e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



National Aeronautics
and Space Administration

Anhoby, HOUSTON, TEXAS

/‘~‘ V Vv /’ »
{' Y gauveg SN = - 3
".J' .o'.‘ (e ‘f‘ S
oy  pruen B TR 2 (ACCESSION NUMBER) (THRU)
s HEINEEE d = (/ /
oJd - - o v
» e 90\ o (PAGES) (cop
<y OL”\J n = 7)\L (; 500 /4
\ C~2 : SOy = [ = o2¢ O
s "V \%\\) % (NASA CR OR TMX OR AD NUMBER) (CATEGORY)
\ @ el & L

5 "’.""'1.- [
T A P4 (AL




MSC-ED-R-67-58
(Revised Jan. 1968)

MSC INTERNAIL TECHNICAL NOTE

AN ALGORITHM FOR INTERPOLATION
AND NUMERICAL DIFFERENTIATION

By

John L. Engvall é}f

A,

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
¥ MANNED SPACECRAFT CENTER
HOUSTON, TEXAS

September 13, 1967

'
Cim




MSC INTERNAL NOTE NO. ED-R-67-58
(Revised Jan. 1968)

. , AN ALGORITHM FOR INTERPOLATION
AND NUMERICAL DIFFERENTIATION

Prepared by:

Approved by: o’fwmk F ﬁﬂﬂv&,g@

Henry P Decell, Jr.
Chief, Theory and Analysis

Office

2 N Wi eed
Approved by: AMbc s KW NI £

Eugene H. Brock

Chief, (Gomputation and
Analysis Division

. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MANNED SPACECRAFT CENTER
Houston, Texas
September 13, 1967




111

CONTENTS

INTRODUCTIONv . o o . . . . . . ° . . .' . . . . e . . 1
NUMERICAL APPROXIMATIONS: + + ¢ ¢ o o 0% ¢ o o ¢ o 1
R RIRINESATION TRUNNINNE: & 5 & & 5 5 5+ -+ 5 » 2
COPJCLUSION . . . . . . . . . . . . . @ . . . o . o . . 5
a
:




INTRODUCTION

Tne purpose of this paper is to present an easily auto-
mated technique for computing a continuous function to approx-
imate a discrete set of data. An algorithm is 6utlined
describing a weighted least squares solution involving the
approximation for the dependent variable an’ the desired
derivative of the approximating function. Thié pape will
be concerned indirectly with numerical differentiation. The
algorithm can be applied directly but requires a few more

computations than standard least squares.

NUMERICAL APPROXIMATIONS

Discrete data sets are often replaced by functional
approximations for the purpose of interpolation, integration,
or differentiation. None of these processes arehprecise.
¥or example, given any finite set of ordered pairs of real
numbers (xi,yi) s 1 =1,N, and any finite interval
[a,b] , there is an infinite collection of continuous,
differentiable, integrable functions F defined on [a,b]
such that, for every function f in F , f(xi) . ¥

Moreover, for every X not in the original data set X4

there is an infinite collection of functions in F all
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having distinct values at Xo » distinct derivatives at

X, » and distinct Integrals over [a,b] . This implies that
any numerical algorithm for interpolation, differentiation,
or integration of finite data sets ylelds an answer that is
at best a "correct answer" among an infinite number of
"correct answers". Because of this fact, most texts describe
algorithms that require some additional properties of the
data or present algorithms which appeal to the intuition of

the user. This paper utilizes the latter alternative. !

A MINIMIZATION TECENIQUE

In all that follows it will be assumed that a fixed set

of data (xi,yi) for 1 = 1,N has been defined. For a

fixed set of functions fl,rz,--~fk and the function
I

f = E ay ri the least squares norm of f - y will be

e -yl =Ji:<r(xi) - y,)? (1)

i=1

defined by

and the derivative of f with reépect to x will be denoted

by f' . Least squares approximations of this type often _ |

exhibit "undesirable behavior" between the input data points.




Lagrange and Hermite interpolating polynomials provide approx-
imations exact at the input points, but they do not provide
any smoothing of the data. The following algorithm is similar
to the Hermite interpolation and the least squares smoothing

process.

Given two nonnegative welight functions wj(x) and

wy(x) 4, minimize
[lur (= y) + wa(rr = )] (2)

where Yy is the desired derivative of f at x A

1 .
function f minimizing (2) thus combines the requiremente
that f approximates y and the slope of the curve f(x)
approximates the desired slope at each of the initial datum

points.
Rewriting (2) in the form } 3
[lwy £+ wp £' = (wy y + wy, y)]|] (3)

and considering first the restriction of f to a polynomial
cf degree k-1 , we see that the minimization problem can

easily be solved as follows:

Define an Nxk matrix B where the last k-1 columns are

»
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defined by

by, = wlxg) 270 4 (3-2) wy(x,) x]~° (k)

and the first column is defined
by, = w,(x,) (5)
Let z be a column vector such that

zg = w (x,) y; +w(x) ¥, (6) }

If BT B is nonsingular let

a = (BT B)-1 BT 2 (7) p
and if BL B 4is singular let
i (8)

where BY 1s the generalized inverse of B . Then a func-

tion f minimizing (3) is given by




The only restriction needed for the class of functions
to insure a simple solution is that for each function fi >
fj B F; for some J . For examnle if [ 1is restricted to

£fix) = & S 0% e, x? + a, sin(2x) + a, cos(2x)

then the first three columns of B are defined as in (4)

and (5), and the other columns are defined by

bj“ = wl(xi) sjn(zxi) 4 ?wy(xi) cos(?xi)
biS = wl(xi) cos(nxi) - 2w2(x1) sin(?xi) ;
;
The vector 2z remains the same and the solution is obtained ;3
in exactly the same manner. 'E
|
|
CONCLUSION
This algorithm has been programed and used for several ;

applications. It should be pointed out that orthogonal poly-

nomials can be used to obtain the solution to Equation (7)

when a polynomial approximation is computed for W, =% 1

» Also, notice that when W, (or w2) is constant valued only




one value should be reserved in computer memory. Another
option that can be implemented 1s to use the average value
of the slopes of the left and right straight line segments

between adjacent points for the value of §1 . In this case,

core storage for the § array need not be reserved.

i




	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A02_.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf

