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PREFACE
 

The optimization and control of spacecraft trajectories
 

has been of considerable interest during the past decade, and a
 

significant amount of progress has been made in developing a
 

theoretical and numerical capability to solve complex trajec

tory problems. There still exists, however, a need to deter

mine the best approach, given a specific problem. The gener

ality of such a task is overwhelming, but an initial step is
 

taken when most of the promising methods have been studied
 

with the aid of a specific, but representative example. This
 

dissertation takes this first step, and along with several
 

significant theoretical and numerical contributions, compares
 

the relative merits of several trajectory optimization methods.
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and making helpful suggestions. The author is especially in
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deavor, as present-ed, would have never been realized.
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ABSTRACT
 

A theoretical development and comparative evaluation is
 

made for several methods of solving the problem associated with
 

the optimum transfer of a spacecraft. Particular attention is
 

given to the sensitivity of the convergence characteristics of
 

the methods to initially assumed parameters and trial solutions,
 

convergence times, computer logic and storage requirements.
 

The methods considered may be classified as one of the
 

following types: (1) Perturbation, Second Variation or Ex

tremal Field Methods, (2) Quasilinearization or Generalized
 

Newton-Raphson Methods, or (3) Gradient or Steepest Descent
 

Methods. The numerical comparison of the convergence charac

teristics is made by considering a minimum time, low thrust,
 

Earth-Mars transfer trajectory.
 

A new quasilinearization method, called the Modified
 

Quasilinearization Method, is proposed. For the example con

sidered, this method reduces convergence time by approximately
 

70% when compared with the Generalized Newton-Raphson Method.
 

Moreover, the method allows the terminal boundary to be speci

fied by a general function of the problem variables rather
 

than individual values of the variables themselves.
 

A uniquely specified and easily determined, time de

pendent weighting matrix has been discovered for the gradient
 

techniques. This weighting matrix accelerates the shaping of
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the optimal control program and improves the convergence
 

characteristics during the terminal iterations by giving more
 

weight to regions of low sensitivity.
 

Convergence envelopes, which give an indication of how
 

sensitive the convergence characteristics are to initially
 

assumed parameters, are plotted for the Perturbation and
 

Quasilinearization Methods. Several iteration schemes are
 

proposed which significantly increase the size of the con

vergence envelopes, and hence decrease the sensitivity of
 

the method to initially assumed parameters.
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CHAPTER I
 

INTRODUCTION
 

A treatise on the theory of trajectory optimization and
 

its application requires a clear and meaningful definition of the
 

problem. This definition should include a discussion of the
 

terms and concepts required in studying the background material
 

and the theoretical formulations. An indication of the purpose
 

of the investigation is given along with the extent or scope of
 

such a study.
 

1.1 Definition of the Optimization Problem
 

The optimization of spacecraft trajectories has been of
 

considerable interest for a number of years, and significant pro

gress has been made in developing a capability for solving very 4
 

complex trajectory problems. In one class of optimization prob

lems, it is desired to determine the history of the control vari

ables in such- a manner that certain specified initial and terni

nal constraints are satisfied while some performance index is ex

tremized. The control variables are unspecified inputs to tne
 

system which may be chosen-to control the state, i.e., the pcsi

tion and velocity. The initial and terminal constraints are
 

simply conditions on the position and velocity that must be sat

isfied at the initial and terminal time, respectively. The per

formance index is usually a scalar function associated with the
 

spacecraft performance and is the quantity to be extremized. It
 

1
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may be a scalar function of the terminal state and time and/or a
 

scalar integral term evaluated along the trajectory.
 

The calculus of variations is the classical tool for
 

solving such problems, and with its use necessary conditions for
 

an optimal trajectory may be derived. These necessary conditions
 

are derived in Chapter 2 and consist of boundary conditions re

ferred to as transversality conditions, algebraic equations re

ferred to as optimality conditions and the Euler-Lagrange dif

ferential equations. The optimality conditions and the Euler-


Lagrange equations must be satisfied at each point in the time
 

interval of interest. A closed form solution for these equations
 

and boundary conditions is very difficult to obtain and has been
 

obtained for only a few relatively simple cases. When an optimi

zation problem is solved numerically in such a way that the ne

cessary conditions are satisfied, the method is usually desig-


I
nated an indirect method. 


-There have been alternate methods developed to solve the
 

above stated class of problems without using the necessary condi

tions derived with the calculus of variations. These methods,
 

usually referred to as direct methods, use influence functions
 

which indicate how the performance index and terminal constraints
 

are influenced by initial state variations and integrated control
 

variations.
 

In both the indirect and direct methods, the terminal
 

constraints are handled in either the so-called "hard" or "soft"
 

forms. In the "hard" form an effort is made to satisfy the
 

terminal constraints identically while in the "soft" form the
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terminal constraints are satisfied only approximately. It is
 

with this latter case that the penalty function concept to be
 

discussed later is introduced. The philosophy used in this
 

method is that a certain penalty is accepted because of the
 

approximate satisfaction of the terminal constraints.
 

1.2 Background Study of Optimization Theory
 

In assessing the "state of the art" in trajectory optimi

zation theory and application, it is helpful to understand the
 

developments that lead to this current state. This background is
 

divided into previous and recent developments, the recent devel

opments being made since about 1960. The distinction between in

direct and direct methods has become increasingly clear during
 

these recent years and are discussed separately.
 

1.2.1 Previous Developments
 

The original trajectory optimization problems were formu

lated in terms of a set of nonlinear, ordinary differential equa
 

tions, which were required to satisfy split boundary conditions.
 

The first problems to be solved were extremely simple since
 

numerical solution of the more difficult problems required ex

tensive computations. With the advent of the high speed digital
 

computer, several previously impractical methods became available
 

for numerical solutions. Development of the computer has stimu

lated the formulation of many previously unknown methods.
 

Some of the first published formulations of optimal tra

jectory programming problems appeared in the early 1950's. One
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of the best known was by Lawden (1)* in which the equations which
 

described the optimal trajectory were derived for the general
 

case of a rocket moving in a specified gravitational field and
 

subject to atmospheric resistance. However, results for only the
 

highly specialized case of uniform gravitational field and no
 

atmospheric resistance are presented. The analysis probably re

presents one of the most difficult known cases for which a closed
 

form solution can be obtained.
 

In August 1957, a classical paper was published by
 

Breakwell (2) in which a method was presented for using a high
 

speed digital computer for the study of a broad class of tra

jectory optimization problems. This class includes boost tra

jectories for maximum range or maximum energy, minimum time in

tercept trajectories, and maximum glide range trajectories. The
 

method devised for determining a solution requires a guess for
 

unknown initial conditions and an interpolation procedure to de

crease the terminal constraint dissatisfaction on each successive
 

iteration. This particular approach can become extremely time

consuming and inefficient.
 

A different analytical development of trajectory optimi

zation theory was published by Kelley (3) in October 1960. The
 

method is referred to as the gradient method and it is based on
 

an extension of some ideas presented by Courant in 1941. The
 

gradient technique represented a completely different approach
 

*Numbers appearing in parenthesis following a name refer
 
to publications listed in the References.
 



5 

to the solution of optimization problems, and it soon became
 

evident that the recently developed optimization schemes would
 

fit into two basically different classifications, the indirect
 

and direct trajectory optimization methods.
 

The indirect methods involve the simultaneous solution
 

of the differential equations of motion and the Euler-Lagrange
 

equations while satisfying at each point in time a local opti

mality condition. Hence, every trajectory iteration is an opti

mal trajectory, from the initial to some terminal point in space.
 

The only remaining problem is to satisjy the terminal constraint
 

relations. This approach also includes methods where the dif

ferential equations mentioned above are linearized about the
 

previous trajectory iteration, even though the trajectories are
 

not exactly optimal in this case.
 

The direct methods involve the solution of the differ

ential equations of motion and produce control variable modifi

cations that extremize the desired performance index while de

creasing the terminal constraint dissatisfaction. This approach
 

includes the gradient techniques.
 

1.2.2 Recent Developments
 

Since 1960 there have been a number of significant im

provements for both the indirect and direct trajectory optimi

zation methods. During this recent period a distinct difference
 

between the two approaches has evolved and for this reason the
 

approaches are discussed separately.
 



6 

1.2.2.1 Indirect Approaches
 

As mentioned earlier, the capability for solving optimum
 

trajectory problems has existed since the development of the
 

theory to solve the two-point boundary value problem, however,
 

numerical computation schemes were lacking. One of the first
 

recent schemes was published by MacKay, Rossa, and Zimmerman (4)
 

in 1961. The analysis uses a set of differential equations
 

which describe the optimal thrust direction and a criterion for
 

determining the best time at which to begin and §nd a coast
 

phase. An iteration method is used to solve the two-point
 

boundary value problem. The various partial derivatives that
 

describe how the terminal state changes as the initial state is
 

changed, are evaluated by a first-order finite difference tech

nique and the successive integration of the differential equa

tions.
 

Melbourne, Sauer, and Richardson (5), also in 1961,
 

presented the results of an investigation of optimum rendezvous
 

and round trip trajectories for a typical mission to Mars. A
 

classical calculus of variation approach is used and a Newton-


Raphson technique is implemented for the solution of the two

point boundary value problem. The technique for determining the
 

partial derivative matrix is similar to that used by MacKay,
 

Rossa, and Zimmerman (4) and the suggestion is made that this
 

matrix be updated only once every several trajectory iterations.
 

The Newton-Raphson optimization method is discussed
 

further by Scharmack (6) and several examples are presented. An
 

especially simple special form oIthe Newton-Raphson method is
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given also for the case where the terminal boundary is a func

tion of time alone.
 

In 1962 Jurovics and McIntyre (7) presented a method
 

for the systematic evaluation of the two-point boundary value
 

problem using the equations adjoint to the linearized differen

tial equations of motion and the Euler-Lagrange equations. The
 

foundation of this work was laid by Goodman and Lance (8), but
 

the applicability of the technique to systems of nonlinear
 

equations is very limited and the terminal time must be known.
 

Jurovics and McIntyre eliminated some of the restrictions and
 

extended the technique to allow for variable terminal time.
 

An extension was made to the Newton-Raphson techniques
 

by Breakwell, Speyer, and Bryson (9) in 1963. The procedure is
 

based partially on previous work by Breakwell (10) in 1959.
 

The method uses a set of equations obtained by perturbing the
 

previous nominal trajectory to evaluate the required partial de

rivative matrix. The generality of the formulation allows for
 

variable terminal time and the satisfaction of time and state
 

dependent terminal constraints. After the partial derivative
 

matrix has been determined, a multiple linear interpolation is
 

made to determine the corrections required for the initial con

ditions. The Euler-Lagrange equations are satisfied on every
 

iteration, and hence every trajectory is an optimal one.
 

However, the terminal constraints must be satisfied by an itera

tive process.
 

A rather recent development based on the theory of the
 

second variation was published by Kelley, Kopp, and Moyer (11)
 



in 1963. In the initial phase of computation, the penalty func

tion concept of handling the terminal constraints is used, and
 

the process behaves much like the classical gradient technique.
 

During the terminal phase, the constraints are satisfied exactly
 

and the method converges more rapidly than the gradient scheme.
 

However, the second variation method is significantly more com

plicated, theoretically and computationally, than the first order
 

gradient theory. However, the reference does state that this
 

disadvantage is partially offset by a reduction in required comp

utational time.
 

Jazwinski (12) in 1964 presented an extension to the
 

method suggested by Jurovics and McIntyre (7) by using the ad

joint system to solve optimization problems which contain initial
 

and terminal boundary conditions that are general functions of
 

the problem variables. An additional feature of this scheme is
 

that after the open-loop optimization problem has been solved
 

all the information for the closed-loop control problem is avail

able. This information is also available in Breakwell, Speyer,
 

and Bryson's (9) paper, but it must be pointed out that
 

Jazwinski's method requires fewer integrations of an equivalent
 

set of equations.
 

A different approach to the solution of the indirect
 

optimization problem has been suggested by McGill and Kenneth
 

(13) in 1964. This method, called the Generalized Newton-Raphson
 

Method, is formulated through the use of the quasilinearization
 

concept as presented by Kalaba (14). A convergence proof for the
 

method was presented by McGill and Kenneth (15) in 1963. This
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method uses the linearized versions of the differential equations
 

of motion and the Euler-Lagrange equations, and proceeds to solve
 

a sequence of linear problems, the solutions of which converge to
 

the solution of the desired nonlinear problem. A set of pertur

bation or homogeneous equations are used to determine the partial
 

derivative matrix. The implementation of the procedure is simi

lar to the perturbation method presented by Breakwell, Speyer,
 

and Bryson (9). The method is distinguished by the fact that an
 

initial solution must be assumed rather than just the initial
 

values of the dependent variables. Furthermore, variable termi

nal,time.problems are handled in a very awkward manner.
 

The awkward handling of terminal time is partially re

duced by Long (16) by introducing a change in the independent
 

variable. The method proposed by Long is still rather cumbersome
 

because an additional differential equation must be integrated
 

and all the previous equations are complicated by another com

plex term. It is shown, however, by McGill and Kenneth (15),
 

that if convergence does occur it does so quadratically, and tnat
 

the terminal constraints, which are not general functions of the
 

problem variables, can be identically satisfied on every tra

jectory iteration.
 

In summary, the indirect optimization methods are usually
 

formulated in terms of a two-point boundary value problem, and
 

hence the many methods previously used for solution of this type
 

of problem become applicable for the solution of trajectory opti

mization problems. One of the most significant advantages of the
 

indirect methods is that the convergence properties are excellent.
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Another advantage is that the converged solution does represent a
 

true optimal, not Just an approximation. The most severe disad

vantage is that the solution of the differential equations is
 

highly sensitive to the initially assumed values of the dependent
 

variables: This implies that accurate initial values are needed
 

to start the integratitn, and the problem is compounded by the
 

fact that often little physical significance can be attached to
 

the initial values of the Euler variables.
 

The disadvantages associated with indirect optimization
 

methods are severe enough to encourage the forumulation of meth

ods that eliminate these difficulties. The convergence of the
 

direct optimization methods are not as dependent on the initially
 

assumed parameters as are the indirect methods, but some ex

tremely undesirable characteristics are introduced. A brief dis

cussion of the direct methods is given in the following section.
 

1.2.2.2 Direct Approaches
 

While the gradient theory for flight path optimization
 

was being developed by Kelley (3), a similar formulation was
 

being made simultaneously and independently by Bryson, Denham,
 

Carroll, and Mikami (17) (18). In Reference (17), the gradient
 

method is used to study the problem of determining a control
 

variable program that minimizes vehicle heating during reentry
 

to the earth's atmosphere.
 

In 1961, Kelley, Kopp, and Moyer (19) presented an
 

analysis of several gradient methods using inequality constraints
 

on the control variables and a penalty funfction technique for
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handling terminal constraints. It is pointed out in the study
 

that the numerical results obtained were too limited for com

paring the relative merits of the methods.
 

In an effort t6 determine the thrust steering program
 

for the optimization bf a second stage booster, Pfeiffer (20)
 

developed a method of "critical direction" which was similar
 

to the gradient techniques of Kelley and Bryson. This same
 

gradient concept is studied by Wagner and Jazwinski (21) and
 

both terminal and instantaneous inequality constraints are
 

introduced into the formulation. Wagner and Jazwinski also pre

sent an interesting method for determining the step size magni

tude that should be taken in the gradient direction to approxi

mately~maximize the decrease in the penalty function.
 

The gradient technique is well defined and has been
 

quite successful in avoiding the difficulties associated with
 

the two-point boundary value problem associated with the cal

culus of variation necessary conditions. One of the most costly
 

deficiencies of this method is the poor convergence characteris

tics in the terminal stage of convergence. In 1963, Rosenbaum
 

(22) developed a method similar to a closed-loop guidance scheme
 

that provides rapid convergence for a variety of missions. The
 

distinctive feature of this method is that the step size in tne
 

gradient direction is calculated and becomes a time dependent
 

quantity. The significant result is that larger deviations from
 

the nominal trajectory can be tolerated while still satisfying
 

the terminal constraints, thus it is possible to move more
 

rapidly toward the optimal trajectory.
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Stanchl (23), in 1964, presented a slightly different
 

approach to the inherent gradient convergence problem. This
 

approach is similar to Rosenbaum (22) in that a time dependent
 

weighting matrix is calculated. Basically the formulation
 

followed a suggestion made, but not'used, by Bryson, Denham,
 

Carroll, and Mikami (17), in which the current control program
 

was averaged with the Eulerian control.
 

The latest innovation to an optimization method is re

ported by Mceynolds and Bryson (24), and is called a succes

sive sweep method. To this author's knowledge, no computation

al results have been published. The procedure represents an ex

tension and unification of the steepest-descent and second varia

tion techniques. The procedure requires the backwards integra

tion of a set of equations, in addition to the usual adjoint
 

equations, that generate a linear control law that preserves the
 

gradient history on the following step. The gradient history,
 

however, may be changed by specified amounts while also specify

ing a thange in the terminal constraint dissatisfaction. Thus,
 

in a finite number of steps, the gradient history and the term

inal dissatisfaction can be forced to approach zero. Actually,
 

the method has characteristics similar to indirect methods as
 

well as direct methods.
 

The method seems very promising from a theoretical point
 

of view, but before a judgment on its applicability to solving
 

trajectory optimization problems can be made, some computational
 

experience must be obtained.
 

In summary, the direct optimization methods suffer from
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poor convergence characteristics, as the optimal trajectory is
 

approached and, in fact, never yields a solution which will
 

sati-sfy the classical optimality conditions. The methods, how

ever, do begin the convergence process with a relatively poor
 

initial estimate of the control variable history, and seek weak
 

relative extremals as opposed to points where the functional is
 

merely stationary.
 

1.2.3 Recent Comparisons
 

The number of published studies that compare the relative
 

merits of the recently developed trajectory optimization schemes
 

is extremely limited. The reason for this is certainly not be

cause this type of knowledge is unwanted or meaningless, but be

cause it is so difficult to select a reasonable basis for compar

ison. Another discouraging fact is that most optimization
 

methods are highly problem dependent.
 

One study of three related successive approximation
 

gradient schemes by Kelley, Kopp, and Moyer (19) in 1961 con

cluded that the numerical results were too limited to provide a
 

comparison of the relative merits. The differences in conver

gence speeds were insignificant in comparison to the improvements
 

attainable by small adjustments in the penalty function con

straints.
 

A more recent publication by Kopp and McGill (25) and
 

Moyer and Pinkham (-26) compares a gradient, second variation and
 

generalized Newton-Raphson technique on both theoretical and
 

zomputational basis. The theory is explained by considering an
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ordinary minimum problem with a side constraint. It is stated
 

in this reference that the second variation method is a specific
 

approach to the generalized Newton-Raphson method,. One con

clusion made on convergence times is that the second variation
 

scheme requires approximately 50% less computer time than the
 

conventional gradient technique, and the generalized Newton-


Raphson method required even less time.
 

1.3 Purpose of the Investigation
 

The ultimate purpose of this investigation is to develop
 

an insight into the available numerical optimization methods, so
 

that, given a problem and a set of circumstances, an intelligent
 

choice may be made as to which procedure is best suited for that
 

particular problem. This ultimate purpose is approached by
 

satisfying the following secondary objectives:
 

(1) 	Increase the understanding of the currently
 

popular optimization methods so that the de

ficient areas of each method are discovered.
 

Extend and modify these methods to eliminate
 

the deficiencies.
 

(2) 	Formulate a basis on which the methods may be
 

compared, and make a meaningful comparison of
 

the relative merits of each method.
 

1.4 Scope of the Investigation
 

The scope of the investigation includes the theoretical
 

develQpment of both direct and indirect methods. These methods.
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are formulated in the "open loop" form; i.e., information is
 

not fed back to the system to provide control for the inevitable
 

state variations discovered during the process.
 

The problem is formulated in a Mayer form, and here the
 

performance index is simply a scalar function of the terminal
 

state and terminal time. The terminal constraints, Which are of
 

the equality form, may be general functions of the problem vari

ables, and the terminal time may be unknown.
 

The methods are applied to the study of a two-dimensional
 

transfer trajectory from Earth to Mars. One control variable,
 

the thrust attitude angle, is used. The specified terminal con

straints do not contain the time explicited.
 



CHAPTER 2
 

FORMULATION OF THE OPTIMIZATION PROBLEM
 

The theoretical development of several trajectory op

timization methods is made with an objective being the presen

tation of a unified or common approach. A fundamental factor
 

in describing the formulation of any trajectory optimization
 

problem is the derivation of the first necessary conditions
 

for an optimal trajectory, with the appropriate remarks con

cerning 	sufficiency. One other requirement helpful to the
 

discussions presented, especially for the indirect optimization
 

development, is an explanation of how the optimization problem
 

is reduced to a two-point boundary value problem.
 

2.1 	 Derivation of the Necessary Conditions for an Optimal
 

Trajectory
 

The classical trajectory optimization problems require
 

that certain necessary conditions be satisfied. The different
 

optimization techniques that have been developed tend to
 

satisfy these conditions in various ways. The necessary con

dit-lons are derived from the consideration of the following
 

problem. Determine the history of the variables that control
 

a nonlinear system in such a manner that some index of per

formance is extremized while certain specified initial and
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terminal constraints are satisfied. This performance index
 

is usually some function of the terminal state and time.
 

The differential equations of motion that describe
 

the trajectory of a spacecraft may be derived by applying
 

Newton's Second Law, and the resulting equations are second
 

order differential equations. These equations may be reduced
 

to first order equations and hence, the problem is formulated
 

in terms of a first order, nonlinear, ordinary, vector differ

ential equation
 

x = f(x,u,t) (2.1) 

where x is an n vector of state variables, f is an n
 

vector of known functions, u is an m vector of control vari

ables, and t is the independent variable time. The per

formance index, which is the function to be extremized, is
 

a scalar
 

* = *(xf,tf) (2.2) 

and is a function of terminal state and time. The specified
 

initial constraint relations are
 

n = n(x0 ,t0) = 0 (2.3) 

where n is a p vector, and the specified terminal con

straint relations are
 

= Y(xf,tf) = 0 (2.4) 
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where T is a q vector.
 

The classical method of extremizing a function while
 

satisfying specified terminal constraints is to adjoin the
 

constraints and the constraining differential equations of
 

motion to the functional with the Lagrange multipliers 
V
 

and XT, respectively. The functional to be extremized
 

becomes
 

I = (xf,tf) + VT (xftf) (2.5)
 

+ ftf XT(t)[f(x,u,t) - xjdt 

where * is the scalar performance index, v is a q vector
 

of constant Lagrange multipliers, T is a q vector of
 

specified terminal constraint relations, and X is an
 

n vector of time dependent Lagrange multipliers. Eq. (2.3) is
 

usually easily solved for p of the initial conditions needed
 

to integrate Eq. (2.1).
 

