)
%
=3 iy o
%\SQE
=4 u‘\D:-—-
— <1
A
g ™=
m
1 Ta) S
M)z 2
z g 18
O [ ol \{z
re |7 Y& JE
! I~
. o o
o
= (¢ =
\ =
<
£
709 WHO4 ALIDOVA

National Aeronautics
and Space Administration

Manned Spacecraft Center

Reprodycad by

NATIONAL TECHNICAL .
'INFORMATION"SERVICE_ -

NS 5pr1ng_f_ft:£:f, Va, 2215] -_j. [




MSC-IN-66~ED~43

MSC INTERNAL NOTE

AN ANALYSIS AND COMPARISON
OF
SEVERAL TRAJECTORY
OPTIMIZATION METHODS .

By
J. M. Lewallen

NATIONAL AERONAUTICS AND SPACE ADﬁINISTRATION
MANNED SPACECRAFT CENTER
HOUSTON, TEXAS

June 1966



AN ANALYSIS AND COMPARISON
OF
SEVERAL TRAJECTORY
OPTIMIZATION METHODS

Prepared by: )“ T ly
‘M Lewallen
Aerospace Technologist

o]
Approved by: 1?2;9¥ﬁfﬂf [ N

Eugeng L. Davis, Jr./
Ch{gf, Theory and Analysis Office

Approved by: B S0 \/\ Q\F\;&;\,[Q'\\
~Eugene H. Brock
ief} Computation and Analysis

Division

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MANNED SPACECRAFT CENTER
HOUSTON, TEXAS

June 1966



PREFACE

The optimization and control of spacecraft trajectories
has been of considerable interest during the past decade, and a
significant amount of progress has been made in developing a
theoretical and numerlcal capability to solve complex trajec-
tory problems. There still exists, however, a need to deter-
mine the best approach, given a specific problem. The gener-
ality of such a task 1is overwhelming, but an initial step is
taken when most of the promising methods have been studied
with the aid of a specific, but representative example. This
dissertation takes this first step, and along with several
significant theoretical and numerical contributions, compares
the relative merits of several trajectorf coptimization methods.

In each stage of this research, the author has bene-
fited from many valuable suggestlons by and discussions with
many individuals. He wishes to express sincere appreciation to
W. T. Powler, G. J. Lastman, and J. F. Jordan who, as fellow
students, provided considerable encouragement. He wishes to
express gratitude to Professors L. Clark, W. Carter and
E. Prouse of The University of Texas for reading the manuscrigt
and making helpful suggestions. The author is especially in-
debted to R. D. Witty of the Lockheed Electronic Corporation,

without whose patience, intelligence and persistence the en-

deavor, as presented, would have never been realized.
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E. L. Davis, Jr. of the Manned Spacecraft Center for provid-
ing a stimulating environment and great encouragement during
the course of this stﬁdy. He is especially indebted to
«rofessor B. D. Tapley of The University of Texas who served
as advisor, but more than that a good frilend and teacher and
a constant source of ilnspiration and guldance,

The author wishes to express his deepest gratitude to
his wife and children, whose love and patience made the whole

undertaking worth doing.
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Houston, Texas Jay M. Lewallen
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ABSTRACT

A theoretical development and comparative evaluation is
made for several methods of solving the problem associated with
the optimum transfer of a spacecraft. Particular attention is
given to the sensitivity of the convergence characteristics of
the methods to initially assumed parameters and trial solutions,
convergence times, computer logic and storage requirements.

The methods considered may be classified as one of the
following types: (1) Perturbatlion, Second Variation or Ex-
tremal Field Methods, (2) Quasllinearization or Generalized
Newton-Raphson Methods, or (3) Gradient or Steepest Descent
Methods. The numerical comparison of the convergence charac-
teristics is made by consldering a minimum time, low thrust,
Earth-Mars transfer trajectory.

