet design specifications.
2. Determine the operational utility of an existing shuttle.

Such problems are particularly suitable for formulation within the framework
of Optimal Control Theory. Optimization problems of this nature ofien require

extensive numerical computation.

The amount of difficuliy and expense involved in the performauce optimization
of shuttle flight paths depends upon the complexity of the maodel used. In this chapter
an energy-staie model approximation is used which yields useful optimal trajeétory
information. The computational simplicity of the solutions makes the energy-state
approach particularly attractive for onboard trajectory management,

Section 3.2 derives the energy-state model of the shuitle. The resulis of this
derivation are then applied to a class of shuttle-irajectory optimization problems
in Secticn 3.83. We shall here consider mainly the flights in a vertical plane (ie,
longitudinal flight).

Defailed considerations for performance problems involving lateral-flight

considerations have been limited in the pasé23'24) to special cases, such as lateral
flight in a horizontal plane, which reduce the order of the flight dynamics. With
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the energy-state approximation: it is ' possible to consider, with no great added

complexity, a broader spectrum of performance problems involving lateral-flight

considerations.

3.2 An Energy State Model for the Space Shuttle

Aerodynamic vehicle models range from a simple point-mass quasi-steady
representation to models that include the deflections of the airframe. Tt is usually
adeguate to consider the aircraft as a point-mass, because the motion of the vehicle
around the center of mass and the airframe deflections have little effect on the

flight path.

The nomenclature commonly used for a point-mass model is given in Fig.
3.2-1, For themost part we shall consider only paths contained in a vertical plane,

The following approximations are also made:
1) The curvature and the rotation of earth are neglected, since their effect
on short flight paths at sub-orbital speeds is negligible.

2) The variation of gravity with altitude is negligible.

The equations of motion for the point-mass model are as follows:

s =Tcos(a-|1:rf)‘D..gsiny (3.2-1)

vy _=Tsin(a+€)+L-gcos;, (3.2-2)
m

h =V siny (3.2-3)

x =Vcosy (3.2-4)

.l (3.2-5)

where

L = L, V, ) = lift
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V  =velocity

3 = flight path angle
h = altitudé
x = horizontal range
m = mass
T = T(V,h) = thrust at maximum throttle
D =D(V,ha) =drag
a¢ = angle of attack
= accleration of gravity
f = £f(V,h) = fuel flow rate at maximum throttle
€ = angle between thrust axis and zero-lift axis (assumed given)

Since both @ and € are small, Eq. 3.2-1 and 3.2-2 can be simplified by using
the small-angle approximation sin( a+¢ ) ¥ a+€ , cos ( a+¢ ) ¥1. The tangential
and n‘ormal accelerations to the flight path are given by Egq. 3.2-1 and 3.2-2,
respectively. Equations 3.2-3 and 3.2-4 represent the kinematical relationships in
vertical and horizontal directions. Equations 3.2-5 is the definition of the fuel-flow
rate. Except for Eq, 3.2-4, equations of motion do not depend on x, the horizontal
range. However, x may enter into the performance index or into an isoperimetric
constraint since

b
x(t,) - x(ty) = J; V sin r di.
0

Thus, we may eliminate Eq 3.2-4 for the determination of many flight paths. This
leaves us with a point-mass model with four state variables, V, }, h, and m; and

one conirol variable ¢.

The flight paths have to be considered subject to some inflight and terminal
constraints. The experience of various investigators indicates the difficulty and
complexity involved in the numerical solution of the optimization problem, in dealing
with such a model involving higher-order dynamics, and in the handling of the
constraints. We shall briefly consider approximations fo the point-mass model
equations, that may be used in the performance optimization of shuttle flight-paths,
We shall investigate the energy-state approximation in detail and shall see that
vehicle-energy is an important and adequate variable in the consideration of flight
paths. The comparison of the resulis for an aircraft, considered in Ref. 18, 20,
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and 21, obtained by using energy-state approximation with the results for "exact"
(4-state variable) model shows that the energy-state approximation, properly
interpreted, is adequate for the performance optimization of shuttle flight paths.

3.2.1 Point Mass Approximations

For {flights confined to subsonic speeds, it is usually adequate to use the.
guasi-steady point-mass model in which both the components of the accleration are
neglected. L This approximation is quite good for slow-moving vehicles where
%v}.?nax << gh_ ..+ The omissionof the accelerationterms obviously simplifies the
equations of motion and the performance- optimization problem becomes amenable
to ordinary calculus procedures (theory of maxima and minima). However, the
neglect of tangential acceleration leads to theneglect of the change in kinetic energy
(%mw) so that only the change in potential energy (mgh) is considered during the
flight. With the advent of supersonic aircraft, it was recognized that the change in
kinetic energy in accelerating to supersonic speeds was comparable to the change
in potential energy when climbing from sea level to altitudes above 50,000 feet. It
was also realized, since these aircrafts were capable of rapid climb and dive
maneuvers, that kinetic energy and potential energy are readily interchangable,

Kaiser(Z)

used the concept of energy-height (h +V2:’2g) in discussing aircraft flight
paths. This concept leads to a simple way of taking into account the acceleration
of the aircraft. Energy-height can be used as a state variable in place of h or V in

the equations of motion 3.2-1 to 3.2-4.

Next in the heirarchy of pownt-mass approximations is the energy-state
approximation. In this model, the tangential acceleration is neglected. TIf nearly
horizontal flight is assumed (with small flight path angle,) ), energy (henceforth,

we shall refer to energy per unit mass or energy-height as simply energy) and
mags are the only two relevant s{ate variables. If the variation of the mass of the
aircraft during flight is considered negligible, then energy remains the only relevant
variable for flighi-path considerations in this approximation, The energy-state

(3,4,6,7,8) in considering

approximation has beenused by a number of investigators
minimum time or minimum fuel climbs to given altitudes and velocities, In Ref.
4,9,10, the optimal-climb problem has been investigated, using similar
approximations fo the equations of motion 3.1-1 to 3.1-4 as in energy-state
approximation and without using energy as one of the states. It may be noted that,
on the flight path, energy remains a continuous variable whereas sudden changes in

h and V, leading to rapid dives or climbs in the flight path, are possible,

An improvement to the above approximation is to remove the assumption of
nearlyhorizontal flight paths and consider the flight path angle j as a control variable,
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with velocity and altitude as state variables. The angle of attack is determined
from the normal equillibrium equation, viz, L * mg cos ., which results from neglecting
thenormal acceleration. The only substantial difference between this approximation
and the energy-state approximation is that zoom dives and climbs require finite

iime insiead of zero time.

Thenext step in the improvement ig t¢ drop the assumption of negligiblenormal
acceleration. The mass of the aircraft may be approximated as constant or as a
known function of time. Thus V, h, , are the state variables and @ is the control

variable in this approximation.

The most accurate point-mass model istotreat V, h, ), and n as state variables
and « as the control variable. The oplimizaiion problem using this model with
gravity, thrust and aerodynamic forces and inflight and terminal ccnstrainis has
been investigated in Ref, 12, 13, 14, 15, 16. The experience of the investigatﬁrs(lé’
15, 17, 18, 19) indicates some of the difficulties involved in the numerical solution
of a problem of this order (four statevariables). Inmost cases the method employed
wag the Bryson-Kelley steepest-ascent method.(l4'18). Slow convergence was
sometimes reported, especially with the maximum range problems. The "indirect"
method of making initial guesses on the missing boundary conditions was employed
in Ref, 15, 17, 19, The flight paths were reported to be highly sensiiive to the
initial guesses, making it difficult to guess the migsing boundary conditions so that

terminal conditions were met,

Therefore, any reduction in the difficulty of the numerical sclution, either by
improved numerical methods or by making use of the special properties of the
problem, would be very welcome, With an eye on the latter proposition, we shall
investigate the approximations to the "exact" model, especially the energy-state
approximation.

3.2.2 The Quasi-Steady Approximation

Here both components of the acceleration are neglected, We can rewrite the
equations of motion 3.2-1 {0 3.2-4:

0 = Th,V)- DhV.e) - mgsing {3.2-8)
g =1{h,V,s) - mgcosy {3.2-7}
h =V sin, {3.2-8)



Ma

=Vcosy {3.2-9)

- f(h, V) (3.2-10)

2

To minimize the time to reach a given altitude, we maximize
dh .
Gt - Vsiny

with respect toaat a given altitude, subject to the constraints3.2-6 and 3.2-7 which
determine V and } in terms of h and a.

FromEq, 3.2-6 and 3.2-8

dh _ V[T(h,V) - D(h,V,e)}] -
el T E 4 (3.2-11)

Assuming cos) = 1, Eq 3.2-7 may be used to determine a(v,h); and, for a given
altitude, find V to maximize the excess power, V(T - D) and, consequently, the rate
of climb.
Similarly, to minimize the fuel spent to reach a given altitude, we minimize
-%xf v gin ) /f(h, V)

With respect to ¢, at a given altitude, subject to constraints 3.2-6 and. 3.2-7.

3.2.3 The Energy-State Approximation

In quasi-steady optimal-climb problems, only final altitude can be specified,
However, for high-performance aircraft, it is more meaningful to consider eptimal
climb fo a given altitude and velocity. The gnergy derived from the expenditure of
fuel raises the aircraft's altitude as well as its velocity, The interchangeability of
the kinetic and the potential energy makes it possible to spend energy to reach a
given altitude and velocity by accelerating to higher speeds at lower altitudes, then
trade the excess kinetic energy to reach the given higher altitude. Thus, it seems
meaningful to view the climb of an aircraft in "energy' space, and to specify the

energy to be reached in place of altitude and velocity.

Energy perunit massg, E, can be considered as a state variable and is related
toh and V by



E =v%/2+gn (3.2-12)
The time rate of change of E is given by

E =VV+ g‘i:x
Substituting for V and 1?1, from Eq 3.%—1 and 3.2-3, in the above relation yields

E = V[T(E,V) - DE,V,a)]/m (3.2-13)
. To maximize the rate of energy change, il is necessary to determine V and ¢
in conjunction with the other equations of motion, viz, 1, 1:1, and m equations. However,

considerable simplification ocecurs if the @ dependence in Eqg. 3.2-13 is removed.

If we assume small normal accelerations and nearly horizontal flight paths,

then Eq. 3.2-7 becomes simply

e, E, V) xmg {3.2-15)
From Eq. 3.2-15, we can express ¢in terms of E and V, i.e.,

a =a(V,E) (3.2-16)

Under the above assumptions, we can write down the energy-state approximation

equations as follows:

£ =YITW.E - DE.5)] (3.2-17)
m = -f(V,E) (3.2-18)

with h and a determined in terms of V and E by Eq. 3.2-12 and 3,2-16, respectively.

3.2.4 Mimimum Time to Climb

To minimize the time required to go from a given initial altitude and velocity
to a final altitude and velocity (equivalently, energy), the time rate of change of
energy must be maximized, ie,
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ma:;:}mize {V(T - D)} for a given o (3.2-19)
m
We have assumed for simplicity that m = consta‘nt; m may also be approximated as
a known function of time. Equation 3.2-19 yields a unique V for a given E {except
where we have two equal maxima for two different velocities for a given E, in which
case there will be a constant-energy velocity change on the flight path), resulting in
a feedback law V{(E). ’
Constant-energy contours may be plotted in the h,V plane as shown in Fig.
3.2-2. In the energy-state approximation, it is possible to move anywhere on a
constant-energy contour in zero time. ABCDF is a typical minimum-time energy-
climb path, as determined by Eq. 3,2-18, starting from energy.position A and climbing
to a given energy position F. Note that the segment AB is a path ézonstrained o
move along the constiraint h > 0 (a state-control constraint E —% > 0), and the
segment CD corresponds to the sgitustion referred to above, Ié having two equal
maxima for two different velocities for a given E. In practical situations, a
minimum-time path is desired from aninitial V,htoadesired V,h. Insuch situations,
in general, the optimal path has consiant-efergy climbs or dives as the initizl and
final phases of the flight. A'B' and FG represent the zoom dive and climb for such
a flight path. Tt may be noted that such rapid dive and climb paths violate the
assumption that cos}x 1. However, the comparison between the "'exact" path {obtained
by using 4-variable point-mass model) and the "energy-climb” path in Ref, 19 and
20 shiows that the "exact" path is very close to the "energy-climb" path, with the
sharp corners at the beginning and the end of constant-energy zoom paths rounded
off, The predicted flight times are also comparable,

The data on lift, drag, maximum thrust, and fuel consumption at maximum
thrust {which has been approximated here as proporticnal o thrust) for the aircraft,
investigated in Ref. 18, 20, and 21, are given in Tables 3.2-1 and 3.2-1I. We shall
use this aircraft for the sake of illustration of the usefulness of energy-state
approximation. The initial conditions that will be investigated are as follows,

h(0) = 500 ft
V(0) = 800 fi per sec
gm(0) = 36000 b

=
The only difference from the quasi-steady approximation is in holding E = constant
instead of h = constant in the maximization of V(T - D).
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Table 3.2-|
Maximum Thrust and Fue! Consu mption at Maximum Throttle as a Function of Altitude

and Mach Number

Thrust, T thousands of pounds)

Mach Altitude, h (thousands of feet)
No., M| O 5 15 25 35 45 55 65 [ 85 95

106

0 23,3 20,6 15.4 9.9 5.8 2.9 L3 07 03 01 01
0.4 22.8 19.8 144 9.9 6.2 3.4 L7 L0 05 03 01
0.8 24,5 2.0 165 12.0 7.9 49 .28 1.6 09 05 03
L2 29.4 21,3 2L0 158 1L4 1.2 38 2.7 L6 09 06
L6 29.7 29.0 275 2L8 157 10.5 65 3.8 23 L4 0.8
2.0 29.9 29.4 284 26,6 2.2 14,0 87 51 33 1.9 L0
2.4 29.9 29.2 284 21.1 256 1.2 107 65 41 23 L2
2.8 29.8 29.1 282 268 25.6 20,0 122 7.6 4.7 2.8 14

3.2 29.7 289 21,5 26,1 24,9 20.3 3.0 80 49 2.8 L4

0.0
0.1
0.2
0.4
0.5
0.5
0.5
0.5
0.5

Fuel Consumption: f =-g§ slugs/sec, where ¢ = 2800 sec




2i-¢

Table 3.2-11
Lift and Drag Coefficients as a Function of Angle of Attack and Mach Number

0 0.4 - 0.8 L2 L6 2.0 2.4 2.8

3.2

2,240 2,325 2.350 2,290 2,160 L.950 1700  1.435

0,0065 0,005 0.0060 0,0118 00110 0,008 0.0074 0.0069

= a = ._1_ 2 = 2
cL - ¢ L= ¢ 5o Vs S = 500 ft
C.=C. + NG @ D= ¢ 40 yos n=10
b~ p L DD '

1.250

0. 0068




with

g = 32,178 ft per sec’.
Figure 3.2-3 shows the contours of constant excess power, V(T - D), and of constant
energy on an h,V plane, for the aircraft under investigation. The minimum-time
path followsthe ridge of the excess-power contours, except when agé.inst the constraint

h=0.

3.2.5 Minimum Fuel-to-Climb

We can replace the independent variable "t" by "m". Dividing Eq. 3.2-17 by
Eq. 3.2-18, we have,

dE _ V(T -D)

It is clear from Eq. 3.2-23 that, to minimize the amount of fuel burned for a given

change in energy, we have to minimize, dE/dm, i.e.,

for a given E. (3.2-24)

maximize V(T - D)
v f

Figure 3.2-4 shows the contours of constant energy-increase per unit of fuel
burned,‘ﬁ;n;.g—m. The minimum-fuel climb-path is also shown,

3.2.6 Drag Dependence on Load Factor

As remarked earlier, comparision of a minimum-time path obtained by the
energy-state approximation with the path obtained by the "exact” four-variable model

(19,20) the maximum V(T - D) curve forms. a basic path that the

has shown that
"exact" paths follow closely, only deviating to meet initial and terminal conditions.
The deviations follow closely the zoom-climb or zoom-dive paths of the energy-state

path but sharp corners are rounded off,

Figure 3.2-5 showsthevariation of drag with mach number, at a given altitude,
for several different load factors. The variation of drag for different Iocad factors
is very small for Mach numbers > 1.2. Thus, with the assumption of unity load
factor (ie, L. = mg), errors will be small in the computation of drag for M > 1,2,,
and we expect that the "exact' paths at larger speeds, where D % Dy(E, V) would
follow closely the energy-state paths.
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3.3  Optimal Subsonic Traje‘ctory Management for the Space Shuitle

The estimation of the range capability of the shuttle is important from both
the design and operational aspects, As a result of the precious nature of the fuel
reserved for the post-reentry phases of flight, subsonic trajectory management will

be guided by minimal-fuel and maximum-range criteria.

In this section two versions of the maximum-range problem are considered
separately for the sake of clarity.

%
1. Maximum range for a gliding flight

<k
2. Maximum range for a given amount of fuel

Application of energy-state concepts resulis in solutions which are illustrated by
application to the high-performance aircraft, referred to in Section 3.2.5,

3.3.1 Maximum Range for Gliding Flight

The equations of motion for an unpowered flight (T ={ = 0) are;

dE - VD -
t m (3.3-1)
and
gx _ -
a =V (3.3-2)

Dividing Eq. 3.3-2 by Eq. 3.3-1, we get

dx _ -m
dE D

and the range covered over an energy drop from an initial energy Eo to a final
energy Ef is given by

T =1=0)

* - . ;
Minimum fuel for a givenrangeis an equivalent problem. Problem 1 is a special
case of problem 2,



o
= m -
R HJ'. D & (3.3-3)

Clearly, to maximize the range R, we have to minimize D(E,V) with respect to V
for a given E. In the quasi-stéady approximation, the minimization of D(h,V) is

performed with respect to V at a given altitude h and the range is given by
0
R = f nl gv (3.3-4)

Figure 3.3-1 shows a typical maximum-range glide path. Glide path BCD
can be reached by a zoom-climb or a zoom-dive from starting points which are off
BCD. Path CD is constrained to level flight, just above the ground until the stalling
speed is reached at D. For the optimal glide path, ABCD, the range R is given by

Eo E
_ mdE mV _
R ‘f D_. @ I DY o OV (3.3-5)
E min = h=0
1 s
where
Eo = initial energy,
£, =energy ath = 0 at minimum drag for L = mg,
ES = energy at stalling speed and L. = mg.

Using a parabolic drag polar, with L. = mg, we have

D = D0 + D (3.3-6)

where
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[a]
Q
2
D, = _ (mg)” (3.3-17)
CLaqS
4 = 1oV

If the variation of the coefficients Cp  andCy o with M is small, the minimum

of D with respect to V for a given E or given h occurs at

D; =Dp, (3.3-8)
with

a - 1

ing (3.3-9)

S V CLacDO

Using £q. 3.3-8 and 3.3-9 in Eq. 3.3-6, we have

D =2Cp aS = D(mg) (3.3-10)
(o]

Thus, under the simplifying assumption of consiant CDo and Cj , the glide
paths given by the energy-state approximation and the quasi-steady approximation
are the same and correspond io constant drag and constant dynamic pressure q.
However, the ranges given by the two approximations are different. The range

using the quasi-steady approximation is given by

h
8]
g = _m -
I 5= dh D# b (3.3-11)
o min min

whereas the range using the energy-state approximation is given by

f 5 dE= 52 (gh + Vg - vf) (3.3-12)
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that is

R(E,)) = = (E_-E,)
0 min® ° .
1 Cra
~ 3g [ (EO - El) (3.3-12)
o - .

It may be noted from Eq. 3.3-12 that, under the assumptiions of constant
CDo and Cy ,, range achieved during the glide is

1') independent of the weight of the shutile, and
2) proportional to the energy lost over this glide path,

The difference between Eq. 3.3-11 and 3.3-12 arises because, in the quasi-
steady approximation, the changes in kinetic energy during the flight are neglected

in comparison with the changes in potential energy.

Under the assumption of constant CDo and Cp . q is constant, and thus

2 2

- dv _ V¥ -V -
V aa " 3 A{h) = B B {3.3-13)
where
=L dp . _
S(h) =-7 ah {3.3-14)

Foranexponential model for atmospheric density (h) = constant and S8z 1/23,800
-1
ft.

The relative variation in the kinetic energy and the potential energy of the
wvehicle during the glide is given by

vav/at _ Vdv . V28 (3.3-15)
gdh/dt gdh "~ 2g

by using Eq. 3.3-13.
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This ratic is nearly equal to one for M = 1.1, Thus, for a glide starting with mach
no. M >> 1.1, the vehicle initially dissipates mostly kinetic energy against drag
while maintaining almost constant potential energy (ie, constant altiiude), Only
towards the end of the glide does the vehicle dissipate its potential energy.