The functional I is simplified by introducing a
 

quantity P where P = *(xf,tf) + v T(xfstf) and the general

ized Hamiltonian H = XT(t)f(x,u,t) The functional I becomes
 

I = P(xftf) - ftf (XTi - H)dt (2.6)
to
 

The first term under the integral sign may be integrated by
 

parts and the functional rewritten
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tf T tf tf( T 
I = £- Tx + f cA X + H)dt (2.7) 

t0 t0 

The functional is now expanded in a Taylor series about some
 

nominal trajectory such that dI = dI' + dI" + .... where
 

the term dl' designates the first variation, the second
 

term dI", the second variation and so forth. The first
 

variation dI' is given by
 

dI1 = dP I f- dCXTX) + d JtciTx + H)dt (2.8) 

to t0
 

and taking the total differential of each term and using
 

Leibnitz's Rule on the last term, the equation becomes
 

tf t f
 

dI' = (Pxdx + Pd'd + Ptdt) f-(dXTx + ATdx)I
 

(2.9)
 

tf 
tf 
+(x H)dtjI A X+ dxA + A x6x + f du)Jdt+ f 


to t0 

Integrating the first term under the integral sign by
 

T T *T
parts and noting that to first order dXi = 6Ai + Aidti 3 

where i = 0 or f, the Eq. (2.9) may be rewritten. After 

collecting the terms that must be evaluated at the initial 

and terminal times, and making the appropriate cancellations,
 

the Eq. (2.9) becomes
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dI' =(Tx - XT)cdx + P dv + (Pt + H)dt]f 
(2.10)
 

+ Tdx - Hdt[ + [6 T(f-x) + (CT+x -4-H+HuUdt
 
x X)x + u~u
 

to t O
 

The first necessary conditions for the functional I
 

and hence for the performance index 4 to be extremized is
 

that the first variation dI' must vanish. The vanishing of
 

the first variation implies that each term in Eq. (2.10) must
 

vanish if the variations dxf, dv, dtf, dx0 , dt, SX, 6x and
 

6u are independent variations. Therefore, the necessary condi

tions that must be satisfied at the initial boundary are as
 

follows:
 

(1) XTdx1 = 0 (2.11) 
to
 

This condition implies that if the initial state is 

specified, i.e. dx(t ) = 0, the equation is identi

cally satisfied. If, however, the initial state is 

unspecified, the associated Lagrange multipliers 

must vanish at the initieal time. This assumes that
 

the initial state and time variations are independent of
 

one another, and if they are Eq. (2.11.) yields n
 

initial conditions.
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(2) - HdtJ =0 (2.12)
 

to
 

This condition implies that if the initial time is
 

specified, i.e. dt, = 0, the equation is identi

cally satisfied. If, however, the initial time is
 

unspecified and the initial state and time variations
 

are independent of one another, the generalized
 

Hamiltonian Tf must vanish at the assumed initial
 

time. This yields one initial condition.
 

The necessary conditions that must be satisfied at the termi

nal boundary are as follows:
 

"itf
 

(1) PdvjI = 0 (2.13)
 

This condition implies that Wdv I =0 since
 

BP = The specified terminal constraints must be
 

satisfied, and hence the dv does not necessarily
 

vanish. This yields q terminal conditions, T = 0.
 

(2) (P - AT)dx I = 0 (2.14) 

This condition implies that if the terminal state
 
tf
 

is unspecified, the coefficient x+ T xXT)I
 

must vanish. This transversality condition yields
 

n terminal conditions.
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tf
 

(3) (Pt + H)dt I =0 (2.15)
 

This condition implies that if the terminal time is
 

unspecified, the coefficient (ft + VTt + H)
 

must vanish. This transversality condition yields
 

one terminal condition.
 

The necessary conditions that must be satisfied at every
 

point along the trajectory are as follows:
 

(1) x - f(xu,t) = 0 (2.16) 

This is the original nonlinear differential equation
 

of motion and consists of n equations.
 

(2) iT + H x(,x ,u,t) = 0 (2.17) 

This equation is the classical Euler-Lagrange equation
 

and consists of n equations.
 

(3) HU (Xuit) = 0 (2.18)
 

This equation is the classical optimality condition
 

and consists of m equations. This equation may also
 

be recognized as the weak form of the Pontryagin
 

Maximum Principle.
 

The problem is now theoretically solvable since the
 

Eqs. (2.11) through (2.15) yield 2n+q+2 initial and terminal
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boundary conditions for the 2n first order differential
 

equations, Eqs. (2.16) and (2.17), and the q+2 unknowns
 

V, to, and t The m control variables may either
 

be eliminated from Eqs. (2.16) and (2.17) by using the
 

optimality condition Eq. (2.18), or Eq. (2.18) may be dif

ferentiated and treated as another differential equation. In
 

this case
 

d
 

dt EH CXx,u,t)] = 0 (2.19) 

and expanding Eq. (2.19) leads to the expression
 

H Au+ H ux + Huu + H = 0 . (2.20) 

By inverting the Huu matrix, the time rate of change of the
 

control vector becomes
 

U--[Hu + H x + Ht. (2.21)uu uA x u
 

Using the differential equations of motion, Eq. (2.16) and
 

the Euler-Lagrange equations, Eq. (2.17), Eq. (2.21) becomes
 

_-H[H HTH HT + Hu (2.22)
uu ux A uA x ut
 

which may be simultaneously integrated with Eqs. (2.16) and
 

(2.17).
 

However, for such an integration, an initial condition
 

for the control muSt be known. The optimality condition
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yields the control in terms of the state and Euler variables,
 

and since these parameters must either be assumed or known
 

initially anyway, the initial condition on the control may
 

be determined easily.
 

The justification for the statement that Hu= Hu = 0 

(and for that matter Hu = Hu= ... = 0) is that the opti

mality condition Hu = 0 must be identically satisfied at
 

every point along the optimal trajectory and at no point can
 

there be a deviation from Hu = 0
 

The previously stated first necessary conditions are
 

the ones necessary for the functional I to assume a sta

tionary value, however these conditions are not sufficient to
 

insure that a minimum has been obtained. If the Legendre
 

Condition is satisfied and if no conjugate points exist in the
 

interval of the independent variable, the fourth necessary
 

condition, and the one that is sufficient to insure a strong
 

minimum, involves the Weierstrass E-Function. The E-Function
 

is explained by Gelfand (27) and must be equal to or greater
 

than zero for a minimum. An application of the Weierstrass
 

E-Function is shown in Appendix A.1 for a vehicle moving in an
 

inverse square gravitational force field under the influence
 

of a thrust force.
 

2.2 Reduction of the Optimization Problem to a Two-Point
 

Boundary Value Problem
 

The classical trajectory optimization problem may be
 

reduced to a two-point boundary value problem and hence
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several previously known methods become available for its
 

solution. The first necessary conditions previously derived
 

in Section 2.1 must be used, and frequent reference is made to
 

that section. The conditions that must be satisfied at every
 

point along the trajectory are Eqs. (2.16), (2.17), and (2.18),
 

i.e. the differential equations of motion
 

x = f(x,u,t) (2.23)
 

where x is an n vector of state variables, the differen

tial equation that is adjoint to the linearized differential
 

equation of motion and called the Euler-Lagrange equation
 

= - TT = -Hx (x~u~xJt) (2.24) 

where A is an n vector of adjoint variables, and the 

classical optimality condition 

Hu(X,u,x,t) = 0 (2,.25) 

where H is the generalized Hamiltonian and u is an
 

m vector of control variables.
 

The m Eqs. (2.25) may be solved for the m unknown
 

control variables in terms of the state and adjoint variables
 

and time, and the control then eliminated from Eqs. (2.23) and
 

(2.24).
 

In the general case, where the initial state and time
 

variations are not independent of one another, Eqs. (2.11) and
 

(2.12) must remain as one equation. Hence, the initial
 



26
 

conditions that must be satisfied are the initially specified
 

constraint relations, Eq. (2.3)
 

n(x0,t 0) = 0 (2.26) 

where n is a p vector, and the transversality condition
 

(Tdx - Hdt)t = 0 (2.27) 

The state and time total variations dx0 and dt0 are not
 

necessarily independent of one another, and in fact are re

lated through Eq. (2.6). It is required that for all dx0
 

and dt0 that dn(x 0,t0) = 0, and to a first order approxi

mation this condition can be expressed as
 

radx + rani dto = 0 (2.28) 
3xo o LaTJ0 a 

Since dn(x 0 ,t0 ) is a p vector of conditions, it follows
 

that p of the n+l total variations dx, and dt0 may
 

be determined in terms of the remaining n+l-p variations.
 

These p total variations are eliminated from the varia

tions in Eq. (2.27), leaving n+l-p independent variations.
 

The coefficients of these n+l-p independent variations may
 

be equated to zero to obtain n+l-p additional relations at
 

the initial time. Combining these n+l-p relations with the
 

p initially specified constraint relations in Eq. (2.26) will
 

result in the desired n+l" initial conditions, g(x0,t0 ) = 0 

and to 
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In most cases, the initial state and time are given,
 

which would be the required n+l conditions, and the
 

transversality condition Eq. (2.27) is then identically
 

satisfied.
 

The terminal conditions that must be satisfied are
 

the terminally specified constraint relations, Eq. (2.13)
 

(xftf) = 0 (2.29) 

where T is a q vector, and the transversality conditions,
 

Eqs. (2.14) and (2.15),
 
tf 

(Px - xT )dxl = 0 (2.30) 

(Ft + H)dt = 0 (2.31) 

Since the Lagrange multipliers v were introduced, 

the total variations, dxf and dtf , in Eqs. (2.30) and 

(2.31) can be treated as independent variations, and the co

efficients of these variations may be equated to zero. This
 

procedure provides n+l terminal conditions, n resulting
 

from Eq. (2.30) and one from Eq. (2.31). There are, however,
 

q remaining unknowns to be evaluated, i.e. the q Lagrange
 

multipliers v The q terminally specified constraints
 

given in Eq. (2.29) provide the additional conditions for
 

this operation.
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In summary, the terminal conditions become
 

hi = i fxftf) for i = l,q (2.32)
 

h = +'T T) i for i = q+l, n+q (2.33) 

and hi = C%+VTwt+H)i for i = n+q+l . (2.34) 

The n+l initial conditions are combined with the n+q+l
 

terminal conditions to obtain the boundary conditions for the
 

nth order system of differential equations given by Eqs.
 

(2.23) and (2.24), t0, tf, and the q values of v .
 

If the terminal constraint relations are not very
 

complicated, it may be easier to eliminate the Lagrange mul

tipliers v from the start. Hence, an alternative approach,
 

which considers the functional
 

I= € + ff ~ -_ )dt,
 

to
 

would yield transversality conditions
 

(yXT)dxl + (t+H)dtl f 0 (2.35)
 

to be satisfied.
 
However, the total variations dxf and dtf are not
 

independent, and are related in fact through the terminally
 

specified constraint relation, Eq. (2.29). It is required
 

that dI(xfjtf) = 0, and to a first order approximation
 

this becomes
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(2.36)

II dxf + Id dtf = 0 

where dw(xftf) is a q vector. Now q of the n+l
 

total variations dxf and' dtf may be determined in terms
 

of the remaining n+l-q variations. These q total varia

tions are eliminated from the variations in Eq. (2.35),
 

leaving only n+l-q independent variations. The coefficients
 

of these n+l-q independent variations may be equated to zero 

thus obtaining n+l-q relations at the terminal time. Com

bining these n+l-q relations with the q terminally speci

fied constraint relations Eq. (2.29), will lead to the 

desired n+l terminal conditions, h(xf,tf) = 0 This pro

cedure of eliminating the Lagrange multipliers v , requires 

the determination of q less parameters in the iteration 

procedure for solving the two-point boundary value problem. 

The complete solution of the two-point boundary value
 

problem requires 2n+1 boundary conditions, assuming that
 

the initial time is given, and these conditions may be de

rived in the manner described above. To reduce the number 

of parameters that require determination, it is assumed that 

the terminal constraint relations are included without the 

use of the Lagrange multipliers v . Furthermore, it is 

assumed that the control variables are eliminated from Eqs. 

(2.23) and (2.24), by using the optimality condition, Eq.
 

(2.25).
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In summary, the problem is formulated in terms of an
 

ordinary, first order, nonlinear, vector differential equa

tion
 

= F(z,t) (2.37) 

where z is a 2n vector composed of n state variables 

and n Euler-Lagrange variables and t is the independent 

variable time. More specifically,

[ = [LxXt =_Hz,t) (2.38) 

It is assumed that p initially specified constraint rela

tions
 

n(z03 t0) = 0 (2.39) 

and a specified initial time t0 are given. Since these
 

conditions are given, only n-p initial relations must be
 

obtained from the transversality condition, Eq. (2.27) and
 

hence a total of n conditions at the initial time are
 

known. These n conditions are represented as
 

g(z0 ,t0 ) = 0 (2.40)
 

Consider that q terminally specified constraint
 

relations
 

=zfltf0 (2.41) 
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are given. This implies that n+l-q terminal relations must
 

be obtained from the transversality condition, Eq. (2.35),
 

which when combined with Eq. (2.41) yields n+l terminal
 

constraint relations
 

h(zfltf) = 0 (2.42) 

The 2n+l conditions needed for the two-point bound

ary value problem solution are specified, n conditions from
 

Eq. (2.40) and n+l conditions from Eq. (2.42).
 

An application of the reduction of an optimization
 

problem to a two-point boundary value problem is shown in
 

Appendix A.l.
 



CHAPTER 3
 

PERTURBATION METHODS
 

Several of the most promising and successful methods
 

for solving the nonlinear two-point boundary value problem,
 

associated with the optimization of spacecraft trajectories,
 

are classified as Perturbation Methods. These methods are
 

sometimes referred to as Second Variation or Extremal Field
 

Methods.
 

The Perturbation Methods are divided into two groups,
 

the Methods of Adjoint Functions and the Method of Perturba

tion Functions. The Method of Perturbation Functions require
 

the use of functions obtained through a linear perturbation
 

about some nominal path, while the Method of Adjoint Functions
 

require the use of functions which are adjoint to the perturba

tion functions. The adjoint functions, along with the pertur

bation functions, are used to approximate the influence of
 

initial variable variations on terminal variable variations.
 

The theoretical development of the Method of Adjoint
 

Functions and the Method of Perturbation Functions may be
 

shown to follow common lines and in this sense the formulations
 

are parallel. For the special case discussed later, the two
 

methods in fact become the same,.
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As discussed in Chapter 2, the optimization problem is
 

formulated in terms of an ordinary, first order, nonlinear,
 

vector differential equation
 

= F(z,t). (3.1) 

where z and F(z,t) are partitioned as shown in Eq. (2.38).
 

The perturbation equations are derived by making a
 

linear expansion of Eq. (3.1) about some nominal path. These
 

equations are represented by
 

(3.2)
= = ASz 

where 6z is a 2n vector of state and Euler-Lagrange
 

variable variations and the 2n x 2n matrix of partial deriva

tives A is evaluated along the nominal path. The equations
 

that govern the set of functions adjoint to the perturbation
 

equations, Eq. (3.2) are
 

= -L[ 1TA = -ATA (3.3) 

where A is a 2n vector of adjoint variables. The motiva

tion for the use of this equation becomes evident when Eq.
 

(..8) is developed.
 

In the general case, the nominal trajectory will not
 

satisfy the n+l terminal constraint relations on the first
 

iteration because all the proper initial cQnditions are not
 

known. To obtain a relation for the terminal constraint
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dissatisfaction as a function of the total terminal variations,
 

dz(tf) and dtf , the Eq. (2.42) is perturbed about the
 

nominal terminal conditions, to obtain 

z] f at f[dtf (3.4) 
dh IVh dz~+ [at Gf.(34 

where dh is an n+l vector of the change of the dissatisfac

tion in the terminal constraint relations, z] is an
 

n+l x 2n matrix of partial derivatives, and
 

vector of partial derivatives.
atWf is an n+l 


If allowance is made for the possibility of a state
 

and/or Euler variable variation resulting from a terminal time
 

variation, the following first order relation may be made
 

dz(tf) = &z(tf) + z(tf)dtf . (3.5) 

When this relation is substituted into the perturbed terminal
 

constraint relations, Eq. (3.4), and a rearrangement is made,
 

the resulting equajion becomes
 

6[-] (3.6)
dh = Sz(tf) + hdtf 


where dh is an n+l vector of terminal dissatisfaction
 

change. This relation is an indication of-how the terminal
 

constraint dissatisfaction change is affected by variations in
 

the terminal values of state and Euler variables and total
 

variations in terminal time.
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It may be noted here that if the terminal variation of
 

z(tf) is determined as some linear function of the initial
 

variation of z(t0 ) , i.e. Sz(tf) = [f]lJz(t 0 ) , where n is
 

some 2n x 2n matrix, the terminal dissatisfaction change be

comes a function of the initial state and Euler variable
 

variation &z(t0 ) and the terminal time variation dtf
 

This substitution results in
 

dh = [ nhz]sz(t 0 ) + hdtf (3.7)
 

An iteration procedure may now be designed to reduce the
 

terminal dissatisfaction by proceeding in the following
 

manner:
 

(1) Integrate the nonlinear differential equations,
 

Eq. (3.1), forward from to to some assumed terminal
 

time tf , using the n known initial, conditions
 

given by Eq. (2.40) and assuming n initial values
 

for the remaining variables.
 

(2) When the assumed terminal time tf is reached, 

the matrix [-- ,the vector hand the terminalz]f
 

constraint dissatisfaction change dh may be deter

mined.
 

(3) The terminal dissatisfaction may be reduced on
 

the next iteration by requesting that some percentage
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of the present dissatisfaction be corrected, i.e.
 

dh = -ch, where 0 C c ( 1
 

(4) Determination of [H]sz(t ) must be made in some
 

manner and will be discussed in the next sections.
 

(5) The linear algebraic equations, Eq. (3.-7), are 

solved for the corrections 6z(t 0) and dtf , and 

these values are applied to the initially assumed 

values of z(t 0 ) and tf * 

(6) The procedure is repeated until the corrections
 

being applied are less than some preselected value.
 

The only remaining theoretical problem is to determine
 

[H]sz(t ),, and the manner in which this is done determines
 

whether the technique is classified as a Method of Adjoint
 

Functions or Perturbation Functions. Techniques for deter

mining n]6z(t 0 are discussed in the following sections.
 

3.1 Methods of Adjoint Functions
 

There are several methods of determining the terminal
 

state and Euler variable variations as a function of the
 

initial variations, i.e. dz(tf) = [n]az(t ). A relation that
 

contains these two variations may be derived by premultiplying
 

the perturbation equation, Eq. (3.2), by the transpose of the 

adjoint vector A , and postmultiplying the transpose o the 

adjoint equations, Eq. (3.3), by dz and adding the resulting 

equations to obtain 
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=
dt (ATSz) 0 (3.8)
 

This equation may be integrated from t0 to tf to obtain
 

AT(tf)6z(tf) AT (t0)6z(t0) (3.9)
 

where the boundary conditions on the adjoint variables are com

pletely arbitrary and may be selected such that the desired
 

relationship between Sz(tf) and 5z(t 0 ) is obtained. There
 

are several approaches that may be taken.
 

The first approach and a most natural one is to inte

grate the adjoint equations, Eq. (3.3), backwards from tf to
 

to , 2n times with the starting conditions
 

1AT(tf) , TA'(tf) ... T(t) or 1e(tf~tf) 

where
 

AT(tf) 1 0 0 0
 

T(tf 0 1 0 . 0
 

1e(tf 3tf) I. (3.10) 
* 4 

ATt)---------- 1
I 21(tf) 0 0 0 


The presubscript refers to the first approach. When this
 

Integration iscompleted, Eq. (3.9) may be written
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6z(tf) = 10(tf, )6z(tO) 	 (3.11)
 

Substituting this equation into the perturbed terminal con

straint relation, Eq. (3.6), yields the desired relation
 

dh = [Thz]f,(tf to)6z(t O ) + Ltf (3.12) 

where
 

dh 	 is an n+l vector representing the change
 

in the terminal dissatisfaction.
 

[ah] 	 is an n+l x 2n matrix evaluated at the
 

nominal terminal time, tf
 

Ie(tf,t 0) 	 is an 2n x 2n matrix resulting from the
 

2n backward integrations of the adjoint
 

equations.
 

6z(t 0 ) 	 is a 2n vector of initial variable varia

tions that along with dtf produce the
 

terminal dissatisfaction change.
 

his an n+l vector which represents the
 

time rate of change of the terminal dis

satisfaction, evaluated at the nominal
 

terminal time, tfI
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dtf 	 is a scalar variation of the nominal
 

terminal time.
 

It must be noted that all of the perturbations Sz(t ) are not
 

independent, but in fact are related through the initial con

straint relations Eq. (2.40). Assuming that the initial time
 

is specified, the required first order expansion of Eq. (2.40)
 

becomes
 

dg -[J 6z(t) = 0 	 (3.13) 

This equation may be solved for n of the dz(t ) in terms of
 

the remaining n elements of 6z(t 0 ), and these variations are
 

eliminated from Eq. (3.12). This leaves the n+l Eqs. (3.12)
 

with the n independent 6z'(t 0 ) and terminal time variation
 

dtf as the nl1 unknowns. The prime indicates that the vec

tor has been reduced in dimension so that only independent
 

varlations remain.
 

This approach is fundamental and very inefficient, be

cause more information is generated than needed. The computa

tional difficulties associated with the backwards integration
 

of the adjoint equations may be eliminated by considering a
 

second approach.
 

This approach requires the forward integration of the
 

adjoint equations 2n times from t0 to tf with the start
'T 	 T 

ing conditions 2A T (t A)TA .. 2 t0) or aO(tt 

where 
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AT t) 1 00 . .. 0
21 0 

AT(t) 0 1 0 02 2 0
 

2 
e(to,t o) = (3.14)

00
 

AT ( t )0 00 ... 1 
2 2n 0
 

The presubscript refers to the second approach. When this in

tegration is completed (and it may be performed simultaneously
 

with the integration of Eq. (3.1), Eq. (3.9) becomes
 

20(t0 3tf)&z(tf) = sz(t 0) 

and solving for Sz(tf) yields
 

Sz(tf) = L2 e(ttf)] 1z(tO) (3.15) 

Substituting this equation into the perturbed terminal con

straint relation, Eq. (3.6), yields the desired relation
 

dh =" []f2E(t 0 ,tf)]'z(t ) + hdtf (3.16)
 

where the terms have the same physical significance as in'the
 

first approach.
 

The obvious disadvantage with this second approach is
 

that even though the backward integration has been eliminated,
 

the same number of equations must be integrated and a 2n x 2n
 

matrix must be inverted at the terminal time. It would
 



certainly be desirable if an approach could be formulated such
 

that the above matrix inversion is unnecessary and a more effi

cient integration is made.
 

The third approach requires the examination of Eq.
 

(3.12) which results from the first approach. Since the ini

tial conditions on the linear adjoint equation, Eq. (3.3), are
 

arbitrary and may be selected for convenience, an equation
 

identical to Eq. (3.12) may be derived by integrating the ad

joint equations only n+l times with the starting conditions
 

e(tf,tf) (3.17)
- [1f 

where az] is an n+l x 2n matrix evaluated at the nominal
 

terminal time. In other words, since the linear adjoint 

equation is integrated with starting conditions 1Otf~tf) = I 

in the first approach and results in IG( tft 0 ) , if the
I 

starting condition were (tLftf) = Fa-li , the result 

would be L-fJG(tft 0 Hence, Eq. (3.12) has been derived
 

with n-l fewer integrations of an equivalent set of equa

tions.
 

For this last approach the desired equation may be
 

written
 

dh = (tf,t 0 )6z(t 0) + hdtf (3.18) 
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where the terms have the same physical significance as the
 

previous two approaches, but o(tf,t0 ) is an n+l x 2n matrix
 

resulting from the simultaneous backward integration of the
 

adjoint equations. Again the dependent initial state and/or
 

Euler variable variations must be eliminated, and this leaves
 

n initial variable variations and one terminal time variation
 

to be determined from the n+l equations, Eq. (3.18).
 

The explanation for the third approach gives the jus

tification for the scheme used by Jazwinski (12) where an ex

tension is made of Jurovics and McIntyre's (7) presentation.
 

One additional time conserving feature, which may be used, is
 

the scaling of the Lagrange multipliers. This advantage re

sults because the Euler-Lagrange equations are linear and
 

homogeneous. The implementation of this idea is discussed in
 

Section 7.3 and essentially involves the trading of one termi

nal condition for an initial condition. The decrease In the
 

dimension of the terminal constraint vector by one, also de

creases the number of adjoint integrations by one, and hence
 

results in less computation time.
 