A new quasllinearigzation method, called the Modified
Quasilinearization Method, is proposed. For the example con-
sidered, thils method reduces convergence time by approximately
70% when compared with the Generallzed Newton-Raphson Method.
Moreover, the method allows the terminal boundary to be speci-

. fied by a general functlion of the problem variables rather
than individual values of the variables themselves.

A uniquely specified and easily determined, time de-
pendent welghting matrix has been discovered for the gradient

techniques. This welghting matrix accelerates the shaping of



the optimal control program and lmproves the convergence
characteristics during the terminal iteratlons by giving more
welght to regions of “low sensitivity.

Convergence envelopes, which give an indication of how
sensitive the convergence characterlstics are to 1nitialiy
assumed parameters, are plotted for the Perturbation and
Quasilinearization Methods. Several lteration schemes are
proposed which significantly increase the size of the con-
vergence envelopes, and hence decrease the sensitivity of

the method to initlally assumed parameters.
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LIST OF SYMBOLS

The following list tabulates all significant symbols
used in the main text. Fach symbol 1s accompanied by a brief
description and the equation number where the symbol is first
introduced. A definition of each symbol is given where the

symbol 1s introduced.

Matrices:
The matrix size Is indicated in the statement immedl-

ately following the symbol. The following specific indices

are used.
n - the number of state variables
m - the number of control variables
p - the number of initially specified con-.
straint relatlons
q - the number of terminally specified con-
straint relatilons
" A 2n x 2n matrix of partial derivatives, (3.2)
F n x n matrix of partial derivatives, (5.5)
G n x m matrix of partial derivatives, (5.5)
I 2n x 2n unity matrix, (3.10)
W m x m matrix of arbitrary weighting terms, (5.19)
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Vectors:

LIST OF SYMBOLS

(CONT'D)

2n x 2n-p matrix of homogeneous solutlons, (4.6)

2n x 2n matrix of partial derivatives resulting from
the 2n Dbackward integrations of the 2n vector of
adjoint equations, (3.10)

2n x 2n matrix of partial derivatives resulting from
the 2n forward integrations of the 2n vector of
adjoint equations, (3.14)

ntl x 2n matrix of partlal derivatives resulting from
the n+l backward integrations of the 2n vector of

adjoint equations, (4.15)

n+l x 2n matrix of partial derivatives resulting from
the n+l backward integratlons of the 2n vector of
adjoint equations, (3.17)

2n x 2n matrix of partlal derivatives resulting from
the 2n forward integrations of the 2n veetor of

perturbation equations, (3.22)

ntl x 2n matrix of partlal derivatives resulting from
the n+l forward integrations of the 2n vector of
perturbation equations, (3.27)

2n x n matrix of partlal derlivatives resulting from
the n forward integrations of the 2n vector of
perturbation equations, (3.29)

411 vectors are column vectors unless otherwise noted.

The vector size 1s indicated in the statement immediately fol-

lowing the symbol, where the Indices are defined in the pre-
¥

vious section on matrices.
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2n  vector of nonhomogeneous terms, (4.3)

ntl vector of desired percentage corrections in the
terminal constraints, (3.31)

2n-p vector of corrections required for the assumed
initial conditions, (4.6) .

n vector of state variable derivatives, (2.1)

2n vector of state and Euler-Lagrange variable de-
rivatives, (2.37)

n vector of initial constraint relations, (2.40)

n+l or g+n+l vector of terminal constraint rela-
tions, (2.32)

nt+tl or gtn+l vector of terminal dissatisfaction
change, (3.4)
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2n vector of homogeneous solutions, (4.l4)
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p vector of specified initial constraint relations,

(2.3)

n vector of time dependent Lagrange multipliers,
(2.5)

2n vector of adjoint variables, (3.3)
q vector of constant Lagrange multipliers, (2.5)

q vector of specified terminal constraint relations,
(2.14)
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CHAPTER I
INTRODUCTION

A treatise on the theory of trajectory optimization and
its application requires a clear and meaningful definition of the
problem. This definition should include a discussion of the
terms and concepts required in studying the background material
and the pheoretical formulations. An indication of the purpose
of the investigatlion 1s given along with the extent or scope of

such a study.