In most cases, the variation in the coefficients CDo and Cj , with respect to
M is not negligible. IHence, the maximum-range glide path differs from the
constant dynamic-pressure path. Figure 3.2-2 shows contours of constant drag for
L, = mg on an h,V plane, for the airplane under consideration here, i also shows
the "energy-state'" optimal glide path determined by the locus of the points where
constant-energy contours are tangent to constant-drag contours, A four-siate-
variable opiimal glide path for the same airplane(la) is also shown for a starting
position that lies above the (%’-LaxlE path, The "exact" path follows above and
under the (-I:’-)max path, moving closer to it at subsonic speeds and flaring out near

D
the ground.

3.3.3 Maximum Range for a Given Amount of Fuel

In equations of motion 3,2-1 to 3.2-4, we considered thrust and fuel flow at
maximum throttle setting. TIf there is no constraint on throttle setting, it is obvious
that maximum range for a given amount of fuel will be achieved by operating at
legs than maximum throttle settings over at least part of the flight., Thrust and
fuel flow can be expressed as a function of E, V, and 7, where 7 is a variable
defining the throttle setting with the following consitraints on thrust.

0 < TEVNLT__ (EV) (3.3-16)

In order to maximize range for a given amount of fuel, we have to choose

V{t} and 7(t), so as to maximize
R = j Vdt (3.3-17)

subject to the following flight equations:

dE

= LIE V) - DE,V] (3.3-18)
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E(to) specified, E(tf) = E_ where E_ = energy at stalling speed
and L. = mg.

dm = - -
it = -f(E, V, 7) (3.3-19)

m(to) and m(tf) specified.
to given, tf free.

The above problem can be solved using the calculus of variations. The

variational Hamilionian is

_ v(iT - D) _ -
H —V+7\E m ?\mf (3.3-20)

The influence functions KE and km must satisfy

g . 81 (3.3-21)
at o
and
dAm o0H
o - (3.3-22)

with the boundary conditions at both ends open. We have H = 0 as a first integral

on the optimal path, ie,

V(T - D)

V g “Agt=0 (3.3-23)

Vand yfor agivenE, A, anda  are given by the following optimality conditions:

V = arg n‘lrax H (EJ REJ -A.m.l V:V) (3.3"24)

subject to the following constraints:
Cl(E,V) = VS(E) -V<0 (3.3-24a)

cz(E,V) =V-A2E<0 {3.3~24b)
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The first constraint corresponds to the stalling speed and the second one’corresponds

to the constraint h > 0, and

max

7 =arg 5% H (B, Ag. A, V. 7)

subject to the consiraints 3.3-16,

To determine the optimal value of », it is useful to evaluate

?.]:._I... = A ...Y_ 9T - af
dy 'E m

Now, from Eq. 3.3-23, provided f £ 0,

V(T -D
M = %‘[V‘”‘E vI{T-D) )]

m

using Eq. 3.3-27 in Eq. 3.3-26, we have

oH _ v oT _ 1 V(T - D}
37  MEmar I [V”E——““]
N A ;[ N £ o
Em T 57 )E
where
- aT/87
A = ~T 4 f ?375;—
. of
SlnceAE> OandE;- >0,
oH _ _m
sgn —— =sgn{D+ A -2, f#0
87 AE
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Now
aT/o
7l

af/a)] ]V,E of

and

= - aT
A = T+faf

The sign and magnitude of A depend on the variation of T with respect to f.

For example, for the curve labelled ¢ in Fig. 3.3-3, we have

oT

T or
< ot

and consequentily A > 0.

If the variation of T is linear with f as shown by curve b in above skeich,
then A = 0.

We shall first congider the case of A> 0,

In Fig. 3.3-4, BC represents a maximum-range flight path with full throtile
and DD'E represents a maximum-range glide path. AB is a constant-energy zoom
dive from starting position A to the maximum range path with full ihrottle. From

Section 3.2.2, on a maximum range glide path (T = 0),

_ m
>\E - Dm- (3. 3_28)
g

and

9D _

W[E = Q,
On a maximum total range path, initially )\E >> m/D, so that 8#/37 > 0. Thus T =
Tma.x until a point C.on the flight path is reached where ?LE has decreased to such
a value that
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At this stage, two possible modes of operation must be considered. The first
alternative is to move to a point D (on the glide path), where 3H/37 <0 (note, for
£=0, 8H/87 is given by Eq. 3.3-26, with Ay =m/D_. and}_ given by Eq. 3.3-27
evaluated at point C) and consequently T = 0 and §Df 6V ' = 0. Once we are on the
glide path, the rest of the flight path is the same as the maximum-range glide path
since, on the glide path, 8H/d7 < 0 for all V for a given E. Since 8Hf57 > 0 at C,
the second alternative at C is to continue the flight with T = T ... to a point C]

where AE has decreased to such a value that

B o
m D+ A

where A > 0, and is evaluated at T = Tmax‘ For the first time on the flight path,
8H /37 = 0 and the possibility exists of operating at intermediate throttle settings,

0 <T(E, V,7)< Tmax(E’ v

In such.a case V and 7 are determined from 8H/37 = 0 and §H/§V = 0. If this
intermediate~thrust path leads to the glide path (ie, to T = 0), we have to choose
that mode of operation that gives us beiter range for a given amount of fuel. Ii,
however, the intermediate-thrust path does not lead to the glide path, then the
possibility of operating at intermediate throttle settings is ruled out and the total
maximum range path will be a full-throttle flight followed by a glide, as shown by
the path ABCDE.

Now let us consider the case of A< 0. If the magnitude of A is large enough,
then we may have ?tEl m = 1/(D + A) satisfied at some point on the flight path before
point C is reached. In this case, we have to rule out the possiblity of an optimal
path with full throttle followed by a glide; since, toreach a point where )‘E =m/ Dmin'
we have to operate at full throttle and this is non-optimal since Ag/m < 1/(D + 4)
on this section of the path, Thus we are left with the only alternative of operating
at intermediate throttle settings with 8H/87 = 0 and 8H/9V = 0, until either KE =
m{D_. at T >0 (inwhich case the thrust takes a jump to T = 0) or we reach the
glide path with T = 0. The magnitude of A may not be large, in which case )‘E may
reach a value equal to mlein with ?\Elm < 1{(D + A), In this case, the comments

for the case A > 0 obtain,
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For the aircraft under investigation here, data on fuel consumption at partial
throttle was not available. So, a linear variation in thrust with » was assumed, ie,

T(B,V,7) =T (E,V)

J;Tmax(E,V)

f{E,V,9) = o

(3.3-29)

where ¢ = specific fuel consumption (¢ is assumed 1o be constant over the poriions
of h,V plane of interest).

Under assumption 3.3-29, we have from Eq.3.3-26.

oH VD KE 1
—= _'(— -—‘), 73 0. (3.3-30)
o7 7 Mm D
oH
Trom the optimality condition 3.3-25, we have forg> 0, T = T 5
5H NH on max

for-am”—- < 0, T = 0; and for 57 = 0, we havethe possibility of operating forsome time

at intermediate throttle settings, between T=0and T = T naxe

oH
For the case when—= 0, from Eq. 3.3-30 we have

Or
Ag/m  =1/D (3.3-31)
Also the optimality cendition 3.3-24 gives us
T - %%—. (3.3-32)
when constraints 3.3-24a, 3,3-24b, and 3.3-16 are not effective,
On a path that satisfies Eq. 3.3-31 and 3.3-32, we should have

d - -
W(}\ED -m}=0 (3.3-33)

Qr
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Using in the above, Eq. 3.3-18, 3.3-21, 3.3-23, 3.3-31, and 3.3-32, we get

av Y D .
o =L (D + eVED ) (3.3-34)

For the aircraft under investigation, it was found that the path, as given by Iq.
3.3-33, starting from a point on the full-throttle path, where KE/ m = 1/D, does not
lead to the glide path. Thus, the operation at partial throtile is ruled out under the

assumption 3.3-29,

If we assume the variation of CD and C L with respect to M to be small, we
(8]
can reach the same conclusion in another way., On a full-throttle path, the value of

Ag at the point where 8H/87 = 0, is smaller than the value of A on the glide path,
As seen in Section 3.3.1, )\.E remains constant (= mlein) cnn the glide path, Thus,
if a path, operating at intermediate-throttle settings with 0H/57 = 0 and H/OV = 0,
is to take us from the maximum-range full-throttle path {o the maximum-range

glide path, we should have on this path,

Dy

b 0 (3.3-35)

Now, on this path

Pr o
dt aE
- V(T - D) T
" 3B (V *Ag Am c)
_AE 8D
“m V5B
-V 8D
gD ¢&h lv
_ BV - -
where 3
- 198
A= P B

As seen in Section 3.3.1, D, = Dy on a glide path, and Dy > DL below the glide path
in an h,M space. 1In view of this, we find from Eq. 3.3-36 that d?\E/dt< 0 at all
points on the path operating at parial-throttle settings with 0H/8» = 0 and 8H/9V =
0. Thus, in view of the contradiction with Eq. 3.3-35, we find that the operation at
partial throitle is ruled out, under the assumption of congtant CD0 and CLa' Thus,

the maximum-range path consits of a full-throttle path followed by a glide.
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Since the amount of fuel is specified, it is often convenient to use the amount
of fuel expended as the independent variable for the full-throttle portion of the path.
Let

H=mg = m (3.3-37)

represent the amount of fuel mass used. Dividing Eq. 3.2-17 by Eq. 3.2-18 and
using Eq. 3.3-37, we get

dE _V(T - D)

dz f (3.3-38)
E(0) specified (3.3-39)
The range can be expressed as
Mg
- v -
R / T du (3.3-40)
0

where My = amount of fuel-mass to be used in the flight,

The maximization problem can be solved by using the calculus of variations
approach. The variational Hamiltonian for this problem is

T - D)

-V V¢ -
H =3 +}\.E —7 (3.3-41)
The optimality condition is
Vo= argM® m(E, v, A, k) (3.3-42)
g v F] Kl E; -

where V is subject to the constraints 3.3-24a and 3.3-24b.

The influence function, KE’ is determined by the following equations, when
the path is not on either of the constraint boundaries:

d)‘E ~

—E= “3’% (3.3-43)

When the path is against one of the constraints,

d
E_ __OH* .
~& - " 3E (3.3-44)
where
H* =H + vyCy + vaCy (3.3-45)
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In Eq. 3.3-45, v; = 0 for Ci(E, V)<0,i=1or 2; and for Ci(E, V) =0,i=1or
2, corregponding v is given by
gH*

v E VA M, vg) =0

The boundary condition for Ay at 4= Mg is
My

() (3.3-46)

Al)

B Dmin
where Dm. represents the minimum drag with respect to V for a given E. The
glide path starting from E(uf) is the maximum-range glide path.

Thus we have to solve a two-point boundary value problem which involves
solving simultaneocusty two differential Equations 3.3-38 and either 3,3-43 or 3.3-44,
with boundary condition 3.3-3% and 3.3-46 and V determined by the optimality
condition 3.3-42. The boundary-value problem can be easily solved, for example,
by guessing the missing boundary condition ?\E( #= 0)., Tach valie of )‘E(” = 0)
corresponds to a certain amount of total fuel-mass,/-!f, used, and thus it is possible
to sweep out maximum-range paths for different amounts of fuel by selecting different
values Of?\_E(#= 0) and solving differential Eq. 3.3-38 and 3.3-43 (or 3.3-44) forward
until boundary condition 3.3-46 is satisfied and determining V at each stage by the

optimality condition 3.3-42,

Figure 3.3-5 shows the Mach no./altitude path for maximurm total range using
2100 1b of fuel, obtained by using the energy-state approximation. Initially, the
maximum total-range path starts out closer to the minimum-fuel energy-climb path,
(This is apparent from Eq. 3.3-41, and also, since initially ?‘E(‘“) is larger and
decreases as the flight progresses.) As the flight progresses, the path startis
diverging away from the minimum-fuel path, but still progressing towards higher-
energy levels to take advantage of the greater glide range that can be obtained by
starting the glide from higher-energy levels, At the end of the powered flight,
there is a short constani-energy zoom-climb to the maximum-range glide path. A
Mach no./altitude path obtained by using the four-variable model(lg) under similar
conditions is also shown in Fig. 3.3-5. The "exact" pathis close to the "energy-state"
path, but lies above it throughout the h,M space. The maximum-range glide paths
are the same as those shown in Fig, 3.3-4. The ranges shown on the figure have
been calculated for flight ehding at h = o in both cases. However, the "exact" path
flares out near the ground to use up the kinetic energy for gaining extra range, and
the path terminates on the ground at lower velocity, For the energy-state path, if
we consider a constant-1ift slow-down path near h = 0 ending at the same velocity



£g-¢

ALTITUDE, THOUSANDS OF FEET

210

190 END OF POWERED
FLIGHT,
70F
130 .
&0 MAXIM RANGE GLIDE 110
90 \ ZOOM - CLImMB
< EXACT" PATH (KELLEY
/ \ \ {;.—“-ENERGY STATE“PATH
~
40 50 » /\ \ \ <77 s—MIN FUEL TO CLIMB PATH
e
301 erg =30x10%FT
FULL THROTTLE CLIMB
20 TOTAL RANGE\
2.25x%100 FT
2.21 % 102 €T, FUEL USED = 2100 LBS
10— i0
- | l I I
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

MACH NUMBER

Fig, 3. 3-5 Maximum Total Range Path for Given Amounts of Fuel



as that for the "exact" path, then the total range equals 2.30x10% ft. This value is
within 4% of the range obtained on the "exact' path.

Figure 3.3-6 shows the fuel, R’E’ and the range histories during the flight for
the maximum total range "energy-state" path of Fig. 3.3-5. Only about one-third
of thetotal range is gained on the powered flight, Notethat 7\E is relatively insensitive
to the starting point of the glide path. Figure 3.3-7 shows ithe range vs altitude
profiles for the maximum-range path corresponding to that in Fig. 3.3-5.

Figure 3.3-8 shows the Machno. [ altitude paths for maximum total-range paths
for 1800 1b and 2400 Ib of fuel. Only one maximum-range glide path using 2400 1lb
of fuel is shown. The glide path using 1800 1b of fuel is very close to that of 2400
b, Figure 3.3-B shows the total range vs fuel used for the maximum-range paths
shown in Fig. 3.3-5 and 3.3-8.

3.3.4 Conclusions

We have seen that energy of the vehicle is an important variable to describe
the state of the flight. The reduction inthe crder of the flight dynamics in energy-state
approximation leads to considerable ease in the solution of optimal-flight paths and
also to valuable insight into their nature. Flight-path constraints are particularly
easy to handleusing the energy-state approximation. Most of the flight constraints,
which may arise due to structural, propulsive, aerocdynamic, flight-path, and other
considerations, are in the state-control inequality constraint category.* In the
energy-state formulation such constraints are relatively easy to handle numerically;,
whereas, in the "exact" (4-variable) model, these limitations are mainly on the

state-variables and these are rather difficult to handle numerically.

Besides optimal-climb problems, the following maximum-range problems
applicable to the shuttle have been investigated using energy-state methods.

1} Maximum range for a gliding flight
2) Maximum range for a given amount of fuel.

We have seen that the maximum-range paths for the aireraft (which have been
used in this chapter for illustrative purposes), using energy-state model and "exact"

model (4-variable), compare very well.

For a gliding flight, we find that the maximum-range glide-path follows a
#( ie, involving both the state and control variables.)
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minimum drag path. In the case of the space shuttle, the range achievable by a
gliding flight merits important consideration, inview of the direct trade-off between
the deliverable orbital payload and the amount of fuel reserved for subsonic flight.
The energy of the vehicle at the start of the glide and the L/ Dmin ratio of the
vehicle are the important factors affecting the maximum-glide range. The effect

of the weight of the vehicle is relatively unimportant.

In the case of the maximum-range problem for a given amount of fuel, the
optimal trajectory consists of a powered flight followed by a glide. The initial
phase of the flight is powered, operating at full throttle except towards the end
when operation at intermediate throttle may occur. The gliding flight forms the
final phase. Figure 3.3-10 indicates the maximum-range capability that we may
expect for a subsonic shuttle flight, for flights starting from two different initial
energy positions. It may be seen that the range capability of the shuttle not only
depends on the amount of fuel available, but also on the energy of the shuttle at the
beginning of the subsonic phase., We may expect that most of the range would be
achieved over the glide phase of the maximum-range path, in view of the small
amount of fuel and little excess-power capability (which requires T - D> 0) of the
shutile over most of the flight path.

Tor a given E(t = 0), the maximum-range capability can be investigated by
solving the Euler-Lagrange equations of Section 3.3.8 for different values of An(t =
0). Minimum amount of fuel necessary for the.range capability that may be required
for a given subsonic shuttle-flight can be determined easily by iterating on AE(t =

(25)

0), until the required range is achieved. Earlier experience indicates that the
functional dependence of AE(t = 0) on total range, X, is usually smooth and thus the
number of iterations required would be small, Thus, the opiimal path can be
determined with considerable computational simplicity, and on-board computation

may be feasible.

Toconclude, the energy-state approximation, properly interpreted, is adequate
for determining optimal trajectories for the Space Shuttle for various operating
conditions during its subsonic flight. By reducing the order of the flight dynamics,
a computationally simple formulation is achieved which readily incorporates flight-
path constraints. This simplicity raises the possibility of on-board computation.

In addition to its operational role in trajectory definition, the energy-state

approach is invaluable during the early stages in shuttle design to determine the
effect of various design parameters on the operational capability of the shuttle,
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SECTION 4

SPACE SHUTTLE
GUIDANCE DURING APPROACH AND LANDING

by
George W, Cherry

and

Barton DeWolf

The function of the space-shuttle guidance system in the approach and landing
phaseis {o generate control-system signals that will cause the vehicle upon entering
the ILS coverage volume to acquire the localizer and glide planes, flare, decrab,
touchdown, and finally roll cut along the runway.

In this section we ouiline certain guidance concepts which should enable the
system t‘&s‘erve this function. Approach trajectories are discussed in subsection
4.1, and guidance laws for following specified trajectories are discussed in subsection

4.2. Guidance concepts for flare, are discussed in subsection 4.3.

4.1 Plaoning The Approach Trajectory

Approach trajectories must satisfy initial and final boundary conditions and
must nol require maneuvers, maneuver rates, or engine performance beyond the
vehicle's capabilities; but otherwise the trajectories may be selected to secure some
specified advantage (for example, the saving of fuel). This section describes the
philesophy of trajectory planning iay working out ascheme for ground-irack planning.
It is necessary io conirol ground track because the final ground track must be
coincident with the exiended runway center-line. (A later section will deal with
ground-irack following, a control process which should take the steady-state winds
explicitly into account.)

4,1.1 Constraints on the Ground Track

This section describes some of the consiraints on ground-irack planning.
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Figure 4.1-1 111ustrate5 an 1dea11zed approach to the runway center-line,
The shuttle flies a straight llneL between A andg,B -3 M point B, in anticipation of
intercepting the final approach course, the shuttle is instantaneously (ideally) rolled
to a bank angle, ¢, which causes the shuttle fo turn about X with radius-of-curvature
R. If the point B, the point X, and the radius of curvature R are properly chosen,
the shuttle can rell (instantaneously) to the wings-level orientation at peint C and
proceed perfectly along the final approach course to landing, touch-down, and roll-out.
There are physical limitations on the location of X and B, however, This section

describes these limitations.

Ground-irack planning involves lateral-acceleration profile planning or the
allocation of some part of the lift vector to the horizontal plane, On straight-line
ground tracks, no part of the lift vector is allocated to the horizontal plane, but
when the ground track is curved, as during the transistion beiweentwo intersecting
straight-line ground tracks, some part of the liff vector is allocated to the horizonial
plane and the vehicle is banked more or less away from wings-level flight,

If the turn is coordinated {noc side-slip and no skid), the radius of curvature
of the turn, the airspeed, and the angle-of-bank, are related as follows.

v
tan ¢ = ?R_ (4.1-1)
This equation is easily derived by reference to Fig. 4.1-2, which depicts the l1ift
vector (tilted away from the vertical) of an aircraft flying away from the reader
and turning to his left. If the wvehicle turns without slipping or skidding, the lift
vector must be anti-parallel tothe resultant of the centrifugal and gravitation forces.

centrifugal force = Mv2/R
gravitational force = Mg

tan ¢ centrifugal force/gravitational force

v2/gR (4.1-1)

If the aircraft is to maintain altitude during the turn, there is a constraint on

the magnitude of the lift vector also.