One additional remark is in order for cases where the
 

specified terminal constraints are rather complex and the
 

Lagrange multiplier v is introduced. For this case, the
 

terminal constraint vector becomes
 

h h(zfltfV) = 0 (3.19)
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where h is an n+l+q vector, and the perturbed terminal con

straint relation, Eq. (3.4), becomes
 

dh [z fz(tf) + hdtf + 1]fdv (3.20)
-

where av] is an n+1 x q matrix evaluated at the nominal
 

terminal time and dv is a q vector of total Lagrange multi

plier variations. It should be recalled that when the v
 

vector is used, there exists n+l+q terminal constraint rela

tions and this increases the dimension of the dh vector by
 

q . This is just the number of additional equations needed to
 

solve for the additional unknown variations d. These varia

tions are applied to the assumed values of v
 

A similar technique is used by Breakwell, Speyer, and 

Bryson (9). It is shown in this reference that after the 

forward integration of Eq. (3.1) has been made, q of the n 

equations represented by Eq. (2.33) may be used to determine 

the q values of v . Then these q values of v are used 

to evaluate the terminal dissatisfaction represented by the 

remaining n-q equations of Eq. (2.33). This procedure simply 

reduces the dimension of h to n+1 , and hence only n+l
 

backward integrations of Eq. (3.3) are needed.
 

The computational procedure may be followed by re

ferring to an illustration of the Method of Adjoint Functions
 

(MAF): "
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Desired Terminal
 
Cond it ions

t 

(1) Integrate the 2n nonlinear differential equa

tions of motion and the Euler-Lagrange equations, Eq.
 

with starting condi(3.1), forward from to to tf 


tions satisfying Eq. (2.40) and n 	assumed values
 

for the unknown 	parameters.
 

(2) 	Evaluate at the nominal terminal time, tf , the
 

h , and the starting conditions for
quantities h , 


the backwards integration of the adjoint equations,
 

a]f
 

(3) 	Integrate the 2n adjoint equations, Eq. (3.3),
 

to with starting
backwards n+l times from tf to 

conditions, a7 and use the value of the variables[coLn 
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stored during the forward integration to form the
 

coefficients of the adjoint variables.
 

(4) Solve the n+l linear algebraic equations, Eqs.
 

(3.18), for a linear approximation of the corrections
 

that must be applied to the assumed initial values and
 

the terminal time.
 

(5) Apply these corrections and repeat the process
 

until the corrections become smaller than some pre

selected value.
 

3.2 Methods of Perturbation Functions
 

Of the several methods available for determining the
 

terminal variations in the state and Euler variables as a func

tion of the initial variations, i.e. dz(tf) = E]dz(t0 ) , the
 

most natural one involves the direct use of the perturbation
 

equations, Eq. (3.2)
 

6z = A6( (3.21)
 

As a first approach, integrate these perturbation equations
 

forward from t to tf, 2n times with the starting condi
 

tions
 

1 z1(t ), 6z t) . 16Z2n(t 0 or ,t )1s(t 




where O(t ,t ) = 

Ol l1j0 (3.22)
.5 C ,.,~ - 0 I 01 i0! 

16z 1(t0 Sz 2 (t0 1 z (to-)] I. 
I .1 I
 

01 01 I11
 

The presubscript refers to the first approach. This integra

tion may be made simultaneously with the forward integration of
 

the differential equations, Eq. (3.1), and hence less computer
 

storage is required. When this integration is completed, the
 

resulting equations evaluated at the terminal time may be
 

represented by
 

sz(tf) = s(t0,tf)6z(t 0)  (3.23) 

where 4(t0,tf) is a 2n x 2n matrix of partial derivatives
 

evaluated on the nominal trajectory. This equation may be
 

substituted into the perturbed terminal constraint relation,
 

Eq. (3.6), and the desired result becomes
 

dh = [- t 0 ,tfz(t 0 ) + hdtf (3.24) 

where the symbols have been explained previously. These n+l
 

equations contain 2n initial state and Euler variable varia

tions and one terminal time variation. However, the dependent
 

variations may be eliminated as explained for the adjoint
 

methods and only the n+l independent variations must be
 

.determined.
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This first approach, using the perturbation equations
 

represents a very special case, because it can be shown to be
 

the exact equivalent to the first approach using the adjoint
 

equations. This can be shown by substituting into Eq. (3.9)
 

the starting conditions
 

6z(t 0) M (t 0,t ) = I 

(3.25) 

AT(tf) = O(tftf) = I 

This substitution yields
 

P(tolt f ) = e(tf,t 0 )  (3.26) 

and under these circumstances the algebraic equations for the
 

adjoint method, Eq. (3.12), and the perturbation method, Eq.
 

(3.24), become identical.
 

A second approach is suggested after examination of Eq.
 

(3.24). Since the initial conditions on the linear perturba

tion equations, Eq. (3.21), are arbitrary and may be selected
 

for convenience, an equation identical to Eq. (3.24) may be
 

derived by integrating the perturbation equations only n+l
 

times with the starting conditions
 

0 t= a f(3.27) 

where 3z is an n+l x 2n matrix evaluated at the nominal
 
[L ] 



terminal time. The resulting linear algebraic equation to be
 

solved becomes
 

dh = 2 ,(t ,tf)6z(t ) + hdtf (3.28) 

where 2 4(t0,tf) is generated by only n+l integrations of
 

the perturbation equations.
 

This approach loses some appeal, however, when imple

mentation begins because the starting condition, Eq. (3.27),
 

cannot be evaluated until a nominal trajectory is integrated.
 

Since the perturbation equations cannot be integrated simul

taneously with the differential equations, the nominal path
 

must be stored and no particular advantage over the adjoint
 

method is realized.
 

A third approach, which proves to be the most effi

cient, may be formulated by observing the manner in which the
 

13 (tf,t 0) and I¢(t0,t f ) matrices are generated and used.
 

For each of the n independent initial variations required a
 

corresponding column of the 1e(tf,t0 ) or 1 (t0 ,tf) matrix
 

is needed. Since the 10(tf,t 0 ) matrix is generated by rows,
 

to determine any one column requires all 2n integrations of
 

the adjoint equations. This, however, is not true for the per

turbation methods, because the 1'(t0 tf) matrix is generated
 

by columns. The elements of any n columns can be determined
 

by simply integrating the perturbation equation n times, the
 

starting vector having the element that corresponds to the
 



desired initial unknown variation set equal to unity and all
 

others zero. With this modification, the linear algebraic
 

equation becomes
 

dh = ([](totf )z'Ct 0 ) + hdtf (3.29) 

where t(t0 ,tf) is a 2n x n matrix generated by integrating
 

the perturbation equation only n times and 6z'(t 0 ) becomes
 

an n vector representing the desired independent initial
 

variations.
 

The essential feature of the perturbation method is
 

that only n integrations are needed, and hence one less inte

gration of a set of equations equivalent to the adjoint equa

tions. The third approach to the adjoint method and the above
 

perturbation method require the solution of exactly the same
 

linear system, but the required elements of the (t0,t f )
 

matrix are simply derived in a more efficient manner. The
 

additional advantage of using the perturbation method is that
 

the nominal trajectory does not require computer storage.
 

The computational procedure may be followed by re

ferring to an illustration of the Method of Perturbation
 

Functions (MPF):
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z 

Desired Terminal
 

- -- Conditions
 

t 

(l) Integrate the 2n nonlinear differential equa

tions of motion and the Euler-Lagrange equations, Eq.
 

(3.1), forward from to to tf with starting condi

tions consisting of the n known initial conditions
 

satisfying Eq. (2.40) and n assumed values for the
 

unknown parameters.
 

(2) Simultaneously with the above integration, inte

grate the 2n perturbation equations, Eq. (3.21),
 

with starting conditions described above and coeffi

cients formed from the variables that describe the
 

nominal trajectory.
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(3) Solve the n+l linear algebraic equations, Eq.
 

(3.29), for a linear approximation of the corrections
 

that must be applied to the assumed initial values and
 

the terminal time.
 

(4) Apply these corrections and repeat the process
 

until the corrections become smaller than some pre

selected value.
 

3.3 Iteration Philosophy for the Perturbation Methods
 

The iteration schemes for the Perturbation Methods simply
 

consist of a procedure for iteratively determining the initial
 

values of the Lagrange multipliers so as to decrease the terminal
 

constraint dissatisfaction on the following iteration. The con

trol is eliminated from the differential equations, Eqs. (2.23)
 

and (2.24), by using the optimality conditions, Eq. (2.25), and
 

the nonlinear differential equations are integrated during each
 

iteration. Since the optimality condition is always satisfied,
 

every iteration produces an optimal trajectory, but to an un

desired terminal condition. The only remaining complication is
 

to satisfy the desired terminal constraints, Eq. (2.42).
 

Normally, the requested-change In-the terminal dissatis

faction is equated to the negative of the terminal dissatisfac

tion resulting from the previous iteration. This requested
 

correction is then used in the linear algebraic equations, Eqs.
 

(3.18) or (3.29), to make a multiple linear interpolation for
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the variations of the initially assumed values of the state
 

and/or Euler variables. When these corrections are applied and
 

a new nominal trajectory integrated, the terminal constraint
 

dissatisfaction is usually reduced.
 

The difficulty with this type of indirect optimization
 

procedure is that when the terminal dissatisfaction is large,
 

the linear approximations are not very representative of the
 

nonlinear system, and the possibility for divergence is in

creased. The linearization is made about the current nominal
 

trajectory, and whether or not this trajectory is close to
 

satisfying the 	terminal constraints on any given iteration is
 

immaterial. The essential factor is that the trajectory re

sulting in the 	next iteration be sufficiently near the previous
 

one so that the linearization assumptions are not stretched
 

beyond the limits of validity.
 

One natural approach, the motive for which resulted
 

from a suggestion made by Breakwell, Speyer, and Bryson (9), is
 

to request the 	correction of only a percentage of the terminal
 

dissatisfaction resulting from the previous iteration. For
 

instance, the algebraic equation that contains the corrections
 

for the Method 	of Perturbation Functions is
 

dh = [ h] P(to,tf)6z(to) + hdtf (3.30)
 

and for a percentage correction let
 

dh = -ch 	 (3.31)
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where c is the desired percentage to be corrected. The
 

iteration factor c may have values in the range 0 t c ( 1.
 

A correction for the Method of Adjoint Functions is applied in
 

the same manner.
 

It is also reasonable to expect that as the optimal tra

jectory is approached, successive trajectories will be suffi

ciently near one another. Hence, the linear representation
 

becomes accurate enough to request the complete correction of
 

the terminal dissatisfaction. Also, as successive trajectory
 

iterations begin to converge, successive adjoint and perturba

tion solutions begin to converge, and hence integration of
 

these equations for every iteration may be unnecessary.
 

A summary and extension of the conjectures stated
 

above, which result in some of the desired characteristics of
 

an iteration scheme, are that:
 

(1) An iteration factor may be specified initially
 

and changed during subsequent iterations by specifying
 

an iteration rate factor. As the iterations proceed,
 

the iteration rate factor is used to control the per

centage of the terminal dissatisfaction corrected on
 

any given iteration.
 

(2) There may exist an initial value of the iteration
 

factor that minimizes the convergence time or maximizes
 

the chance for convergence.
 



54 

(3) It may be unnecessary to update the ¢(t0t f
 

and e(tf 3t0 ) matrices on every iteration.
 

(4) A correction of more than 100 percent may be
 

reasonable and desirable.
 

These conjectures are investigated by using the following dif

ferent iteration schemes:
 

Iteration Scheme 1 - This scheme for both the Methods
 

of Adjoint and Perturbation Functions requires the arbitrary
 

selection of an initial value of the iteration factor and the
 

iteration rate factor. An iteration is made and the corre

sponding iteration factor is applied to obtain corrections for
 

the next iteration. If the norm of the terminal dissatisfac

tion decreases on the next iteration, the iteration factor is
 

increased by the value of the iteration rate factor. This
 

process is repeated, never allowing the iteration factor to be
 

zero or greater than unity, until the corrections for each
 

assumed value is less than some preselected value.
 

A detailed procedure of Iteration Scheme 1 follows:
 

(1) Starting values of the iteration factor and the
 

iteration rate factor are selected.
 

(2) Integrate the nonlinear differential equations of
 

motion forward, noting the norm of the terminal dis

satisfaction. If the Method of Adjoint Functions is
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being used, integrate the adjoint equations backwards.
 

If the Method of Perturbation Functions is being used,
 

the perturbation equations may be integrated forward
 

simultaneously with the differential equations of
 

motion.
 

(3) Solve the algebraic equations, using the specified
 

value of the iteration factor, to determine the correc

tions required for the initially assumed values.
 

(4) If all corrections are less than some preselected
 

value, terminate the iteration. If any one correction
 

is greater than the preselected value continue the
 

process as follows.
 

(5) Apply the corrections to the assumed initial con

ditions, integrate the differential equations again,
 

and determine the terminal dissatisfaction. If the
 

norm of the terminal dissatisfaction is less than the
 

norm that results on the previous iteration, increase
 

the iteration factor by the value of the iteration
 

rate factor and continue to iterate. Never allow the
 

iteration factor to be greater than unity.
 

(6) If the norm is greater than the previous norm,
 

decrease the iteration factor by the value of the
 

iteration rate factor and continue to iterate. Never
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allow the iteration factor to be less than the value
 

of the iteration rate factor.
 

Iteration Scheme 2 - During the initial efforts to
 

solve a problem with either the Method of Adjoint Functions or
 

the Method of Perturbation Functions, a low initial value for
 

the iteration factor is usually assumed. This requests a small
 

change from a solution which is probably far from optimal, and
 

thus reduces the possibility for divergence. However, this
 

could be an unreasonably low estimate and if the iteration fac

tor is systematically increased, as in Iteration Scheme 1, a
 

great number of iterations would be required before a full.
 

correction would be requested. This scheme reduces the con

vergence time by avoiding the integration of the perturbation
 

or adjoint equations on certain iterations. The criterion used
 

to establish when a perturbation or adjoint equation integra

tion is made is that either a divergence of the terminal con

straint norm occurs or the integration is forced after a
 

specified number of corrections have been made. The iteration
 

factor is still increased each time a norm convergence occurs
 

and the trajectory that produces this convergence is called a
 

nominal. When the terminal norm diverges the iteration factor
 

is decreased and the last convergent trajectory is used as a
 

nominal.
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A detailed procedure of Iteration Scheme 2 follows:
 

(1) Start'ing values of the iteration factor and the
 

iteration rate factor are selected.
 

(2) Integrate the nonlinear differential equations of
 

motion forward, noting the norm of the terminal dis

satisfaction. If the Method of Adjoint Functions is
 

being used, integrate the adjoint equations backwards.
 

If the Method of Perturbation Functions is being used,
 

the perturbation equations may be integrated forward
 

simultaneously with the differential equations of
 

motion.
 

(3) Solve the algebraic equations, using the specified
 

value of the iteration factor, to determine the correc

tions required for the initially assumed values.
 

(4) If all corrections are less than some preselected
 

value, terminate the iteration. If any one correction
 

is greater than the preselected value continue the
 

process as follows.
 

(5) Apply the corrections to the assumed initial con

ditions, integrate the differential equations again,
 

and determine the terminal dissatisfaction. If the
 

norm of the terminal dissatisfaction is less than the
 

norm that results on the previous iteration, increase
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the iteration factor by the value of the iteration rate
 

factor. If the Method of Adjoint Functions is being
 

used, avoid the adjoint integration on the present
 

iteration. If the Method of Perturbation Functions is
 

being used, avoid the perturbation integration on the
 

dext iteration.
 

(6) If the norm is greater than the previous nQrm, or
 

if a specified number of iterations have been made, de

crease the iteration factor by the value of the itera

tion rate factor. If the Method of Adjoint Functions
 

is being used, the adjoint equations are integrated
 

backwards where the coefficients are obtained from the
 

last convergent forward trajectory. If the Method of
 

Perturbation Functions is being used, the perturbation
 

equations are integrated on the next iteration.
 



CHAPTER 4
 

QUASILINEARIZATION METHODS
 

The previously discussed Methods of Adjoint and Pertur

bation Functions involve the integration of a set of nonlinear
 

differential equations. The coefficients for the linear
 

adjoint or perturbation differential equations are formed with
 

the variables generated by the nonlinear equations. A somewhat
 

different approach can be formulated by linearizing the differ

ential equations, and then using the adjoint and perturbation
 

functions in the same general manner as before. The coeffi

cients used to generate a new nominal trajectory are formed
 

from the solution that corresponds to the previous nominal tra

jectory. This, essentially, is the quasilinearization concept.
 

The theoretical development of the Quasilinearization
 

Methods may be shown to follow common lines, and in this sense
 

the formulations are parallel. The approaches involve the
 

solution of a set of linear differential equations, the solu

tion of which converges, under appropriate conditions, to the
 

solution of the desired nonlinear problem. Since the equations
 

are linear, the terminal constraints can be satisfied on every
 

iteration, if desired. However, the classical optimality con

dition is not satisfied until convergence has occurred, and
 

even though the end points of the trajectory are satisfied,
 

some care must be taken to insure that the trajectory shape
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between these end points is correct. One other characteristic
 

of the quasilinearization techniques is that an initially
 

assumed solution is required. If a reasonable estimate of the
 

solution cannot be made, a starting solution, derived from the
 

integration of the nonlinear differential equations, may be
 

good enough to result in convergence. This requires that only
 

the initial values of the unknown variables be assumed, rather
 

than the complete solution.
 

4.1 Methods of Generalized Newton-Raphson
 

The complete solution of the two-point boundary value
 

problem by using the Method of Generalized Newton-Raphson may
 

be obtained in a manner similar to the Method of Perturbation
 

Functions discussed in Section 3.2. The exception to this
 

similarity is that the differential equations, Eq. (3.1), are
 

linearized about the previous nominal.
 

The problem is formulated in terms of an ordinary first
 

order, nonlinear vector, differential equation
 

= F(z,t) (4.1) 

where z is a 2n vector composed of n state variables and
 

n Euler-Lagrange variables and t is the independent variable
 

time. This nonlinear equation may be expanded about the pre

vious nominal trajectory, say the nth trajectory, and by
 

ignoring the nonlinear terms yields
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n+I n + A(zn't)(Zn+1 - Zn) (4.2)
 

where A(znt) is the partial derivative matrix VIfn
 

This matrix is evaluated on the previous nominal trajectory
 

and is similar to the A(z,t) matrix discussed in the develop

ment of the Perturbation Methods. This equation, Eq. (4.2),
 

can be expressed as
 

z = Az + B (4.3) 

where A is described above and B = zn - Azn Note that A 

and B are known from the previous nominal trajectory.
 

The first approach to the Method of Generalized
 

Newton-Raphson is similar to the method outlined by McGill and
 

Kenneth (13), and this provides a starting point for further
 

development. Suppose that p of the initial values of z are
 

specified, i.e. zi(t 0 ) =z 0 , i = 1, p . This implies that 

2n-p initial values of z must be assumed along with an
 

assumed value of initial time to The homogeneous part of
 

Eq. (4.3) may be expressed as
 

y= Ay (4.4) 

and hence it is similar to the perturbation equations, Eq.
 

(3.21). Eq. (4.4) may be integrated forward from to to tf
 

2n-p times with each successive starting vector consisting of
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all zero elements except for the element that corresponds to
 

one of the unknown initial conditions. This element is set
 

equal to unity. This procedure leads to a 2n x 2n-p matrix
 

of solutions Y(t0, ) The forward integration amounts to
 

making a unit perturbation in each one of the unknown initial
 

conditions.
 

The nonhomogeneous solution to Eq. (4.3) may be ob

tained as a solution to
 

w = Aw + B (4.5) 

which generates a particular solution when integrated from t.
 

to tf with the p known initial conditions and n-p assumed
 

initial conditions. Now, the general solution of the linear
 

system of Eqs. (4.3) becomes
 

z(t) = Y(t0 ,t)C + w(t) . (4.6) 

where z is a 2n vector of state and Euler variables, Y is
 

a 2n x 2n-p matrix of homogeneous solutions, C is a 2n-p
 

vector of constants and w is a 2n vector of nonhomogeneous
 

solutions.
 

Since 2n+l-p conditions on the terminal value of z 

must be specified for a variable final time problem, any 2n-p 

of these conditions may be selected and the appropriate 2n-p 

members of Eq. (4.6) may be evaluated at the assumed terminal 

time. Then these equations are solved for the 2n-p constant 

corrections C . These corrections are used to update the 
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assumed initial conditions for the next iteration. For the
 

purpose of saving computer storage the nominal trajectory is
 

not formed by the linear combination of Eq. (4.6), but by in

tegrating Eq. (4.3) with the updated initial conditions. This
 

requires only the storage of the final values of the homogene

ous and nonhomogeneous solutions.
 

This procedure is continued until a metric (that repre

sents the maximum distance, over the complete independent
 

variable range, between successive nominal trajectories) be

comes less than some preselected value. This metric is given
 

by
 

N i zii 
p max - z(47)

n
i=l tn+ 


Since this metric represents the maximum distance between suc

cessive nominal trajectories, its value decreases as the opti

mal trajectory shape.is converged upon. When this metric has
 

been reduced to an acceptable value, convergence has occurred
 

for the specified value of terminal time. The one remaining
 

unused terminal condition is used in a conventional scalar ap

plication of the Newton-Raphson iteration technique to produce
 

a more accurate determination of terminal-time. This finite
 

difference equation is
 

tfk+i tfk +[:z k (tfk)f - fk-i) (4.8) 
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where the subscript k refers to the k th time iteration and
 

2f is the desired terminal value of the variable selected.
 

This new terminal time is used and trajectory iterations are
 

made until the metric p is reduced once again. When the
 

time iterations result in time changes smaller than some pre

selected value, the desired solution has been determined and
 

the procedure is terminated.
 

One of the principal differences of the Method of
 

Generalized Newton-Raphson as opposed to the Perturbation
 

Methods is that an initial solution of the state and Euler
 

variables is required. Also the method by which the terminal
 

time is determined is very time consuming, especially when a
 

large error is made in the assumed terminal time. A major ob

jection is that the initial and terminal conditions must simply
 

be values of the variables involved, rather than general func

tions of these variables. The above stated difference can be
 

avoided, in some cases, by simply using the solution generated
 

by integrating the nonlinear equations, Eq. (4.1), and this
 

approach requires only starting values of the variables, p
 

of which are known. The above stated objection has been par

tially removed by Long (16).
 

The method proposed by Long, designated here by the
 

Modified Method of Generalized Newton-Raphson, involves a
 

change of the independent variable
 

(4.9)
t = as 
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where a is a constant and s is a new independent variable 

having values 0 1 s 1 . The differential equations, Eq. 

(4.1), now become
 

z d aF(z,as) (4.10)
 

The constant a is considered a new state variable and an
 

additional differential equation
 

a =0 (4.11)
 

may be added, but this is clearly not necessary since the solu

tion to this equation is trivial. The value of a is initially
 

assumed and then corrected on each iteration just like any other
 

initially unknown state variable. The value a represents the
 

terminal time as can be seen by evaluating Eq. (4.9) at the
 

terminal value of the independent variable.
 

The determination of the terminal time now becomes an
 

integral part of the iterative scheme, and its separate con

sideration, as required by the first approach, is not required.
 

However, this does not save as much time as one might think,
 

since a term that corresponds to the new state variable a
 

must be added to each differential equation. Also another in

tegration of the 2n homogeneous equations must be made since
 

the value of a must be iteratively determined. The other
 

objections discussed for the first approach are not
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eliminated. The effectiveness of Long's proposal is evaluated
 

and discussed further in a later chapter.
 

