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IMPULSIVE ORBIT TRANSFER OPTIMIZATION
BY AN ACCELERATED GRADIENT METHOD®

By Ivan L. Johnson, Jr., Manned Spacecraft Center, NASA
INTRODUCTION

An analysis of impulsive orbit transfer optimization using an
accelerated gradient method is presented. GSeveral years ago in the
Trajectory Optimization Section of the Mathematical Physics Branch,
research began on parameter optimization methods especially for trajectory
optimization. Since that time, several different methods have been tried
and ebandoned. Among those methods were the gradient projection method
(ref. 1 and 2), the method of steepest descent using a penalty function
(ref. 1), various attempts at second order methods - all of which failed,
and the conjugate gradient methods compared in reference 3.

A quadratically couvergent gradient method developed by W, C. Davidon
wwef., 4) was discovered. This method was refined slightly by Fletcher
and Powell (ref. 5), and it was shown that it is probably the most
powerful method known for the minimization of a general function of n
variables.

For the constrained minimum problem, it was found that if one minimized
a quadratic type of penalty function (ref. 1) for a given set of "large"
penalty constants, an approximate solution can be obtained. If Davidon's
method is used to minimize the penalty function, the inverse of the matrix
of second partial derivatives of the penalty function at the minimum is
obtained. If Newton's method is applied to the first~order necessary
conditions for a constrained minimum, the exact solution for the constrained
minimum problem can be obtained, proviced the matrix of second partial
derivatives of the augmented function can bhe calculated. Assuming that
the approximate solution obtained by minimizing the penalty function using
Davidon's method is "close" to the exact solution, the matrix of second
partial derivatives needed for the solution by Newton's method can be
approximated using the matrix from Davidon's method. This logic was used
to develop a digital computer program known as the "Accelerated Gradient"
program “thich is described in this paper.

a
Presented at the Astrodynamics Conference held December 12, 13 and
14, 1967, at the Manned Spacecraft Center, Houston, Texas.
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Initially, the first type of orbit transfer models contained ellipses
and circles only. Both the two-body and conic partials equations were
good for ellipses and circles only. In order to solve problems of the
more complex form involving hyperbolus as well as ellipses and circles, the
universal variable formulation by S. Pines (ref. 6) and A. K. Nakashima
(ref. 7) is now used. This formulation is also described briefly in
this paper.

The formulation, programming, and accumulation of data for a three-
impulse orbit transfer problem was accomplished mainly by W. C. Bean of
the Mathematical Physics Branch, NASA, Houston, Texas, using the
Accelerated Gradient program with the universal variable, two-body formu-
letion. The optimal solution to this problem is presented in this paper
as an example. In the prcblem, both an intermediate trajectory constraint
and an inequality constraint are featured. In a report to be published, a
further description and more data on this example problem will be presented
by M. Bean.

STATEMENT OF IMPULSIVE ORBIT
TRANSFER OPTIMIZATION PROBLEMS

With impulses approximating the rocket burns and two-body mot.ion
(conics) approximating the unpowered flight, orbit transfer models of
various missions can be constructed for the purpose of parameter
optimization.

The performance index for orbit transfer optimization problems is
often the "characteristic velocity," the sum of the megnitudes of the
impulsive-velocity vectors. The constraints, inequality and equality
types, are usually specified on the terminal orbit, but constraints may
be placed on intermediate trajectories as well.

The generalized eccentric anomalies, which are the independent
variables governing the lengths of the coasting arcs, and the components
of the impulsive-velocity vectors are the parameters of the optimization
problemn.

The orbit transfer optimization problem then is to find the param-
eters minimizing the performance index subject to the system of trajectory
constraints.

A DIGITAL COMPUTER PROGRAM
FOR PARAMETER OPTIMIZATION

The Accelerated Gradient program, a digital computer program, using
the method of reference 8, is used for the impulsive orbtit transfer
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optimization. The program numerically solves the following general
optimization problem.