L cos¢p=Mg = W (4.1-2)

4-2



/ STRAIGHT-LINE LEG TO FINAL

TC
7 FINAL APPROACH LEG

x - CENTER OF CONSTANT
RADIUS TURN
BETWEEN B AND C

& —D

| a2 —— RUNWAY

-——q-

* |l ——RUNWAY CENTER-LINE

Fig. 4.1-1 Ground Track for Runway Approach
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tongh = MV/R+ Mg

Fig. 4.1-2 Bank Angle in a Coordinated Turn
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or

L =A/w? 1+ (wr?/R)2 (4.1-3)

1f the aircraft were maintaining altitude before the turn,

L =W (before turn) (4.1-4)
it must generate more lift during the turn in order to continue to maintain altitude,

L.  =W/cos ¢ (during turn) (4.1-5)
The additional lift can be calculated by subiracting Eq. 4.1-4 from Eqg. 4.1-5.

AL = W(sec ¢ - 1) (4.1-6)

Since

(4.1-7)
the additional 1lift must be provided by increasing CL or Vv or both. In order fo
increase v, power must be added (thrust must be increased). In order to increase
CL’ the angle of attack must be increased. But, increasing the angle of attack
increases CD and D and, therefore, requires an increase in thrust and power. A
power limitation therefore precludes an arbitrarily small R (unlessit is permissible
to lose altitude during the turn). It is sometimes possible to negotiate a gentle
turn, without losing altitude and without increasing power, by continually increasing
the angle-of-atiack and accepting the loss in airspeed. For moderate bank angles,
up to 20 degrees, say, this strategy can be adopted with no or little loss in aliitude.
If the aircraft is flying near the stall speed, this strategy would not be acceptable.

Finally, if the landing is dead-stick (engine throttles back or off), the flight
path angle must be depressed. The tangent of the flight path angle is
iC

tan ¢ = C (4.1-8)

DL

Since CD and C; are functions of angle-of-attack, we can plot angle of glide versus
angle of attack. This function (shown for the Orbiter 245 configuration) is illustrated
in Fig. 4,1-3. If the aircraft is flying the minimum flight-path angle on a straight
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leg, it must steepen its flight path during a turn. The greater loss of alti:iudexper
unit time during a turn must be considered in trajectory planning,

Figure 4.1-4 illustrates a family of constant-radius transition turns between
the leg of heading ¢i and the final approach leg of heading (bf. Transition turn A is
undesirable because the aircraft does not return to the wings-level orientation and
fly straight until reaching the runway threshold. Transition turns like D and sharper
turns (like E) may be undesirable because of several reasons

1. Too great a bank angle may be required.

2. If it is a powered landing and if it is desired to maintain altitude, too
much power may be required.
If it is a dead-sticK landing, too large a sink rate may develop.

1, If the aircraft is flying slowly, the stall margin may be violated.

The range of permissible radii of curvature may be computed. Consider
Fig, 4,1-5, Suppose that ) is the minimum acceptable straight-in final approach
to the runway,

Then £ =A-2x (£.1-9)

and a maximum radius of turn can be computed as shown in the figure. This leads
to the following inequality statement for R

R < ftan ([ - 4|/2) (4.1-10)

An equation for minimum radius of curvature can be computed from Eg. 4.1-1 if
the maximum bank angle is limited.

2
4,1-11
R > vlig tan¢max ( )

combining Eq. 4.1-10 and 4.1-11 yields the permissible interval for R

vzfg tang < R<,€tan(|¢f- ¢i|/2) (4.1-12)
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Fig. 4.1-5 Transition Turn of Largest Permissible Radius
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Equation 4.1,12 does not take explicitly into account factors 2, 3, and 4 alluded to
above in setting aminimum radius of curvature. As a practical matter, since approach
speed is usuallyfairly consistent, these constraints can be {ranslated into amaximum

permissible bank angle.

The equation of constraint on R, Eq. 4,1-12, allows a value of R to be chogen
from the permissible interval which secures some specified advantage. Some
examples of payoff functions thai mighi be optimized are

1. Minimize fuel.
2. Minimize altitude lost in the dead-stick case.

Criterion 1 is discussed in Reference 1.

Other criteria may be used for choosing R from the interval. Some examples

are

Use a standard bank angle, say 30 degrees,

2. Control time-of-arrival at the runway threshold. (This criterion may
be useful for increasing the capacity of a heavily used runway — but it
is not very applicable to the Space Shuttle landing)

3. Help solve the vertical-conirol problem by losing a specified amount of
altitude during the turn.

This section has described some of the considerations for ground-irack
trajectory planning. Additional research on ground-track planning and vertical-

trajectory planning is under way.

4.1.2 Designing A Flyable Approach Trajectory

A key concept in this chapter is the design of reference trajectories which
are realistically flyable; i.e., trajectories whose curvatureik rate of change of
curvature, and second derivative of curvature, take into account the Space Shuiltle's
maneuver, maneuver-rate, and maneuver-acceleration limitations. In Section 4.1.1
we discussed the bank-angle limitations on vehicle maneuvers and how these
limitations constrain the radius of curvature of the nominal transition turn onto the
final approach course., We must also take into account the roll-angle dynamics of
the Space Shuttle, and design reference transition turns which do not require too
large a rate-of-change of the radius of curvature. The ground-track traces shown

* The curvature of a path is defined as the reciprocal of the radius of curvature of
the path; therefore, the tangent of the bank angle, Eq. 4.1-1, is directly proportional
to the curvature of the path.
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inFig. 4.1-1 and 4.1-4 are examples of trajectories which are essentially ""unfiyable"
because they violate this consideration. Consider the trajectory in Fig., 4.1-1,
Between B and C the "aircraft'" flies a finite-radius-of-curvature path, of radius
R; at C, the "aircraft" instantaneously rolls out to wings-level flight and flies the
infinite-radius-of-curvature path from C toiouchdown at ID. The real vehicle, unable
to roll to wings-level flight instantanecusly at C, would not acquire the final approach
course accurately, The trouble is that the "trajectory design" in Fig. 4.1-1 did not
takeinto account the roll dynamics of the vehicle, which may reasonably accurately
be described as

F () + 2bwft) + wpt) =wip_(1) (4.1-13)

where w, the undamped natural frequency, and , the damping ratio, are determined
from the autopilot-vehicle-dynamics combination of the Space Shuttle system. If
the roll dynamics are critically damped ({= 1} and ¢c(t) is a unit step command,
the roll-angle response to ¢C(t) (the solution to Eq. 4.1-13) is

) =1-e L +wb) (4.1-14)

We will take account of the roll dynamics and the limitations of the autopilot-
vehicle system by insisting in our trajectory design that the required lateral
acceleration vary between that required for straight-line flight and that required
for curvilinear flight in the manner described in Eq. 4.1-14. To be conservative
and to ensure that the vehicle can follow the irajectory so designed, we will take
care to use a value of w in our trajectory design which is lower than that of the
Space Shuttle design.

Consider Fig, 4.1-1 again, An instant before reaching point B, the “aircraft"
is flying straight and undergoeing anet centrifugal acceleration of vle with respect
to the reference centers for the turn, the point X (Xc, Y C). Upon reaching point B,
the "aircraft" is expected to roll instantameously fo a new bank angle; to project a
component of its lift vector into the horizontal plane, and by this abrupi maneuver
generate enough centrifugal acceleration in the horizontal plane to cancel vzf R.
The idealized profile of total lateral acceleration (computed with respect to X in
the rotating frame)is depictedin Fig. 4.1-6. Also depictedin Fig. 4.1.6 is arealizable
acceleration profile (based on a critically damped second-order response to a

step-change command).
Inorder to formulate the realizable total acceleration profile in mathematical

terms which permit a complete gpecification of the trajectory, we propose the
following model
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F(t) = A [e—w(t-tl) +wlt - tl)e-@(t_tl).l
+B
+ D[e"”“z'“ +alt, - t)e'“’“z""} (4.1-15)

it is simple io determine the values of A, B, and D which satisfy the following
boundary conditions

'x'-('tl) =v ?/rl continuity of acceleration at t; (4.1-186)
#(ty) =0 course constraint (4.1-17)
f'c'-(tz) = Vglr2 continuity of acceleration at ty {4.1-18)
where
t =g (4.1-19)
ty =to (4.1-20)
r; =ty (4.1-21)
ry = rlty) (4.1-22)

Tt is Eq. 4.1-15, with A, B and D appropriately chosen, which is plotted (curve z) in
Fig. 4.1-6. However, with only three degrees of freedom (the parameters A, B,
and D), Eq. 4.1-15 cannot, in general, satsify

r(t2) =rp= R {(4.1-23)
as well as Eq. 4. 1-16, -17, and -18. Therefore, we add a linear term to Eq. 4.
1-15 with an additional degree of freedom, the multiplier C. The new equation
(defining T =%, - tl and E = e-w(t2 h t1) for convenience) and itg first and second

2
integrals are:

¥y = A[ze-w(t-tl) ot - 1)) e—w(t—tl)]

+ B
+ Clt - tl)
+ D[ o~ tyt), Wity - ) e'“’("z't)} (4.1-24)
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rt) =r,
+ Alz [1 - e""(t“tl)] fo - (¢ - )Xt "‘1)}
+B(t - t,)

v Clt - 172

D

+ A{ (t - tl) |:2 + e_w(t‘tl):l/w - 3[1 - e—w(t—tl)]lwzJ

+B({- t1)2/2

+C(t- 1:1)3/6

+D 3[e""(t2'“ - E]/w2 - ET/w - Et - t,)(2/w+ T)

+ (ty - pe gy,

2[e“"(t2*t) - E]/w - ET + (t, - t)e'“’(tz't)]

{4.1-25)

(4.1-26)

We cannow develop four linear equations of constraint for the four parameters

A, B, C, and D,
Combining Eq. 4.1-16 and 4.1-24 yields
vflrl = ¥(t;) = A+ B +D(E + wTE)
Combining Eq. 4.1-17 and Eq. 4.1-25 yields

0 =iy~ = A[20 - B - TE] + BT
+CT?2 + D[2(1 - E)w - ET]

Combining Eq. 4.1-23 and 4,1-26 yields

ry = {ry + Tty ) = A[T(z + B)fw - 3(1 - E)/wz] + BT?/2
cT?/6 + D_[S(l - D)w? - 3ET/w - ET?]

and, finally, combining Eq. 4.1-18 and 4.1-24 yields

vgfrz = #t,) = A(E +@TE) + B+ CT + D

(4.1-27)

(4.1-28)

(4.1-29)

(4,1-30)



The solution to Eq. 4.1-27, -28, -29, and -30 is

A Ty
Ya - T
R 2 1 _ (4.1-31)
C Ty = (ry + Tr‘l)
| P | %y J
where

i 1 1 0 E +wTE

2l - E}w - TE T T2/2 201 - E)jw - BT

T = 9 3 9 (4.1‘32)
™2 + B)jw s T /2 T /6 3(1 - B)}jw 9
-3(1 - E)jw -3ET/w - ET

i E +wTE 1 T 1 ]

Trajectory planning proceeds, fir-st, by choosing the radius and cenier of
curvature for making a reference transition turn; second, by computing A, B, C,
and D from the reference boundary conditions att = tl and t2 ; and third, by generating
the reference trajectory ¥(t) and r(t) from Eq. 4.1-24 and 4.1-25 for feed-forward
commands and r(t) from Eq. 4.1-26 for position feedback commands.

In Chapter 2 of this report, a state estimator is described which obtains
estimates in a runway Cartesian coordinate system. In Section 4.2 of this chapter
the equations for computing feed-forward and feedback commands for the autopilet
are described; they are also based on a runway Cartesian ccordinate system. In
order to generate the Cartesian coordinates of the reference ground track we must
generate the polar coordinates of the ground track, adding a #(i) specification to
the r(t) specification. The same kind of analysis which we have just applied to r(t)
can be applied to 8(t). The result is

. {4.1-33)
62 - (61 + BlT)

w N T - 4

R ] %2 |
and 6(t), 6(t), and @t} are generated from equations with the same form as those in
Eq. 4.1-24, -25, and -26 resgpectively, using, of course, the A, B, C, and D from

Eq. 4.1-33,
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The equations which convert from polar coordinates to the runway Cartesian

coordinates are straight forward. (See Fig. 4.1-7.)

X =X, cosf (4.1-34)
y =Y b T sin 8 (4.1-35)
x =T cogh -resing (4.1-38)
y =ifsing+récose (4.1-37)
% = (% -ré%) coss - (27 6+ rb) sing (4.1-38)
§  =(f-ré%)sing + (206+rd) cose (4.1-39)

The boundary conditions for Eq. 4.1-25 and Eq. 4.1-26 are chosen as follows.

‘r'-l = v%;’r1 (4.1-40)
fz = (4.1-41)
¥, = vilr (4.1-42)
v, =T, w+ [(11- w)? - w? +v2:|1‘!2 (4.1-43)
vy =Ty w+ [(12 . W_)z - w? - vi] 1/2 (4.1-44)
i, =0 (4.1-45)
6 =vylr; (4.1-486)
6, = vylr, (4.1-47)
6, =0 (4.1-48)

and (rl, 91), (rz, 92) are specified by the ground-track planning program. Equations
4.1-43 and 4.1-44 require some explanation. The vector T, is a unit vector in the
direction of the straight-~line course approaching the transitionturn; itisthe direction
of segment A-B in Fig. 4.1-1, The vector _12 iz thé-analogous vector for segment
C-D in Fig. 4.1-1. Since we do not want to consirain ground speed (there is a
constraint on ground irack but not on the rate of progressalong thatirack), vy and
Voo the ground speeds along the tracks T, and 11‘_2, are computed from the estimated
wind velocity, w, and the desired airspeed, Ve Equations 4.1-43 and 4.1-44 are

derived in Section 4.2.
We have in this section described ground-track trajectory planning and

reference-trajectory generation for accurate course following and course acquisition,

We have deferred the discussion of wind compensation to the next section, 4.2.
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4.72 Guidance along the Approach Trajectory

n this subsection we attempt to define guidance laws that will enable the space
shuttle vehicle to follow a specified approach irajectory. Inthe preceeding subsection,
a way of defining approach ground-track trajectories in terms of straight-line
segments and curvilinear transitions was presented. Inasmuch as other types of
approach trajectories might be ultimately selected as best suited for the orbiter
vehicle, we shall seek guidance laws that would be applicable to any type of trajectory,
assuming onlythat thetrajectory has been selected so as tonot require unreasonable
or unrealizable control actions. Tt will be more convenient in this subsection to
consider trajectories specified in terms of arc length as a parameter rather than
time. Control in time along the trajectory will not ordinarily be of interest, although
it might be advisable during turning maneuvers in order to simplify the guidance
problem. We shall consider in particular the powe}‘ed-flight case, although several

of the results would be applicable to the engines-off approach problem.

Both feed-forward or open-loop guidance and feedback are required if the
specified approach trajectories are to be followed accurately. Feed-forward guidance
is required so that the vehicle will begin maneuvers at the proper time without
waiting for position errors to develop. Feedback is required to correct for wind
gusts and wind shear, errors in the estimated mean wind and vehicle state, and
inaccuracies in modeling the control system and vehicle response to open-loop

commands.

4.2.1 Feed-forward Guidance

In developing feed-forward guidance laws one tries to answer the question: .
Given a desired flyable trajectory, given that the vehicle is initially positioned on
the trajectorywith the proper velocity, acceleration, roll, pitch, and yaw, and given
estimates of the current wind components as one proceeds, what should the
control-system' signals be in order to enable the vehicle to fly along the trajectory
as accurately as poasgible in the absence of any further information about the vehicle
state? TIf accurate wind és’;:imates are available and if satisfactory feed-forward
guidance laws can be developed, then the feedback system should have to correct

only for relatively small errors.

One method for developing feed-forward guidance laws is suggested by the
factthat, at any given point along the trajectory, the required velocity and acceleration
with respect to a ground-fixed coordinate frame for remaining on the trajectory is
completely determined by the trajectory direction cosines and curvature and by the
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vehicle's speed with respect o the ground, The required heading and pitch angle
of the velocity vector as measured with respect tothe ground can be easily calculated.
Furthermore, if a steady wind is present which transiates the vehicle at a constant
known velocity, it is easy to calculate the required heading and pitch angle of the
velocity vector as measured with respect to the moving air mass. This information
together with some assumptions about the vehicle's sideslip angle and angle of attack
is sufficient o determine the relevant state parameiers. Certain of the state
parameters (e.g., roll, roll rate) for this imaginary vehicle could then be fed forward
into the actual-vehicle control system as explicitly commanded guantities.

In an actual case, of course, the wind is neither steady nor known, and the
procedure must be modified, We assume that thetranslational velecity of the aircraft
due to wind can be modeled as a nonstationary, vector random process with a mean
value that varies slowly in time, Furthermore, we assume that the navigation filter
will be able to provide reasonably accurate egstimates of the components of the mean
translational velocity due to wind. Open-loop control system signals can then be
derived by solving for the state of an imaginary vehicle which moves along the
given trajectory in a constant wind equivalent to the estimated mean wind at that
time,

We shall refer ic this hypothetical vehicle which moves along the given
trajectory exactly as the reference vehicle, In addition to providing a reference
for calculating feed-forward guidance commands, it will serve as a reference for
the feedback system as we shall see in subsection 4.2.2 below.

Let us suppose that we would like toutilize wind estimates to obtain feed-forward
control-system commands which will enable the vehicle to fly with given airspeed
Vi along a given trajectory as accurately as possible. In order to implement the
above strategy, we must first obiain equations for the velocity, acceleration, and
attitude of a reference vehicle at some arbitrary point along the irajeciory in a
constant wind field.

The velocity and acceleration of the reference vehicle can be expressed as

functions of the vehicle velocity due to wind w, the airspeed v_, and quantities

a,
describing the curve at the arbitrary point. Let us suppose that the curve is given
in terms of the arc-length parameter s as measured from some origin, Any point

along the curve may then be specified by the vector r(s):

r(s) =x(s)i+ y(s)j + z(s)k (4.2-1)

4-19



where i, j, and k are unit vectors in the ground-fixed x, y, and 2z directions,
respectively, The velocity and acceleration are found by differentiating:

- dx. , dy. dz -
v ) [ gai * gal * dsg} (4.2-2)
_.{dx,  dy.,6 dz ]
a == [6‘5“ dsl + gk
2 2 2
+ &2 d__%ci+ d_.%j + é_g.g] (4.2-3)
ds ds® ' ds

One can express these equations in a somewhat more compact form by making use
of some notation commonly used in differential geometry.z The partial derivatives
dx/ds, dy/ds, and dz/ds will be recognized as the direction cosines of the curve,
and the bracketed factor in Eq. 4.2-2 is a unif vector T, tangent toc the curve, In
Fq. 4.2-3, the bracketed quantity in the second term can be shown to be directed
along a unit vector N, the principal normal to the curve, and to have magnitude
equal to the curvature k. Making these substitutions and noting that § = v, we obtain

¥ =vT (4.2-4)
2

a v T+ vokN (4.2-5)
It remains to find an expression for v and v in terms of the vehicle velocity due to
wind w, the airspeed Vs and its rate of change x'ra. This can be accomplished by
noting that the tofal velocity of the vehicle is the sum of the velocilty due to the

wind w and the velocity vector relative io the moving air mass Y. Thus

Y-wW=¥% (4.2-86)

I=
w

which can be squared to obtain

vz-zI_ S wv 4w = vi (4.2-7)
The solution is

1/2
v o=Tws[(@w?-v’evl] (4.2-8)

where the plus sign is chosen for the radical so that v approaches +v a when the
wind vanishes. Thisequation simply states that the total velocity along the irajectory
is the sum of the projection of w along the trajectory and the projection of Y, along
the trajectory. An equation for v can be obtained by differentiating (note that T =

kvIN): kw(N-wlT-w) +v v
v o=xvNews RN BRI YE (4.2-9)
[(_T_-gv_) - w +va]
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The velocity and acceleration of the reference vehicle moving along the trajectory
at any specified airspeed in a constant wind field can now be found by substituting
Eq. 4.2-8 and 4.2-9 into Eq. 4.2-4 and 4.2-5.

Alternatively, the airspeed v, and its rate of change {ra can be written as a
function of the velocity measured with respect to the ground. In some situations it
is more convenient to specify a ground-track velocity and vary the airspeed
accordingly, For reference, let us include thes‘e expressions,

9 9 1/2 .
v, = [v -2vT-w+w ] °(4,2-10)

(4.2-11)

Next we seek expressions for the attitude of the reference vehicle, given the
irajectory and some assumptions about the sideslip angle and the angle of attack.
We assume that vehicle turns are coordinated such that the sideslip angle is always
zero. Letus assume for the time being that the angle of attack is also zero. We
can then determine not only the pitch and yaw angles of the vehicle, but also the
roll angle.

The pitch angle ¢ and yaw angle § for this case are shown in Fig, 4.2-1,
Since sideslip angle and angle of attack are zero, the vehicle is aligned along the
airspeed vector v o One has

v, - W
tan p = 2T (4.2-12)
v, " W
X X
v~ W
sing =--2_%2 (4.2-13)
va

th

where v; and W, indicate the i component of the vectors v and w.

These equations express the well-known fact that, in order to follow a given
path in space, vehicle heading and pitch must be adjusted fo compensate for the
wind.