4.2 Modified Quasilinearization Method
 

The method proposed in the present study, called the
 

Modified Quasilinearization Method, uses the quasilineariza

tion concept but removes the restrictions on the Methods of
 

Generalized Newton-Raphson discussed in Section 4.1. The
 

manner in which the terminal time is determined proves superior
 

to the modification proposed by Long.
 

The Eq. (4.6), derived for the Method of Generalized
 

Newton-Raphson, can be rewritten and evaluated at the terminal
 

time
 

Y(t 0 ,tf)C = z(tf) - w(tf) (4.12) 

The right hand side of this equation is the difference between 

the desired terminal value of z and the linear calculation 

of the terminal value of w This difference is interpreted 

as the variation of z(tf) , and is expressed as dz(tf) . 

Now, if both sides of Eq. (4.12) are premultiplied by [ ]] 
the resulting expression becomes 

[z]YtOtfC= [I 6z(tf) (4.13) 
f
fzf 


where ] is a 2n+l-p x 2n matrix describing the partial 

change of a general set of terminal boundary conditions,
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h(zf,tf) , to a change in the terminal values of zf itself. 

The right hand side of Eq. (4.13) is the variation of this 

general set of terminal boundary conditions 6h(tf) . A first 

order expansion of the terminal boundary conditions may be 

made, dh = 6h + hdtf , and substituted into Eq. (4.13) to 

yield 

dh = [ ]Y(t0 ,tf)C + hdtf (A.14) 

where dh is a 2n+l-p vector of terminal constraint dis

s s t is an 2n+l-p x 2n matrix of partial de

rivatives, Y(tQ,tf) is an 2n x 2n-p matrix of the terminal
 

values of the homogeneous solutions, C is a 2n-p vector of
 

corrections to be determined, h is a 2n+l-p vector of
 

time rates of change of the terminal constraints and dtf is
 

the time correction to be determined.
 

The Eq. (4.14) just derived is analogous to Eq. (3.29)
 

developed for the Method of Perturbation Functions. The major
 

exception is that in the present case the nonlinear differen

tial equations of motion and the Euler-Lagrange equations are
 

linearized. If the optimization problem is reduced to a two

point boundary value problem as discussed in Section 2.2, p
 

becomes equal to n and the implementation of the two methods
 

is similar.
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The computational procedure may be followed by re

ferring to an illustration of the Modified Quasilinearization
 

Method (MQM):
 

z
 

t 

(1) Integrate the 2n linear nonhomogeneous differen

tial equations, Eq. (4.3), forward from to to tf
 

with starting conditions consisting of the n known
 

initial conditions and n assumed values for the un

known parameters. The A and B matrices are
 

evaluated from the previous nominal (on the first
 

iteration the assumed nominal is used).
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(2) Integrate the 2n linear homogeneous differen

tial equations, Eq. (4.4), forward, simultaneously
 

with the Eq. (11.5), from- to to tf with n start

ing conditions consisting of a unit perturbation of
 

the variables that corresponds to the unknown initial
 

conditions.
 

(3) Solve the n+l linear algebraic equations, Eq.
 

(4.111), for a linear determination of the corrections
 

that must be applied t-o the assumed initial values and
 

terminal time.
 

(4) Integrate the 2n linear nonhomogeneous differ

ential equations, Eq. (4.3), forward from t0 to 

tf + &tf with the initial conditions updated by the 

recently calculated corrections. This integration 

yields a new nominal. 

(5) The process is continued until the metric p 

and the corrections become less than some preselected 

values. 

It should be noted that this approach could have used
 

the adjoint functions rather than the perturbation functions.
 

In this case, its implementation will require the use of a
 

set of'equations adjoint to the homogeneous equations, Eq.
 

(4.4), and its development runs parallel to the method
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discussed in Section 3.1. The algebraic equation to be solvcd
 

becomes
 

dh = 0 Ctf,t 0 )6z(t 0 ) + hdtf (4.15)
 

where 0 is aii n+l x 2n matrix resulting from the simul

taneous backward integration of the adjoint equations.
 

4.3 Iteration Philosophy for the Quasilinearization Methods
 

The iteration scheme for the Quasilinearization Methods
 

simply consist of a procedure to iteratively determine the
 

initial values of the Lagrange multipliers so as to decrease
 

the metric p The control is eliminated from the differen

tial equations, Eq. (4.1), by using the optimality conditions,
 

Eq. (2.25), and the linearized differential equations are in

tegrated during each iteration. Even though the optimality
 

conditions are used, the trajectory iterations do not repre

sent optimal solutions because the trajectories are generated
 

from a linearized version of the nonlinear differential equa

tions. The only remaining requirement is to reduce the metric
 

p to an acceptable value, which means that an optimal solution
 

has been converged upon.
 

With the Method of Generalized Newton-Raphson, the
 

terminal values of the desired variables are introduced and
 

essentially forced to satisfaction on each iteration. The
 

metric P is reduced to an acceptable value by iterating on
 

an assumed value of terminal time. Then one of the desired
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terminal values is used in a scalar application of the Newton-


Baphson method to determine a new terminal time.
 

Iteration Scheme I - This scheme is used with the
 

Method of Generalized Newton-Raphson, and is one which allows
 

a time iteration to be made while the metric p is being de

creased. This scheme effectively reduces the metric p in
 

conjunction with convergence on the desired terminal time.
 

A detailed procedure of Iteration Scheme 1 follows:
 

(1) Assume a solution for the 2n trajectory
 

variables and a terminal time.
 

(2) Make one trajectory iteration by integrating
 

forward the homogeneous and nonhomogeneous equations,
 

Eqs. (4.4) and (4.5), respectively. Determine the
 

corrections and integrate the nonhomogeneous equation
 

once again with the new initial conditions. This last
 

integration is considered a new nominal and the metric
 

P1 is determined for this nominal and the assumed
 

trajectory.
 

(3) Make one more trajectory iteration and obtain a
 

new metric, P2.
 

(4) Using one of the desired terminal values make a
 

Newton-Raphson iteration to obtain a new value of
 

terminal time.
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(5) Make two more trajectory iterations and record
 

the value of the metric p3
 

(6) If the metric P3 is less than the metric p2
 

make another time iteration and -continue the process.
 

(7) If the metric p3 is greater than the metric 

P2 , continue the trajectory iterations until the 

metric becomes less than p2 Then make a time 

iteration and continue the process. 

(8) Terminate the procedure when the time corrections
 

and the current metric become less than some pre

selected values.
 

Iteration Scheme 2 - This scheme is used on the Modi

fied Quasilinearization Method and is similar to Iteration 

Scheme 1 presented for the Perturbation Methods. When the
 

MGNR is used, the terminal values of the desired variables are
 

introduced in such a manner that a full correction is requested
 

on every iteration. It is expected that if a full correction
 

is requested in cases where the linear representation is poor,
 

the sequence of linear solutions will diverge. The less
 

severe request of only a percentage correction is applied with
 

the Modified Quasilinearization Method and the linear algebraic
 

equation that contains the n+l corrections is
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ZJ fY(t 0)tf)C + hdtf (4.16)
 

The terminal dissatisfaction change for a percentage correc

tion is
 

dh = -ch
 

where c is the desired percentage to be corrected, and the
 

iteration factor c may have values in the range 0 ! c 1
 

A detailed procedure of Iteration Scheme 2 follows:
 

(1) Starting values of the iteration factor and the
 

iteration rate factor are selected. Assume a solution
 

for the 2n trajectory variables, and a terminal time.
 

(2) Make one trajectory iteration by integrating
 

forward the homogeneous and nonhomogeneous equations,
 

determining the corrections and integrating the non

homogeneous equation once again with the new initial
 

conditions and new terminal time. This last integra

tion is considered a new nominal and the metric p
 

is determined for this nominal and the assumed tra

jectory.
 

(3) If all the corrections and the metric p are
 

less than some preselected values, terminate itera

tions. If any one correction or the metric p is
 



74 

greater than the preselected value continue the
 

process.
 

(4) Apply the corrections and make another trajectory
 

iteration, obtaining a new metric p
 

(5) If the new metric is less than the old metric,
 

increase the iteration factor by the value of the
 

iteration rate factor and continue to iterate. Never
 

allow the iteration factor to be less than the value
 

of the iteration rate factor or greater than unity.
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CHAPTER 5
 

GRADIENT METHODS
 

The general theory of the gradient concept is now both
 

well known and widely used for the approximate solution to
 

trajectory optimization problems. These methods have a common
 

characteristic in that the influence function concept is used
 

to determine how the performance index and/or a combination of
 

the terminal constraint relations are changed as the control
 

variables are changed. Then a control step is taken in the
 

negative gradient direction, i.e. the direction of steepest
 

descent, so as to extremize the performance index while satis

fying certain specified terminal constraint relations.
 

The implementation of the gradient techniques has been
 

widely varied and relatively arbitrary because although the
 

gradient direction is well defined, the proper sized step in
 

control space is not. The convergence properties of the methods
 

are dependent on judicious selection of this step size and the
 

manner in which it is changed, and several efforts have been
 

made to improve the rather slow terminal convergence of the
 

gradient methods. Unfortunately, because of this inherent
 

arbitrariness in the gradient method, a great amount of human
 

intervention is required to select a proper control step size
 

and still avoid violating the linearity constraints imposed
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on the problem. In this sense the implementation of the
 

gradient techniques is an art.
 

The theoretical development of the gradient techniques
 

discussed here may be shown to follow common approaches. The
 

primary difference being the manner in which the terminal con

straints are handled and the method of selecting the control
 

step size. The Method of Steepest Descent uses the terminal
 

constraints in the so-called "hard" form, i.e. the constraints
 

are to be satisfied identically. The Modified Method of
 

Steepest Descent uses the terminal constraints in the so

called "soft" form, i.e. the constraints may be only approxi

mftely satisfied.
 

5.1 Method of Steepest Descent
 

The theoretical development of the Method of Steepest
 

Descent is well known as discussed in References 17 through
 

21, and is summarized here only to provide background for the
 

iteration scheme modification. It is desired to determine the
 

control program u(t) , where u is a m vector, which will
 

yield an extreme value of some performance index
 

0 = *(xf,tf) (5.1), 

subject to the differential equations of motion
 

k = f(x,ut) (5.2) 
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where x is an n vector while satisfying the terminal con

straint relations
 

= '(xf,tf) = 0 (5.3) 

where T is a q vector. One of the desired terminal con

straint relations may be used as a stopping condition,
 

= Q(xf,tf) = 0 (5.4) 

The integration process continues until this stopping condi

tion is satisfied. If the differential equations, Eq. (5.2),
 

are linearized about some nominal path, the resulting equa

tions become
 

6x = F6x + G~u (5.5) 

where F and G are n x n and n x m matrices of partial
 

derivatives evaluated on the nominal trajectory, respectively.
 

The equations adjoint to Eq. (5.5) are
 

= -F"x (5.6) 

where A is an n vector of adjoint variables. This equation
 

may be combined with Eq. (5.5) by premultiplying Eq. (5.5) by
 

AT and post multiplying the transpose of Eq. (5.6) by Sx
 

and adding the equations to yield
 

d( T6x)dx) TG~u (5.7)~<X = 
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Integrating Eq. (5.7) from to to tf yields
 

[t
 

TG6udt 	 (5.8)
XTA6x)f 	 Q + (XT6x)0 

t0
 

The boundary conditions on the adjoint variables are arbitrary
 

and may be chosen for convenience. The object now is to de

termine how initial state variations and integrated control
 

variations influence the terminal values of the performance
 

index, 	stopping condition and the terminal constraint rela

tions. If, on separate trials, the terminal values of the
 

adjoint variables are set equal to
 

F1~ ~ ~ 1(Tt X = [ai (5.9)x 	 ) 

where X is an n vector, AT is a nxq matrix and A2
 

is an n vector, the desired relations are seen to be
 

dO = 	 f ATGudt + (A'6x)0 + *dtf (5.10) 
to 

ft0
 
tf XT 
 T 
 t.(.1
 

d = f0 G6udt + (AT6&x) o + 'dt(. 

t Tf T 
dol= A G6udt + (X x)0 +rdtf (5.12) 

fto
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where
 

Da/'-x + (5.14) 
=: a + Jr] (5.15) 

and
 

= [60 + Fdt]f (5.16)
 

dT = [6w + dtf (5.17) 

do = [60 + Pdtlf[6~ + 2dtJ~(5.18) 

The approach presented by Bryson and Denham (18) allows
 

for the specification of a requested terminal dissatisfaction
 

improvement and an allowable step size to be taken in control
 

space. The control step size is defined by
 

dS f 16T W 6u dt (5.19) 

t 

where the step is a weighted quadratic function of the control 

deviation. The weighting matrix W is included to improve 

the convergence characteristics by giving more weight to 

regions of low sensitivity. However, it is often chosen to 

be the unity matrix because of the lack of knowledge 

http:2dtJ~(5.18
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concerning the region sensitivity. The criteria used for de

termining the best elements of this matrix are not given and
 

are found through trial and error procedures.
 

The stopping condition, Eq. (5.4), is to be identically
 

satisfied so Eq. (5.12) is equated to zero. The terminal time
 

variation dtf is eliminated from Eqs. (5.10) and (5.11) to
 

yield
 

de = X G~udt + (X T6x)0 (5.20) 

t0 

dT = T G6udt + (XT6x)0 (5.21)f 
0
 

where A Vt 0 (5.22) 

The total variation in the performance index due to
 

initial state variations and integrated control variations
 

may be expressed as
 

= fX +tTf cT &c)AGudt+(A Tx) XT Gt-(X
to To 0ttTS O0
 
0 0
 

(52)

u T W d6ud]
+ v dStf
Ii j 




8]
 

where the terminal constraint and the control step relations
 

are adjoined by the use of the J and V Lagrange multi

pliers, respectively. The multiplier v is a q vector and
 

P Js a scalar constant. Since it is desired to determine the
 

control variation which corresponds to the maximum change in
 

the performance index, the first variation of Eq. (5.24) must
 

vanish
 

tf 

6(d4) = T G - v T XTG - u6uTW)62udt = 0 . (5.25) 

This implies that the desired control variation is
 

6u = 1 iGx X V) (5.26) 

When this equation is substituted back into Eqs. (5.19) and
 

(5.21) the values of v and u are determined as 

V -V d + 1iI (5.27) 

I -T 1-11 /

I -I I- i 

dS -dB IId8 

where
 

de dY - (x 6x) (5.29)
 

f fXT 
IFT TDGW- G Xldt (5.30)
 

a
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tfXT 
 -T 

ITQ= GW G X Qdt (531)I 0 dt
 

W4 = 
 x (5.32)
 

to 

and IT is q x q matrix, I is a q vector and I
 

is a scalar.
 

Now, combining Eqs. (5.26) through (5.32) yields the
 

desired control program
 

_/2
 
TuG Xl¢ 1 1 YW-1GT 


+ W1GTX I- Id (5.33) 

where the positive sign is used if 4 is to be maximized and 

the negative sign used if * is to be minimized. The pre

vious control program is now modified as follows: 

Unew Uold
 

The computational procedure for the Method of Steepest
 

Descent may be summarized by considering the following.
 

(1) Integrate the n differential equations of
 

motion, Eq. (5.2), forward in time using an assumed
 

control program and the desired initial conditions
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for the state variables. This integration is con

tinued until the stopping condition, Eq. (5.4), is
 

satisfied. The value of the state variables are
 

stored at each point in time.
 

(2) Integrate the n adjoint equations, Eq. (5.6),
 

backward q+2 times with the starting conditions,
 

Eq. (5.9). The coefficient matrix F is obtained
 

from the nominal generated on the forward integration.
 

(3) Integrate the Eqs. (5.30), (5.31) and (5.32)
 

backwards simultaneously with the adjoint equations
 

using zero as initial conditions to yield the values
 

for 	 I.j, I T , and I,.
 

(4) 	Select a desired improvement in the terminal
 

dissatisfaction dY for the next iteration.
 

(5) Select a reasonable value for the mean square
 

control deviation from the previous control program
 

by using
 

dS 	=1 W6U 2 (t - t
 

2 ave f 0
 

This 	will provide a value for the control step dS
 

(6) Use the selected values of dW and dS to cal

culate the numerator under the radical in Eq. (5.33).
 

If this quantity is negative, determine the d that
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makes the quantity vanish. It is is positive, use
 

the quantity as it is.
 

(7) Calculate the 6u as given in Eq. (5.33) and
 

alter the assumed control program.
 

(8) This procedure is continued until the control
 

variations are less than some preselected value.
 

5.2 Modified Method of Steepest Descent
 

The theoretical development of the Modified Method of
 

Steepest Descent, which uses the penalty function technique
 

for handling the terminal constraints, is similar to the con

ventional method discussed in Section 5.1. The primary dif

ference is that the terminal constraint relation is included,
 

in the "soft" form, with the.performance index to form a
 

penalty function
 

P(xf,tf) = W02(xf,tf) + . WiY(xf~t (5.35) 

where the Wi's are weighting constants. If these constants
 

are sufficiently large, minimizing the penalty function is
 

essentially the same as minimizing the performance index €
 

and driving the terminal constraints Y to zero.
 

To determine how this penalty function is related to
 

initial state-variations and the integration control variations,
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the Eq. (5.8) is used. Selecting the terminal boundary condi

tion for the adjoint equations, Eq. (5.6) to be
 

t = [r] (5,36) 

P f
 

-'x~XT (t (5.37) 
a f
 

where Xp. is an n vector and X is a scalar, yields
 

t 
dP = Gudt+ (XT6x) 0 + Pdtf (5.38)

o 
ft 

d= G6udt + (X T 6x) + dt 0 (5.39) 

0
 

where
 

_xp + ;(5.4o)
 

[2= a g], (5.41)
 

The stopping condition, Eq. (5.39), must be identically satis

fied. Hence dtf can be determined from Eq. (5.39) and used
 

to eliminate dtf from Eqs. (5.38). The result can be ex

pressed as
 

dP = T G6udt + (Xn6x)% (5.42)
0t 
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where 

= - (5.43) 

Now, it is desired to determine the control variation
 

which maximizes the change in the penalty function dP To
 

insure the predominance of first order effects, a control step
 

size constraint is adjoined to the total variation of the pen

alty function, to obtain
 

C5.44) 

dP fXTRpGudt + P d - /:1uTudt + (XT 6x) 
t 0tpsPt 0 

If the above Eq. (5.44) is to assume a maximum value, the
 

first variation must vanish, or
 

f6(dP) T G - p6uT)6 2udt = 0 (5.45)to
 

which implies that
 

6u = KGT Xp (5116) 

where K is a constant equal to 1/. This expression could
 

be written
 

6u = KHUT (547)
 

T

where H is defined as the generalized Hamniltonian, X F,2
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This equation implies that the control variation which
 

maximizes the penalty function change is proportional to the
 

magnitude of the control gradient and in either the positive
 

or negative gradient direction, depending on the sign of K
 

The constant K may be interpreted as the control step size
 

in the gradient direction. When the gradient Hu approaches
 

zero, the control variation also vanishes.
 

The penalty function change is evaluated by substi

tuting Eq. (5,47) into Eq. (5.42) to yield
 

dP = K HuH dt (5.48)
 

t0
 

The computational procedure for the Modified Method
 

of Steepest Descent may be summarized by considering the
 

following:
 

(i) Integrate the n differential equations of
 

motion, Eq. (5.2), using an assumed control program
 

and the desired initial conditions of state. This
 

integration is continued until the stopping condition,
 

Eq. (5.4), is satisfied.
 

(2) Integrate the n adjoint equations, Eq. (5.6),
 

backward one time with the starting condition, Eq.
 

(5.43), or
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X f~f [=Lxp) 
forming the coefficient F from the nominal path
 

generated on the forward integration.
 

(3) Having obtained the solution XT(t)P,(t)the term 

T 
Hu = xpQG may be formed. 

(4) The square of XTG may be integrated from to
 

to tf Then, using Eq. (5.48), the step size K
 

may be determined by specifying a desired penalty
 

function change dP
 

(5) The control variation may be determined from Eq.
 

(5.47) and applied to the assumed control program.
 

(6) The procedure continues until the penalty func

tion reaches a minimum.
 

It must be noted that the specified penalty function change,
 

and hence the step size K is arbitrary, and the judicious
 

selection of K becomes a key factor in increasing the con

vergence rate. An automatic procedure for its selection is
 

desired.
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5.3 Iteration Philosophy for the Gradient Methods
 

The iteration schemes for the gradient methods simply
 

consist of a procedure to iteratively determine a control pro

gram so as to extremize a performance index while simultaneous

ly driving the terminal constraint dissatisfaction to zero.
 

The nonlinear differential equations of motion are integrated
 

during each iteration, and the adjoint equations are used to
 

determine how the variation of different terminal quantities
 

are influenced by initial state variations and integrated con

trol variations. The optimality condition, Hu = 0, is not
 

used in the formulation, and hence is never identically satis

fied.
 

A minimization of performance index requires a control
 

step to be taken in the negative gradient direction, con

sistent with the specified terminal constraints, but the size
 

of this step is not defined by considering the theoretical
 

development of the gradient technique itself. Hence, the most
 

severe disadvantage of these techniques is the arbitrariness.
 

Usually a satisfactory convergence rate can only be achieved
 

by experienced personnel.
 

A primary objective of the present study is to develop
 

some of the arbitrariness and
an iterative scheme that removes 


increases the convergence rate. Since the weighting matrix
 

W , introduced in Eq. (5.19) is arbitrary, some rational basis 

for its selection is needed. This problem is approached by
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examining an integral form of the Weierstrass E-Function which
 

approximates the change in the performance index or the penalty
 

function. This change is approximated by
 

df * x , x,t)dt (5.49) 
ft 0
 

where E is the Weierstrass E-Function as developed by Gelfand
 

and Fomin (27). The E-Function is defined as
 

E = F(x ,xt)- F(x ,x ,t) -- x ,x (5.50) 

and for the system being considered
 

F(x,x,t) = H(x,u,t) - x (5.51) 

where H = XTf The asterisks refer to the optimal path, and
 

the absence of asterisks refer to any nearby path. From the
 

calculus of variations a necessary condition for the existence
 

of a minimum value of performance index is that E be non

negative during the interval to t 1 tf
 

It is noted, by examining Eq. (5.2), that a variation
 

in control is accompanied by a variation in x , and that a
 

state variation will occur only after a finite duration of
 

time. Hence, the expansion of Eq. (5.49) is made by consider

ing that the control deviation is not accompanied by a change
 

in state. The Eq. (5.49) is now written
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dP* r (H - H*)dt (5.52) 

t0
 

The first term of the integrand may be expanded in a Taylor's 

series about the optimal path at each point in time 
H* * T 

H H + H 6u + 6uTH *6u + . (5.53)
u 2 uu
 

and substituting the above equation into Eq. (5.52) and re-


H *
calling that =0 on the optimal path results in
 

• tf 1 UTuu
dP -z6uTH1 u 6udt (5.54)
 

0
 

This equation represents the deviation in the performance in

dex associated with the deviation of the control program from
 

an optimal control program. It must be stated that Huu is
 

not known until the optimal trajectory is converged upon, but
 

the expression, Eq. (5.54), becomes increasingly accurate as
 

convergence progresses.
 

An expression identical to Eq. (5.54) may be derived
 

for the performance index change by considering the second
 

variation of the functional I as presented in Eq. (2.5).
 

This approach requires that the control variations are not
 

accompanied by state deviations and that an optimal trajec

tory is used as the reference path.
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The term H * is approximated by using the generaluu
 

ized Hamiltonian and the optimality condition, and may be
 

derived as
 

HH T JXM + 2 (5.55)uu m V 2 

for the Earth-Mars transfer and the Earth launch examples dis

cussed in Appendix A.2.
 