Find that set of parameters 51' 52,--..5n which locally minimizes

the general function

£ = f(al, Gpe wees an) (1)

subject to the system of m < n nonlinear constraints
gl(al, Gpy veey O ) =0

gz(al, Gy seesy @ ) =0

gm(al, gy wnns O

Included in this system are inequality constraints. If

hj(al’ Gps vees an)‘ <0 (3)

is needed, then with the help of the function S(hJ),

inequality constraints can be redefined as equality constraints

gy = hJS(hJ) = 0 where J < m. (5)

The Accelerated Gradient program consists of two phases. The first
phase treats the optimization problem in an approximate form. The
unconstrained function (penalty function)

m

= _ 1 2

fF=r7+ 221 ngJ (6)
J:




is formed and minimized for given "large" penalty constants k, > 0.

J

Should solutions of both the approximation problem and the original
problem exist, the former approaches the latter as each kj +® (ref, l).

The method used Tor minimizing f was developed by William C. Davidon
(ref. 4, 5, and 9). Davidon's method is a quadratically convergent
gradient method for the minimization of a general function of n variables.

Beginning with a starting point (al, P ii an), the gradient vector

fu and the function f are calculated. Using the formula

Aa = -yHF (7)
a

a change in the vector a of parameters & @

matrix H is symmetric and positive definite (it must be chosen as such
initially), and the scalar y is a positive step-size parameter. The
one-dimensional minimum of f(a + Aa) versus Yy is obtained (the method
of reference 10 is used in the computer program), the gradient vector

§a and the function f is recalculated at the new a, and H is updated ac-

I an is made. The

cording to the formula

The procedure is then repeated using the new values of -, fa, and H unti)

the set of parameters (al, Ups wens an) is found which locally minimizes f

for a given set of penalty constants k, > O. As a bonus, upon covergence

J

to the minimum of f, the H matrix approaches the inverse of the matrix
of seccnd partial derivatives of f with respect to the parameters
a at the minimum. That is,

J
29 \~-1
Ha [ (9)
da,oa
S
=0

min




A 4 )

In order for the solution to the approximation problem to approach
that of the original problem_  the penalty constants kJ may be enlarged
according to the relationship

g

(kJ)new 3 Jold eJ > ¢ (10)

if le,| > e,

and f is minimized again.

Fefore repeating the minimization of f with larger values of the

kJ, the initial H matrix will be calculated using the converged one

from the previous minimization and updating it according to the changes

in the kj' The initial H matrix is found by iterating m times using

the formula

Aki T

gia

H«H - Hg, H, (11)

1 + Ak.e,. 18,

where the symbol « denotes "is replaced by" and gia is the gradient vector

of the i-th constraint at the previous minimum. The function f is then
minimized again.

The second phase of the Accelerated Gradient program consists of taking
the solution found by the first phase and refining it using an algorithm
obtained by applying Newton's method.

The elgorithm is obtained as follows. The first order necessary
conditions for the constrained minimum problem is given by the system
of equations

fa + gaA =0 ‘ -
g =0 ‘ ; (12)
where ga is an n x m matrix whose columns are the gradient vectors of

the constraints, A is an m-dimensional vector of multipliers and g is
an m-dimensional vector of the constraints. Application of Newton's
method to the system of equations (12) yields
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Using the converged H matrix, the matrix of second partial derivatives

(f + ATg)(m can be approximated by

-1 _ T
H g,K8_ » (14)
wvhere K is an m * m diagonal matrix, the diagonal elements being the
penalty constants kj' In terms of known quantities, the expression

for Aa can be obtained from equation (13) as

T -1 T T -1
Ao = -[H - Hg (gaHga) X H} g - Hga(ga Hga) g. (15)

Re, -ated application of equation (15) starting with the "near" solution
obtained by minimizing f using Davidon's method yields a solution

to the original problem. Convergence is obtained when the Aqi's are con-
gsidered small enough. ,

TWO-BODY MOTION USING A UNIVERSAL VARIABLE FORMULATION
For the coast phases of the orbit transfer models, the two-body
equations are presented in a form using a universal variable formulation.
The advantage of this type of formulation is that only one set of two-body
equations is needed to describe all of the different conics.
The generalized eccentric anomaly B is defined by
v82 = 02 (16)

where

=3 2 0 (17)

and ro is the magnitude of the initial position vector, Ro’ vO is the

magnitude of the initial velocity vector, Vo’ and u 1is the gravitational




constant for the central body.

vhere E is the eccentric anomaly.

imaginary.