An expression for the roll angle ¢ can be obtained as aresult of the requirement
that turns be coordinated. The lateral equation of motion in body coordinates is in

general

V+rU-pW-gsing cos 8 =3 Y/m (4.2-14)
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Fig. 4.2-1 Geometry for Zero Angle of Attack
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there U, V, and W are the components of the airspeed in the x, y and z body axes,
espectively, p is the x-component of the angular-velocity vector, r is the z-component
f the angular velocity vector, Y represents assorted forces acting on the vehicle
1 the y-direction (except gravity which has been explicitly included) and m is the
1ass. As a result of the above assumptions concerning sideslip angle and angle of
ttack, V and W are zero. Since the wind field is constant and since there are no
erodynamic or thrust forces acting laterally, the right-hand side of Eq. 4.2-14
aust vanish. As a result one has

rv, - gsing cosg = 0 (4.2-15)
but it is also true that
r = -6 sing¢ + (,b cos ¢ cos @ (4.2-16)

liminating r, one finds

v_tfcos o
tan ¢ = 2 (4.2-17)

gcos g +v,0

"or horizontal flight this reduces to the familiar coordinated-turn expression

va(b

4.2-
= (4.2-18)

tan ¢ =

‘he required roll angle can thus be calculated from 6, gb, and 6. The latter two

luantities can be obtained by differentiating T£q. 4.2-12 and 4.2-13:

g‘b - (vx - Wx):y - (vy - wyz)ax
{vK - Wx) + (V.Y - Wy)

(4.2-19)

o vy :z)va ” v'aazz 7 (4.9-20)
v, [(vX - w)® 4 v - w) ]

D
L]

The attitude of a vehicle moving along the trajectory at constant airspeed in
constant-wind field with zero sideslip angle and zero angle of attack is thus given
v Eq. 4.2-12, 4.2-13 and 4.2-17, with the use of Eq. 4.2-19 and 4.2-20.

Feed-forward control-system commands can now be obtained in real time by

wdvancing the reference vehicle along the desired trajectory with a velocity given
5y Eq. 4.2-8, and then calculating the reference-vehicle state using the above
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equations. Whenever components of wind are required inthe equations, the estimated
wind components are used, Certain of the reference-vehicle state parameters (for
example, roll angle, vertical velocity) are then fed into the actual-vehicle control
system as expliciily commanded quantities. The actual guantities fed forward will

depend on the control-system configuration.

The problem with the above procedure is that no account has been taken of
the actual-vehicle response characteristics. A commanded quantity is not obtained
instantaneously as required for accurate trajectory following. Considerable position
errors can develop even when the trajectory has been carefully designed to be flyable.

This difficulty can be resolved if the vehicle response characteristics are
known and can be modeled, The combined autopilot-aircraft response to a commanded
roll angle ¢c’ for example, is often assumed to be given by the second-order iransfer

function
2
w
3 Z ¢ 5 (4.2-21)
s¢ + 2w s +w
$ ¢ ¢

9 _
% -

or the equivalent differential equation
. - 2
- = 4,2-22
@+ 2w¢g}¢+w¢(¢ $) =0 ( )

If the desired response is $(t) as calculated from Eq. 4.2-17, then the command

to control system which compensates for the vehicle lag is just

2%5 .
o Pt (4.2-23)

1 .
¢, =9+ = ¢
w
¢
The required derivations ¢(t) and ¢(t) can be obtained by numerically differentiating

the desired roll-angle profile ¢(t).
Let us give some examples to illustrate the use of these equations,

Some plots of roll angle calculated from Eq. 4.2-17 for level flight at constant
airspeed on aconstant-radius turn with various wind speeds are shown in Fig, 4,2-2.
These plots give anindication of the increment in roll angle required to compensate
for the wind., Trajectories must be planned so that the roll angle will not exceed
design limits, even under extreme wind conditions, as mentioned in subsection 4.1

above,

Some plois of roll angle for the same turn calculated for flight along a curvilinear

transition of the type discussed in the previous subsection {with w = 1 rad/sec}are
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shown in Fig, 4.2-3c. The difference in radial distance between these trajectories
and the constant radius trajectoryis shown in Fig.4.2-3a. The airspeed is constant
before and after the turn, but is allowed to vary during the turn as shown in Fig.
4. 2-3b. The boundary conditions are met and the required roll angle varies smoothly

through the turn as desired.

The ability of equations like Eqg. 4.3-23 to compensate for actual-vehicle
response characteristics was investigated by gimulating on the computer (an XDS
9300) the flight of a model vehicle through a right-angle turn. The model vehicle
has second-order roll-command characteristics as given by Eq. 4.2-21 and 4.2-22
with §'¢ = 1.2 and w¢ = 1,8 rad/s, and first-order airspeed—commafld characteristics
with a tirne constant of 1.0 s. A first-order equation corresponding to Eaq. 4.2-23
was used to calculate the commanded airspeed. Limits were imposed on the ability

of the model vehicle to follow roll-angle commands as follows

[¢] model < 40 deg
|$| model < 10 deg/s
|¢] model < 10 deg/s?

Three types of trajectories were then used to make the righti-angle turn:

1. A constant-radius trajectory with a 7000-ft radius of curvature and
278~ftfs airspeed as shown in Fig. 4.2-2,
2. A curvilinear transition frajectory such as that illustrated in Fig. 4.2-3

with w = 1 rad/s.
3. A similar curvilinear transition trajectory withw = 0,5 rad/s.

Three different constant wind conditions were investigated (Wy = 0, 50, and 100
ft/s, respectively). Position error was defined to be the difference between the
reference-vehicle and model-vehicle positions, Trajectory-following accuracy was
evaluated by calculating both the rmsthree-dimensional position error e s through
the turn, and the lateral position error ey at the completion of the turn.

The results are shown in Table 4.2-1. Large errors develop when the
consiant-radius trajectoryis flown because of the limits imposed onvehicle respense,
The transition-type trajectory with w = 1 rad/s works well in the absence of wind,
but otherwise requires maneuvers in excess of vehicle limits; and objectionable
errors develop, By increasing the time constant on this type of trajectory (w = 0.5
rad/s), a situation is reached inwhich the trajectory-following ability of the guidance
laws is quite satisfactory. The resulis presented in this table indicate that guidance
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Table 4.2-1

Position Errors as a Function of Wind and Type of Trajectory;

90° Turn
Type Terminal

of Wind € ms ey

Trajectory (£t/s) (ft) (ft)
Constant Radius 0. 358.7 -488.3
50! 520.2 -697.5
100. 717.3 -980.0
Transition Type 0. 3.2 0.6
w =1 rad/s 50. 78.7 -107.6
100, 242.1 -334.5
Transition Type 0. 3.4 8.5
w= 0.5 rad/s 50. 6.2 6.1
100. 6.9 16.3
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laws of the type presented in this section are able to ensure accurate trajectory
following as long asthetrajectory doesnot require maneuvers beyond vehicle limits,

and as long as the winds and vehicle response characteristics are known,

Some modifications to the above equations should be made when the angle of
attack is nonzero. The situation is shown in Fig. 4.2-4 with a negative roll angle.
When the angle of attack ¢ is small, the modified heading and pitch angle can be
written:

g* =t+ asing (4.2-24)

6% =9 +a cose (4.2-25)

Modifications to the roll-angle calculation can also be made, but Eq. 4.2-17is probably
accurate enough for our purpose.

Reference-vehicle state parameters other than those calculated above can be
obtainedin like fashion if required by the control system. For example, innegotiating
a turn at constant airspeed, the angle of attack must be increased to increase the
lift and prevent the vehicle from losing altitude. The thrust must be increased to
balance the drag caused by the increased angle of attack. Tf the lift and drag
coefficients are known explicitly as functions of the angle of attack, then the required
increase in angle. of attack and thrust can be caleulated and fed forward into the
vehicle control system.

Two advantageous features of the type of feed-forward guidance discussed in
this section should be pointed out. First, the eguations are applicable to any type
of trajectory providing only that the derivatives of the {rajectory as required in
Eqg. 4.2-2 and 4.2-3 exist and can be calculated. Mode switching is not required in
the guidance laws, although it may occur in the course of defining the trajectory.
Second, the compensation for the wind takes place in a uniform fashion throughout
the course of the trajectory. For example, the same procedure is used during
curved portions of the trajectory as on straight portions.

4.2.2 Feedback

The purpose of feedback in the guidance equations is to correct for position
errors that develop due to inaccuracies in the feed-forward guidance commands,
wind gusis, navigation errors, and so forth. Position errors with respect to the
reference vehicle must be kept small if the feed-forward guidance is to function
properly.
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Fig. 4.2-4 Geometry for Non-Zero Angle of Attack «
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Closed-loop control-system signals are obtained by adding to the open-loop
signals terms proportional to the difference between reference-vehicle position and
estimated actual-vehicle position, resolved in a suitable set of coordinate axes.
One logical choice for the axes would be the actual-vehicle coordinate system, since-
the maneuvers required to correct the errors are separable in a convenient fashion.
Errors in y-position are corrected by adding a feedback term to the commanded
roll angle. ZErrors in z-position are corrected by adding a feedback term to the
commanded pitch angle, or vertical velocity, Errorsinx-position are best corrected
by adding a feedback term to the reference-vehicle airspeed, inasmuch as it is
likely that only lateral tracking accuracy with respect to the desired trajectory
will be required for the orbiter vehicle. This avoids the need for any throtile
variations in the actual vehicle due to longitudinal position errors.

Theuse of lateral position-error signals in the actual-vehicle control system
will be discussed further in Chapter 5.

4,3 Flare Guidance Laws

A variety of flare-guidance laws have been proposed and a fair percentage of
these have been flighi-fested. One commonly used flare law programs descent rate
as an exponential function of altitude (the descent rate decays exponentially to zero
at an altitude reference plane below the runway plane). The Air Force has flight-tested
alaw which commands a small {(about 1 degree) flight-path angle at the flare-initiation
altitude. Reference 3 gives a law presently being simulated at NASA/MSC. This
section gives a guidance law derived at MIT/DL which allows an arbitrary amount
of shaping of a flare reference trajectory which satisfies the boundary conditions
of matching the vehicle's state at the flare-initiation altitude and matching the desired
terminal boundary conditions, Furthermore, this law 1limits the value of the terminal
total acceleration which resulls in constraining the terminal atlitude and crab angle
of the aircraft. Because it is desirable to have the aircraft touch down before
passing the flare-antenna location, the intersection of the flare path with the runway
should be constrained thus

H
I

500i+0j+0k (£t) (4.3-1)

<
"

160i+0j+2k {ft/s) (4.3-2)

might represent areasonable touchdown boundary condition (located 500 feet before

the flare antenna).

4-31



These equations are derived very much in the spirit of Reference 4. However,
they are used to generate a reference trajectory for position feedback and the
derivatives of the reference trajectory for position feed-forward signals, Unlike
the application of Reference 4 to Apollo, the reference trajectory will not be
pericdically re-computed.

The boundary-value statement of the flare problem is

Given: r{t)), v(t,), T =t5-t;

Find F(t) such that
r(ty) = I4 (for example, Eq. 4.3.1)
y_(tz) ) (for example, Eq, 4.3.2)
rt,) = 24

A sclution to this problem is

k
) =a+blty -+ » e i ® (4.3-3)
n=1
where
a=4(g, -v)/T - 6(z, - x, - Ty)/T" (4, 3-4)
b=6(y, -v,)/T? +12(z, - r, - Ty,}/T° (4. 3-5)
£ = (ty - 0" - 2+ 2) (t, -0 /0T
F+2) (+3) 4y - 0"+ DT (4. 3-6)
The fn(t) are interesting because
[
i £(8)dt =0 (4.3-7)
t £
[21/f f (s)ds| dt =0 (4.3-8)
ook

and, therefore, the g;inEq, 4.3-3 are arbitrary (they haveno effect on the achievement
of the terminal boundary conditions) and may be used to shape and optimize the
flare trajectory. The reference irajectory generated by Eq. 4.3-3, -4, and -5 is
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r@ =z + -ty val-t)%/2
+13_[T2(t -t)/2 - T3/6 + (4t - t)s/s]
k
+> e ["‘2 -0 n+ 1) - 26ty - 920 @+ DT
n=1
+lty -0+ 1)T2] (2. 3-9)

vt = v +alt-t,) +_Ill:T2/2 - (b - t)2/2:|

k
> gn[— (ty - %/n +2(a+2) 4y - 9" nn + DT
n=1

- (n+3) &2 - t)n+2/n {n + 1)T2:| {4. 3-10)
Since all the fi(t) except fl(t) are zero for t = tz, we have

r(tz) a+g
Hence, if

=9 = z(tz) -a

we can specify the terminal acceleration

E,) = ¥,

As a practical matter, the higher-order f;(t) will not beused. Tt is interesting

to note, however, that any trajectory that satisfies the boundary conditions can be

developed by the expressions given here; in other words, the fi(t), if a gufficient
number of them are used, can span function space.

In resolving the errors in.following the reference trajectory, the error along
the path can be ignored and time-of-touchdown not constrained.
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CHAPTER 5

APPLICATIONS OF OPTIMIZATION THEORY
TO SPACE SHUTTLE TRAJECTORY CONTROL
IN THE SUBSONIC REGIME

by
Duncan MacKinnon
and

Paul Madden
5.1 Introduction

During the subsonic phase of the return to earth, the Space Shuttle will be
guided with respectto atrajectory which returns it to the terminal area and, ultimately,
to the runway. Guidance relative to the reference trajectory presents the system
analyst with problems quite distinct from trajectory synthesis. A control system
is required which operates on the position, velocity, and acceleration errors between
the simplified vehicle model and the actual shuttle, producing effector commands. -
which tend to minimize the error magnitudes. Such a control system is generally
a linear transformation, which may include dynamics. This chapter discussesenergy
and accuracy considerations associated with the design of the feedback (pgj;h.,control
system and computer-oriented synthesis procedures based on parameter optimization
theory.

The design proceduresare illustrated by application to the vertical and lateral
position control system of a transport aircraft, the Convair 880 described in
Appendixes B and C.

5.1.1 Trajectory Control System Requirements for Subsonic Flight

The requirements for tr-ajectory conireol in the subsonic flight regime are
outlined in Table 5.1-1, At Mach numbers between 1.0 and 0.3, the vehicle is guided
relative to a trajectory which satisfies minimal fuel and maximum range
considerations discussed in Section 3.1. At lower velocities the shuttle is assumed
to be in the approach-and-landing configuration.
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Sensitivitys andlyses. . provide {fh%ﬁ ghis for path control system accuracy
requirements for both flight velocity regimgs.-&ccuracy requirements between Mach
1.0 and 0.3 will undoubtedly be less stringent than the trajectory precisionnecessary

during final approach and automatic landing.

Table 5.1-1
Control System Reguirements for Subsonic Flight Regimes

Velocity Desirable Qualities
(MachNo.)
1.0-0.3 Moderate precision guidance relative torange optimal
trajectories

Minimization of control energy a prime consideration

0.3-0.0 High precision guidance

(approach
and landing)| All-weather approach and landing capability

Control energy minimization a secondary consideration

What is the price of accurate guidance? Accurate guidance demands higher
feedback gains. As aresgult, effector response to disturbing atmospheric phenomena
and sensor noise is increased. This results in increased expenditures of fuel, an
expensive shuttle commodity. It seems reasonable, therefore, to perform a study
that will lead to the minimization of effector control energy while. still satisfying
path accuracy requirements in a worst-case environment, The study should result
in the description of the required vehicle effectors and the control laws associating

the effector commands with the trajectory errors,

5.2  Stochastic Control System Desipgn Using Parameter Optimization

An outstanding problem associated with the design of aerodynamic vehicle
control systemsisthe large number of parameters which commonly define the control
law. This complexity is a result of the number of available feedback variables and
a variety of effectors. Such multiplicity results in an extremely tedious design
process if conventional cut-and-iry procedures are applied. To circumvent this
difficulty, systematic parameter optimization techniques are utilized, The solutions
generated by parameter optimization are optimal with respect to the selected
performance index. By suitably scanning the performance index basic performance
limitations associated with the selected control law siructure, effector size and
type, and control energy limits may be identified. Such information is extremely
valuable at this stage of the space shuttle program since it can lead to vehicle

modifications which will improve overall performance.
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The following sections will introduce methods for determining the behavior
of a physical system subject to stochastiq disturbances, formulate a parameter
optimization problem, and investigate the necessary conditions for the existence of
an optimal solution,

Unlike the linear optimal conirol approach,(l’ 2, 3) the parameter
optimization techniques will not require the measurement or estimation of all the
elements of the state vector of the vehicle and its conirol system, nor precise
knowledge of the time history of environmental disturbances,

5.2.1 Response of 2 Linear System to Stochastic Inputs

In order to facilitate this analysis, the characteristics of the response of a
linear system to stochastic inputs must be delineated mathematically, Consider
the system of linear differential equations

¥ =Fx+ Gu (5.2-1)
wherexis a vector describing the state of the system, and u is a vector of Gaussian
white noise inputs; u is assumed fo be uncorrelated with the state x. The matrix F
describes the structure of the system, while the matrix G indicates the manner in

which the distrubances act on the system.

The covariance matrix X of x is defined by the relationship

X = E(xx!) {5.2-2)

where E is the mathematical expectation operator. T is apparent that X is a symmetric

matrix, a property which may be used advantageously in computations.
The value of X satisfies the matrix differential equation
X =FX+XF'+GQG! (5.2-3)
subject to the boundary condition
X(0)= X, (5.2-4)

where X0 is the value of X at t = 0.
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Of prime interest in control system investigations are time-invariant or

stationary systems.* A linear system of the form {Eg. 5.2-1) is time-invariant if
the matrices F and G are constant. If the system istime-invariant and asymptotically
stable, and if the correlation matrix @ is also constant, the matrix X will approach
a constant as t +o. This implies that the derivative X of X vanishes ast > ®© or
that the final value of X satisfies the set of linear algebraic equations.(4)

FX+XF'+GQG'=0 (5.2~5)

The process is then said to be statistically stationary in the limit t—>c0 .,

The solution of 5.2-5 is conveniently obtained by transformation to a set of
ordinary linear algebraic equations which are then solved using any one of amultitude

of standard techniques.

Since the diagonal terms of X represent the mean-square values of the state
elements responding to the stochastic disturbance, X provides the basis for
formulating an optimization problem which leads to the minimization of system
response to stochastic inputs subject to penalties on the expended conirol energy.

5.2.2 Problem Formulation for Stochastic Response Minimization

Let the performance index, J, be defined as a linear combination of the diagonal

elements of the covariance matrix, X. Such a performance index may be expressed

in the form
n
J = E o X (5.2-6)
i=1
where
a. >0 i=1,n {5.2-7)

The elements of ¢ are selected to reflect the control goal. For example, the
association of nonzero values of a; with the trajectory error and the effector output
results in a solution which minimizes the mean-square value of the trajectory error
subject to a penalty on effector activity.

%

Such an assumption is valid over a small range of vehicle velocities. Each speed
regime must be investigated separately and control system parameter values suitably
scheduled.



For analytical purposes 5,.2-6 is convenientily expressed in the equivalent form

J  =tirace CX (5.2-8)
where n
trace CX.= » (CX) (5.2-9)
i=1 ii
and
c.. =)0 iF] (5.2-10)
ij ..
o] 1=1

If it is assumed that the system of Eq. 5.2-1 are stationary so that X is the
solution of 5. 2-5,the optimization preblem may be described

Definition of the Problem:

Find a set of parameters, p, which minimizes the performance index
J =trace CX (5.2-11)

subject to the constraint

FX+XF'+ GQG'=0 (5.2-12)

where

is vector of adjustable parameters

is a matrix which is a function of the parameter vector, p
is the covariance matrix of the system state vector x

is the covariance matrix of the white noise process, u

is a matrix specifying the coupling between the system and the
stochastic disturbance vector, u.

080 K9

5,2.3 The First Necessary Condition for the Existence of a Weak Relative Minimum

In the calculus of functions of a single variable, the necessary condition for a
weak relative minimum is the vanishing of the first derivative of the function with
respect to the variable. In the case of functionals such as



J =+trace CX (5.2-13)

the general concept of a derivative can be extendedusing the Calculus of Variations.

A parameter value popt is said to produce a weak relative minimum if the

change in J for small perturbations, §p, in Py satisfies the following inequality:

pi

J(pobt + ép)= J(popt) (5.2-14)
The necessary condition for the existence of a weak relative minimum in J may be

deduced by expanding the perturbation 6J due to ép in a Taylor's series.
§J = cSp'JP + higher-order terms in §p (5.2-15)

The notation Jp signifies the gradient of § with respect io the £ elements of p.
EL
op
R S (5.2-186)
o
apﬂ

If Sp is sufficiently small, the higher-order terms in ép may be neglected and 4J
approximated by

8] = 6p'Jp. (5.2-17)
In order to satisfy the inequality it is apparent that Jp must vanish for p = Py ot
Jp(popt) =0 (5.2-18)

This condition is called the First Necessary Condition of the Calculus of Variations.