The Eq. (5.54) indicates that the performance index
 

increase is approximately equal to the integral of a weighted
 

quadratic form of the control deviation, where the weighting
 

is given by Huu This same quadratic form appears in Eq.
 

(5.19) for the Method of Steepest Descent, except the weighting
 

matrix W is undefined. This matrix was introduced to provide
 

different weights to control regions of different sensitivity,
 

and may still be used to restrict the control step size. The
 

Eq. (5.19) is then introduced into an expression for the per

formance index increase as' shown in Eq. (5.24). Hence, it is
 

reasonable to interpret the weighting matrix to be Huu
 

thus becoming an easily determined specified matrix.
 

Iteration Scheme 1 - The first iteration scheme for the
 

Method of Steepest Descent follows the procedure outlined in
 

Section 5.1. The weighting matrix W is set equal to the
 

unity matrix, and hence the control variations at all points
 

in time are given the same weight.
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Iteration Scheme 2 - The second iteration scheme for
 

the Method of Steepest Descent also follows the procedure out

lined in Section 5.1. However, the weighting matrix W is set 

equal to Huu , and hence the control variation is influenced 

by a time dependent weighting matrix. The only procedural ex

ception is the one associated with determining the Huu *
 

matrix.
 

One of the inaccuracies introduced in the above analy

sis is that the Huu matrix must be evaluated with current
 

trajectory information, rather than the desired optimal values.
 

This problem is eliminated in the Modified Method of Steepest
 

Descent by making the Taylor's expansion about the current
 

nominal trajectory. This expansion results in
 

H u H + H 6u + !6uTH 6u + .... (5.56)u 2 uu
 

When this equation is substituted into Eq. (5.52), the rela

tionship for the penalty function change becomes
 

tt
 
7
*11.
fu1dt


dP -) u + uu (557)
 

0 

The negative sign is now present because-the control deviation
 

is toward the optimal, instead of away from it as before.
 

It is desired for the penalty function change to be
 

extremized, and a necessary condition for this to occur is
 

that the first variation of dP* vanish. The first variation
 

of Eq. (5.57) is set equal to zero
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.(dP*)f - (Hu + 6UTH )2udt = 0 (5.58)
 

This implies that
 

-I H T (5.59) 

where H and H are evaluated with current trajectory in

formation. This equation implies the optimal control is in the 

negative gradient direction, weighted by H . The 

approximations involved become increasingly accurate as the
 

convergence process approaches the optimal. It is in this
 

near optimal region that the gradient technique is most defi

cient, and it is expected that the control law, Eq. (5.59),
 

will assist in nullifying the inherent slowness of conver

gence. By comparing Eqs. (5.47) and (5.59), it is seen that
 

-
the gradient step now becomes time dependent, where K = -H
uu
 

and may be easily calculated on each iteration.
 

Iteration Scheme 1 - The first iteration scheme asso

ciated with the Modified Method of Steepest Descent requires
 

the gradient step determination to be made by using Eq. (5.48).
 

This equation will yield a gradient step after performing the
 

indicated integration and specifying a desired improvement in
 

the penalty function. Caution must be exercised so as not to
 

request such a large penalty function improvement that the
 

linearity assumptions are violated.
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A detailed procedure of Iteration Scheme I follows:
 

(1) Integrate the nonlinear differential equations
 

of motion, Eq. (5.2), forward from to to the tf
 

which satisfies the stopping condition, Eq. (5.).
 

The desired initial conditions and an assumed control
 

program are used. An initial evaluation of the
 

penalty function P0 is made.
 

(2) Integrate the adjoint equations, Eq. (5.6),
 

backwards from tf using the variables from the
 

forward integration to evaluate the coefficients.
 

The starting conditions are determined by evaluating
 

Eq. (5.43) at the terminal time and are used to gene

rate the solution XT(t)
 

A1) (t), the quan(3) Having obtained the solution 


tity Hu = A TG may be evaluated
 

(4) The square of Hu may be integrated from -to
 

to tf and using Eq. (5.48), K may be determined
 

by specifying a desired change in the penalty func

tion.
 

(5) This step size K is used to modify the control
 

variation as stated in Eq. (5.47), and a new control
 

program is determined.
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(6) This new control program is used to generate a
 

new nominal and the procedure is repeated.
 

Iteration Scheme 2 - The second iteration scheme asso

ciated with the Modified Method of Steepest Descent is similar
 

to a technique,used by Wagner and Jazwinski (21). This scheme
 

involves making three trial forward integrations using dif

ferent but constant gradient step sizes, and recording the
 

three resulting penalty function values. A second order poly

nomial is fitted through these points and the step size that
 

corresponds to the minimum value of the penalty function is
 

selected. This method takes full advantage of each adjoint
 

integration by selecting an optimal step size for that itera

tion.
 

A detailed procedure of Iteration Scheme 2 follows:
 

(1) Integrate the nonlinear differential equations of
 

motion, Eq. (5.2), forward from to to the tf which
 

satisfies the stopping condition, Eq. (5.4). The de

sired initial conditions and an assumed control program
 

is used. An initial evaluation of the penalty function
 

P is made.
 

(2) Integrate the adjoint equations, Eq. (5.6), back

wards from tf using the variables from the forward
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integration 	to evaluate the coefficients. The start

ing conditions are determined by evaluating Eq. (5.43)
 

at the terminal time and are used to generate the
 

solution XP,(t)
 

(3) 	Having obtained the solution XT(t) , the quan

tyT may be evaluated. 

(4) The square of Hu may be integrated from to to
 

tf and using Eq. (5.48) K1 may be determined by
 

specifying a desired change in the penalty function.
 

(5) This step size K is used to modify the control
 

variation as stated in Eq. (5.47), and a new control
 

program is determined.
 

(6) Integrate the differential equations of motion
 

again using the new control program and record the
 

associated penalty function PI
 

(7) 	Depending on whether P1 is greater or less than 

, is either halved or doubled,P0 the step size K 


respectively.
 

(8) The control is modified once again and an integra

tion of the differential equations of motion yield a
 

penalty function P2
 

(9) A second order polynomial is fitted through the
 

three points, and the step size Kmin is determined
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that corresponds to the minimum value of the penalty
 

function.
 

(10) The control is modified with this Kmin and the
 

differntial equations are integrated to yield a new
 

nominal trajectory. The penalty function resulting
 

from this integration is used to start the cycle over
 

again.
 

Iteration Scheme 3 - The third iteration scheme asso

ciated with the Modified Method of Steepest Descent requires
 

reference to the results given in Eq. (5.59). The implementa

tion of this scheme is extremely simple compared to the first
 

iteration scheme, because no trial forward integrations are re

quired. The time dependent matrix Huu , which may be formed
 

as the adjoint equations are integrated backwards, is easily
 

determined. The control variation for the next iteration is
 

then determined as the Huu matrix is formed.
 

A detailed procedure of Iteration Scheme 3 follows:
 

(1) Integrate the nonlinear differential equations of
 

motion, Eq. (5.2), forward from to to the tf which
 

satisfies the stopping condition, Eq. (5.4). The de

sired initial conditions and an assumed control program
 

is used for the first iteration! An initial evaluation
 

of the penalty function P0 is made.
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(2) Integrate the adjoint equations, Eq. (5.6), back

wards from tf using the variables from the forward
 

integration to evaluate the coefficients. The starting
 

conditions are determined by evaluating Eq. (5.43) at
 

the terminal time and are used to generate the solution
 

T
 

Having obtained the solution XT (t) , the quan(3) 


tities Hu and Huu may be evaluated, hence the
 

control modification, Eq. (5.59), may be deterpnned.
 

(4) The previous control program can be modified and
 

the process continued.
 



CHAPTER 6
 

COMPARISON AND DISCUSSION OF THE OPTIMIZATION
 
METHODS AND ITERATION SCHEMES
 

A meaningful comparison of the optimization methods and
 

associated iteration schemes is extremely difficult to make.
 

One primary reason for this difficulty is that most methods are
 

highly problem dependent, i.e., the characteristics of each
 

method are different for each problem attacked. Furthermore,
 

difficulties arise even if a comparison is made between the op

timization methods based on the same physical problem. As an
 

example, suppose it is desired to compare the convergence times
 

&f several optimization methods. It is obvious that the conver

gence time is highly dependent on the integration step size se

lected, and therefore some reasonable criteria for this selec

tion must be established.
 

The comparison of the optimization methods and iteration
 

schemes on a numerical basis requires a realistic and represen

tative trajectory problem. The example chosen is a spacecraft
 

moving under the influence of thrust in an inverse square gravi

tational force field. Specifically, the problems investigated
 

are (1) a low thrust transfer -trajectory from Earth to Mars, and
 

(2) an atmospheric Earth launch to circular orbit trajectory. A
 

more detailed discussion of the specific applications is made in
 

Appendix A.2. The time histories of the variables and control
 

100
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programs that correspond to the optimal trajectories are shown in
 

Figures A.2.1 through A.2.4.
 

6.1 Selection of Methods for Comparative Study
 

The trajectory optimization problem has been shown to
 

be theoretically solvable by using several different indirect and
 

direct methods. Of the methods, presented in Chapters 3, 4, and
 

5, several different approaches are discussed. Some of the more
 

promising methods and associated iteration schemes were selected
 

for computational investigation.
 

The methods selected for computational investigation
 

are referred to by the following abbreviated names. These meth

ods are:
 

(1) Method of Adjoint Functions (MAF) - the third
 

approach discussed in Section 3.1.
 

(2) Method of Perturbation Functions (MPF) - the
 

third approach discussed in Section 3.2.
 

(3) Method of Generalized Newtbn-Raphson (MGNR) 

the first approach discussed in Section 4.1.
 

(4) Modified Method of Generalized Newton-Raphson 

(MMGNR) - the second approach discussed in Section 

4.1.
 

(5) Modified Quasilinearization Method (MQM) - the
 

approach discussed in Section 4.2.
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(6) Method of Steepest Descent (MSD) - the approach
 

discussed in Section 5.1.
 

(7) Modified Method of Steepest Descent (MMSD) - the
 

approach discussed in Section 5.2.
 

The constants used in the numerical study are given in
 

Appendix A.3.
 

6.2 Basis of Comparison
 

A basis of comparison must be established for the com

parative study of the optimization methods selected in Section
 

6.1. The comparison is to be made not only between optimization
 

methods, but between the associated iteration schemes as well.
 

In a general sense, the following items are considered
 

a basis for comparison for the optimization methods:
 

(1) Required formulation, application and programming
 

complexity.
 

(2) Required amount of computer logic and storage.
 

(3) Ease of use by inexperienced personnel.
 

(4) Required programming effort for solving different
 

problems.
 

.(5) .Effectiveness in solving different problems.
 

(6) Sensitivity of the convergence characteristics to
 

initially assumed parameters.
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(7) Resulting time for convergence.
 

The iteration schemes are not only concerned with the
 

above items but with the following items as well:
 

(1) Effectiveness of decreasing the sensitivity of
 

'the convergence characteristics of the method to
 

initially assumed parameters.
 

(2) Effectiveness of decreasing the time for conver

gence.
 

6.3 Perturbation Methods
 

The comparison and discussion of the Perturbation
 

Methods will consist of two separate analyses. The Method of
 

Adjoint Functions, including the normal procedure and Iteration
 

Schemes I and 2, is discussed first. The Method of Perturbation
 

Functions with Iteration Scheme 1 is discussed last. The dis

cussion content will include the applicable items listed in
 

Section 6.2.
 

6.3.1 Method of Adjoint Functions
 

The required formulation of the Method of Adjoint
 

Functions as discussed in Section 3.1 is simple and straightfor

ward. A general discussion of the applications is presented in
 

Appendix A.2 and a specific application of the MAF is made in
 

Appendix A.2.1. The examples chosen are described by four, first
 

order, nonlinear differential equations of motion, i.e., Newton's
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equations for motion in a plane.
 

The programming effort requires the forward integration
 

of the four differential equations,of motion and the four Euler
 

differential equations. Integration of the differential equation
 

for the rate of change of control, i.e., Eq. (2.22), is not re

quired since the control is easily determined and eliminated from
 

the state and Euler equations. These eight dependent variables
 

and the independent variable are stored in computer memory or on
 

tape at each time step during the forward integration for use in
 

fogning the A(z,t) matrix. This requires less storage than if
 

each element of the A(z,t) matrix is stored since this would re

quire 64 quantities to be stored at each time step. The A(z,t)
 

matrix must be formed during the backward integration, but this
 

requires very little additional time.
 

The backwards integration of the eight adjoint differ

ential equations must be made with four different starting vec

tors, and hence a large percentage of the computation time is
 

spent in this backward integration. The adjoint equations are
 

linear and it is conceivable that a larger integration step or a
 

variable step could be taken. This, however, requires additional
 

programming complexity to insure that the proper coefficients are
 

being formed from the variables stored during the forward inte

gration.
 

There is an alternative approach that .eliminates the
 

storage pr6blem, and hence becomes attractive for problems of
 

large dimension or for ones that require many integration steps.
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This approach is one where the differential equations of motion
 

and the Euler equations are integrated backward simultaneously
 

with the adjoint equations. This does not eliminate the forward
 

integration because the ,terminal values of the state and Euler
 

variables are required to statt the backward integration. The
 

sacrifice to eliminate the storage and magnetic tape problems is
 

made by having to integrate an additional set of equations.
 

For the numerical investigation made, the former pro

cedure is used which means more programming complexity, but also
 

less computer time required. A constant step size was selected
 

for both the forward and backward integrations.
 

The computer program that uses the MAF requires two
 

initially assumed Lagrange multipliers and an assumed termina]
 

time. These estimates require a familiarity with the physical
 

problem and, to some degree, experience. The computer program
 

is built such that only the subroutines containing th4 differen

tial equations of motion, the Euler-Lagrange equations, and the
 

djoint equations must be changed to solve different problems.
 

Iteration Scheme 1requires very little computer logic
 

in addition to the Normal Scheme which just requests 100 percent
 

terminal constraint satisfaction on each iteration. Operation is
 

simply transferred to a subroutine where the iteration factor is
 

altered in accordance with the terminal norm criterion explained
 

in Section 3.3.
 

Iteration Scheme 2 requires some additional programming
 

and computer storage. Basically, the scheme is such that the
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iteration factor is increased, omitting an adjoint integration,
 

until either the terminal constraint norm diverges or a specified
 

number of forward integrations have been made. If the norm does
 

diverge, the last convergent trajectory is used as a nominal, and
 

hence this trajectory must be saved until it is determined
 

whether or not it will be needed. The storage problem can be
 

eliminated, however, by simply regenerating the last convergent
 

trajectory.
 

The Earth-Mars transfer is completely defined when
 

X1 0 , X2 0 , and tf have been determined, as shown in Appendix
 

A.2.1. The quantity X40 is easily determined to be zero. In
 

an effort to determine how sensitive the method is to poor ili-

tial assumption$ for the above three quantities, many cases are
 

investigated. These numerical results are best illustrated by
 

building envelopes of convergence, the boundary of which repre

sents the last convergent trial. Points beyond this boundary do
 

not result in a convergent solution. The percentage numbers on
 

the axes represent the percent deviation from the values that re

sult in an optimal solution.
 

The envelopes of convergence for the MAF, using the
 

Normal Iteration Scheme of requesting a 100 percent correction in
 

the terminal constraints regardless of the terminal norm re

sponse, are shown in Figures 1, 2, and 3 for the cases of -20, 0
 

and 20 percent error in terminal time, respectively.
 

The physical significance of the convergence envelopes
 

is clear when it is realized, by referring to Appendix A.l, that
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Earth-Mars transfer 
Iteration method: MAF 
Iteration scheme: Normal 
Initial iteration factor: '100% 
Terminal time error: -20 % 

I iII I 
20 'S 

-

-50 % 0% 

6X 10 

Note: 	The numbers indicate
 
the iterations required
 
for convergence
 

Figure 1. - Convergence envelope for the MAF using the normal iteration 
scheme, initial iteration factor of 100% and terminal time error of -20% 
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No! REPRODUoLE
 

Earth-Mars transfer 
Optimization method: MAF 
Iteration scheme: Normal 
Initial iteration factor: 100% 
Terminal time error: 0% 

+50% 

] -N 

0%, 

200 

jj fXc ., "F, 

I I"I I 

-50%j 

-50% 0% 
6xlO 

+50% 

Note: The numbers indicate 
the itierations required 
for convergence 

Figure 2. - Convergence envelope for the MAF using the normal iteration 
scheme, initial iteration factor of 100 %and terminal time 
error of 0%. 
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Earth-Mars transfer 
Optimization method: MAF 
Iteration scheme: Normal 
Initial iteration factor: 100% 
Terminal time error: 20% 

.....................
0FP

__'x20 0 

-50% 	 Ce 1Q' 

-50% 0% +50% 

Note: 	 The numbers indicate
 
the iterations required
 
for convergence
 

Figure 3. - Convergence envelope for the MAF using the normal iteration 
scheme, initial iteration factor of 100 %and terminal time 
error of 20% 
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the thrust or control angle with respect to the local hori
22)
 

zontal 	is given by sin 5 = - l/(X 1 + X2 ) and cos S = 
2 )%o 

-X2/(X 2+ X2 Points along a 45 diagonal lying in the
 

first and third quadrants represent the optimal initial control
 

angles, but with different values for the individual magnitudes
 

of the Lagrange multipliers. The signs of the initial Lagrange
 
0
 

multiplier errors are the same. Points along a 45 diagonal
 

lying in the second and fourth quadrants represent nonoptimal
 

initial control angles for various values in the individual
 

magnitudes of the initial Lagrange multipliers. Down and to the
 

right in the fourth quadrant means the initial control angle is
 

decreasing and up and to the left means the initial control angle
 

is increasing. The signs of the initial Lagrange multiplier
 

errors are opposite.
 

It is seen that the convergent solutions in Figures 1,
 

2, and 3 remain near the diagonal passing from the second to
 

fourth quadrants. The conclusion must be that for these cases
 

the method is more sensitive to changes in the optimal values of
 

the initial Lagrange multiplier errors that have the same sign,
 

even though the initial control angle remains near optimal for
 

these cases. The method is less sensitive to changes in the
 

initial Lagrange multiplier errors that have the opposite sign,
 

even though the initial control angle is not near optimal. One
 

other interesting characteristic is that as the error in terminal
 

time increases from negative to positive, the envelopes increase
 

in size and move further down into the third and fourth quad

rants. The convergence envelope in Figure 2 is approximately
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30 percent larger than the one in Figure 1, and the convergence
 

envelope in Figure 3 is approximately 70 percent larger than th
 

one in Figure 2. When a positive terminal time error exists, t
 

method becomes less sensitive to negative A2 0 errors, but
 

highly sensitive to positive A2 0 errors.
 

Iteration Scheme 1, using an initial value for the ite
 

ation factor of 100 percent, is effective in increasing the con
 

vergence envelope slightly, as illustrated in Figures 4, 5, and
 

6. These envelopes exhibit the same characteristics as those
 

shown in Figures 1, 2, and 3, except that the envelopes are
 

slightly larger. This increase in size is attributed to the
 

ability of the Iteration Scheme 1 to decrease the iteration
 

factor when the terminal norm diverges. This easement of the
 

requested percentage correction allows some cases to converge
 

when divergence would have occurred had the iteration factor
 

been forced to remain 100 percent for all iterations.
 

The convergence envelopes are significantly increased I
 

usin&,Iteration Scheme I and an initial iteration factor of 50
 

percent rather than 100 percent. These envelopes are shown in
 

Figures 7, 8, and 9, and are approximately 360, 350 and 260
 

percent larger, respectively, than the corresponding envelopes
 

for initial iteration factors of 100 percent. The convergent
 

solutions of these envelopes do not remain so near the second tc
 

fourth quadrant diagonal as the previous cases although the
 

skewed appearance is still perceptible. One characteristic seer
 

in Figures 4, 5, and 6 becomes more pronounced in Figures 7, 8,
 

and 9 and that is the downward movement of the envelope as the
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Earth-Mars transfer 
Optimization method: MAF 
Iteration scheme: 1 
Initial iteration factor: 100% 
Terminal time error: -20% 

+50% 

0% I 

-50%1 

Note: 

-50% 

The numbers indicate 
the iterations required
for convergence. 

0% 

a10 

+50% 

-igure 4. - Convergence envelope for the MAF using iteration scheme 1, 
initial iteration factor of 100% and terminal time error of -20% . 
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Earth-Mars transfer 
Optimization method: MAF 
Iteration scheme: 1 
Initial iteration factor: 100 % 
Terminal time error: 0% 

- -/+50% --L NJI , 
II 

6X20 0 % 

-50 % 

-50% 	 %0 +50% 

Note: 	 The numbers indicate the
 
iterations required for
 
convergence.
 

Figure 5. - Convergence envelope for the MAF using iteration scheme 1, 
initial iteration factor of 100%and terminal time error of OZ. 



---

i14
 

Earth-Mars transfer 
Optimization scheme: MAF 
Iteration scheme: 1
 
Initial iteration factor: 100%
 
Terminal time error: 20%
 

+50% 

ziL L/zi-50% 

-50% O0% +50% 

6X10 

Note: 	 The numbers indicate the
 
iterations required for
 
convergenlce.
 

Figure 6. - Convergence envelope for the MAF using iteration scheme 1, 
initial iteration factor of 100% and terminal time error of 20% 
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Earth-Mars transfer 
Optimization method: MAF 
Iteration scheme: 1 
Initial iteration factor: 50 % 
Terminal time error: -20 % 

100% 

+50% 

+50%, 

F 
K\ 

.# 

l( 
- -

, I 

_ , 

,,5 

A20 0% L (i - 7 / 7 ; 

-50% 

Note: 

-50% 

The numbers indicate 
the iterations requiredfor convergence. 

0% 
ax 10 

+50% 

iteration scheme 1,Figure 7. - Convergence envelope for the MAF using 

initial iteration factor of 50% and terminal time error of -20 %. 
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Faith-Mars transfer 
Optimization mzethod: MAF 
Iteration 'scheme: 1 and 2 
Initial iteration' factor: 50 0o 
Terminal time error: 0% 
Update integer: 1 

+50% . 1-I.. 

X1Cj0%J 

0,% 

~lj>(f / 

t , 

/-7IX 

/7 
!f," 

-

---- - H '5 - __

-50% 

ote: 

-100% 

The numbers indicate 
the iterations required 
for convergence. 

-50% 0% 

a' 10 

+50% 

Figure 8. - Convergence envelope for the MAF using iteration schemes 1 and 2, initial 
iteration factor of 50%, terminal time error of O%and update integer of 1. 



Earth-Mars transfer IGr REPRODUCIBLE 

Optimization method: MAF 
Iteration scheme: 1 Note: The numbers indicate 
Initial iteration factor: 50% the iterations required 
Terminal time error: 20% for convergence. 

+50%t
 

_ 
_ 

I A_ ' ---

X0%-"
0 %2 -- , 

50% XI 

__<IXNXJX I 

-100% -50% 0% +50% +100 % 
6A 10 

Figure 9. - Convergence envelope for the MAF using iteration scheme 1,~-- ,:&!-I ?4,,u-I-,n r foi ---..I -r n n, I 
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positive terminal error is increased. This seems reasonable
 

since a negative X20 -error, which decreases the initial control
 

angle, combined with a positive tf error would probably cause
 

the vehicle to intercept Mar's orbit at a low angle. This tra

jectory would conceivably terminate closer to the optimal point
 

than if the time error were less.
 

Figures 7, 8, and 9 also display the characteristic that
 

the envelope boundary becomes poorly defined, i.e., more irregu

lar. This emphasizes the fact that many times only a slight
 

numerical difference exists between convergence and divergence,
 

and hence the scheme becomes very unpredictable near the bound

aries. This is emphasized further by noting that in many cases
 

a divergence occurs immediately after a relatively low iteration
 

convergence case.
 