1.1 Definition of the Optimization Problem

The optimization of spacecraft trajectorles has been of
considerable interest for a number of years, and significant pro-
gress has been made 1In developing a capabllity for solving very 4
complex trajectory problems. In one class of optimization prob-
lems, it is desired to determine the hilstory of the control vari-
ables 1in such a manner that certaln specified initial and terri-
nal constraints are satisfied while some performance index is ex-
tremized, The control varlables are unspeclified Inputs to tns
system which may be chosen to control the state, 1.e., the pesi-
tion and velocity. The initial and terminal constraints are
simply conditions on the position and velocity that must be sat-
isfied at the 1Inltial and terminal time, respectively. The per-
formance index 1s usually a scalar function associated with the

spacecraft performance and is the quantity to be extremized. It

1



may be a scalar function of the terminal state and time and/or a
scalar 1Integral term evaluated along the trajectory.

The ecalculus of variations is the classical tool for
solving such problems, and with its use necessary conditions for
an optimal trajectory may be derived. These necessary conditiohs
are derived In Chapter 2 and consist of boundary conditions re-
ferred to as transversality conditions, algebraic equations re-
ferred to as optimality condltions and the FEuler-Lagrange dif-
ferential equations. The optimality conditions and the Euler-
Lagrange equations must be satisflied at esch point in the time
interval of interest. A closed form solutlion for these equations
and boundary conditions 1s very difficult to obtain and has been
obtained for only a few relatively simple cases. When an optimi-
zation problem is solved numerically in such a way that the ne-
cessary conditions are satlisfied, the method is usually desig-
nated an indirect method. ‘

‘There have been alternate methods developed to solve the
above stated class of problems without using the necessary condi-
tions derived with the calcuylus of variations. These methods,
usually referred to as direct methods, use influence functions
which indicate how the performance index and terminal constraints
are influenced by 1initial state variations and integrated control
variations.

In both the indirect and direct methods, the terminal
constraints are handled in either the so-called "hard" or "soft"
forms. In the "hard" form an effort is made to satlsfy the

terminal constraints identically while in the "soft" form the



terminal constraints are satisfled only approximately. It 1is
with this latter case that the penalty function concept to be
discussed later is introduced. The philosophy used in this
method is that a certaln penalty is accepted because of the

approximate satisfaction of the terminal constraints.

1.2 Background Study of Optimization Theory

In assessing the '"state of the art" in trajectory optimi-
zation theory and application, it is helpful to understand the
developments that lead to this current state. This background is
divided into previous and recent developments, the recent devel-
opments being made since about 1960. The distinction between in-
direct and direct methods has become increasingly clear during

these recent years and are discussed separately.

1.2.1 Previous Developments

The original trajectory optimization problems were formu-~
lated in terms of a set of nonlinear, ordinary differential equa-
tions, which were required to satisfy split boundary conditions.
The first problems to he solved were extremely simple since
numerical solution of the more difficult problems required ex-
tensive computations. With the a&vent of the high speed digital
computer, several previously impractical methods became avallable
for numerical solutlons. Development of the computer has stimu-
lated the formulation of many previously unknown methods.

Some of the first published formulations of optimal tra-

Jectory programming problems appeared in the early 1950's., One



of the best known was by Lawden (1)* 1in which the equations which
described the optimal trajectory were derived for the general
case of a rocket moving in a specified gravitational field and
subject to atmospheric resistance. However, results for only the
highly specialized case of uniform gravitational field and no
atmospheric resistance are presented. The analysls probably re-
presents one of the most difficult known cases for which a closed
form solution can be obtailned.

In August 1957, a classlcal paper was published by
Breakwell (2) in which a met%od was presented for using a high
speed digital computer for the study of a broad class of tra-
jectory optimization problems. This class includes boost tra-
jectories for maximum range or maximum energy, minimum time in-
éercept trajectories, and maximum glide range trajectorles., The
method devised for determining a solution requires a guess for
unknown initial conditions and an interpolation procedure to de-
crease the terminal constraint dissatisfactlion on each successive
iteration. This particular approach can become extremely time-
consuming and inefficient.