5.2.4 The Canonical Equations of the First Variation

In the problem defined in Section 5.2.2 the minimization of the performance
index is carried out subject to the constraint imposed by the system dynamics in
Section 5.2.1. These restrictions may be introduced by adjoining the constraints to

the performance index through the artifice of a Lagrange Multiplier Matrix, P.(s)

The performance index is then written



J =trace [CX + P[FX + XF' + GQG‘}] (5.2-19)

The first variation in the performance index may then be written by considering
perturbations in P, X, and p.

51 = trace §P [FX + XF' + GQG’]
+ trace 6XIC + PF + F‘P]
+trace S 26p.PX .0 F (5.2-20)
i=1 booop

The last term may be identified as

26p,PX & F! (5.2-21)

| -
ép Jp trace izl 5.

where each element of the vector J is defined

J = 9 7 5.2-22
Py ap; ( )
= trace 2PX—a— F! {(5.2-23)

op.

1

o

Since the matrices 3p: I are relatively easy to compute, Eq, 5.2-23 provides
a convenient basis for evaluating the gradient, Jp’ of the performance index.

In order for the first variation tovanish with respect to arbitrary perturbations
in §p, 6X, and JF, the following set of Canonical Equations of the First Variation

must be satisfied.

Canonical Eqguations of the First Variation

FX +XF'+GQG'=0 (5.2-24)
PF+F'P+C=20 (5.2-25)
= 5.2’26

Jp 0 ( )

5.2.5 Satisfaction of the Necessary Conditions

The generation of weak relative minima is accomplished by a series of
systematic operations which lead to a solution of the Canonical Equations,
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Simultaneous solution of Eq. 5.2-24 to -26 is generally not attempied; however,
Eq. 5.2-24 to -25 is usually satisfied at each iteration., A description of the more
common parameter optimization algorithms is found in Appendix A with an illus-

trative example,

5.3 Optimization of a Vertical Positon Conirol System

Precision vertical guidance for the Space Shuttle is particularly important
during the terminal phases of approach and landing. Beyond the terminal area,
where accuracy is not a prime consideration, it is important to make the best use
of the available control energy to minimize the fuel consumed intrajectory realization.
This section considers the optimization of wvertical-conirol-system trajectory
aceuracy subject to penalties on control-effector activily. Vertical-control-system
configurations utilizing elevators and direct-lift spoilers are explored using

parameter optimization techniques and some simulation results are presented,

5.3.1 Vertical Trajectory Control

The vertical velocity, Z, of anaerodynamic vehicleisrelated tothe path velocity
vp, the angle of attack @, and the pitch angle § by the equation

= vp[a-a] (5.3-1)

for small angles. The 2may be modified by changing any combination of the variables
a, 6, and vp. In conventional systems the velocity v o is normally held constant by
the airspeed control system or autothrottle, This convention will be adopted in
this investigation. The vertical-control variables are thus 6 and «a,

The conventional method of achieving trajectory conirol utilizes the vehicle
elevatorsés’ﬂ The elevators produce a pitching moment about the y body axis.
Control of 8 is achieved by varying the pitching moment produced by the elevators,
In order to satisfy the equation of static equilibrium, the aircraft weight W must

balance the vertical component of lift L. in the steady state.
Lcos [6~a] =W (5.3-2)
Thus a change in ¢ is required if 6 is changed, Since the airspeed v‘_p is constant,

the change in 1ift is produced by a change in the angle of attack,@. The change is
approximately proportional to the pitch perturbation

a= Kaa P (5.3-3)
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where Ky is a positive constant less than unity in magnitude. Combining 5.3-3°
and 5,3-1 gives

z vp[Kag—l]s (5.3-4)

Since |K09] < 1, the sleady-state change in vertical velocity is proportional to the
negative value of @,

Another useful effector for vertical trajectory control is the direct-lift
spoilel:‘.z’3 A spoiler is generally a plate hinged at its leading edge to the top
surface of the wing, When retracted, the spoiler is flush with the normal surface
of the wing and has no effect, When extended, the spoiler disturbe-the airflow over
the wing, reducing the coefficient of lift, Since VPIS constant, the lift isalso reduced.
This reduction in lift is countered by an increase 1 angle of atiack which as roughly:
proportional o the spoiler deflection, § s

@ = K&as SS (5.3—5_)

Since the spoiler, correcily placed, produces very little pitching moment, &
remains essentially unchanged; and since v_ is constant, the change in angle of
attack must produce a change in z, Assuming 8= 0, the static relationship for z

becomes

z = VpKa’ss &y (5.3-6)
In a control system ihe average deflection of the direct-lift spoilers is maintained
ata fraction of the maximum spoiler range to permit positive and negative corrections

in vertical velocity.

Therange of6is approximately +6.0 degreesinthe approachand landing phases;
thus, piich-angle conirel can produce rather large changes in vertical velocity as
opposed totherather small changes which can be achieved by direct-lift mode-spoiler
actuation, Direct-lift spoilers do offer the advantage of fasi response, Thus, a
vertical-position control system using direct-lift spoilers can cope more effectively
with high-frequency components in the stochastic environment, Direct-lift spoilers
also put the correcting force wherethe disturbanceacts, thereby reducing strnrtnral

loads.

It seems reasonable to attempt to combine the desirable properties of piich
angle and direct-lift spoiler conirol by using pitch attitude to effect gross changes
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in trajectory while the direct-lift spoilers are used to counter high-frequency
environmental disturbances. This goal may be achieved by using a conircl law
which operates on z, Z, z, 6, and q to produce elevator and spoiler commands
simultaneously. The spoiler command is then passed through a high-pass filter
which removes the low-frequency components which characterize gross changes in

vertical path.

5.3.2 Vertical Trajectory Control Systern Siructure

The control laws for the elevator and direct-lift spoiler inputs were assumed
tc be of fixed structure, The structure does not necessarily represent the
configuration of the final conirol system but indicaies how a structurally similar
conventional systemn may be improved by the addition of direct-lift spoilers and

parameter optimization. The elevator servo command 5ec of the form

‘Sec = P2+ PyZ+ Pgzt Pyl + Pgd (5.3-7)
The elevator control loop can provide vertical-control and/or pitch-attiiude
stabilization. The high~pass spoiler-command filter is assumed to have the form
jw

jw+wf (5.3-8)
where wy is a constant, If we is sufficiently small (less than 0.1 rad/s), the filter
will have negligible effect on the response of the sysiem to stochastic disturbances
and may be omitted from the analysis for themoment, The direct-lift spoiler servo

input 1s
8se = Pg? *+ Pgk + Dz (5.3~9)

z, 7z, and Z are periurbations in vertical position, velocity, and acceleration. The
pitch rate, q, and angle, 8, do not appear in 5.3-9 because the spoilers are assumed

to produce a very small pitching moment on the vehicle,

The feedback variables z, z, and % represent perturbations from the desired
trajectory discussed in Chapters 3 and 4. The perturbations are measured by the
integrated IMU~Radio Aid navigation system presented in Chapter 2, Pitch attiiude
may be furnished by processing IMU gimbal angles, The piich rate q is usually

measured by a body-mounted rate gyro,
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5.3.3 Some Preliminary Results for the Vertical Position Control System

Toillustrate theapplication of parameter-optimization techniques to vertical-
control system synthesis a vertical controller using elevatorsand direct-lift spoilers
was investigated,

The performance index was selected to minimize vertical-path deviations
subject to penalties on the mean-square elevator and spoiler servo deflections.

- 2 2 2
I o= w,B(2%) + w E(8D) + W E(5) (5.3-10)

The parameter w, was held constant; W and W were adjusted to vary the
mean-square values of the elevator and spoiler deflections,

The effect of varying the permissible levels of effector activity was investigated,
uiilizing three configurations,

Elevators only (ps =PpPp=Dg = 0}

2, Elevators for pitch-attitude control, spoilers for vertical-position conirol
Py =Py =p3= 0
3. Elevators and spoilers (all parameters nonzero),

Residual spoiler coupling into the pitch rate q equation was cancelled by adding a
term proportional to 55 to the elevator command in Egq, 5.3-8, A more detailed
discussion is found in Appendix C.

The performance index was mmimized for a range of W, and W, . The resultant
mean-sgquare vertical errors versus mean-square control-surface deflection are
delineated in Fig. 5.3-1, These results show the remarkable dependence of
mean-square vertical-path deviation on configuration. Spoilers alone prcduce the
poorest -control performance, An elevator-based conirol system can potentially
reduce the maximum rms path error by a factor of 10. A hybrid sysiem using
elevators and spoilers can achieve a further reduction of at least 2, depending upon

the maximum activity lunmits assigned to the spoilers and elevators.
Some responses of optimal vertical-position control sys{:ems are givenin Ref.8,

5,4 Optimization of a Lateral Position Control System

Accurate lateral guidance is extremely important during approach and landing
since permissible deviationsin lateral touchdown dispersionare much smaller than
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those along the runway surface, While precise lateral guidance outside the terminal
areais probablynotas critical, adequate levels of lateral control must be maintained,

This sectiondiscusses the designof a lateral-control system featuring aileron
and differential-spoiler effectors.

5.4.1 Lateral Trajectory Control

Control of the position of the aircraft in the horizontal plane relative to the
model positionisaccomplished by performing coordinated turns, If an aérodynamic
vehicleis rolled about its longitudinal axis, a horizontal component of the lift vector
results. If the sideslipangle gismaintained at zero, a yaw rate, ¢, must be established

to maintain equilibrium

jnElond (5.4-1)
P

where vp is the steady aircraft velocity relative to the air mass and g is the
graviiational constant, The resultant yaw rate alters the direction of the velocity
vector., If ¢m is the model-heading reference, the lateral velocity of the shuttle
relative to the model is

yoo= vy st (5.4-2)

Roll-angle control isachieved by establishing moments abouts the lengitudinal
axis. Suchmoments may be produced byailerons or spoilers, operated differentially.

Ailerons and spollers are equally effective for controlling roll rate, Turn
coordination, however, is more simply produced with differential spoilers which
resultsinadrag-produced yawing moment which aids the establishment of the desired
yaw rate.

Ailerons are often designed for high-speed flight. Since their effectiveness
varies as the square of the airspeed, it is often essential to provide spoiler

augumentation to achieve adequate levels of low-speed control.

Since the shuttle will use spoilers as well as ailerons, it 1s likely that a hybrid
lateral~control system with both types of effectors will be used.
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5.4.2 Lateral Trajectory Control System Structure

Alleronsand spoilers are quite similar from the rell-dynamics point of view,
'ZFhus, it was decided at the ouiset io use similar control laws for both effectors.
The aileron and- spoiler effector commandslaac and 650 are linear combinations of
the lateral position y, velocity ¥, acceleration y, and roll ¢, and roll rate p errors
between the aircraft and model states,

ao = PV ¥ Po¥ D5 ¥ Dy8 +pgp

8gc = Pg¥ * Pg¥ + Pg¥ +pg$ + Py P (5.4-4)

sC

Thus, up to 10 parameters must be defined during control synthesis. In addition,
turn coordination must be assured by the computation of appropriate rudder

commands.

Turn coordination was provided by closure of an additional control loop on
yaw rate which also provides dutch-roll mode damping, The desired roll angle,

oo is

_ . a1
po = [P]_y T Pyy ng]—

Py
. w11
+ [y + po¥ + p¥]— (5.4-5)
Pg
so that the coordinated turn rate is
g ¢
R = (5.4-6)
b
if the rudder command is
61"0 = p]_]_[rc - 1—-] (5.4'7)

the rudder will operate to make r~ r e

The translation-error variables y, ¥, and ¥ are provided by ihe integrated
IMU-Radio Aid navigation system discussed in Chapter 2., Roll angle is provided
by processing IMU gimbal angles, and roll rate is usually measured with a

body-mounted rate gyro,
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The effector commands are fed to-control actuators which arewmodeled by
first-order lags. The surfacedeflections areinputstoa set of linear vehicle equations
which are detailed in Appendix C.

5.4.3 Some Prelimwary Results for the Lateral Control System

Parameter optimization techniques were used to minimize the performance

index
I = w By + w B2 + w E(6D) + w E(62) (5.4-0)
¥ s Vs a ta r

The parameters Wy and W, were held constant and W and w, were varied toc explore

a range of solutions,
Two configurations were 1investigated.

1. Ailerons only (p6 — Py = 0)
2. Spoilers only (p; —»‘ps = Q)

The mean-square laferal error for various control-surface deflection weightings
is shown in Fig, 5.4-1. This shows that the rms lateral error can be im proved by
at least a factor of two, using spoilers instead of ailerons o effect roll control. A
hybrid system reflecting activity limits on 5& and 65 will undoubtedly show an even

more dramatic performance improvement.

To 1llustrate the response characteristics of parameter-opiimized lateral
control systems, a reference design based on an autoland system for the Convair
880 and an optimized, spoilers only, lateral conirol system were compared, The
parameter values for the two systems are given in Table 5.4-1, The responses of
the two systems to a gust input are shown in Fig. 5,4-2 — 5,4~4. Note the scale
changes on y and ¥ i Fig, 5,4-2, The well-damped response characteristics which
appear to be typical for sysiems synthesized using parameter optimization are
presented in Fig, 5.4,-5 and 5,4-6,

5.5 Conclusions

Aerodynamic vehicle-control systems are complicated by a large number of
potential feedback variables and effector combinations. Asa result, even the simple
trajectory-control laws presented in the preceding sections required the definition
of up to 11 parameters. Thus in such systems it is essentially hopeless to apply
trial-and-error design procedures to the solution of the stochastic optimization
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Parameter Values For The Reference and Optimized Lateral Control Systems

Table 5. 4-I

Parameter

REFERENCE OPTIMIZED
P 6 -0. 0191 -3. 69
P7 -0, 1 -23.41
Pg 0.0 ~11.64
Py -0. 853 ~2.89
P10 -0, 526 -7.05
P 5.25 2,58
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problem in section 5,2-2, Systematic parameter optimization using variational
algorithms offers an answer to these problems,

By scanning optimal solutions for a range of control-surface activity levels,
itis possible to define the best mix of effector types fora particular flight condition
and control objective. The delineation of tradeoifs beiween effecior activity and
the achieved level of control provides invaluable information for the initial definition
of the Space Shuitle as well as essential data for the design of a control system for
an existing vehicle,

In addition to the ability of parameier optimization to handle complicated
control-system design, an additional advaniage 1s apparent in the time-domain
respense characteristes of the resultant control systems., Desirable features, such
as short rise time and small overshoot, appear to evolve automatically during the
solution of the stochastic optimization problem.

In summary, it appears that parameter optimization can play a valuable role
throughout the developmentand design of the Space Shuttle vehicleand 1itstrajectory-

control systems.
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APPENDIX A
NUMERICAL OPTIMIZATION ALGORITHMS
by
Duncan MacKinnon

A1 Introduction

The parameier optimization problems discussed in Chapter 5 may be solved
using awide variety of numerical fechniques, This appendix provides a description
of a variety of optimization procedures which have yielded satisfactory numerical

solutions. The algorithms are applied to a simple example fofzcomparison.

A.2 DNumerical Optimizaticn Techniques

The field of numerical-optimization encompasses a large number of different
algorithms and applications. To a large extent, the application of numerical
optimization techniques to the solution of pracfical engineering problems is a
relatively recent phenomenon arising from the development of high-speed, large-
scale, electronic digital computers which are capable of performing the optimization
computations in a reasonable length of time.

A review of the algorithms presented in the following seciions reveals a
structural commonality shown in Fig, A, 2-1. Each algorithm requires the computation
of the value of the performance index, J, and the gradient, J_, of J with respect to
the parameter vector, p. These calculations are conveniently performed using?he
canonical equations of the first variation in Section 5.2,

The value of X is obtained by converting Eq. 5.2-24 o an equivalent algebraic
equation of the form

Ay =b (A.2-1)

Equation A.2-1 is then solved for y using the Gaussian Elimination process. X
may be constructed from y by a suitable linear transformation. The performance
index is then calculated from Eq. 5,2-6.



Lo
ot
b
Sl
-

START

INITIALIZATION

CALCULATE
J
OPTIMIZATION
ALGORITHM - CALCULATE
GRAD| F]NT YECTOR
P

END

Fig. A.2-1 Structural commonality of optimization algorithms.



The gradient of the performance index Jp with respect to the parameter vector
P may be calculated analytically using Eq. 5.2-23. The Lagrange Multiplier mairix
P is the solution of Eq. 5.2-25 which is amenable to the same methods of solution
as Eqg. 5.2-24, Thematrix F'is offen poorly conditioned, in which case an accepiable
gradient vector is calculated from the relationship

I(p; + %p) - I(p; - op)

26pi

J

Py

{A,2-2)

The following sections describe six algorithms for systematically genera{ing minima.

A.3 The Method of Steepest Descent

Perhaps the most basic method of minimizing the value of a funétion is the
method of steepest descent,(lé) which is based on the Taylor seriés expansion of
the wvariation 4J in the performance index due to a small perturbation, ép, in the
parameter vector. TIf §p is sufficiently small, the value of §J is approximately
equal to

8 = 6p'Jp (A.3-1)

Suppose the change in §p is equal to
= -eJ A 3-2
sp p ( )

where € is a positivenumber, If¢ is selected so that §p is small, the approximation
A.3-1 is satisfied, Then 6J becomes

6 = -€p J {A.3-3)

pp
Since the inner product of J_ with itself is always positive, the perturbation §J is
negative and the value of J(p + §p) will be less than the value of J{(p). This process
may be iterated to produce a monotonically decreasing sequence of values for J.
Since the sequence is continuously decreasing, the algorithm always converges to a

minimum, providing such a minimum exists,

A flow diagram of a steepest-descent algorithm is shown is Fig., A.3-1, The
variable NIC counts the number of successful iterations (§J < 0) while NHC keeps
track of the number of iterations in which the size of §p is too large to satisfy
approximation A.3-1. If dp is,too large, ¢ is halved and the evaluation of J is
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repeated. The algorithm terminates when NIC or NHC exceeds the maximum values
NIM or NHM respectively.

A.4 Method of The Average Gradienis

One of the important problems associated with the method of steepest descent
is the "valley problem'. Such a problem occurs if the orientation of the direction
of maximum-descent path is approximately normal to the gradient vector at the
current value of p. If the step size is too great, the value of p is transferred to the
other side of the "valley" where a similar situation is often encountered. The
algorithm may thus continue to traverse back and forth across the "'valley", converging
very slowly to the minimum, This difficulty may be advoided by using a direction
which is the average of the current gradient and the gradient used in the last successful

iteration. (15)

A flow diagram of the average-gradienf algorithm is shown in Fig, A,4-1.
The previcus gradient, Jps’ is equal to the present gradient initially so that the
first step utilizes the steepest-descent algorithm.

A.b  The Generalized Method of Newton Raphsonuz)

Convergence rates can usually be improved by considering the second as well
as the first variations in the performance index. The expanded perturbation in J
due to §p is then of the form

o~ 1 _1_ ] (A 5‘1)
&3 = ép Jp + 26p Jpp&p .

where Jpp is the matrix of second partizl derivatives of the performance index J.
J PP is evaluated by finite differences or by using a combination of finite differences
and closed-form generation of Jp. If the variation in J is required to vanish,

-1
==-J J . (A.5-2)
5P PP"P
Sincethe approximation A, 5-1isonlyvalid for small §p, the step size is controlled

by introducing a positive constant € writing

-1
p =-€J °J (A.5-3)
P PP p
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If the performance index is quadratic in p and ¢ is equal to unity, the algorithm
will converge in one step to the optimum value. In any case, tlie algorithm will

i #* s
exhibit one-step convergence if p is near Popt- The algorithm is illustrated in
Fig. A.5-1,

A.8 Method of Conjugate Gradients(ls)

This numerical technique is a systematic optimization procedure which displays
some of the favorable characteristics of the Newton Raphson algorithm without the
necessity of inverting the matrix of the second derivatives, J o’ If the performance
index, J, is quadratic in the parameter vector, p, the method will minimize J in £
steps, where / is the dimension of p.

The algorithm operates by generating a set of "Jpp - orthogonal or "Jpp

conjugate' vectors CSERRERLVE in the f-dimensional Euclidean solution space. The

matrix Jpp must be positive definite, in which case

=0 if]
) :
9~ pp; { >0 ;= (A.6-1)
As a result, it can be shown that any vector p can be expressed as a linear
combination of the vectors q,,... =y

£
P = O /31 4y (A.6-1)

i=1

where ‘Bi is a scalar. If Py is the initial value of p, Py can be expressed in ferms
of the optimal value popt and the basis vectors by writing

M

B9 (A,6-3)

[-popt B po] - i

i=1
where

(A.B-4)

_ [popt " P ]' Jppqi.

i 0
94 J ppqi

* -

Since the performance index will be essentially quadratic in Sp when p is near
P

opt
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The problems of findinig the minimum thus reduces to the determination of the
conjugate directions Ugrecer Yy and the Fourier coefficients Biseess ﬁﬁ .