Iteration Scheme 2 continues to integrate the differen

tial equations forward and skips the adjoint equation integration
 

unless a divergence occurs or a specified number (updating inte

ger) of forward passes have been made. Figures 10, 11, and 12
 

show Iteration Scheme 2 for an initial iteration factor of 50
 

percent and updating integers of 2, 4, and 6, respectively. The
 

figures indicate the total iterations and the number of adjoint
 

integrations required. Figure 8, showing Iteration Scheme 1,
 

may be considered a special case of Iteration Scheme 2 where the
 

updating integer is unity. A comparison of these figures reveals
 

that no significant change in the convergence envelope size or
 

shape has resulted from the application of Iteration Scheme 2 or
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Iteration scheme: 2 
 Note: 
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Figure 10. - Convergence envelope for the MAF using iteration 

initial iteration factor of 50% , terminal time error of 0% 
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convergence.
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Optimization method: MAF 
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increasing the updating integer. The total number of iterations
 

required increased, but the number of adjoint integrations de

crease as the updating integer is increased. This'trend con

tinues until the updating integer reaches four or six and this
 

appears to be a point of dimirfishing return for this particular
 

problem.
 

It becomes apparent that the initial value of the itera

tion factor has a pronounced effect on the convergence envelope
 

size, and in most cases convergence time as well. An initial
 

value of iteration factor of 20 percent, with either iteration
 

scheme, produces a significantly larger envelope than the ones
 

for 50 percent shown in Figures 7 through 12. This increase in
 

envelope size is accompanied by a significant increase in the re

quired computer convergence time for Iteration Scheme 1. Figure
 

13 illustrates this influence of the initial values of iteration
 

factor on the convergence time for the particular but'represen

tative cases where the Lagrange multiplier and terminal time
 

errors are as indicated on the figure. For Case 1, where the two
 

Lagrange multipliers and terminal time errors are -10, -10, and
 

20 percent, respectively, the largest values of initial iteration
 

factor result in the most favorable convergence times. On the
 

other hand, for the case where the initial error is larger, as
 

illustrated by Case 2 where the Lagrange multipliers and terminal
 

time errors are -20, 10, and 20 percent, respectively, some inter

mediate value of initial iteration factor results in the most
 

favorable time.
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Figure 13 also reveals the existence of an uncertainty
 

about the selection of the initial iteration factor. When a
 

problem is first attacked, one has little or no feel for tie per

centage correction to request. A low initial value for the iter

ation factor is usually selected because it is expected that this
 

results in a large envelope of convergence. A low initial itera

tion factor results in a convergence time penalty as shown in
 

Figure 13. However, in some situations a high value for the
 

initial iteration factor results in a convergence time penalty.
 

It is not known how to determine the best initial iteration
 

factor before a series of investigations is made.
 

Iteration Scheme 2 attempts to overcome this problem by
 

seeking the largest iteration factor that can be used, witnout a
 

trajectory divergence, before the time consuming adjoint inte

gration is made. Since only forward integrations are made in
 

bringing the iteration factor from a low initial value'to the
 

best value, the time penalty is reduced. The influence of ini

tial iteration factor on the convergence time is illustrated in
 

Figure 14 for Iteration Scheme-2. This plot may be compared to
 

one of the cases in Figure 13, and it is easily seen that for low
 

initial values of the iteration factor the time penalty is not so
 

severe. The objection to an initial low iteration factor is re

moved now, and yet good convergence possibilities remain because
 

large envelopes of convergence are associated with low initial
 

iteration factors.
 

The influence of the update integer on convergence times
 

is illustrated in Figures 15, 16, 17, and 18. These envelopes
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correspond to the envelopes in Figures 8, 10, 11, and 12, but
 

indicate the convergence times rather than the required itera

tions. A most interesting characteristic of Iteration Scheme 2
 

is revealed. For a given initial iteration factor of 50 percent,
 

the convergence times are generally reduced by increasing the up

dating integer to the four to six range. Larger values of the
 

updating integer result in higher convergence times. It is ex

pected that for this problem the best update integer approxi

mately equals the number of steps required between the initial
 

value of the iteration factor and unity.
 

It is very interesting to take a specific and repre

sentative example, and examine the norm of the terminal con

straints as a function of computation time. Figure 19 shows the
 

terminal dissatisfaction norm decreasing for Iteration Scheme 1
 

for initial values of the iteration factor of 20, 50, 70, and 100
 

percent. Not only is the increase in convergence time for the
 

smaller iteration factors evident, but the characteristics of the
 

convergence rate are also seen. Figure 20 illustrates these same
 

characteristics for Iteration Scheme 2 using an initial iteration
 

factor of 50 percent. The norm of the terminal dissatisfaction
 

is plotted as a function of computation time for update integers
 

of 1, 2, 4, and 6. With an update integer of six, the conver

gence time is approximately reduced by 50 percent when compared
 

to the extreme case where the integer is unity.
 

In an effort to determine some of the complications
 

associated with solving a different problem, the atmospheric
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Earth launch to circular orbit described in Appendix A.2 was
 

formulated and solved. These results are shown in Figures 21,
 

22, and 23. It was discovered, for the Earth launch problem,
 

that the convergence envelopes were less sensitive to terminal
 

time errors than for the Earth-Mars transfer. Hence, the plots
 

shown are the same as for previous cases with the exception tha'
 

terminal time variations are only 10 percent.
 

It is obvious from the figures that the method is rela

tively sensitive to X1 0 errors and relatively insensitive to
 

X2 0 errors. This Earth launch example reveals some of the samc
 

characteristics seen for the Earth-Mars transfer, namely, as the
 

terminal time error increases the convergence envelope increase.
 

in size and moves downward. This downward movement means a re

duction of negative X 2 error sensitivity.
 

One interesting characteristic, not seen in the Earth-


Mars transfer example, is that when the A20 error is 100 per

cent) considerable convergence difficulty is experienced. This
 

case corresponds to the initial control angle of 90 degrees. It
 

is rather remarkable that convergence still results for some
 

cases where the initial control angle is greater than 90 degrees
 

In summary, for Iteration Scheme 1 the envelope of con

vergence increases with positive increases in terminal time
 

error, for a given initial iteration factor. The envelope size
 

is increased further with a reduction of initial iteration fac

tor, but unfoFtunately the convergence time is increased. The
 

convergence envelope for Iteration Scheme 2 is also increased by
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reducing the initial iteration factor, for a given update inte

ger. For a given initial iteration factor, the convergence time
 

is reduced by increasing the update integer. The best times re

sult for update integers of approximately six, and increased
 

times result for further increases in the integer.
 

The significant fact is that Iteration Scheme 2 is
 

superior to Iteration Scheme 1 because low, and hence safe, ini

tial values of the iteration factor may be used without resulting
 

in an unreasonably large convergence time.
 

The application of this optimization method to a differ

ent problem resulted in approximately the same general conver

gence characteristics.
 

6.3.2 Method of Perturbation Functions
 

The required formulation as discussed in Section 3.2 is
 

simple and straightforward, and even more natural than MAF since
 

the perturbation equations are used directly. A general dis

cussion of the applications is presented in Appendix A.2 and a
 

specific application of the MPF is made in Appendix A.2.2.
 

The programming effort requires the forward integration
 

of the eight differential equations of motion and the Euler
 

differential equations. The eight perturbation equations must
 

also be integrated forward, and this must be done with three
 

different starting vectors. The coefficients for these pertur

bation equatfbns may be formed as needed and no storage is re

quired. This represents a decided advantage over the MAP,
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especially when the problem is of large dimension, because the
 

back spacing of tapes is not necessary. The programming com

plexity is reduced also because no checks are required for the
 

acquisition of proper coefficients, i.e., the coefficients are
 

simply formed as the forward integration is made. It may also
 

be noted that one less integration is required for the MPF as
 

opposed to the MAP, and this results in less total integration
 

time.
 

The integration of the perturbation equations requires
 

a large percentage of the total computational time. It is con

ceivable that the same numerical accuracy might result when a
 

variable integration step size is used, however, this increases
 

the programming complexity considerably. A constant step size
 

was selected for the integration of all equations.
 

The computer program that uses the MPF requires two
 

initially assumed Lagrange multipliers and an assumed'terminal
 

time. These estimates require a familiarity with the physical
 

problem and, to some degree, experience. The computer program
 

is built such that only the subroutines containing the differ

ential equations of motion, the Euler-Lagrange equations, and the
 

.perturbation equations must be changed to solve different prob

lems, and the effort is comparable to that required for the MAF.
 

Iteration Scheme 1 requires very little computer logic 

in addition to the Normal Scheme of requesting 100 percent termi

nal constraint satisfaction on each iteration. Operation is
 

simply transferred to a subroutine where the iteration factor is
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altered in accordance with the terminal norm criteria explained
 

in Section 3.3. The process is essentially the same as that for
 

the MAF.
 

Iteration Scheme 2 requires some additional programing
 

and storage, and is comparable to that required for the MAP.
 

Basically, the scheme is such that the iteration factor is in

creased, omitting a perturbation integration, until either the
 

norm of the terminal constraints diverges or a specified number
 

of nominals have been generated. If the norm diverges, the last
 

convergent trajectory is used as a nominal, and hence this tra

jectory must be saved until it is determined whether or not it
 

will be needed. The storage problem can be eliminated by simply
 

regenerating the last convergent trajectory.
 

An extensive analysis of the MPF is not made since the
 

theoretical development in Section 3.2 shows that exactly the
 

same algebraic equation used for the MAF is used to determine the
 

corrections. The only difference between the MAF and MPF is that
 

one less integration is required for MPF, and therefore a re

duced convergence time is expected. The envelopes of convergence
 

for Iteration Scheme 1 using initial iteration factors of 100
 

and 50 percent, respectively, are shown in Figures 24 and
 

25. The obvious fact is that the envelopes have the same size
 

and shape as the corresponding envelopes for the MA? shown in
 

Figures 5 and_8, and the numbers on the figures indicate an
 

equal number of iterations are required. Figures 26 and 27
 

illustrate the convergence times for the above cases. A
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Figure 24. - Convergence envelope for the MPF using iteration scheme 1, 
initial iteration factor of 100% and terminal time error of 0%. 
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Figure 25. - Convergence envelope for the MPF using iteration scheme 1,
 
initial iteration- factor of 50% and terminal time error of 0%
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Figure 26. - Convergence envelope for the MPF using iteration scheme 1, 
initial iteration factor of 100 % and terminal time error of 0 %. 
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comparison of the convergence times may be made between the MAF
 

and MPF by comparing the times shown in Figures 15 and 27, re

spectively. It is seen that the MAF must integrate a comparable
 

set of differential equations four times rather than only three,
 

as required by the MPF. Iteration Scheme 2 for the MPF was not
 

programmed.
 

The significant fact is that the MPF results in the
 

same envelope of convergence and requires the same number of
 

iterations as the MAF, but approximately 20 percent less com

puter time is required because one less integration is needed.
 

6.4 	 Quasilinearization Methods
 

The comparison and discussion of the Quasilinearization
 

Methods will consist of two separate analyses. The Method of
 

Generalized Newton-Raphson, including the normal procedure and
 

Iteration Scheme 1 is discussed first. The Modified Quasilinear

ization Method including the normal procedure and Iteration
 

S~heme 2 as discussed last. The Modified Method of Generalized
 

Newton-Raphson is also discussed briefly, but the MQM is empha

sized. The discussion content will include the applicable items
 

listed in the Section 6.2.
 

6.4.1 	 Method of Generalized Newton-Raphson
 

The required formulation of the Method of Generalized
 

Newton-Raphson as discussed in Section 4.1 is simple and rela

tively easy to apply, although this particular method is not
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capable of handling terminal constraint functions or determining
 

the terminal time in an efficient manner. For these reasons, an
 

extensive investigation of this method is not made. However,
 

several runs are made, and spot comparisons illustrate its effec

tiveness with respect to the other methods.
 

The programming effort requires the forward integration
 

of the homogeneous parts of eight linearized differential equa

tions of motion and the Euler differential equations. Also the
 

nonhomogeneous parts are integrated forward once, and all coeffi

cients for the solution of a linear system must be included for
 

use after each trajectory iteration. When convergence is ob

tained for the specified value of terminal time, a time iteration
 

is made by making a scalar application of the Newton-Raphson
 

technique.
 

If the solutions to both the homogeneous and nonhomo

geneous equations are stored, a new nominal is immediately avail

able. However, to conserve storage only the terminal values of
 

the solutions are stored and the next nominal is simply generated
 

by an additional integration.
 

The current trajectory is generated from the preceding
 

trajectory, however, after a positive correction of terminal time
 

has been made, no previous information is available. This fact
 

represents a problem that does not exist for the MAF or MPF. The
 

program is written so that a linear extension of all tne varia

bles of the pre-vious nominal is made to provide information for
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the current trajectory.
 

The computer program that uses the MGNR requires two
 

initially. assumed Lagrange multipliers, an assumed terminal time,
 

and an initial trial solution consisting of the time histories of
 

all eight variables. The estimates require a familiarity with
 

the physical problem to insure that the assumed quantities are
 

close enough to optimal that convergence will result. The sig

nificant difference between MGNR and MAF or MPF is that a com

plete solution must be assumed rather than just initial starting
 

values of the variables. If no reasonable solution can be de

cided upon, the nonlinear equations may be integrated to provide
 

the first solution. However, in the more. complex problems, this
 

solution may not be adequate to result in convergence.
 

The program is built such that only the subroutines con

taining the nonhomogeneous and homogeneous equations and the
 

trial solution must be changed to solve different problems. A
 

constant integration step size was selected for all integrations.
 

The Normal Scheme of the MGNR is that of making tra

jectory iterations, requesting 100 percent correction in the
 

terminal constraints, until convergence results for the assumed
 

terminal time. Then a time iteration is made and the process
 

continued. Iteration Scheme 1 requires very little additional
 

computer logic. This scheme amounts to avoiding time iterations
 

until the present metric becomes less than the previous metric.
 

The logic is simply inserted in the program, and an additional
 

subroutine is not used.
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A typical example of the convergence characteristics of
 

the MGNR is shown in Figure 28. This illustration shows how the
 

metric decreases as a function of computation time for the case
 

where the Lagrange multipliers and terminal time errors are -10,
 

-10, and 20 percent, respectivdly. A linear initial trial solu

tion is used and this solution is represented by long dashed
 

lines in Figure A.2.1. Trajectory iterations are made until the
 
_5

metric is less than 10 , then a time iteration is made. During 

the initial stages, the time iteration essentially destroys the 

reduced metric that has just been obtained. This characteristic 

is not quite so severe when terminal time errors are small. 

The convergence characteristics for the same example,
 

using Iteration Scheme 1 are shown in Figure 29, and a signifi

cant reduction in computation time is evident. This scheme
 

appears superior to the normal procedure, but it must be pointed
 

out that a theoretical analysis of this scheme has not, been made
 

to.define a bounds for convergence. For a given terminal time,
 

the convergence proof given by McGill (14) applies, but the time
 

iterations could be so poor that divergence would result. The
 

examples in Figures 28 and 29 show that the Iteration Scheme 1
 

results in a convergence time that is 43 percent less than that
 

required by the Normal Scheme.
 

The Modified Method of Generalized Newton-Raphson, dis

cussed in Section 4.1, is modified in the sense that a change in
 

the independent variable is made to eliminate the cumbersome de

termination of terminal time. One advantage of this method is
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that the independent variable range is the same for all itera

tions, thus simplifying the programming slightly. A disadvantage
 

is that one additional equation must be integrated and a rather
 

complex term is added to each of the existing equations, The
 

most significant advantage is that the terminal time determina

tion becomes an integral part of the iteration process.
 

The convergence characteristics of the MMGNR is illus

trated in Figure 30 for the same case shown in Figures 28 and 29
 

for the Normal Scheme and Iteration Scheme 1, respectively, using
 

the MGNR. The metric reduction becomes a monotonic function of
 

computation time, and when a linear initial solution is used the
 

convergence time is 27 percent less than that required by the
 

MGNR using the Normal Scheme. Figure 30 also shows the conver

gence characteristics for the case where the initial trial solu

tion is determined from integrating the nonlinear differential
 

equations.
 

6:4.2 Modified Quasilinearization Method
 

The required formulation of the Modified Quasilineari

zation Method as discussed in Appendix A.2.3 is simple and rela

tively easy to apply and this method is capable of handling
 

terminal constraint functions. The terminal time determination
 

is included as an integral part of the process and this method is
 

very efficient compared to the MGNR. Also, no additional equa

tions or terms are needed as with the MMGNR.
 

The programming effort requires the forward integration
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of the homogeneous parts of eight linearized differential equa

tions and Euler-Lagrange equations. Also, the nonhomogeneous
 

parts are integrated forward and all coefficients are evaluated
 

from the previous nominal. The corrections that must be applied
 

for the next iteration are determined by solving a linear system.
 

Only the terminal values of the forward integrations are stored
 

as explained in Section 6.4.1. When a positive terminal correc

tion is made, a linear extension of the variables from the pre

vious nominal is made.
 

The computer program that uses the MQM requires two ini

tially assumed Lagrange multipliers, an assumed terminal time,
 

dnd an initial trial solution. In a manner similar to the MGNR,
 

if a reasonable initial solution cannot be selected, the non

linear equations may be integrated to provide an initial solu

tion. The program is built such that only the subroutines con

taining the nonhomogeneous and homogeneous equations and the
 

trial solution must be changed to solve different problems.
 

The Normal Scheme of the MQM is that of requesting a 100
 

percent correction in the terminal constraints. Iteration Scheme
 

2, used with the MQM, is similar to Iteration Scheme 1 for the
 

MAF or MPF, where a percentage correction in the terminal con

straints is requested. The logic required to determine whether
 

the iteration factor is increased or decreased in the Quasi

linearization Methods is more complex than that required for the
 

MAF or MPF, because the metric p must be determined. This cal

culation requires several operations on all eight dependent
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variables at each time step and hence requires a relatively large
 

amount of time compared to the calculation of the norm in the MAP
 

or MPF.
 

The convergence envelopes for the MQM using the Normal
 

Scheme, a nonlinear initial trial solution and -20, 0, and 20
 

percent errors in terminal time, respectively, are shown in
 

Figures 31, 32, and 33. The nonlinear initial trial solution is
 

the one that results from integrating the nonlinear differential
 

equations. Comparing these Figures with the Figures 1, 2, and 3
 

for the MAP reveals that while the general shape of the envelopes
 

are the same, the MQM results in slightly smaller envelopes. For
 

negative and zero terminal time errors, the method is extremely
 

sensitive to Lagrange multiplier errors that have the same sign.
 

For positive terminal time errors, the method is much more sen-


A2
sitive to positive errors than to negative X2 errors.
 

An attempt to generate the same envelopes by using the
 

MQM with a constant initial trial solution must be recorded as a
 

failure, because no convergent solutions were obtained. The con

stant initial trial solution used is illustrated in Figure A.2.1
 

by short dashed lines.
 

Figures 34, 35, and 36 illustrate the convergence en

velopes for MQM using Iteration Scheme 2 with an initial itera

tion factor of 50 percent, a nonlinear initial solution and -20,
 

0, and 20 percent errors in terminal time, respectively. These
 

envelopes are significantly larger than the envelopes for the
 

Normal Scheme shown in Figures 31, 32, and 33. It is interesting
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Optimization method: MQM 
Iteration scheme: Normal . . . . . 
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Figure 31. - Convergence envelope for the MQM using the normal iteration 
scheme, Initial iteration factor of 100% and terminal time 
error of -20%. 
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Iteration scheme: Normal
 
Initial iteration factor: 100%
 
Terminal time error: 0%
 
Initial solution: Nonlinear
 

+50% 	 -- 

6%	 o2o 

-50% 

-50% 0% +50%
 

Note: 	 The numbers indicate 
the iteration required 
for convergence. 

Figure 32. -Convergence envelope for the MQM using the normal 
iteration scheme, initial iteration factor of 100% 
andtermihal time error of 0% . 
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Earth-Mars transfer
 
Optimization method: MOM
 
Iteration scheme: Normal
 
Initial Iteration factor: 100%
 
Terminal time error: 20 %
 
Initial solution: Nonlinear
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Figure 33. - Convergence envelope for the MQM using the normal iteration 
scheme, initial iteration factor of 100% and terminal time error of 20%. 
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Figure 34. - Convergence envelope for the MQM usIng iteration scheme 2, 
initial iteration factor of 50 % and terminal time error of -20 %. 
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Figure 35. - Convergence envelope for the MQM using iteration scheme 2, c. 
initial iteration factor of 50 %and terminal time error of 0 %. 
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Figure 36. - Convergence envelope for the MM using teration scheme 2, 
initial iteration factor of 50% and terminal time error of 20% . 
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to note that while the envelopes for the Normal Scheme are
 

slightly smaller than the corresponding envelopes for the MAF,
 

the envelopes shown in Figures 34, 35, and 36 are slightly larger
 

than the corresponding envelopes for the MAF shown in Figures 7,
 

8, and 9. This suggests that Iteration Scheme 2 for the Quasi

linearization Methods is more effective than Iteration Scheme 1
 

for the Perturbation Methods. The Figures 34, 35, and 36 follow
 

the pattern previously mentioned for the other methods in that
 

the method is increasingly sensitive to positive X2 errors as
 

the terminal time error increases.
 

It is of definite interest to note the required conver

gence times for the cases illustrated for the MQM. As an ex

ample, Figure 37 shows the convergence times for the envelope of
 

Figure 35. This envelope may be compared directly with the
 

corresponding envelopes generated by the MAF in Figures 15, 16,
 

17, and 18 and the MPF in Figure 27. An obvious fact is that the
 

MQM requires slightly more computation time than the MAF and MPF,
 

but shows considerable improvement over previous quasilineari

zation techniques such as the MGNRand MMGNR. In all fairness,
 

however, it must be pointed out that more time was spent in trying
 

to make the programming efficient for the MQM than for the MGNR
 

and MGNRM.
 

An insight to the convergence characteristics of the MQM
 

may be seen in Figure 38 for the special case where the Lagrange
 

multiplier and terminal time variations are -10, -10, and 20 per

cent, respectively. This figure may be compared directly with
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Figure 38. - Metric p as a function of computation time for the MQM 
using iteration scheme 2, and initial iteration factor 
of 100%. 
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Figures 28, 29, and 30 for the MGNR using the Normal Scheme,
 

MGNR using Iteration Scheme 1 and MMGNR, respectively. Figure 38
 

may also be compared, in a sense, with the 100 percent curve in
 

Figure 19 for the MAF. Caution must be exercised, however, be

cause the ordinates represent different quantities. It is ex

pected that a reduction of the metric p is more stringent a re

quirement than reduction of the terminal constraint norm. The
 

more stringent requirement results from the fact that the metric
 

p is composed of so much more information than the terminal con

straint norm.
 

Figure 39 illustrates the effect of the initial value of
 

iteration factor on convergence time for two specific cases of
 

initial parameter error. This figure may be compared to Figure
 

13 which represents the same information for the MAF for the same
 

cases. The same characteristics are noted in that for some cases
 

the best initial iteration factor is somewhat less than 100 per

cent and that this best value is not the same for all cases. One
 

additional characteristic, noted in Figure 39, is that very large
 

penalties in the convergence times are paid when low initial
 

iteration factors are used. This deficiency is attributed to the
 

metric criteria used to determine how the iteration factor must
 

be changed. When only a small percentage correction is re

quested, the metric does not decrease rapidly at first. This is
 

because the metric is interpreted as the maximum distance between
 

successive trajectories. In fact, in application the metric
 

sometimes increases slightly and this causes the iteration factor
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Figure 39. - Convergence time as a function of the initial value of 
iteration factor for the MOM using iteration scheme 2, 

and a nonlinear initial solution. 
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to decrease. This process could conceivably have a decelerating
 

effect on the convergence. This phenomena may be seen in Figure
 

40 for the case where the initial iteration factor is 20 percent.
 