For elliptical orbits

“

= E

14
—

Cl

(19)

For hyperbolic trajectories 6 is

The equations of motion in a central force field are given by

-uX

i=1,

2 3

vhere r is the magnitude of the position vector R, Xx

are the components of R, and

.
X,
1

(i=1, 2, 3)

are the components of V.

i

(19)

(1 =1, 2, 3)

With the initial position vector, Ro, the initial velccity vector, Vo,

and the initial time, to

given, integrals of the equations of motion

(19) with B as the independent variable are given by

The coefficients

and

x, = fx

X,
1

f, g, f,

fx

e

oi

oi

and é are given by

+ .
gxoi

.
+ gx .
g (o]

l -

1

Q

s
r

O

(21)

(22)

(23)




d
Q
r = roco 4 Ecl . 02 A (26)

The universal variables Gp(p =0,1, 2, ...) are defined by

il da sl LN
Sl - oy ) A ) Ll I (27)

Calculating the Gp with the highest valued subscript, say Gp and

G by the series in equation (27), the remaining Gp's

p-1’

(G G ., ss+y G_) can be calculated using the recursive equation
p-3 o

p-2’
gP~2

up_2 = zp_—257 -y Gp. (28)

The generalized Kepler's equation is given by

(29)

With the initial state, RC, Vo, and to’ given, the state of an orbit,

R, V, and t, for any specified B8 is given by equations (20) and (29).
Deternining the state in this manner gets rid of iterstions involving
Kepler's equation.

A detailed account of the equations presented in this section is
presented in references 6, 7, 11, 12, and 13.
TRAJECTORY DERIVATIVES
In using a gradient method for constrained minimization, the gradient

vectors of both the function and the constraints are calculated. For
orbit transfer optimization problems, the partial derivatives of both




the frnction and constraints with respect to the components of the impul-
cive velocity vectors and the generalized eccentric anomalies must be
calculated. For the gradient vectors of the constraints, the partial
‘erivatives of the state at one time with respect to the state at an
earlier time and the derivatives of the state with respect to the
generalized eccentric anomaly are needed.

From equations (16) through (29), the state transition matrix Q
¢” partial derivatives of the state at one time with respect to the
gtute at an earlier time can be derived in closed form.

-

X .
o1
( axoj)

The elements of the 3 x 3 submatrices (axi/axO | (Bxi/aio ) (aii/axo

J J J

and (aii/aio ), are given by

J

90X, P, X X 2G) - BG
. . g R . o] 4 3
axoJ & fdij S | r * 3 ( 3 oj) * 5y (52 3 ¥ ):x01

—+
o
w
(]
N
I
™
Q
=
\/
|><
110
-
w
H

Yu
oxX ., i s i X . i .
. S oi . o] oi oi
gl  -—(px ,-06x,)+ (26, - BG,) — + (3G. - BG),) —
axoj iJ M 17 0] 27 0J u N 3 rO 5 L '/—u

(32)
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ax a (x, - x .) PAX X X
axi =0yt ir - ioTJ_(_gJ_GO+_0.1 Gl)
o : o o} fj:
x G, - BG
-OJ. _? 2 - o
+ : i, i v u x,;, + (26, - 333) X, | s
rr o
o (33)
ai. . X, - X Dl p x X
—— = g8, + (3ol |gel 6,x, [+ ol (G4 = 8G,) gif;oi
aon 1 r/;_ /:— °J o o
+ (26 - BG3) X4 : (34)

The elements of the 3 x 1 submatrices (Bxi/ato) and (ai/a:o) are

given by
axi 8ii
s rea=on (35)
o) o
The elements of the 1 x 3 submatrices (at/axoj) and (at/aioj) are given by
at xoj T 2 ¢ )
gkl S R TR ‘ (36)
oJ 4
o
R .
S e R 2 L (37)
9x
oJ
and
ot _
e " 1. (38)
o
In the preceding equations, Gij is the Kronecker delta,

.. =), when i = J
3 : (39"

513 = 0, when i # }J




11

d

! : o
p,. = — | (36. - 8G,) + r (G, - BG,,) + — (2G, - 8G,) |, (kO)
1 ﬂr‘ 5 h 0] 3 2 AT h 3
and
dO
p2=- rOBGl--/—u_(G3-BG2)-(2Gh-BG3) . (41)

The derivatives of the state with respect to the generalized eccentric
anomaly are given by

dx.

hals =
. a. - X 0 (h2)
e AN ¢
¢ and
dt _r
== (L)

AN OPTIMAL THREE-IMPULSE TRANSFER

The orbit transfer optimization method presented was applied to a
three-impulse orbit transfer featuring an intermediate constraint.