A convenient set of "J pp-conjugate" basis vectors may be constructed on the
gradient vectors, Jp, using the following iterative procedure

Piy1 = Pyt o9y (A.6-5)
where
e §
a; in
o = (A.S-S}
Yoqld_ q
i“ppti

The value of @; is conveniently generated by minimizing the performance index, J,
along the straight line p = Py + @; 4 - The value of ¢ which minimizes J is ay. The
new basis vector is generated by orthogonalization with respect o the subsgpace

spanned by the vectors qs - - -9

4, = in+1 + 2,9, (A.6-T)
where J'p Jp
A, =—1‘;f11T1+—1— (A.6-8)
Py Py

The resull is a sequence of operations whic systematically satisfies the relationship

f
po‘pt = pU -+ izl aiqi. (A.G‘g)
The algorithm is illustrated in Fig. A.6-1.

AT Method of Davidon(”)

Another optimization technique which shares a number of the properties of

an and further developed

the Conjugate Gradient method was. suggested by Davidon
by Fleicher and Powell. (15) The algorithm searches iteratively for a matrix H

which defineg the optimum step gize.

§ = - -
Popt HI, {(A,7-1)
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The matrix H ig the inverse of the second variation matrix JP P’

-1
H =J . AT-2
Iop (A )

The procedure is as follows: starting from a point P; with gradient Jp(pi) the
algorithm minimizes J with respect to a scalar¢ where

PSP+ €H,; Jp(pi) (A.7-3)
the optimum value of p is designatedp, ;.

Let

S; =Py P (A, 7-4)

1

. =J
r p(p

i > - Jp(Pi) (A.7-5)

i+l

The matrix Hi is then refined according to the relationship

[} 1
Sisi Hisisi Hi
=H; +——- : (A,7-86)
5.1, r.H.r.
i iTiti

The process is then repeated.

1t is possible to show that, if the initial H is positive definite (H1 = 1 for
example), the direction H.J (p ) will always result in a reduction in J when the
minimization with respect to ¢ is performed. Thus the algorithm generates a
monotonically decreasing sequenceof J'sand convergence to at least aweak relative
minimum is assured. If the performance index is quadratic in p, it can be shown
that the algorithm will converge to a minimum in [ iterations, in which case the
terminal value of H is JI;;

Tt is apparent that the algorithm will also have quadratic convergence properties
when p is very close o popt' A flow diagram of the method is shown in Fig. AJT-1,

A, 8 The Method of Powell(lé)

This method-is similar to the methods ¢f Cohjugate Gradient and Daviden, in
as much as convergence can be achieved in J steps where £ is the dimension of the

A-11
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parameter vector if the performance index, is quadratic in p. There is also no
necessity to evaluate the matrix of second dgrivatives Jpp'

In this method, each iteration requires one-dimensional minimizations down
n linearly independent directions, dl, d2, ‘e ,dﬂ. As aresult of these minimizations,
anew direction d is defined, which is linearly related to the coordinate values obtained
during these minimizations. 1If d satisfies certain conditions, d replaces one of the

original directions and the process continues.

In general, for the kth iteration, the last k-1 directions used are conjugate.
For guadratic functions,if Py is the minimum in the direction d., and Py the minimum

along a direction parallel to dj, then Py - Py is conjugate fo dj (parallel tangents),

The initial choice must be linearly independent. This implies that the matrix

D of column vectors di

D = [dl’ dz,....dg] (A.8-1)

must be nonsingular (D # 0). The algorithm illustrated in Fig. A.8-1 is not the
original statement of Powell, but the technique now generally adopted.

The convergence tests indicated in Fig. 4.8-1 are as follows:

Define Jy = J(pl) and Jﬂ-s—l = J(pﬁ+1)'
Find integer m, 1< m< n, so thatJ (pm-l) -J (pm) is a
maximum, and
Define A=7J (pm-l) ~J (pm)
Calculate Iy = J(an_'_1 - pl).
If ng ¥
. _ _ _ 2.1 - 2
or if L3, 23 5 + 35100 Tt 8)?> 3a (3, - 3,]
then set p, = pﬁ_!_l

and use the same set of directions, dl, ,dz, s dﬂ' If neither holds, accept a new
direction defined as

d =Ppy Py

ang update the direction matrix as indicated.
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A.9 A SBimple Illustrative Example

The foregoing material is best illustrated by application to a simple exam-
ple which is characterized by a fixed control structure which opei‘ates on a subset
of the components of the state vector. The system is subject to an exponentially
correlated disturbance,

Consider the block diagram in Fig. A, 9-1 which may be interpreted as a
position control system. The vehicle equations of motion are subject to a zero-
mean, exponentially correlated stochastic disturbance x 4 which produces random
fluctuations in acceleration Xq. The effects of the randor_n variable u are counter-

acted by a controél force x
Py

3¢ The control law is defined by the adjustable parameter

The object of the parameter optimization is to minimize the mean-square
position response E (xlz) subject to a penalty on the mean-square conirol force
2
E (x")
s 2 2
minimize E(x,") +E (x;7) (A. 9-2)

The system mat be represented by

¥ = Fx + Gn {A_9-3)
*1
x
X = 2
Xg (A.9-4)
X4
LI (A.9-5)

(A.9-6)

o
3
=t
=t
-

<o
(=
o
I
=
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Fig. A,9-1 Position control system with fixed control structure and a stochastic

disturbance.
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The performance index J has the form

J =trace CX (A.9-T7)
where
_cl c 0 0
C =ec 0 0 0 (A.9-8)
0 0 1 0
[0 0 0o o
*11. *12 *13 *i4
X F| %9 Xg9  Xgg  Egy
{(A.9-9)
31 ¥*32 *33 %34
| Y41 T4z Faz  Tag

The computations are initiated with a set of parameter values which result in
an asymptotically stable solution. Initial solution stability is mandatory if positive

definite solutions for X and P are to exist. The initial value for p;, was
pl = =-3.0 (A.g'lo)

The initial position, velocity, and effector response to a white noise disturbance
are shown in Fig. A.9-2. The optimal parameter value was

p; =-13.87 (A, 9-11)
The corresponding responses for the optimal system are shown in Fig. A.9-3.

The mean-square values of the initial and optimal scolutions are shown in Table
A.9-1,
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Table A.9-1
Initial and Optimal Mean Square Values.

INITIAL SOLUTION | OPTIMAL SOLUTION
% 0.766 0.129
X, 0.0805 0.0652
Xq 0.148 0.311
Xy 0.500 0.500

The convergence characteristics of the various optimization algorithms may
be compared by plotting J and the lengih of the gradient vector, |Jp,, and p; as
functions of the iteration number NIC. These characteristics are illustrated in
Figs, A.B-4, A,9-5, and A.9-6. The initial value of the step-size control variable

was. 2.0, Computation was terminated at the end of 10 iterations,
Some conclusions may be drawn from these resulis:

1, The Steepest Descent and Average Gradient algorithms appear to converge
rapidly when p is some distance from Popt (J b large). Convergence
near the optimum value is very slow (Jp small),

2. The quadratic convergence algorithms, Newton Raphson, Conjugate
Gradient, Davidon, and Powell converge very quickly when p is near
popt and if the problem is quadratic in p. However, more care must be
taken in their application to insure solution stability.

A, 10 Selection of the Optimization Algorithm

The control scientist must select an algorithm from the preceeding array to
solve the problem at hand. The choice is usually determined by considerations

such as:
1. Convergence rate
2. Numerical errors
3. Computation time
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Initial optimization from a suboptimal starting solution is efficiently carried out
using the Sfeepest Desc:ent;§= or Average Gradient* algorithms which display a high
rate of convergence when pis some distancefrom the oiatimum value. As the optimum
is approached, the slow convergence of Steepest Descent and Average Gradient
algorithms Welghs heavily in favor of algorithms such as Newton Raphson, Con;ugate
Gradient, Dawdon, and Powell, which display high rates of convergence where p 1s
in the vicinity of popt’ justifying the increase in computation {ime per iteration,
Numerical problems often preclude the application of the Generalized Newton

Raphson technique as a result of errors arising in the estimation and inversion of
the matrix J__ .
PP
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APPENDIX%-,QZO ; 09_035
NONLINEAR VEHICLE MODELS

by
Paul A, Madden

B.1 Introduction

Initially, thenonhnéar aircraft and trajectory equations are presented without
derivation. A reference frame and axis system 1s then defined, followed by the
development of a set-of perturbation equations. The latter serveas themathematical
model for simulation of arrcraft flight in a noisy atmosphere from an unaccelerated
reference flight condition,

All assumptions and simplifications are discussed during development of the
equations., ’The linear aerodynamic model is ouilined as is the manner in which
ground effect and aerodynamicnoise are incorporated. Tables listinig all the equation
coefficients and values for these coefficients pertinent to a spe,c_I_‘flc approach-io-
landing flight condition are presented.

Themethod of simulation of random aerodynamic noise, including wind shear,
is presented and also the additional equations necessary to represeni the elastic
degrees of freedom cof a flexible aircraft.

Finally, linearization of the nonlinear equations is discussed with parficular

longitudinal and lateral models being delineated in a further appendix,

Simulation of a- large Space Shuttle in the landing-approach flight condition is-
essentially identical to simulation of any large aircraft in this flight condition.
The requirement that any developed Space Shuttle should demonstrate flight
characteristics similar toa conventional large jet transport In the landing approach
ié further evidence of this near identity.

All the elements essential to the simulation of the one are necessary for the
simulafion of the other,

When physical and aerodynamic characteristics of the space shuttle are better
defined, therewill be for the most part a one-~to-one exchange with like parameters



of the jet transport. This will be so if simulation of the rigid-body response only
is involved. Depending upon the Space Shuttle configuration, there may be more or

+ fam P o . \E"i."-ﬁ'- . - . -
less Shn laritysin the ,maéxsneg ing ‘_l;gch the flexible modes are simulated and in the
actualwelastic-fiode response, &

B.2 The Aircraft Nonlinear Equations of Motion

The general rigid-body nonlinear equations of motion have been derived often
in the literature, for exampleinref, 1,and will not be rederived here., The equations
are written with respect fo an crthogonal set of axes fixed in the aircraft. The
convention adopted for the axes, Euler angles, and rates is defined in Fig, B.2-1,
The equations are

Lift

Z
Drag .
X =mgsin@+m(I-J+QW-—RV)

Side Force

“mg cos@cosP+ m (V'V + PV - QU)

Y =-mgcos@sind+m ({T+RU - PW)
Piich
M =BQ+RP(A-C)+E(P?-RY
Roll
. L =AP-ER+QR(C - B)- EPQ
Yaw
N =-EP+CR+PQ(B-A)+EQR (B.2-1)

Euler angle rate equations

& V] cos @ -gin @ P
@l=11 smm¢dptan® cosPtand| | @ (B.2-2)
Y 0 sin® sec® cos@se R

Trajectory equations

The aircraft irajectory equations require that the orientation of the aircraft
be specifically defined and this is done in Fig. B.2-1, It should be remembered
that the trajectory equations are written with respect to an inertial frame which is
not negessarily earth-fixed, ’ To obtain the trajectory of the aircraft in earth-fixed
coordinates, the velocity of the inertial frame with respect to earth must be added

vectorially to the following inertial velocities,
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1IN THE FOLLOWING WAY:

ORIENTATION OF THE AIRCRAFT IS DEFINED

1) THE AXES Ox ¥z ARE SET PARALLEL TO THE REFERENCE
F171

SET OF AXES.

2) A ROTATION OF W ABOUT O_ BRINGS THE AXESTO O, . _ .
E Z X yzz

1 oo

3) A ROTATION OF @ ABOUT O, BRINGS.THE AXESTOO, .
¥ 3¥9%3 R

4 A ROTATION OF & ABOUT 0, BRINGS THE AXES TO THE
3

FINAL POSITION, O, .

Zy,2,

Fig. B.2-1 Buler angle set.



cos@ cosV sin® sin® cosY cos® sin® cosWy U

-cos siny +sing sinl
= |cos@ sinV¥ sin®t sin@® siny cos( sin@® sinVy v (B, 2-3)
+cos@ cosy ~gind cosy
~5in@ sin® cos@ cos cosd W

Choice of Inertial Frame

The only stipulation upon choice of the inertial frameis that 1t be unaccelerated.
For simulation of quiet-atmosphere aircraft response, the simplest set of equations
result when the inertial frameis chosen to be earth-fizxed, However, for simulation
involving a noisyatmoesphere, themost convenient equations evolve when the inertial
frameis fixed in the unaccelerated air mass associated with the reference steady-state

flight condition.

Choice of Axes

The equations set down in the preceding sections are valid for any orthogonal
axes fixed in the aircraft, with origin at the mass cenier, and known as body axes.

Any set of body axes may be chosen but it is most convenient to choose Ox
such that it points in the direction of motion of the aircrafi in a reference condition
of steady symmetric flight. In this case, the reference values of V and W are
zero, and the axes are termed stability axes. These are the axes adopted in the
derivations of following sections owing to their resulting simplifications mn the

equations of motion and aerodynamic force expressions,

B.3 Perturbation Expansion of the Equations of Motion

Changes in the time-dependent variables from the reference steady-flight

condition are now introduced in the manner,
Uty = Uy + ult) (B.3-1)
similarly, the aerodynamic forces and moments (including thrust components),
X(t)= X, + AX, (B.3-2)

It is understood that an effective aerodynamic perturbation is the sum of a
component dueto inertial response of theaireraftand a component due toaerodynamic



noise, viz.,
u(t) = ui(t) + un(t) (8.3-3)

Reference Flight Condition

The initial reference siate is restricted to unaccelerated flight in an

unaccelerated atmosphere. The adoption of a stability axes set defines

Vo =0
WO =0 (B.3-4)

Some additional assumpiions have been made about -the inmitial reference state,
Although not essential, they considerably simplhify the equations of motion with no
important loss of generality., These further assumptions involve the initial values
of airgraft pitch, roll, and yaw rates and aircraft roll attitude, all considered zero,

qoa poa ro =0

y =0 (B.3-5)

The Perturbed Equations of Motion

Substitution of the expressions for perturbed quantities, adoption of a stabilily

axes set, and cognizance of the further assumptions {eq, B.3-5) lead t{o the following

equations
Zy + AZ = -mg cos@ cos® + m (w+ pv-qu- qU,)
X0+AX=mgsina+m(ﬁ+qw-rv)
Y, + AY = -mg cos@ sin® + m (¥ + rUg + Tu - pw)
MD+AM=Bc'1+rp(A—C)+E(pz-r2)
L0+1_\.L.=A1')-Er+qr{C-B)-pqE
N, + AN = -Ep+ Cr + pq (B =.A) + qrE (B.3-6)

The reference flight condition is extracted by setting the perturbation quantities
equal to zero
.&0 +mg cose 4= 0
X0 - mg sing, = 0
Y. =0

0
M0 =
. LO =0
NO =0 (B.3-7)



substitution of Eq. B.3-7 in Eq. B.3-6 and neglect of second-order terms lead to

the perturbation equations which may be writien

AZ = mg cose,(l - secgy cos@ cosd) + m (w+ pv - qU, - qu)
AX = mg coseo(seceg sing - taneo) +m (1 - rv)
AY= -mg cos sing+ m (v + rUq + ru)

AM = Bq
AL = Ap - Er
AN = -Ep + Cr (B.3-8)

It should be noted that, in view of Eq. B.3-3, quantities like qu, pv, are not
necessarily small (second-order). An approach to landing in a noisy atmosphere
involves flight through turbulence and a wind gradient {shear), the sum of which
constilutes terms like u n* The response of the aircrafi is such that the effective
aerodynamic perturbationexpressed as Eq. B.3-3 is always small. Inasmuch as u
is constituted of a fluctuating component (turbulence) superimposed upon what may
be a large drift component due io wind shear, the inertial quantity uy will be nearly
equal in magnitude but opposite {in sign} to u n° It is the inertial quantities that are

involved in the terms gqu, pv referred io above.

B.4 The Aerodynamic Forces and Momenis

A pgeneral force or moment change from the reference flight condition is

represented by a Taylor series expansion
AF (or M) = g'x + %X'AX + higher-order terms,

The first term of the expansion coustitutes the quasi-steady (or linear)
aerodynamic model where g is the vector of first-~order derivatives (the stability

derivatives) and x is the state vector.

All derivatives are evaluated at the reference flight condition; their
nondimensional forms are usually referred to as the aircraft stability derivatives
arising from their use in classical aircraft stability analysis, The stability
derivatives together with irim aerodynamic quantities constitute the conventional
characterization of the aircraft aerodynamics at a particular flight condition,

Ground Effect

An exiraordinary aerodynamic perturbation occurs when the aircraft

approaches close to the ground.



In, this situation the ground plane inhibits the normal downward-induced flow,
increasing the lifting efficiencyof the a1rcra{ft. Associated with this eflfect isusually
a nose~down pitching moment which correction reduces to some exteni the gain in
lifting efficiency,

Thenonlinear aerodynamic corrections are accomplished in the following way.

Changes in affected stability derivatives are approximated by

AC = K(Cig - Co )

e ge

where

Cige is the coefficient value in full ground effect

Coge is the coefficient value out of ground effect

and K 1s given bya parabolic function iypical of the aireraft type. For the subsonic
jet iransport class

K £0.52s%-1.21s+0.75
where s 15 the aircraft altitude in semi-spans,

Inaddition to the derivative changes, there are net changes in the trim values
of both lift and drag.

B.,5 TFquations of Motion as Mechanized in the Digital Simmulation

Substitution of the aerodynamic force and moment changesinte the perturbation
equations (B.3-8) results in the following quiet-atmosphere aircraft equations of
motion

Lift
Y= L
@= -5 [Caa + qu + Cuu
4+ C. 5 +C. 5. +C_§
6e € 5te te Ss S
+ Cﬁpﬁp+ Cququ+ CAtAt
+ CL0 {1- seco, cos@ cos@

*
+ <ACL + ACDC!> ]

*¥<> terms are finite when aircraft 1s in ground-effect; zero otherwise.



Drag

S
u = C[Cu“+ca°’+cgs5s+cr,3

+ CAtAt + CI_‘0 (sc-zce0 sin@ - taneo)

s

+ <ACD + ACLa>]

Side Force

3 1
A C [Cﬁﬁ + Crr + Cpp

+ CL‘O (sec 8g cos 0 sin @)

6I.61‘+ C

+C,_ §, +C_ru
5trtr ru:I

+C_4g_+C é
6g 8 by @

Pitch

e
1l

1 .
—é—[Cuu + C&a + Caa

+C g+C, § +C'$
q See 5ee

+C_ 4, _+C_5_+0C, At
6tete ass At]

+ <AC_ >
m

Lel}
il

. .
G I:Cﬁ,ﬁ +Cpp+ Cyf 4 Cpr

+C 5S+C

s b
+C,. 4§, +C, 4
5ta ta Jtr tr]

§,+C 8
Baa 5 r

Yaw

562

. -i .
r = C[CBBJr Cpp+ C}-)p+Crr+C X

3

+C .6 . +C, 6. +C_ 6, _+C, § {B.5-1)
s 8 6r T Jta ta Jtr tr]



Perturbations due o Aerodymanic Noise Input

A :
dae =5 }Vaan + qun +Nou + Néan]

Au =-é—: :Nuun + Naan]

A,é =16:I% B+ Nr, + Nppn]

AQ %[Nuun-l'Naa +N-.a +Nq]

P 16[1\1,8 +N_p, +Nr:|

AP %[ﬁ/i’ +N_p +N r] (B.5-2)

Hinge Moment Equations

The dynamics of the aerodynamic effectors downstream of the control servos
are represented by the hinge-moment equations. The space shuttle-may employ
direct force or aerodynamic effectors or a combination of both,

The hinge-moment equations associated with the aerodynamic effectors and
servo tabs of a conventicnal aircraft are

Elevator
§ =HEg » -
6e od HEéeae + HESE‘SG + HE‘Steate
Aileron
8, = HAﬂB+ HApp + HAJaJa + HA&a é‘a +I-1A5ta6ta
Rudder
5r = HR,GB + HRrr + HRdraI‘ + HRé:rJI‘ + HRétrJtr -r (B.5.3)
where
_ -
6te - 6e Je
— _ ¢S
b1 = g



and 62, 6:, 6? arethe elevator, aileron, and rudder cdntrol-servo outpuis respectively.

Control Surface Actuators

The aileron, elevaior, and rudder conirol surface actuators are all modeled
by a second-order system with W = 2.86 cpsand damping ratio of 0,7, The transfer

function of these servos 1s

O
[4)]

. 394
s€  s% 4 25.4s + 324

0

The spoiler surface actuator is modeled by a first-order system with a time
constant of 0.1 second.

Variables and Coefficients Defined

Define
o= W/U0
&= v'/U0

The variables ¢and £ are referred to as angle-of-attack and sideslip angle
respectively; a small-angle assumption is implied.