Figure 40 also illustrates the convergence characteris

tics for several different initial iteration factors and may be
 

compared to Figure 19 which represents the same information for
 

the MAF for the same case. It should be noted that near the
 

terminal phase of each trial the metric reduction is nearly quad

ratic.
 

In summary, the Quasilinearization Methods show a wide
 

range of convergence characteristics, but the proposed method,
 

the MQM, successfully reduces the convergence times and increases
 

the convergence envelopes to become competitive with the MAF and
 

MPF.
 

Generally speaking, the MQM displays the same character

istics that are seen for the MAP and MPF. For the case when an
 

initial iteration factor of 50 percent is used, the envelope of
 

convergence for the MQM is slightly larger than the corresponding
 

envelope for the MAF and MPF. But the convergence times are al

ways slightly larger than for the MAP.
 

6.5 	 Gradient Methods
 

The comparison and discussion of the Gradient Methods
 

will consist of two separate analyses. The Method of Steepest
 

Descent, including Iteration Schemes 1 and 2, is discussed first.
 

and the Modified Method of Steepest Descent is discussed last.
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Figure 40. - Metric pas a function of computation time for MQM 
using iteration scheme 2 and a nonlinear initial solution. 
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The discussion content will include the applicable items listed
 

in Section 6.2.
 

6.5.1 Method of Steepest Descent
 

The required formulation of the Method of Steepest des
 

scent as discussed in Section 5.1 is simple and straightforward,
 

but slightly cumbersome when compared to the MAF or MPF. A spe

cific application of the MSD is presented in Appendix A.2.4.
 

The programming effort requires forward integration of
 

four differential equations of motion, storing the dependent
 

variables in computer memory or on tape at each time step. This
 

requires less storage than storing the A and B matrices. The
 

four adjoint differential equations, Eq. (5.6), are integrated
 

backwards five times using the variables stored during the for

ward integration to form the coefficients. One additional com

plexity is that Eqs. (5.30) through (5.32) must also be inte

grated backwards, and may be carried along simultaneously with
 

the adjoint equations. To reduce the programming complexity, a
 

constant integration step is used for all integrations. The com

puter storage problem can be eliminated by integrating the dif

ferential equations of motion backward along with the adjoint
 

equations, Eq. (5.6), and Eqs. (5.30) through (5.32). This is
 

not done in the present method because the equations of motion
 

must be integrated forward anyway to determine the terminal
 

values of state.
 

In addition to the programming effort explained above,
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the most serious disadvantage of the MSD is that a moderate
 

amount of human intervention and experience is required to im

plement the program. For example, the weighting matrix W is
 

not defined, and by just using the unity matrix the less sensi

tive regions of the control prdgram are very slow in acquiring
 

the optimal shape. The weighting matrix may be used to speed
 

this optimal shaping process, but the insensitive regions of the
 

control program are not always known.
 

An examination of Eq. (5.33) reveals that the first
 

group of terms are related to the minimizing effort while the
 

last group of terms are related to the terminal constraint satis

faction. There is, however, some cross coupling of the terminal
 

constraint satisfaction in the first term. The procedure used to
 

affect convergence requires a selection of an allowable average
 

control deviation, based on Eq. (5.19), that does not invalidate
 

the linearity constraints on the problem. This allowable control
 

deviation must be reduced in some specified manner as the process
 

progresses. If the numerator of the radical in Eq. (5.33) is
 

negative when 100 percent correction in the terminal dissatis

faction is requested, the percent correction that causes the
 

radical term to vanish is determined. When this occurs, emphasis
 

is placed on reducing the terminal dissatisfaction. If the
 

numerator is positive when 100 percent correction is requested,
 

the radical is used and both the performance index is reduced,
 

and the terminal constraints are driven toward satisfaction. The
 

computer logic involved in the above operations requires a
 



169 

significant amount of the iteration time.
 

The computer program that uses the MSD requires the ini

tial value of the state variables, a stopping condition and an
 

assumed control program. These estimates require some familiar

ity with the physical problem.' The stopping condition that is
 

chosen must be one that will be satisfied. The control program
 

selection is not as critical as it is for the MQM. The computer
 

program is not so easily generalized as it is for the MAF, MPF,
 

or MQM, i.e., extensive programming is required to accommodate a
 

different problem.
 

Iteration Scheme 1 simply uses the unity matrix for W
 

and Iteration Scheme 2 uses the H matrix. This second
 

scheme requires some additional computer storage and programming
 

When Iteration Scheme 2 is to be used, HUU must be formed witi
 

the variables that result from integrating the adjoint differen

tial equations backwards, using v as given in Eq. (5'.27) for
 

the starting conditions. A major problem when using Iteration
 

Scheme 2 is that when a percentage correction in the terminal
 

constraints is requested, thereby forcing the radical term in
 

Eq. (5.33) to vanish, v becomes infinite. Clearly this cannot
 

be used as a starting condition for the adjoint equations.
 

With the examples discussed, this radical term vanishes
 

for the first few iterations, and when this happens the unity
 

weighting matrix is used. As soon as the radical becomes finite,
 

the Huu matrix is calculated for use on the following tra

jectory.
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The thrust angle as a function of mission time for the
 

Earth-Mars transfer is shown in Figures 41, 42, 43, and 44, and
 

the convergence process from the assumed history to the Eulerian
 

history is illustrated. Figures 41 and 42 show the convergence
 

characteristics for two widely different initially assumed con

trol programs, designated Case 1 and Case 2, using Iteration
 

Scheme 1. It is interesting to note that the number of itera

tions required is relatively independent of the initial control
 

program. After 30 iterations both cases yield control programs
 

that almost obscure large portions of the Eulerian program, and
 

hence are not shown. When to terminate the iteration process is
 

not clear since the Eulerian optimal is really never reached.
 

The method used here was to continue until no further improvement
 

was being made, i.e., until the solution began to oscillate about
 

some mean path. A more sophisticated method would be to termi

nate when a time integral of Hu or HUTHu became arbitrarily
 

small.
 

An apparent discontinuity begins to develop at approxi

mately 100 days, as seen in Figure 41, and becomes more severe as
 

the iterations progress. After 30 iterations the apparent dis

continuity becomes very sharp and the Eulerian control is accu

rately approximated. The same characteristic is noted in Figure
 

42.
 

The effectiveness of Iteration Scheme 2 in shaping the
 

optimal control program is illustrated in Figures 43 and 44, and
 

it is seen that the number of iterations required is signifi

cantly reduced. In comparing Figures 41 and 43, for instance,
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it is seen that the apparent discontinuity development is much
 

faster in the latter figure. These two cases are identical for
 

the first 11 iterations because the radical in Eq. (5.33) van

ishes and W = 1, but starting with the 1 2th iteration, the Huu
 

matrix is formed and used. It is during these final iterations
 

that thejfull value of Iteration Scheme 2 becomes evident. Aftez
 

only four additional iterations the apparent discontinuity, as
 

shown in Figure 43, is well beyond the development shown in
 

Figure 41. Moreover, the Eulerian is much better approximated,
 

for a given number of iterations, when Iteration Scheme 2 is
 

used.
 

The same characteristics are seen in Figures 42 and 44.
 

For this case, however, the Huu matrix is not calculated until
 

the 23r d iteration. After only two additional iterations, Itera

tion Scheme 2 in Figure 44 shows marked improvement in the devel

opment of the apparent discontinuity.
 

An average iteration for Iteration Scheme 1 requires
 

approximately 2.75 seconds of computer time, while approximately
 
, 

3.0 seconds is required with Iteration Scheme 2 when the Huu
 

matrix must be formed. However, an extensive step size study was
 

not made for the MSD. The step size used was the same as that
 

used for the integrations in the indirect methods.
 

It should also be pointed out that the terminal con

dition resulting from Eq. (2.14) may be used to determine the
 

terminal value of the Lagrange multipliers. These values are
 

used to start the backward integration of the adjoint equations,
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for tne Huu determination, and also may be used to estimate
 

the Lagrange multipliers required for starting the indirect opti

mization methods. For the case illustrated in Figure 44 the
 

first time Huu is determined, the values of and
A10  A2 0
 

are calculated to be 2.15 and 0.65 percent larger than the values
 

that correspond to the optimal trajectory, respectively. This
 

error is well within the envelope of convergence of all the in

direct methods studied.
 

6.5.2 Modified Method of Steepest Descent
 

The required formulation of the Modified Method of
 

Steepest Descent as discussed in Section 5.2 is simple and
 

straightforward, and is not as cumbersome as the MSD. A spe

cific application of the MMSD is presented in Appendix A.2.5.
 

The programming effort requires forward integration of
 

four differential equations of motion, storing the dependent
 

vaiiables in computer memory or on tape at each time step. This
 

requires less storage than storing the A and B matrices. The
 

four adjoint differential equations are integrated backward only
 

once, using the variables stored during the forward integration.
 

The Eq. (5.48) must also be integrated so that after a desired
 

penalty function decrease is specified, a step size K may be
 

determined. The MMSD requires a significantly reduced number of
 

operations, as opposed to the MSD, because the adjoint equation
 

is integrated backwards with three less starting vectors and the
 

integration of Eq. (5.48) is much less time consuming than the
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integration of Eqs. (5.30) through (5.32) in the MSD. The stor

age problem associated with the first forward integration may be
 

avoided in a manner similar to that suggested in Section 6.5.1.
 

The present method does store the forward integration and use a
 

constant integration step size for all integrations.
 

In addition to the programming effort explained above,
 

the most serious disadvantage of the MMSD is that a considerable
 

amount of human intervention and experience is required to imple

ment the program, even more than that required for the MSD. For
 

example, the step size K is not defined, and must be approxi

mated by using Eq. (5.48). A still more serious deficiency is
 

that a constraint on the control deviation is not included as an
 

integral part of the method itself, and hence appropriate com

puter logic must be used to insure that the linear constraints o
 

the problem are not violatea. One further complexity is that the
 

convergence characteristics are highly dependent on the factors
 

that weight the terminal constraints in the penalty function, and
 

the magnitude of these factors are not specified. To compound
 

the matter, the rates at which these factors are changed to
 

tighten the terminal constraints are not known. It is seen that
 

the price that must be paid for the simplicity of the method is
 

that of increased arbitrariness, and a considerable amount of
 

skill and experience is required to obtain meaningful results.
 

This method has been programmed and is in the stage of evalua

tion, but no results are presented here.
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6.6 Summary of the Comparison
 

The comparison of optimization methods thus far has con

sisted of individual analysis of each method with an occasional
 

comment concerning the relative merits of one method with respect
 

to the others. It would be helpful to summarize the conclusions
 

of the comparison with particular emphasis on the basis of com

parison as outlined in Section 6.2. A summary of the comparison
 

is:
 

(1) The programming complexity and required formulation
 

time is greater for the MQM and MSD than for the MAF,
 

MPF and MMSD, because more computer logic is required.
 

(2) The MAF and MSD requires more computer storage than
 

the other methods.
 

(3) The MSD and MMSD require more human intervention
 

and intuition than the other methods, and hence are
 

difficult for inexperienced personnel to use. However,
 

.the indirect methods become difficult to implement when
 

the problem dimension is large.
 

(4) The computer program for the MSD requires consider

able modification for solving a different problem, while
 

the other programs require less modification.
 

(5) The convergence envelope sizes for all the indirect
 

methods are essentially the same when the initial itera

tion factor is near 100 percent. The MQM envelope is
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slightly larger than the envelopes of the other methods
 

when the initial iteration factor is in the 50 percent
 

range.
 

(6) The time penalty associated with the lower initial
 

iteration factors is greater for the MQM than the other
 

indirect methods.
 

(7) The MPF is superior to the MAF and MQM when conver

gence time is considered, because of the one less equa

tion that must be integrated.
 

(8) The approximations to the Lagrange multiplier val

ues as derived by the MSD are well within the conver

gence envelopes of all the indirect method investigated.
 



CHAPTER 7
 

DESCRIPTION AND EVALUATION OF NUMERICAL PERFORMANCE
 

The evaluation of numerical performance is an essen

tial feature in assessing the accuracy of an optimization
 

technique. The primary sources of error are encountered dur

ing numerical integration and solving of linear systems
 

(which includes matrix inversion). Most of the computational
 

time is taken during numerical integration and hence, in

creasing the speed of the integration will have a pronounced
 

effect on the total computer time. The criterion used for
 

defining convergence is also a factor in determining total
 

time, and if caution is not exercised an unrealistic com

parison between different optimization methods could result.
 

7.1 	 Numerical Integration
 

There are many characteristics that must be con

sidered when selecting a particular numerical integration
 

scheme; some of the most important are accuracy, stability
 

and speed. The method and procedure to be explained takes
 

excellent advantage of the above characteristics.
 

7.1.1 	 Numerical Integration Routine
 

The numerical integration routine consists of two
 

subroutines and either a control subroutine or a control
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block of code. A Runge-Kutta fourth-order routine is used as
 

a starter, supplying the initial and three succeeding deri

vatives. Control is then shifted to a subroutine that con

tains a fourth-order Adams-Bashford predictor and a
 

fifth-order Adams-Moulton corrector. An option for the
 

iteration of the corrector is provided.
 

One of the nicest features of the integration package
 

is the method by which the derivatives are stored and moved.
 

The names that refer to these locations are simply changed,
 

rather than changing the location of each derivative itself,
 

and the values are used as if being rolled from a drum.
 

Credit for this unique and time saving idea is given to
 

W. T. Fowler and G. J. Lastman of the Engineering Mechanics
 

Department, The University of Texas.
 

An additional capability of the subroutine is that
 

the starting value of the integration step size may be sub

divided into N substeps, thus providing extremely accurate
 

starting values for the derivatives. The Runge-Kutta is
 

then called 3N times and the derivatives are saved every Nth
 

integration step. Four derivatives now being available, the
 

integration proceeds using the usual predict-correct cycle.
 

7.1.2 Numerical Integration Procedure
 

The numerical integration proceeds using N = 3 and 

the Runge-Kutta is called nine times, hence a derivative is 
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saved on every third substep. This provides the initial
 

four values required by the Adams-Bashford predictor. A
 

constant value of step-size is used to continue 'the inte

gration.
 

Two methods are used to terminate the integration,
 

and the method selected depends on whether or not a back

wards integration of the adjoint equations is expected. If
 

the adjoint equations are to be integrated, when the remain

ing time is less than four steps this time is subdivided into
 

3N substeps and control is shifted to Runge-Kutta. This pro

vides values of the dependent variables which will be used to
 

form coefficients for the backwards integration of the
 

adjoint equations. If backwards integration is not antici

pated, when the remaining time is less than one step, control
 

is shifted to Runge-Kutta for the final time increment.
 

The subdividing of integration steps at the beginning
 

and end of the trajectory increases the programming complex

ity, however, it was decided that this additional difficulty
 

was more than compensated for by the increase in accuracy of
 

the starting derivatives.
 

7.1.2.1 Successive Application of Corrector
 

Successive application of the Adams-Moulton corrector
 

was made for an optimal Earth-Mars transfer trajectory using
 

from one through five applications. No improvement was made
 



in the optimal values or the Lagrange multipliers and termi

nal time after the number of applications reached three.
 

Hence, it was decided that two applications of the corrector
 

would be sufficient.
 

The computation time is reduced by approximately 20
 

percent when only one application of the corrector is made
 

and increased by approximately 20 percent when three correc

tions are made.
 

The selection of a corrector with two iterations was
 

encouraged further by examination of the terminal values of
 

the state variables after the first iteration.
 

7.1.2.2 Step Size Selection
 

The step-size of the numerical integration technique
 

is extremely important. Not only does the accuracy qf the
 

method depend on this selection, but the resulting computer
 

-time as well. So much depends on this selection that a con

siderable effort for its determination is justified. One
 

complicating factor that exists for comparison studies is
 

that convergence time is to be compared for all methods,
 

some of which might require different integration step sizes.
 

The criteria that is used in selecting step-size is
 

determined in the following manner:
 

(1) Use the near optimal starting conditions of
 

-10, -10, and 20 percent error in the initial
 



Lagrange multipliers and terminal time, respectively.
 

Proceed to a convergent condition using integration
 

step sizes that range on either side of some reason

able value.
 

(2) Record the resulting optimal values of the
 

Lagrange multipliers and terminal time and the time
 

required for convergence.
 

(3) Small integration steps result in large round

off errors and large steps result in large trunca

tion errors. A step-size value in the range where a
 

maximum number of signficant figures agree is in

terpreted as a desirable one.
 

The integration step-size of 0.03 units of time was
 

chosen for the Earth-Mars transfer because the value of the
 

estimated variables on either side of the selected step
 

agreed to at least five places. The step-size for the Earth
 

launch trajectory was selected to be 2.0 seconds.
 

The plot in Figure 45 of convergence time as a func

tion of integration step-size for the MAF, MPF, and MQM and
 

the Earth-Mars transfer reveals that a larger step would
 

result in fewer places of numerical agreement, while a
 

smaller step would suffer from a severe time penalty as well
 

as fewer places of agreement.
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7.2 Linear System Routine
 

The computer routine that solves a general linear
 

system of equations AX = B is composed of six subroutines.
 

The routine has the additional capability of returning the
 

determinate of A , an inverse of A , an indication if A is
 

singular and an estimate of the condition number of A
 

The first operation of the master driver program is
 

to row equilibrate the matrix A by an exponent procedure.
 

The equilibrating multipliers are stored for later use to
 

scale the right hand side B An initial estimate of X
 

is determined and a residual vector is found that defines a
 

new linear system. This system is solved and a correction
 

is added to the previous solution. Sufficient information
 

is then available to initiate an iteration for the final
 

solution of X
 

7.3 Numerical Criteria Affecting Accuracy
 

The numerical accuracy of a computer solution depends
 

not only on programming skills, but other criteria as well.
 

For instance, it is desirable in numerical studies to achieve
 

some degree of numerical magnitude compatibility. This is
 

conveniently accomplished by normalizing of the state vari

ables, Lagrange multipliers, and time.
 

One additional item that affects numerical accuracy
 

is the criterion for establishing when convergence has
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occurred. Since it is desired to compare the results of
 

several different optimization methods on a convergence time
 

basis, it is essential that the methods result in the same
 

order of numerical accuracy.
 

7.3.1 Normalization of Numerical Parameters
 

In many cases, such as the ones presented here, the
 

correction to several of the variables is used to determine
 

some of the procedures followed in the iteration scheme,
 

even though these variables have different units. Hence, it
 

is desirable, from a computational point of view, to achieve
 

some degree of numerical magnitude compatibility,
 

This normalization is accomplished for the state
 

variables by selecting certain quantities to be new units of
 

that variable. As shown in Appendix A.4, three variables
 

are selected and these selections dictate new units for the
 

remaining variables. An effort is made to choose the three
 

variables such that the range of all variables is near unity.
 

In an effort to make the Lagrange multipliers numerically
 

compatible with these state variables, a scaling process is
 

used.
 

In any two-point boundary value problem where 2n
 

differential equations are involved, 2n+2 boundary condi

tions must be specified, all of which are not necessarily at
 

the same boundary. If an additional initial boundary
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condition is obtained, a terminal boundary condition must be
 

ignored. Now, since the Euler Lagrange equations are linear
 

and homogeneous, the solution is simply a linear magnifica

tion of the initial conditions.
 

In the optimization problem, the Lagrange multipliers
 

may be normalized by selecting one multiplier to be positive
 

or negative unity and in this manner adding one initial
 

boundary condition. This simply scales the multipliers by
 

the unnormalized value of this multiplier. With the addition
 

of this initial boundary condition, a terminal condition must
 

be ignored. It is recommended that the ignored terminal
 

condition be one of the conditions that result from the
 

transversality equations because,usually there is little
 

intuitive feel for the physical significance of these equa

tions. In requesting a desired improvement in the satisfac

tion of terminal constraints, it may be helpful to have a
 

intuitive feel for the meaning of these constraints.
 

The fact that one of the transversality conditions
 

is ignored does not mean that this condition is not satis

fied. For instance, if the ignored transversality terminal
 

constraint
 

h = (x + AT)f 

is perturbed so that the terminal dissatisfaction becomes
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dh = ( xxdx + xtdt + dAT)f 

it is seen that when the solution does converge, the termi

dxf, dtf, and dXT
nal dissatisfaction vanishes because 


vanish.
 

7.3.2 Criteria for Defining Convergence
 

Establishing when convergence has occurred is an es

sential part of determining the characteristics of a conver

gence process. Defining convergence becomes a matter of
 

arbitration.
 

In the present study the criterion used is that the
 

corrections being applied to the initial estimates of the
 

Lagrange multipliers and terminal time must be less than
 

some small number. There are, however, several other tra

jectory characteristics that must be observed. For instance,
 

in the MAF and MPF an improvement in the terminal constraints
 

is requested, but this request is not always completely ef

fective. Therefore, the norm of the terminal constraints is,
 

improved as the method proceeds, and hence the convergence
 

definition could hinge on the terminal dissatisfaction being
 

less than some small number. Even if this criterion is not
 

used, as in tne case presented here, the norm of terminal
 

dissatisfaction is of great interest and should be observed
 

closely.
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In the investigation of the MGNR the terminal con

straints are satisfied identically, but the trajectory shape
 

does not correspond to the shape assumed by a trajectory
 

that satisfies the optimality conditions. Hence, one logical
 

criterion for this method is a metric that represents the
 

maximum distance between corresponding time points on the
 

present and previous trajectory. This.metric is recorded
 

and is used in the selection of the correction criterion.
 

The iteration procedure for the indirect methods
 

continue until change in the norm of terminal dissatisfaction
 

between the final two iterations in MAF and MPF is comparable
 

in numerical magnitude to the metric described in MGNR.
 

These criteria for establishing convergence may result in
 

slightly different values of correction criterion for the
 

different methods. The over-riding factor of concern is
 

that trajectories to be compared should have approximately
 

the same numerical accuracy.
 

A correction criterion of 10- 6 for an Earth-Mars
 

transfer using MAF and MPF produced a final terminal norm
 

change of order 10- . The correction criterion that re

sulted in a metric of approximately 10 5 was also 10- 6. The
 

MSD is difficult to compare with the indirect methods since
 

convergence in the same sense is never reached.
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7.4 Computation Facilities
 

The numerical investigation was made at the facili

ties of NASA-Manned Spacecraft Center, Houston, Texas. The
 

facility used for the numerical calculations was the directly
 

coupled IBM 7094. All programs were programmed in FORTRAN IV
 

compiler language.
 



CHAPTER 8
 

CONCLUSIONS AND RECOMMENDATIONS
 

There have been many significant conclusions based on
 

both the theoretical and numerical results described in the
 

previous chapters. Detailed results and conclusions have been
 

presented in Sections 6.3, 6.4, and 6.5. In Section 6.6, a
 

summary of the relative merits of the methods is made with
 

particular emphasis on the basis of comparison as explained in
 

Section 6.2. A general summary of the most significant con

clusions are presented in this chapter.
 

The many questions that have been successfully answered
 

during this investigation have brought forth many new un

answered questions, and this is as it should be. The existence
 

of these new questions provide a motivation for additional and
 

perhaps rewarding studies, and several possibilities for con

tinued investigation are suggested.
 

8.1 Summary of Conclusions
 

The major theoretical conclusions resulting from the
 

analysis are:
 

(1) The Method of Adjoint Functions and the Method
 

of Perturbation Functions are recognized as essen

tially the same method. The Method of Perturbation
 

Functions, however, requires one less integration
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because of the more efficient manner in which the co

efficient matrix of the perturbation equation is
 

generated.
 