The orbit transfer that was optimized may be described as follows.
Starting with the initial state, Ro’ Vo’ and to’ with respect

to the earth as the central body, an initial impulsive velocity vector
AV0 is applied, followed by a coast, whose length is governed by Bo’

on an ellipse whose period P is governed by the constraint

gl 2 P - ? = 0, (hS)

Another impulse, AVl, is applied followed by a coast whose length is

governed by Bl. A third impulse, AV is applied to transfer onto a

2’
hyperbola, partially specified by the constraints




g, =D - b=o0 |
83 =V, ~ v_=0 ? » (46)
P P
/

where D and v_  are the angle of declination and magnitude of the
velocity vector at infinity, respectively. The quantity rp denotes
the magnitude of the radius vector at perigee, and (7) denotes given or
specified quantities.

The parameters selected for optimization are

A)'cgn1

Ay2

The performance is measured by
f(a) = IAVO| = |AVl| + |av,]. (48)

The function f is minimized subject to the constraining equations (45)
and (46) where

v_ = 37 002.647 fps, (49)
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and

Fp = 3543,934 n, mi. (100-n. mi. radial altitude). (50)

The initial state conditions are those of a circular orbit with a radial
altitude of 262.0 n. mi. The vectors R, and V_ are given by

ant .
3705.934 n. mi.

R = | 0.0 (51)
(o)
0.0
s=o —
and
7~ -
0.0
v, = |25 002.647 fps | » (52)
0.0

and to = 0,0 seconds.

Figure 1 is a pictoral display of the case where D 0. The

cptimum transfer is a double Hohmann transfer.

NASA.$.67.8224

Figure 1.- Optimized three impulse orbit transfer
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Figure 2 is a graph of the performance f versus the angle of declina-
tion D for different values of the period P of the first transfer
ellipse. Observing the graph, the performance gets better as the period
of the second ellipse increases and gets worse as the angle of declination
of the velocity vec.or at infinity for the hyperbola increases.

4.60
NASA.S-67-843)
456 PERIOD,
HR
5
452
IMPULSE . 12
VELOCITY —3:
ER/HR 4.48 s
4./4
‘40 1 | 1 | 1 | J
0 1 2 3 4 3 6 7

ANGLE OF DECLINATION, DEG

Figure 2.- Impulse velocity versus angle of declination
for given pericds.

One interesting result worth mentioning is that for the cases where
D # 0, the impulses did not occur at the apsidal points of the ellipses
or perigee of the hyperbola. Also, the impulses were not along the same
line as the velocity vectors. For D = 0 the impulses did occur at the
apsidal points and the impulses were in the same direction as the velocity
vectors.

CONCLUDING REMARKS

For the orbit transfer models considered in this paper, the perfor-
mance indices were defined as the sums of the magnitudes of the impulse
velocity vectors. This seems to be the more common type of performance
index; however, it could be defined as some other quantity. Also,
besides the parameters mentioned, other variables could be chosen as
parameters as well.

The reason for using a universal variable formulation for the solution
to the two-body equations is that the single set of equations defining
the solution is good for all the different types of trajectories (conics).
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Specifying the state of a trajectory with seven dependent variables (the
three components of both the position vector and velocity vector, and time)
rather than the usual six gets rid of the usual iterations involving
Kepler's equation. A good account of the numerical evaluation of the
infinite series for Gp is given in reference T.

The Accelerated Gradient program is not only used for orbit transfer
optimization, but because it is written in a general form, it can be
applied to optimization problems of a different nature. For example, the
program is currently being used for the optimization of an electronics
system and a prcpulsion system.
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