The equations of the previous section have been divided into longitudinal and
lateral sets which for most aircraft are only weakly coupled for small rotational
rates of motion,

Let 4, v, and 7 be defined by
Longitudinal Lateral
“4  2m[P3E 2m/pSb

3
2 AL
- @b @
™ cf 2U0 b/ 2U0
Coefficients of the previous equations are defined in tables B.5-1 and B.5-1I

in terms of the aircraft geomeiry, inertia constants, reference flight condition, and
stability derivatives,
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Table B.5-1

Coefficients Defined for the Longitudinal Equations

guation
Coefficien Lift Drag Pitch
2
C r[czd - 24 -27u{U,, o7l
C -C -C C
[¢3 ZO! XQ‘ ma
C -r[zu +C ] - - TC
q Zq mq
c, [2c, -c_ VW, | -lc_ +cy tane diuy, [cC, [U,
o q u 0 u
C -C - .- C
58 Zae mse
Cq -C, --- C,
te 6te 5te
C -C -C C
)
s Z‘Ss xés mas
* - - - - =
CBp 2T
Cqu -2 U , --- \ - - 2
Cpy sino /(1/2)pUS | -cosa /(1/2)0US 2l (112)p0ge S
Crﬁ - 2T - -
Cg - - - - - - rcmé
Ct -- - - - TC
6e mé
e
N -cza —cxa cma
N -7C -- - TC
q %y Ty
N, [2c; -, Juy| -[-c, +2¢; taney/Uy| C | U,
0 - u 0 u
Ng -7C - - - TC__ .
Z(‘J !

* 4 defined for the

lateral equations.
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Coefficients Defined for the Liateral Equations

Table B,5-I1

Equation
Coefficien Side Force Roll Yaw
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c; .- --- oT L,
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g 73 3,5’ e
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ruysical and aerodynamic characteristices of theaircraft adopted for the space
shuttle simulation appear in Appendix C,

B.6 Siructural Flexibility

When separation in frequency between the elastic degrees of freedom and the
rigid-body modes is not.large, significant coupling can occur.

The coupling can arise directly from the aerodynamic forces geherated by
aircraft rigid-body response or indirectly through control-system response to
sensors mounted upon the flexible structure, The latter coupling has -generally
been the most important for large aircraft in the low-airspeed, landing-approach
flight condation,

While thereare several waysin which the dynamic equations of elastic motion
may be formulated, the method chosen for the simulation was to represent the
deformation of the elastic aireraft in terms of its normal modes of free vibration,
This is a direct approach which requires prior knowledge of the normal modes.and
their frequencies.

Equations of Elastic Motion Assuming Normal Modes

For n modes, the deflection from the principal axes is
w(t) =§:¢iqi(t) 1= I.n (B.6-1)
where qbi are the normal modes and q; are the generalized coordinaies,

The generalized coordinates aredetermined from then second-order equations
(neglecting structural damping)

d. +w .2q. =Q. i=1n (B.6-2)

which may be transformed into the 2n  first-order equations

q. =1, i=1,n (B.6-3)
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where Mi’nQi are the generalizedmass and generalized force, respectively,
of the ith mode; fi is a transformation variable. M; and Qi are defined

M, = _[SJ-¢3 mds
Q = fsj' AT (B. 6-4)

The simple form of Eq. B.6-2 was the direct result of the choice of normal
{orthogonal) modes; the resulting simplification being the inertial and elastic
decoupling of the equations. Further, the equations of elastic motion are decoupled
(inertially and elastically) from the rigid-body modes which are, m fact, the zeroth

normal modes of the eigensystem,

The equations, nevertheless, are coupled aerodynamically. This is because
the generalized force Qi is a function of a5 tii(all i} though its dependence upon the
elemental normal force, Fn’ acting upon theaircraift. Fn includes only aercdynamic
forces becauseof the property of inertial independence of normal modes, and hence
independence from the rigid-body degrees of freedom. )

Further, Fn need include only symmetric aerodynamic forces if the particular
mode ¢i is symmetric, and only antisymmetric forces if ¢i is also antisymmeiric,

There is additionally aeroelastic coupling back to the rigid-body equations
because the elastic deflections cause aerodynamic force perturbations that must be
included inthe foreing of the zeroth mode equations justastherigid aircraft response

forces the elastic modes.

Evaluation of Fn is, by far, the most difficult chore in the aircraft dynamic
simulation. Expressions for the aerodynamic forces due to aeroelastic effects,
and similarly the importance of nonlinear aerodynamic effects, are highly
configuration-dependent. Unsteady aerodynamic effects that involve attenuation and
lagstotheairforcesmust, in general, be included, However, for the lowest structural
frequencies which may be of primary concern to the control and gmidance problem,
a quasi-steady approximation can usually be made that neglects the small phase
lag-and is modified to include an attenuation factor. As the frequency of the structural
mode of concern increases, so does the phase lag and attenuation of the associated
airforces and their inclusion is of importance. However, the response of these
higher-frequency modes may not be of central concern.

B-14



Similar difficulties arise in the evaluation of airforces associated with

higher-frequency gust inputs,

Currently, the CV880 digital simulation includes the two lowesi frequency
symmetric flexible modes with frequencies of 1,6 and 4.4 cps, respectively, Inclusion
of phase shift in evaluating the aeroelastic damping at these frequencies produced
no discernable change in response as compared to that obtained usihg the simpler
modified quasi-steady theory. However, unsteady aerodynamic effects associated
with gust inputs may be more important,

B.7 Atmospheric Noise

B.7.1 Introduction

The theory of flight through atmospheric turbulence has been extensively
developed by many researchers and reported upon in many references, Of particular

relevance are those of Etkin1’3 and Foss and McCa.be.4

Essentially, for typical operating speedsof aircraft, the gust field isassumed
to have random spatial variation but to be frozen in time, It is further assumed to -
be locally homogeneousand isotropic sothatonly two power spectral density (PSD)
functions are necessary to describe the statistics of the three gust-velocity
components,

Variation of the longitudinal and vertical gust velocities over ihe span of the
aircraft is neglected, allowing all three velocity components to be written solely as

functions of the longitudinal axis coordinate,

B.7.2 Statistical description of atmospheric turbulence

The one~dimensional PSD functionsused to describe the statistics of low-level

turbulence are — /L L
O@ =w: (”Uo) P Ly (B.7-1)
o
2 () 3@%5) : (B.7-2)
02,88 = Vg (T%)E rek?] 2 '

where ¢ l(w), 02 S(w), are the PSD functions of the longitudinal, lateral, and vertical
R .
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gust velocities respectively and where w2 is the mean~-square gust velocity in
(feet/sec)z, U0 is the flight velocity in feet/sec, L is the scale of turbulence in

feet, and w is the frequency in radians/sec,

The spectrum tDz 3(t.o) may be approximated by5
»

(B.7-3)

¢23(“”=—“’_2 112' i, 2
3 U
0

The digital simulation makes use of the PSD functions given by Eq. B.7-1 and
B.7-2. However, the linear models take advantage of the simpler first-order

approximation for o, 3(w) given by Eq. B,7-3

B.7.3 Simulation of atmospheric noise

Simulation of atmospheric noise implies the generation of time-varying
functions Whose statistics duplicate the spectrums of continucus atmospheric

turbulence.

Exponentially correlated noise may be modeled by passing Gaussian white
noise through a suitable shaping filter whose dynamics adjoin the existing system

providing a new system subject only to white noise input.

Let the continuous white noise autocorrelation function be given by

o(r) =Qé(7) {B.7-4)
then its PSD function 1s
Olw) = 51Q (B.7-5)

an

If Gaugsian white noise 15 passed through a filter F, its output has the PSD

given by
= 2 _
o () ={F|__; o) (B.7-6)
= a .
For F = PR the output is
1
O (W= 1 __ ]
n 2 (ag)z (B.7-7)
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Equivalence of Eq. B.7-7 and the assumed empirical turbulence specirum.
provides the values of correlation time and Q necessary to reproduce the spectrum.
For mz 3(w) given by Eq. B.7-3, this equivalence provides

1 ._ L
a 172
37y,
Q= 2 Wg (—i—) (B. 7-8)

The filter equation may then be written
n = alw - n) (B.7-9)
where n is the correlated noise output and w the Gaussian white noise input.
Evaluation of the constants involved in a seccnd-order filter necessary to

reproduce the spectrum, for example, given for a)z 3(w) by Eq. B.7-2 follows in a
directly analogous manner,

It is not possible to provide a continuous signal representing Gaussian white
noise inadigital simulation, Thedigital equivalentisa discrete series of uncorrelated

random amplitude sieps. For this step sequence, the autocorrelation function is

P} = o (1 - |r]/aT) [l < AT (B.7-10)
0 |7 > AT

where 02 is the mean-square value of the random step amplitudes and AT is the
discrete time step. The assoclated PSD function, defined as

m =
dw) = Elgf_w (M) e I¥Tar (B.7-11)
is given by
2 ..
o = 2—2—[-%-5;"99 + j (sin(WAT) - WAT cos (wAt))] (B.7-12)

27

Considering only the long wavelengths (w<< At)’ a small angle approximation may

be used to give

2
_o At 2 -
) === W << (B.7-13)
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Equivalencing the above discrete-step approximation for the PSD of the white noise

input with the previously given (Eg. B.7-5) continuous funection provides

02 = QfAT (B.7-14)

For the example that led o theresult for Q expressed by Eq. B.7-8, theroot-mean-

square value of the random-step amplitude would be
[ 2 (1)] 1/2
2 Wg E‘
T = — {B.7-15)

A block diagram, Fig. B.7-1, shows the operations which lead from a

machine-generated random number sequence to a time history of gust velocity.

B.7.4 Effective Aerodynamic Noise Perturbations

The sequence of operations discussed in the last section and shown schematically
in Fi1g B.7-1 leads to a time history of the three uncorrelated gust-velocity

components Uy, Ug, and ug.

A vertical gust produces an angle-of-attack disturbance and, because of its
varying intensity along the length of the aircraft, an eifective pitch disturbance,
Similarly, a lateral gust-velocity component produces a sideslip and effective yaw

disturbance,

The pitch and yaw disturbances may be approximately represented by effective
pitch and yaw rate perfurbations respectively, if the higher-frequency gust compo-
nents are not admitted in evaluation of these effective rates., This is equivalent to
the requirement that the gust component vary nearly linearly along the effective
aerodynamic length of the aircraft. This requirement may be met with a lowpass
unity~-gain filter introduced in series, The break frequency of the filter is selected
such that the shortest wavelength admitted is no less than about eight times the
effective aerodynamic length of the aircraft. If wbis the break frequency, then

Wy, = 21TU0/7\min (B.7-16)

with xmin equal to 8 times the aircrafi length.

In general, it has been obs<—:‘rvedl’3 that neglect of the short wavelengths has
negligible effect upon rigid-aircraft response; the energy content of these speciral

B-18



61-d

Random Number

AT

Filter
F

——— s

Generator

Sigma = 1

Mean = 0
Figure B.7-1

Correlated
Atmospheric
noise

Discrete step sequence to generate time correlated

atmospheric noise component.



components is relatively small, Their inclusion, however, 1s of importance in the

forcing of aircraft elastic modes,

Itis recalled that the empirical PSD functionsare functions of the longitudinal-
axis coordinate only; spanwise variations in gust intensity are thereby neglected,
It isnot easily possible to simulate this variation with rigor. It may be approximately
accounted for, however, by considering a span-averaged gust mtensity.4 The factor
K is defined

_ b _b. -
K = [1 - 0.3 2L.(1 + ZL)] b< L (B.7-17)

where b is the wing span and L is the aircraft length. The factor K operates upon
the mean-square gust intensity providing a span-avéraged value, This is the gust
intensity used when evaluating the verticaland longitudinal gust-velocity components,
For the CV880M aircraft, K = (0,968,

The aerodynamic noise perturbations may now be expressed as functions of
the gust-velocity components Uys Ug, and Usg.

Yy T

& - uS/UO

E):n - ‘.'13/U0

By = u2/U0

qn = -(u3)f/U0

r, = (u2)f/U0 (B.7-18)

where the subscript f refers to the lowpass filtered component.

Inaddition to the above turbulence-induced components of aerodynamic noise,
there exist also wind-shear-induced components. It is assumed that there is no
mean vertical-velocity component to theair mass. The variations in mean air-mass
velocity from the reference flight condition values due to wind shear must be added
vectorially to the components u, and ﬁn of B,7-18. The wind-shear-induced
components are evaluated as the difference between the current mean wind speed

(Wm ean)’ developed in the next subsection, and the initial flight condition value,



B.7.% Wind Shear

Operation of aircraft at low altitude involves flight in the thick turbulent
boundary layer that exiends from the surface of the earth up to an altitude of between
600 and 1500 feet, depending upon the mean wind gpeed at altitude, meteorological
conditions, and ground terrain.

Wind shear has been modeled in basically two alternate ways. One involves
constant wind shear between set altitudes, the wind-shear values and altitudes being
input as data, and the other involves a wind ghear inversely proportional to altitude
resulting in the classical logarithmic velocity profile. The first model may be
made to approximate the latter to any degree, depending upon the number of piecewise

linear segments chosen.

In both models, the mean wind speed at altitude is specified and is consfant
above a specified altitude; the latter is chosen depending upon the strength of the
former. A low wind-speed velocity profile is assumed to begin at about 600 feet
while that for a strong wind may begin at about 1500 feet.

Assuming a one-segment model, the mean wind speed at any altitude h is

given as

=(w ) 7 (h

Wmean mean’'t  w 0 h) (B.7-19)

where 7 w is the constant wind shear and subscript 0 indicates the initial values.

For the logarithmic model, the relationship is

( 5 4+ 5.75 loglo(h/ro)-l
=AW
5+ 5.75 logm(hD/ro)J

“mean mean)D (B.7-20)

where ro is a scale of the surface terrain roughness,

B.7.6 Estimation of the Turbulence Integral Scale Length and Intensity

At low altitudes, the turbulence resembles that in boundary layers adjacent
to rough surfaces and is strongly affected by the terrain, The furbulence scale
and intensity are a function of altitude, the gust field being, in general, neither

homogenecusnor isotropic. The latter model, however, is probably the only acceptable
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3 after Panofsky, suggested that, based upon

one at the present moment. Etkin,
experiments over relatively smooth terrain, the turbulence scale length may be
approximately given by

L 0.9h (B.7-21)

+l-

up to 1000-foot altitude.

A semi-empirical relationship3 for the variation of mean-square gust intensity
with altitude and terrain roughness in unstable meterological conditions is
— 2

2 _
Wy = [0.226(wmean/loglo(h/ro)] (B.7-22)

where (wrn ean) is the mean wind velocity at altitude h and ry is the scale of terram
roughness. Typical values of Tq for low trees, crops, water or snow field are 10,

1, and 0.1 feet, respectively.

The simulation provides for an alternative model in which both gust intensity
and turbulence scale length are constant-valued inputs,

B.8 Linear System Models

Linear control system studies depend upon the availability of acceptable linear
models. The nonlinear aircraft and trajectory equations of previous sections can
be linearized by application of a small-angle approximation and neglect of the
nonlinear inertial-coupling terms, The latter grow to significant magnitude only
after prolonged flight through a wind-shear condition; their exclusion in no way
mvalidates the equations for control-system studies.

Two linear models may be identified; both have been constructed to evaluate
system response to turbulence, They are constituted as follows:

Aircraft longitudinal equations of motion
Z (altitude) trajectory equations
Control-surface actuator servos

First-order noise correlation equation for a (vertical) gusts,
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Aircraft lateral equaiions of motion
Y (lateral) trajectory equations
Control-surface actuator servos

First-order noise correlation equation forg (side) gusts.

Some additional simplifications weremadetorender themodelsmore tractable
in demonstration of the parameter optimization approach to system design.

In both models, the hinge-moment equations associated with aerodynamic
servo-tab-driven effectors werebypassed with theassumption of direct servo~driven
effectors. The space shutile may employ either direct forceor aerodynamic effectors
or a combination of both, A further simplification was the substitution of first-order
for second-order actuator servo meodels, In all cases, perfect-state information

was assumed in the feedback paths,

Insomuch as the linearized trajectory equations are linear combinations of
the zircraft state equations, their inclusion implies redundancy. Consequently, the
aircraft state eguations were rewritten in terms of vertical and lateral acceleration
rather than angle-of-attack (@) and sideslip (8). The explicit equations for the latter
two variables were dropped.

Al models were evaluated with a variety of control-law struciures invelving
combinations of feedback variables fo the specific effector(s) chosen for control of

aircraft response.

Further assumptions and simplifications specific to the individual models are
mentioned in Appendix C, where the models are fully delineated.
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APPENDIX C

LINEAR VEHICLE MODELS N
E -A D
;.70“3§a3§
by A .
Paul A, Madden

C.1 Initroduction

Notation common to ithis Appendix and Appendix B is firsily iniroduced in
secfion C,2, Then the major dimensions, physical constants, and aerodynamic
characteristics of the Convair 880M in a specific landing-approach flight condition
‘are presented. This patrticular aircraft and. flight condition serve as the basis for
the space-shuttle landing simulation. The data listed in this section are derived
from Ref, 2, inwhich the chosen flight condition was referred to as Flight Condition 1
(FC1),

%
Themajor dimensions ax;éf.}-istéd in Table C.3-1. Theflight conditicn is defined
in Table C.3-II and the relaté:Hircraft physical and aerodynamic characteristics

80
also appear in Table C.3-II. 2

Two linear models designed to evaluate aircraft response to turbulence are
developed in section C.4, Theymay be identified as a longitudinal model to evaluate
response to vertical gusts, and a lateral model to evaluate response to side gusts.

Themodels are constituted by the linearized aircraft and trajectoryequations,
the servo actuator equations, and the noise correlation equation, After incorporation

of the specific conirol law, the equations are set 1n the state-variable form:

¥ =Fx+Gw
C.2. Notation
X, Y, Z componenis of the external aerodynamic force on the aircraft
M, L, N components of the external aerodynamic moment on the
aircraft
P,Q R components of aircraft angular velocity
p,C, T perturbations in P, @, R



A: B ,:;C r

It ]
xx*

e o|c‘mgbmg

At

Subscripis

te
ia

ir

]
aa B
%

FOIw
vy TZ2

E¥ )

components of aircraft velocity vector
perturbations in U, V, W

Euler angle set

perturbations in 8, ¢, ¥

{ ggj:»mjents of inertia about the X, ¥, Z aircrafil bedy
E gg‘espectively
I b

product of inertia about y and z axes

product of inertia about x and z axes

product of inertia about x and y axes

mass of aircraft

acceleration due to gravity

air density

Mach number

reference wing area

wing span

mean aerodynamic chord

vertical displacement of engine thrust vecior from
aircraft cg.

angle between the thrust vector and aircraft longitudinal
body reference axis.

aircraft aerodynamic effector angle

thrust perturbation

reference unaccelerated flight condition
inertial

aerodynamic noise

elevator

elevator tab

aileron

aileron tab

rudder

rudder tab

spoiler



Stability Derivatives

The dircraft stability derivativesarerepresented 1n standard NASA notation.l

C.3* Major Dimensions, Physical and Aerodynamic Constantsof the CV880M

Aircraft

Table C.3-1, Major dimensions of the Convair 880M jet transport.

Dimension
Wing area, sq ft 2000.,0
Wing span, ft 118.3
Wing mean aerodynamic chord, ft 18.94
Mean distance of engine thrust axis below cg, ft 1.0
Incidence of engine thrust axis, deg 0

C.3.1 Stability Derivatives

Some additional stability derivativesassociated with the longitudinal equations
are here additionally defined (for a stability-axes set),

1aft
_ 2 2
Cz = '-CL. (M9f1 - M)
u 0
C =~{C, + Cn.)
Zy L'a D0
C_ =-C
% Fq
CZ‘ = -CL .
Drag
C = -2(C + C. 8.)- MC
X DO I“O 0 DM
C =C -C
Xa LO DO!
Pitch
C = MC
mu M



Table G.3-11
Physical and Aerodynamic Characteristics

Basic Flight Condition

Uy ft/sec 280.0
Mach number 0.20
Dynamic pressure, 1b/ft2 92.6
Air density, slugs/ft3 0.00238
Mass, slugs 3913
Weight, 1b 126,000
04 im? deg 4,32
Flaps, deg 30
Undercarriage Up
. Ly 1.15
Stability axes, Iyy 2.45
million slug-ft2 1 3.59
S 0.
Longitudinal Derivatives OGE IGE
“L, 0.68
s CD0 0.0799
T CLa 4.52 5,61
A CLc1 7.72 7.67
B CL5 0.213
e
I CL& 0.0532
te
L C -0.4
L‘Ss
I C 0.0
Dm
T CD 0.295 0.471
o’
Y CD 0.0368
8
Cma -0.903 -0.843
A Cmq -12.08 -11.98
X C -4.13
g
E Cmu 0.0
S Cms -0.637 -0.767
e
Cm- -0.0174
)
e
CméS -0.159 -0.192
te
C 0,034
)




Table C.3-1I (Cont.)
Physical and Aerodynamic Characteristics
Basic Flight Condition

Lateral Derivafives OGE
C -0.1961
Is
Cg 0,1983
T
Cﬁ -0.381
P
T C 0.0226
g&
r
A Cfl -0.0384
é
a
B Cﬂ -0,0056
8 ta
1 C 0.00266
ﬂa ir
L Cﬂ 0.0405
)
s
I Cn 0.1387
B
T Cn ~-0.1852
™
Y Cn -0.0485
P
C -0,0958
g
T
C 0.0172
n
)
a
A Cné 0.0
ta
X C -0,0192
ng
tr
¥ Cn 0.0129
6s
8 Cy -0.8717
C'g 0.385
yl"
C 0.0
b
P
Cy 0.2155
S
C 0.0467
yatr
C 0.0
y
63.
C 0.0
Y
ta
C ~0,031%
Yas




C.4 Linear Models

C.4,1 Linear Longitudinal Model Subject to Vertical Gusts

The linearized longitudinal perturbation equations may be writien

u = Cuu + Caa + Cee 4 Canan + C'Ss 55 + CAt At (C.4-1)
a = Cu“ + caa + qu + canan + Caese + césas + C‘Steste (C.4-2)
q = Caa+ Céa-s- qu + Canczn + anqn + Caeée + Céteéte
+C5 BS + Cg 53 + CAt/_\t {C.4-3)
s e
6 =gq

where u is measured in fps, g in deg/sec, and 9 in degrees.