(2) The Modified Quasilinearization Method is an ex

tension of the Method of Generalized Newton-Raphson
 

which accommodates problems that have terminal bound

aries given as general functions of the state and/or
 

Euler variables. Moreover, the terminal time deter

mination is made an integral part of the iterative pro

cedure itself, and no additional terms must be added to
 

the existing differential equations and no additional
 

differential equations are needed.
 

(3) A unique and easily determined weighting matrix
 

has been derived which increases the convergence rate
 

of the Method of Steepest Descent. This matrix assists
 

the method in accelerating the shaping of the optimal
 

control program during the terminal iterations.
 

The other major conclusions resulting from the analysis
 

are:
 

(1) Two iteration schemes which significantly increase
 

the possibility for convergence have been successfully
 

implemented for the indirect methods. This desirable
 

characteristic is obtained with one of the schemes with

out an appreciable increase in convergence time.
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(2) The Modified Quasilinearization Method is success

fully implemented and results in a significant decrease
 

in convergence time when compared to the other quasi

linearization methods studied.
 

(3) The Method of Steepest Descent, after only a few
 

iterations, provides initial values of the Lagrange
 

multipliers which are well within the convergence
 

envelopes of all the indirect methods investigated.
 

The results of this investigation support the claim
 

that a hybrid optimization method would be the most desirable
 

method to build for a general purpose capability. This hybrid
 

method would consist of the Method of Steepest Descent for the
 

initial phase of optimization and switch to the Method of Per

turbation Functions for the later phase. It must be pointed
 

out, however, that building a general purpose optimization
 

method would result in a very time consuming method, whereas
 

by knowing the specific nature of a given situation, a very
 

efficient method can be tailor-made for that particular situa

tion.
 

8.2 Recommendations for Continued Study
 

The present investigation has succeeded in developing
 

a new method, based on the theory of quasilinearization, which
 

places the Quasilinearization Methods in a more competitive
 

position with the Perturbation and Gradient Methods. Several
 

iteration.schemes are formulated and applied, and significant
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reductions in computation time and initial parameter sensiti

vity have been realized. A foundation has been laid for build

ing more complex methods which will in turn handle more complex
 

and realistic problems.
 

A natural extension of the current investigation would
 

be to study several,more example problems that have a larger
 

dimension, more control variables and,that require inequality
 

constraints, such as a three-dimensional, atmospheric, reentry
 

problem.
 

Some thought has been given to developing a method for
 

approximating the initial values of the Lagrange multipliers
 

by assuming a control program for the first iteration in the
 

indirect methods, or by using the constants of motion as de

rived by Melbourne (28).
 

The applicability of several other methods for solving
 

the nonlinear two-point boundary value problem, associated with
 

the trajectory optimization problem, should be investigated,
 

such as the ones proposed by Merriam (29) and Sylvester and
 

Meyer (30). A comparison should be made between the methods
 

discussed in this study and the methods recently proposed
 

by McReynolds and Bryson (24) and Kopp and Moyer (11).
 

A generalized hybrid optimization program may be
 

easily built in which the initial values of the Lagrange multi

pliers are approximated by using a direct method, then switch

ing, when the estimates are within the convergence envelope,
 

to an indirect method for rapid convergence. The details of
 

such a procedure should be studied.
 



APPENDIX A.l
 

Application of the Reduction of an Optimization Problem to a
 
TwotPoint'Boundary Value Problem
 

The following application is formulated to illustrate
 

the procedure explained in Section 2.2. The equation numbers
 

in parenthesis refer to the corresponding equation in Section
 

2.2. The nonlinear, ordinary, differential equations of
 

motion are
 

v2 
 GM T sin8
 x1 = u=r r-if 

x? = v= v + T coso f2
 
x (A.l.l) 

(2.23) 

S3r= = f 

x = e= F 

and the nonlinear, ordinary, Euler-Lagrange differential
 

equations are
 

;k1 = (1r)X2 AX3 = if5 

2 = - iX + (U 2- =f 

2)" r3 +r(= 4 =r (A.1.2) 

(2.24)
 
A4 = 0 = f8
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The optimality condition H = 0 leads to
 

(A os - A2 sin B ) = 0. (A.1.3) 
Wn 1 2(2.25) 

This condition implies that
 

A AI A
 

tan 1 sin 8= Cos 8 2 
2 *i/ll +22 -/x 2+A 2 

2 1 2- 1 

where the sign in front of the radical terms is selected ac

cording to the Weierstrass E-Function.
 

The Weierstrass Condition is the fourth necessary
 

condition which must be satisfied for a given trajectory to be
 

an extremal. It is defined as
 

E=F~xM xt)-F(x* (x-x*) 3 0 (A.1.4)
 

for a minimum where E is the Weierstrass E-Function and
 

F = A T(f - x). The asterisk refers to the optimal trajectory.
 

Since the equations of motion must be satisfied on
 

the optimal, as well as the nearby trajectory, F = F* ' 0
 

and the Weierstrass E-Function becomes
 

E = XT - (A.1.5) 

Making the proper substitutions in Eq. (A.l.5) yields
 

E=X 1[(sin8-sin8* + A2[(cosa- Cos*] 3 0. (A.1.6)
 

The optimality conditions, i.e. Eq. (A.1.3), leads to the
 

requirement that
 

tan 8* = 
2 
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which implies
 

* A1 __ _ 2 __ 

sin a = and cos = (*(A.1.7)'

4 ++2 21/+ 2Z 

Eq. (A.1.3) does not indicate which sign should be selected on
 

the radical terms. Substituting Eq. (A.1.7) into Eq. (A.1.6)
 

yields
 

E = . [±/xiz 2 2] [ -1 + cos (B - a*)] ' 0 and (A.1.8) 

for this equation to be satisfied for all admissible
 

values of 8 , the negative sign on the radical must be
 

chosen. Hence, the optimal control program is given by
 

1*
I
sin 


1 2 

cos $* - 2 

The specified initial boundary conditions are
 

nl = g1 = u(t0 ) - u0 = 0
 

n2 = g2 = v(t 0 ) - -o = 0 (A.1.9)
 
(2.26)
 

03 = g3 = r(t 0 ) - r0 = 0 

n4 = g4 = O(t 0 ) - 0 = 0 

where to is specified. Hence no initial conditions are obtained
 

from the transversality conditions because the initial state
 

and time are specified.
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The specified terminal boundary conditions are
 

= h1 = u(t) - uf = 0 

= = =
v(tf vf
T2 h v 0 (A.1.10)
 
(2.29) 

Y3 = h 3 = r(tf) - rf = 0 

If it is desired to determine the minimum time trans

fer, the performance index is * = tf, and the terminal 

transversality conditions are 

-(X du + X2dv + A3dr + + Ado)lf 


(2.35)
 
(l + XIfI +X 2f2 + X3ff3 + A4)f dtf = 0
 

The terminal state perturbations in Eq. (A.1.l1) are not
 

independent. They are related through Eq. (2.36). The
 

application of this equation results in
 

duf = dvf = drf = 0 . (A.1.12)
 

Combining Eqs. (A.1.11) and (A.1.12), the fourth terminal
 

boundary condition becomes
 

h4 = X4f = 0 (A.1.13)
 

since it is not desired to constrain the terminal value of 

the angle 0 . If, however, it is desired to constrain the 

erminal angle, dof must vanish and A4f would not
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necessarily be zero. In this case, the fourth terminal
 

boundary condition becomes
 

h = (tf) - ef = 0 (A.l.14) 

Allowing for the possibility of a variable terminal
 

time, Eq. (A.l.ll) also yields the fifth and last terminal
 

condition
 

h = (1 + x1f1 + x2f2 + X 3f3 + Af4)f = 0. (A.l.15)
 

If it is desired to normalize the Lagrange multipliers
 

as discussed in Section 7.3.1, one multiplier is initially
 

selected plus or minus unity and one terminal boundary condi

tion is ignored. The initial boundary condition
 

X3 (to) = -1.0 , is used in place of the fifth terminal bound

ary condition, and the result is
 

UtS=0) uu0 = 0 h1 = u(tf) - u, = 0 (A..16) 

92=gt0 V0 = = 0h2 - = 0 f)
v(t vf 


g3=rt) o0 h23 = v(t f) - rVf = 0
 
g4 = r(t0 ) - r 0 = 0
 

h= r~tf) - rf = 0 

g = e(t0) - e0 = 0 h 4 C =
 

= Xt (tf 0
h4 

= +
g5 X3(t0 ) 1.0 = 0
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For the solution of 2n differential equations,
 

2n+2 boundary conditions must be known. Assuming that the
 

initial time is zero, 2n+l conditions are needed, These
 

are the boundary conditions given above.
 



APPENDIX A.2
 

Discussion of the Applications
 

The example class of problems used to apply the
 

theoretical formulations presented in Chapters 3, 4, and
 

5 is the minimum time trajectory of a thrusting spacecraft
 

under the influence of an inverse square gravitational
 

force field. The specific examples used to obtain the
 

numerical results discussed in Chapter 6 are:
 

(1) A constant low thrust Earth-Mars transfer tra

jectory which leaves the Earth's circular orbit about
 

the Sun with a velocity equal to that of the Earth.
 

The control or thrust angle is unbounded and only
 

the Sun's gravitational influence is considered.
 

The spacecraft arrives at an arbitrary heliocentric
 

angle in the circular Mars orbit having velocity
 

conditions that match that of Mars.
 

(2) A constant high thrust Earth launch to a 100
 

kilometer circular orbit leaving the Earth's sur

face with zero velocity. The control or thrust
 

angle is unbounded. The Earth's inverse square
 

gravitational influence is considered. The dissa

pative terms of the atmospheric drag are also included.
 

The spacecraft arrives at an arbitrary heliocentric
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angle in the circular orbit. The effects of other
 

bodies are neglected.
 

In the optimization reduction problem shown in Appen

dix A.l it is seen that the initial state is specified and 

hence n = p = 4 The terminal velocity and radial position 

are specified and hence q = 3 . Two additional terminal 

constraints are derived from the transversality conditions.
 

Assuming that the initial time is specified as zero,, five
 

initial conditions and five terminal conditions are speci

fied, therefore the problem is solvable.
 

When the numerical parameters are normalized as dis

cussed in Section 7.3.1, the initial value of the Lagrange 

multiplier associated with the radius is equated to a negative 

unity, and hence p = 5 , and the last transversality condi

tion is ignored. This means that six initial conditionsand 

four.terminal conditions are specified, where the initial time 

is included. The problem is still solvable, but the com

plexion of the applications is changed slightly from that 

described in the detailed procedures presented in Chapters 

3 and 4. 

It should be pointed out that the fourth differential
 

equation of state and the corresponding Euler-Lagrange equa

tion is not necessary for the analysis made here. These
 

equations are simply included for the sake of generality,
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and hence the same computer programs may easily be converted
 

to solve the class of problems where terminal state is com

pletely specified.
 

The time histories of each variable that correspond
 

to the optimal solution for the Earth-Mars transfer are il

lustrated in Figure A.5.1. The optimal control history for
 

this problem is shown in Figure A.5.2. The time histories
 

of each variable that correspond to the optimal solution for
 

the Earth launch are illustrated in Figure A.5.3. The opti

mal control history for this problem is shown in Figure A.5.4.
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APPENDIX A.2.1
 

Application of the Method of Adjoint Functions
 

The nonlinear, ordinary, vector differential equa

tion z = F(z,t) is composed of n = 4 differential equa

tions of motion (with control eliminated by use of the 

optimality condition) and n = 4 Euler-Lagrange equations. 

These equations are integrated from a known t0 to an assumed
 

t with the known initial conditions and assumed values for
 

those not known, i.e.
 

U:1
v 

r 

Z(t 0) : 

2 

4 
0
 

where the bar indicates an assumed value.
 

When the assumed terminal time ? is reached, the
 

terminal dissatisfaction h and dissatisfaction rate h are
 

evaluated. The starting vectors for the backwards integra

tion of the adjoint equations are also evaluated.
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These adjoint equations, A = - A , are 

= -+ (>A~A 4 	 + 

[L- (2vx - uX2 	+ X )j A 

\A + 22GMA1 - (2v 	 +V(v2= _ r(̂  	 ( A2 + t 2)rqv~2aM 	 4 

3 _vX-v2x 31-[1 C2vx 1 -ux+-+X]A, -2-uv 	 JL[6GMX J3 ,L[q 2 2 4"r 2" 4 J 

A=0
4 

r
M(XIV:X223/2]

5.L212X22)2)3/21 


_ TA 2 A /0I____ 2A Tx X 	 )X m(x 2+X 2)3/ 1L (A+;k 


A7 5 

A 

=(Fi)A jr)A7
 

and are integrated backwards from tf to t forming the
 

coefficients from the variables stored during the forward
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integration. The 2n+l-p = 4 starting vectors for this back

ward integration are 

1 0 0 0 
o 1 0 0 
o 0 1 0 

Al(t) 0 A2(tf) = 0 A(t) = 0 A(t) = 0 
it0 2f0 3ff 0 4ff 0 

o o 0 0 
0 0 0o00 0 1J 

When the initial time to is reached, 2n+l-p 

algebraic equations are solved for the linear estimates for 

the corrections that must be applied to the assumed initial 

conditions (71o0, 20, x40) and the assumed terminal time 

(t4). These algebraic equations are 
_ _ 7-1
 

6X (t ) 051 e6 081 Uf du
 

X2 (t0 ) 052 062 082 f dv 

6A 4(t0 ) 6s3 63 083 rf dr 

6f 54 e0f6 e8 A d 

where the elements of the 6 matrix are evaluated at to. 

These corrections are applied to the initially assumed values 

of A1 21 74 and F and a new nominal trajectory is, 

integrated using z m F(zt)
 



APPENDIX A.2.2
 

jplication of the Method of Perturbation Functions
 

The nonlinear, ordinary, vector differential equation
 

F(z,t) is composed of n = 4 differential equations of
 

otion (with control eliminated by use of the optimality con

ition) and n = 4 Euler-Lagrange equations. These equa

ions are integrated from a known t. to an assumed
 

ith the known initial conditions and assumed values for
 

hose not known, i.e.,
 

u
 

V
 

r
 

z(t0 ) = 0 

x
3
 

L 4 
0
 

here the bar indicates an assumed value.
 

he perturbation equations 6z =F] 6z are 

®2v)6 Z2f(2 - V2 63- )2S r3 -6 5
r2)sL (xi2+x)2 2 )3/j 


/2
2X22) 6
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SZ 2--V-,,1 ,z2 + 6zo + 6
 
\);r2) 3 M (k 1 2+A 22) 5 

di - - 2] 

22 \r/~T2 \2!+T: 2 

3 /6z
Lm(i2+X2) 

6z = 6z 1 

5 (r) r2 7 

66 r 6z + 7 6z-2X 


6%()X9- L$2v 1 - + XA4)] 3 

F1m 
627 _(V dzJ + -(2vA - ux 2 + A dz 

7 r12 A'2)]2 2 

* Gr-' - 2v 2 X + 2uvA 2 - 2vA) 6Z,
 

2G)z5 Z6 + Cr2)*12 3+ (!V 2Q.z +(X\tze 

62 8 0 

and are integrated forwards from to to tf forming the
 

coefficients from the variables calculated by the integration
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of £ = F(zt) The integration of the differential and 

perturbation equations may be done simultaneously, where the 

2n-p = 3 starting vectors for the perturbation equations 

are 

0 0 	 0
 

o 0 0 

o o 0 
00z3t)
6z1(t0 ) = 	 0 6z2(tO) 0 

1 0 0 

0 1. 0
 

0 0 0
 

o 0 	 1 .
 

When the terminal time is reached, 2n+l-p = 4 

algebraic equations are solved for the linear estimates for
 

the corrections that must be applied to the assumed initial
 

conditions (CT0 2 0, and the assumed terminal time
0 T0) 


C).. These algebraic equations are
 

SX1(t0) 	 - 11 012 013 -1 du
 

6X2 (t0 ) 021 022 023 f 	 dv
 

"6X (t 0) 31 032 033 f 	 dr
 

dt£f81 082 083 X , dA4 £
 

where the elements of the 0 matrix are evaluated at tf
 

These corrections are applied to the initially as

sumed values 6f X)V r2" X4 and ff and a new nominal tra-


Jectory is integrated using z = F(zt) .
 



219 

n= - (--A) 

+ [1-I-2V2Arp3 r " 

un + 

nn 

+ 2uvA, 

(2vx1 

- vA] 

- uA2 

rnn+ i 

+x 

+ 2 r'n Aln+l - (3)2r2v/n X2n+i ++ (-)Ar- n n+ 

+ (B7 )n 

arl+ 4n+8 

where 

(Bl~ - 3GM 

r2 

T > 

m/ 12+A2 2 

(Bz)n '2 

(B3)n = 0 

(B4)n -(F)n
 



220 

(B) = 0 

(B )n =-/X--4)n
 

(BQ _
 
7BTn r3r r2n 

(B8) n = 0 

These nonhomogeneous linear equations are integrated
 

from to to tf with the starting vector
 

U 

V 

r 

z(t o)n+ i =
 

-I I 

A
2
 
A3
 

where the bar indicates an assumed value. This determines
 

th
the variables for the n+lt iteration by using the vari

ables resulting from the nth iteration to form the re

quired coefficients.
 

The homoj-neous linear equations (same as above ex

cept without the (BI) n i - 1, 2n terms) y Ay, are
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integrated from to to c in the same manner as the non

homogeneous equations but with the 2n-p=3 starting vectors
 

n -" 	 0 
- I 

0 	 0 

Y (tO)n+1 	 3- Y2(tO)n+ 1 = 0 y3 (tO)n+1 = 0 

0 1 0 

0 0 0 
0 0 J 

When the terminal time is reached, 2n+1-p = 4 

algebraic equations are solved for the corrections that must 

be applied to the assumed initial conditions CT10, T2 0, 7 4 0 ) 

and the assumed terminal time Ctf) These algebraic equa

tions are
 

6X (t0) 	 Y11  12 Y 13 -1 du 

8X2(t0) 	 Y21 Y22  Y23 vf dv
 

&x4 (to) 	 Y31  Y3 2  Y33 rf dr
 

dtf 	 Y 1 Y 2 Y8 3  X1 1. L
 

where the elements of the matrix are evaluated at tf.
 

These corrections are applied to the initially as

sumed values of T1, A2. 4 and tf and a new nominal tra

jectory is integrated using z = Az+B . where the A and B 

matrices are formed from the previous nominal. 



APPENDIX A.2.4
 

Application of the Method of Steepest Descent
 

The nonlinear, ordinary, vector differential equation
 

S= f(x,u,t) is composed of n =4 differential equations
 

of motion. These equations are integrated forward with the
 

initial 	conditions
 

u 

x(t0 ) = r 

0
 

and the 	initial estimate of the control program u(t)
 

The performance index to be minimized is
 

* = tf 

and the 	terminal constraints are
 

1 = u(tf) - uf . 0 

T2 = v(tf) - vf = 0 

=
T3 r(tf) - rf = 0 

The condition that is used to stop the integration is
 

o = e(tf) - Of = 0
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The equations adjoint to the differential equations
 

ofmotion, X-= -fxTX , are
 

A1 2
= Av _ A 

2 3(r) 
(2M X2 '4 

A = 0,
 
X4 0
 

and the starting conditions for the backward integration are,
 

AT t ) = =[0 0 0 0]
 
f [-ax]
 

F 0 0 
AT(t ) = Iay.f c1 1 0 0
 

YacJ
f 
 0 0 01
 
-xT(t) rELO 0 0 13. 

The time rates of change of the performance index,
 

terminal constraints and stopping condition are
 

C +[R ,X fax
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= +ax f 
if
 

ax1-0 f 

The starting conditions for I., I., and I,, are
0i0 
I (t ) = [0 

0 

14(t) = . 



APPENDIX A.2.5
 

Application of the Modified Method of Steepest Descent 

The nonlinear, ordinary, vector differential equation 

= f(x,u,t) is composed of n =4 differential equations 

of motion. These equations are integrated forward with the 

initial conditions 

U!
 

X(to) = r 

"0
 

and the 	initial estimate of the control program u(t).
 

The penalty function to be minimized is
 

P = W0tf2+WI[u(tf)-uf ]2+W2[v(tf)-vf]2+Wa[r(tf)-rf]2
 

and the 	stopping condition is
 

-e(tf) - af = 0 

The equations adjoint to the differential equations 

of motion, x = -fTA , are 

A(ir)A 2- '3
 

12v A()+ 
-)
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= 12GM3 v2\x 2A3 r I ( r vx2+( rVr 3) 2 

A =0.
 

.
4 


The starting conditions for the backward integration
 

are
 

AT ( tdapi -"~[Prani) =AEx a xlYJL, P94PSI t~f lL J Lp-J \ QS n 

where
 

= 

- PI1 2W 1 [u(t f ) - uf] 

=
XP 1 2W 2[v(t f ) - vf 

xP7 = 2W3 [r(t f ) - rf 

il f 1+XP2 f 
 + Xpfl
3 f' + 2Wotf
 
A i + fn4 

The new control program is given by
 

du = K4T G = K i(A a3osa 2i 



APPENDIX A.3
 

Numerical Constants
 

Earth-Mars Transfer.
 

Astronomical Unit, AU .14959870 X 1012 meters
 

Orbital Radius of Earth, re .10000000 X 101 AU
 

Orbital Radius of Mars, rm .15236790 X 101 AU
 

.13271504 X 1021
Gravitational Constant of Sun, GM s 


2
meters 3/second
 

Initial Spacecraft Mass, m. .67978852 X l03 kilograms
 

Thrust, T .40312370 X 101 newtons
 

.10123858 X 10-4
 Mass Rate, m 


kilograms/second
 

Earth Launch
 

Radius of Earth, Re .63781700 X 107 meters
 

Gravitational Constant of Earth, GMe .3986064o x 1015
 
2
 

meters 3/second
 

Initial Spacecraft Mass, m0 .15000000 X 10 kilograms
 

Thrust, T .27000000 X 105 newtons
 

Mass Rate, m .45000000 X 101
 

kilograms/second
 

The terms that must be added to the differential
 

equations f, and f. to include atmospheric resistance
 

are:
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PCDAu/u2+v2 

-m
 

PCDAv/u--v+v2
f2 = 2 2m 

r-Re 
poewhere p = E (ma' ensity) 

CD =0.3, 0 t m < .6950 (dr,, coefficient) 

K > .6950K2 

+M 2
CD KI M3, 65
 

U2+V2
M (mach number)
a 

a = D - B(r - Re ) (speed of sound) 

and where 

PO = 0.52 kilograms/meter 3 

E = 7600.0 meters 

K, = 0.1368 

K2 = 1.6218 

K3 = 1.072A 

D = 340.0 meters/second 

B = 0.00071 '/seconds 

2
meteris
A 4.0 




APPENDIX A.4
 

Normalization Scheme
 

Earth-Mars Transfer
 

Unit of Length (1 AU) .14959870 X 1012 meters
 

Unit of Mass (mo ) M.67978852 X i03 kilograms
 

Unit of Velocity Ve .29784901 X 10
 
e meters/second
 

Unit of Force .40312370 X 101 newtons
 

Unit of Time .50226355 X 107 seconds
 

.58132355 X 102 days
 

The normalized values of the parameters of interest are:
 

Gravitational Constant of Sun, GM, = 1.0
 

Initial Spacecraft Mass = 1.0
 

Initial Spacecraft Velocity = 1.0
 

Initial Spacecraft Radius = 1.0
 

Terminal Spacecraft Velocity = 0.81012728
 

Terminal Spacecraft Radius = 1.5236790
 

Thrust = .14012969
 

Mass Rate 0.074800391
 

Earth Launch - No normalization scheme. 
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