The control variables are defined as

5e - elevator angle, deg

‘Ste - elevator tab angle, deg

6, - direct lift spoiler angle, deg
At - engine thrust, 1b.

The coefficient values corresponding to the approach-to-landing flight condition of

section C.3 are shown in Table C.4~1,

Airspeed Control

The low-frequency airspeed control dynamics are essentially decoupled from
the short~period longitudinal dynamics; it is primarily the latier thai areof concern
when evaluating response to vertical gusts. Consequenily, an airspeed control is

postulated,

Reduction of the Order of the State

With the assumption of airspeed control {u, u = 0), the | Bq. C.4-1 provides
an expression for the change in thrust required to maintain o = 0. This expression
is substituted into Eq, C.4~2 and C.4-3, together with the substitution, u = Q.

The further assumption that theaerodynamic effectors are directly controlled
by the servo actuaiors bypasses the dynamics associated with aerodynamic servo
tab controlled systems (the hinge-moment eguations); the elevaior tab terms, Gte’



Table G.4-1
Coefficient Values of Aircraft Longitudinal Equations of Motion

uation
Coefficient u a a
Cu -0.0271 -0.000855 0.
Cuy 18,15 -0.778 -1.2388
Ce -32.2 0.
Cq 0. 0.955 -0.586
C 0. -0.0386 -0.809
Se
C 0. -0,008 -0.227
bte
C(s -1.737 0.0678 0.0485
s .
-6
At 0.000255 0.414 x 10
o 18.15 -0.778 -1.288
n
C 0. 0. -0.5886
9n
C. 0. 0. -0.201.
93
CS 0. 0. -0.000845




are consequently dropped from Eq, C.4-2 and C.4-3,

A feedforward path is provided to the elevator to negate pitch directly due to
spoiler displacement.

Trajectory Equations

The relevant linearized trajectory equations are

Z = U, (@-aq) /57.3 (C.4~5)
5 = f(‘) 5r) dr (C.4-6)
2 =t an ar (C.4~7)

It is observed that Eq. C.4-5 is a linear combination of Ea, C.4~2 and C.4-4,
Because angle-of-attack (@) isnot required asa feedback variable (it being generally
difficulf to measure), the equations are rewritten in terms of vertical acceleration,
%, rather than @, Substitution of Eq, C.4~2 into C.4-5 provides an expression for
@ in terms of % and the remaining aircraft state variables. This expression 1s
substituted into the remaining equations involving o,

Surface Actuator

The surface actuator servos were all modeled by first-order systems with a
time constant of 7= 0.1 sec.

The servo equations are

6e §° -8 {C.4-8)

2
T e

-~

[ e

§

5

6.~ 68.) (C.4-9)

s

ﬁir-'

n o

Aerodynamic Noise Correletion Equation

The first-order noise correlation equation was developed in Appendix B, section
B.7, and is repeated here

=%(W - a) (C.4-10)

where
a, is the angle-of-attack disturbance, deg



T 1is the noise correlation time, sec

w is the Gaussian white noise inout

A vertical gust produces an angle-cof-attack disturbance and, because of its
varying intensity along the aircraft, an effective piich disturbance.

The latter may be approximated as an aerodynamic piich-rate disturbance,
qn, providing the gust wavelength is 5uch that the gust velocity variesnearly linearly
along the effective lengthof the aircraft, As explainedin Section B, 7 of Appendix B,
this restricts the validity of the approximation to gust wavelengths longer than about
eight times the effective airceraft length. However, because most of the gusi-energy
content is associated with the lower frequencies, it 1s probable that little error is
involved when all frequencies are present in q, at least for the evaluation of
rigid-aircraft response. The resulting simplification is 2 linear relation between
@ and Qs viz.,

= - (w- -
W) (C.4-11)

The alternative to the above approximation would be provision of a filter to
operate upon o before application of Eq. C.4-11, It is likely, however, that the
aircraft itself is a satisfactory filter of the higher-frequency response involved.

Control-law Structure

The conirol-law structures evaluated may be identified as (1) conventional
elevator control, (2) direct-lift-spoiler control with pitch-attitude control, and (3) a
combination of {1) and (2). They may be delineated

Pifch axis Z axis
(1) q, 06,z 2 £to elevator
(2)  a. 6 to elevator z, 2, 2 to direct-lift spoilers

(3) q, 8, 2, 2, Zto elevator z, z, 7 to direct-lift spoilers

Consider the control law structure associated with (3). The serve commands
are

2P Fpot t PaZ + Pro + P (C.4-12)
1 2 3 4 5



c _ . r _
84 =DPgZ+ Pyt + Pgl {C.4-13)
where p; are the system feedback gains.

State Variable Formation

The system equations, functionally dependent upon parameters p;» M3y be set

in the state variable form
x =Fx+ Gw

where w is a one-dimension white noise driving term and x is an [8 x 1] state

vector identified as

N @ L

"
I
M

Sy ©0 My
n

=g]
=]

For the specific control law structure defined by Egq. C.4-12 and C.4-13, the [8x
8] dimension F matrix and the [8 x 1] G matrix may be identified in Table C.4-TL

C.4.2 Linear lateral model and subject to side gusts

The linearized lateral perturbation equations may be written

B CB‘B+ Crr+05 (Ss-!- C6

§ +¢C, & _+C,o6+C (C.4-14)
s e, 6tr ir ¢¢ Bnﬁn

L e Y
(1]

Cﬁﬁ + Cp

+ CBan (C. 4-1%5)

p+Cor+ Caa6a+ CJS‘SS + C6r6r+ Cétasta+ Catréfr
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[8x 8] F Matrix

|_-0.'7019 0.0521
1.0 0
0 0
0 0
-3.6216 -0.01138
—l."r’fi'?p5 -1.'74'?1;)4
10.0pg 10.0p4
0 0
0 0

[8 x 1] G Matrix

™ 0.4737 ]
0

o Qo o

3.29p,
-1.747p,

10.0]31
-0.9p6
10.0p6

Table C,4-11
F Matrix and G Matrix

1,0

3.26p,
-1.747p,

1'0.0p2
-0.9p7
10.0];)7

0.0345 -0.8416
0 0
0 0
1.0 0
~-0.8534 1.931
+3.29pB
-1.747p3
1O.Op3 -10.0
0.9p8
10.0p8 0
0 0

-0.0758

-3.2734

-0.473
0
0
a
3.1533

-0.80%7




r = Cﬁﬁ-:—Cpp +Crr+C6a6a+Cés‘ss+c6r6r
(C. 4-16)

+C.,. 4, +C_ZGg
étrtr ,qln

$=p (C. 4-17)
b=r

(C.4-18)

where 8, ¢, and ¢ are measured in degrees, p and r in degrees/sec.

The control variables are defined .

SS - spoiler deflection, deg
5, - aileron deflection, deg
‘Sta - aileron tab deflection, deg
§. - rudder deflzction, deg
6tr - rudder tab deflection, deg

Coefficient values corresponding to the approach-io-landing flight condition
of section C.3 are listed in Table C,4-1IL

Reduction of the order of the state

As for the longitudinal model, the aerodynamic effeciors are assumed directly
controlled by the servo actuators; the aileron and rudder tab ferms are consequently
dropped from Eq. C.4-14, C.4-15, and C.4-16.

Trajectory equations

The relevant linearized irajectory equations are

¥ =TUyglA+1r)/57.3 (C.4-19)
g = j‘ ¥(r) ar (C.4-20)
0
§
y =4 nar (C.4-21)
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Table C.4-TII
Coefficient Values of Aircraft Lateral Equations- of Motion

C-13

Eguation
Coefficient ™ 8 P r
CB -0.1485 -3.73 0.842
Cr -0.987 0.8 -0.239
Cp 0. -1.52 -0.0626
C 0.115 0. 0.
¢
C& -0.00534 0.771 0.0785
s
C 0. -0,73 0.1045
$a
C 0. -0.1065 0.
$ta
C 0.0364 0.43 -0.581
51‘
C 0.00792 0.0505 ~0.117
Sir
C -0,1485 -3.73 0.842
By



Evaluation of the linearized irsjectory state involves a linear combination of
the zireraft state equations, as seen from EBg. C.4-18, To avoid Hnear dependence,
the equations are rewritten in terms of ¥ rather than 4. To do this, a similar
procedure of substitution to that outlined in'the previous section is followed.

Surface actuator servo models

Al surface actuator servos were modeled by a first-order gystem with a
time constant of 7= 0.1 sec.

The servo eguations are

fa = (/™ - 8y) (C. 4-22)
Sy = (1/PN6S - 5) (C. 4-23)
6o =TT~ 5,) (C. 4-24)

Aerodynaniic noise correlation equation

Following seection B.7 of Appendix B, the first-order noise correlation equation

is written
B, = (1/THw - Bn} {C. 4-25)
whers
B, is the sideslip gust disturbance, deg.
T is the noise correlation time, sec,

is a Gaugsian white noise imput

Control law structure

The following control law structures were evaluated:

Roll axis Yaw axis
(1} 1,6, ¥, § ¥to ailerons 1 to rudder
(2)  p,d, 7 ¥ ¥to spoilers r fo rudder
(3} 1D, 9.7 ¥ ¥io spoilers r to rudder

and ailerons

C-~14



Turn coordination feedforward to the rudder was additionally provided
in all the above control structures.

Consider the control structure associated with (3) above, The aileron
servo command is written

] - aa
05 TPV +PyY + Py + PP + Ppf (C.4-26)

Assuming anidentical serveo actuator for the si)oiler, its displacement is given
by

é. =K é (C.4-27)
where KS = -2.84 for the CV880 aircraft.

The rudder servo command is

a§ = pgl-r, + 1) (C.4.28)

where Ty is the commanded yaw rate for turn coordination.

State wvariable formulation

With the control law structure defined by Eq. C.4-26 and C.4-28 the aircraft,
trajectory, servo-actuator, and noise-correlation equations may be set in the
state-variable form

¥ =TFx+GCGw

where the state vecior x is given by

o

[ e e m T
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F Matrix
-1.52

-0. 0626

—
.
=]

. T44p,
+0. 5541

=

-203p,pg/pg
10.0p4

-1.15p,pg/Py

G Matri_.x

[=J = = T~ R = i o S v R )
.
(<))
=]
-

o
@
(=
e

0,473
-0.1653

0

0

0

1.765p;

+0, 7089
0

10;0p6
]

-2.

0.

0
0
0

0.
+0,
-0,
10,

-2.

0

Table C.4-IV

F Matrix and G Matrix

89 0 0
653 0 0
0 0
0 1.0
0 0
T44p, 0.744p, 0.744p,
0412
406pg -0.203p,ps/ps 0. 203p,pe/pg
Op5 10. Op1 10.0p,
3pg -1.15p;pgfP;  -1.15p,pg/Pg
0 0

5.18

-1.17

0

v}

1.0

0.744p3

-0, 2227
-0.203p3p6]p5
10.0p3
-1.15p.pg/pPe
0

-3.3 -0,483
~0,0325 -0,3746
0 0
0 0
0 0
-0.7374 -1,7886
-10.0 0
0 -10,0
0 0

0. 581

-0, 807
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Appendix D

THE SCANNING BEAM MICROWAVE ILS
TRANSFORMATION EQUATIONS AND ERRCR MODEL

by
George W. Cherry
and

Donald W. Keene

The scanning beam microwave ILS is an advanced radio navigation which
provides precision azimuth elevation, and.range data, to approaching and landing
aircraft, A prototype embodying many of the principles of thenew system is presently
undergoing successful testing at the Federal Aviation Adminisiraiion's National
Aviation Facilities Experimental Center (NAFEC). The Radio Technical Commaission
for Aeronautics (RTCA) has formed a special commitiee for specifying the data-signal
format and the performance parameters of the new system. The new system could
replace the current VHF ILS equipment as the international landing system as early
as 1975, RTCA is endeavoring to make the new ILS compatible with all users —
general aviation, civil airlines, military airerafi — and with all type of aircraft —
wide-bodied jets, supersonic transports, VTOL, STOL, etc, It is aniicipaied that
the microwave ILS will be utilized to provide the precision navigation data required
to meet the all-weather landing requirements of the Space Transportation System,

The technical concept, which RTCA Special Committee 117 has chosen for
tne new ILS, uses ground-transmiited, scanning planar beams, There are at least
two scanning beams associated with each ILS runway — an azimuth beam and an
elevation beam. The ground iransmitters angle-encode the fransmissions to the
aircraft. As the ground-transmitted scanning beams sweep past the aircraft ILS
antenna, the airborne ILS receiver receives, decodes, and sends to the guidarice'
computer the azimuth or elevation angle it obfains, The azimuth and elevation
transmissions are time=- or frequency-multiplexed. There will be a precision DME
{ransceiver associated with the azimuth-beam transmitter; thus, the new ILS will
provide 3-D navigation information relative to the runway. The scan frequency
tentatively chosen is 15 scans per second.



The frequency bands likely to be used are C-band (5.00 {0 15.7 GHz) and Ku-band
(15.4 t0 15,7 GHz). For runways serving sophisticated users or CAT MIA-c landings,
both frequency bands may beused: anarrow-beam, limited-angle coverage Ku-band
"fine" system, and a wide-angle coverage C-band "coarse' system. See Fig, D-1
for the possible location of the various antennas and a tabulation of the accuracies

and angle coverages of the "fine" and "coarse"” systems.

The C~band elevation antenna is located at the typical glide-slopeaiming point
of most aircraft, Some runway configurations would have only this elevation antenna,
The Ku-bdnd elevation antenna is used for CAT III landing flare control on
better-equipped runways., It is located farther from the runway threshold so that
the aircraft will not passthe flareantenna before final runway contact., Theaccuracy
with which the flare-initiation altitude can be inferred from the 'fine' elevation
beam and the precision DME signals is quite high., See Fig, D~2 for a plot of this
error versus flare-antenna displacement. Notice that the rms altiiude error due
to 0,035-degree rms error in elevation angle and 25-ft rms error in DME range 18
only slightly in excess of two feet for a flare-antenna displacement of 3500 feef.
The geometrically optimum location of the flare antenna locates this transmitter

too close to the runway threshold to control flare through touchdown,

Measurement Geometry

Figs, D-3a and D-3b illustrate the 1LS measurement geometry relative to the
runway coordinate system, If the elevation antenna displacement from the runway

center line is ignored, the following relationships are valid:

- - ~ltz .
EL = h,(x, y, 2, dg) = tan (3'{) (D-1a)
= = “1 y -

AZ = hy(x,y, z, dy = fan (HE-_—}-{-) (D-1b)

2 {(D-1¢)

.
!

= — 2 2
h3(x,y, z,d0)~\/(d0-x) +y°+z

Note that theserelationshipsare valid for both the glide-slope antenna and the flare

antenna; the geomeiry differs only in terms of the displacement DO‘

The corresponding inverse relationships are:

x = c:os(EL)[dO cos(EL) - cos(AZ)\/dz (cosz(EL) + sinz(EL) cosz(AZ) - d(z) sinz(EL) ]

cosz(EL) + sinz(EL) cosz (AZ) (D-2a)
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Glide Slope Antenna Fiare Control Antenna ‘ Azimuth Scanners & DME
Elevation Coverage : (- 20° Flevation Coverage : <0 - 20° DME Accuracy: ~25 feet
Accuracy : may be 0. 2° Accuracy : 0,02° Azimuth Scanners :

Scan Frequency : <15/ sec Scan Frequency : 15/ sec Coverage : * 90° or + 60°
Freguency : C - Band Frequency : Ku - Band C - Band Accuracy =0. 20'

Ku - Band Accuracy = 0. 02°

Fig. D-1 Scanning Beam Antennas: Location, Coverage, Accuracy
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EI. = elevation angle
: AZ = azimuth angle
* d = DME range from the
AZIMUTH ANTENNA azimuth antenna site
d() = displacerent of the elevation

antenna from the -azimuth
antenna site

- Y

, s

N = AIRCRAFT LOCATION
>

a) IN HORIZONTAL PLANE

AIRCRAFT

AZIMUTH RUNWAY i N .
ANTENNA i~ -
SITE ELEVATION
ANTENNA
SHE

b) IN VERTICAL PLANE

Fig. D-3 Geometry of Aircraft Position



( [docos(A_Z) sinz(EL) + cos(EL)de(cosz(EL) + smz(EL)cosz(AZ))— dgsinz(E‘L})]
sin(AZ)

Yo cosz(EL) + sinz(EL) cosz(AZ) (D-2b)
docos(EL) - cos(AZ)'\/d2(cosz(EL) + sinz(EL)cosz(AZ))- dg Sinz(EL)
z = gin(EL) 3 5 5
cos (EL) +sin (EL)} cos ™ (AZ)

(D-2c}

Thedifferential rejationships between measurement deviationsand the position

deviation are summarized in the following equation:

- | b
dm = [JK] §x (D-3)
where
| §(EL)
dm = | §(AZ)
| $d
T sx
§x = | dy
Sz
2 b4
- 0
x2 + 22 2+ Zz
5h _ v do = % o
5x (dg - x)2 1 32 - 0%+ y?
X - d0 N 2z
V(do - x)2+ y2+ 22 ]/(do -0+ y2 + 22 1/(dD - x)2 + y2+ 22
L .

The exact relationship (Eq., D-2a, b, c) could be used to establish the initial
position fix upon aqusition of the ILS signal. The differential relation (Eq, D-3)
will be used for incorporating measurements in the navigation filter estimates.



System Accuracy

The anticipated accuracy of the air-derived data for the scanning-beam
microwave ILS is summarized in Fig. D-1. For comparison, the performance
requirements for the developmental system at NAFEC are summarized in Table
D-1. Note that this system includes a'precision-approach radar capability. Ground
tests have confirmed that the range, elevation, and azimuth accuracies are within
the specified tolerances. Data compiled from a series of flight tests conducted at
NAFEC have yielded the following resulis (from Reference D.1):

Elevation-angle error, rms 0.0 28°
Azimuth~-angile error, rms 0.021°
Range erreor, rms 75 fi

The elevation azimuth, and range errors are uncorrelated with respect to
each other and are essentially uncorrelated from measurement to measurement,

Thus the covariance matrix for the measurement errors can be writien as:

TR 0 0
- 2
Vn C Tpz 0
0 ¢] Uczfl

where ORp, Op e and o d can be considered constant over the space scanned by the
microwave ILS. TFlight tests have also shown that the measurement errors are

substantially unaffected by multipath propagation,

REFERENCE FOR APPENDIX D

D.1  Advanced Scanning Beam Guidance Sysiem for All Weather Landing, Federal
Aviation Administration Report No, RD-68-2, February, 1968.




Table D-1

Air-Derived Guidance-Signal Characteristics

Elevation angle error
Azimuth angle error
Range error

System range

Elevation angle coverage
Azimuth angle coverage
Azimuth clearance coverage
DME coverage

Standard deviation of less than 0.03 degree
Standard deviation of less than 0.05 degree
Standard deviation not exceeding 100 feet or 1
percent of range, whichever is greater

15 miles from touchdown

0 to 10 degrees

15 degrees of runway centerline

5 to 35 degrees each side of runway centerline
+5 degrees of runway centerline

Radar-Operation Performance Requirement

Range (for a 20-meter square target,

10 mm/hour uniform rainfall

Elevation
Azimuth
Accuracy

over the path)

9 miles

13 miles

Adequate to define a point target on a 3.0-degree
glide slope at 2000 feet from the glide-slope
origintowithin +15 feet in azimuth and elevation
and 450 feet in distance,
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