A different analytical development of trajectory optimi-
zation theory was published by Kelley (3) in October 1960. The
method is referred to as the gradient method and it 1s based on

an extension of some 1deas presented by Courant in 1941. The

gradient technique represented a completely different approachn

*Numbers appearing in parenthesis following a name refer
to publications listed in the References.



to the solution of optimization problems, and 1t soon became
evident that the recently developed optimization schemes would
fit into two baslcally different classificatlions, the 1lndirect
and direct trajectory optimization methods.

The 1ndirect methods involve the simultaneocus solution
of the differential equations of motlion and the Euler-Lagrange
equatlons while satisfylng at each point in time a local opti-
mality condltion. Hence, every trajectory lteration is an opti-
mal trajectory, from the initial to some terﬁinal point in space.
The only remaining problem is to satlsgy the terminal constraint
relations. This approach also includes methods where the 4dif-
ferential equations mentioned above are linearized about the
previous trajectory iteration, even though the trajectories are
not exactly optimal in this case.

The direct methods involve the solution of the differ-
entlal equations of motion and produce control variable modifi-
cations that extremize the desired performance index while de-
creasing the terminal constraint dissatisfaction. This approach
includes the gradient techniques,

1,2.2 Recent Developments

Since 1960 there have been a number of significant im-
provements for both the indirect and direct trajectory optimi-
zatlon methods. During this recent period a distinct difference
between the two app;oaches has evolved and for this reason the

approaches are discussed separately.



1.2.2.1 Indirect Approaches

As mentioned earlier, the capability for solving optimum
trajectory problems has existed since the development of the
theory to solve the two-polint boundary value problem, however,
numerical computation schemes were lacking. One of the first
recent schemes was published by MacKay, Rossa, and Zimmerman (4)
in 1961. The analysis uses a set of differential equations
which describe the optimal thrust direction and a criterion for
determining the best time at which Fo begin and end a coast
phase. An ;teration method is used to solve the two-point
boundary value problem. The various partial derivatives that
describe how the terminal state changes as the initial state is
changeé, are evaluated by a first-order finite difrference tech-
nique and the successive integration of the differential equa-
tions.

Melbourne, Sauer, and Richardson (5), also in 1961,
presented the results of an lnvestigation of optimum rendezvous
and round trip trajectories for a typlical mission to Mars. A
classlical calculus of variation approach is used and a Newton-
Raphson technique 1s implemented for the solution of the two-
point boundary value problem. The technique for determining the
partlial derivative matrix 1is similaf to that dsed by MacKay,
Rossa, and Zimmerman (4) and the suggestion 1s made that this
matrix be updated only once every several trajectory iterations.

The Newton-Raphson optimization method 1s discussed
further by Scharmack (6) and several examples are presented. An

especially simple special form of .the Newton-~Raphson method 1is



given also for the case where the terminal boundary is a func-
tion of time alone.

In 1962 Juroviecs and McIntyre (7) presenﬁed a method
for the systematic evaluation of the two-point boundary value
problem using the equations adjoint to the linearized differen-
tial equaticons of motion and the Euler-Lagrange equations. The
foundation of this work was laid by Goodman and Lance (8), but
the applicability of the technique to systems of nonlinear
equations is very limited and the terminal time must be known,
Jurovics and McIntyre eliminated some of the restrictions and
extended the technique to allow for varlable terminal time.

An extenslon was made to the Newton-Raphson techniques
by Breakwell, Speyer, and Bryson (9) in 1963, The procedure is
based partially on previous work by Breakwell (10) in 1959.

The method uses a set of equations obtained by perturbing the
previous nominal trajectory to evaluate the required partial de-
rivative matrix. The generality of the formulation allows for
variable terminal time and the satisfaction of time and state
dependent terminal constraints. After the partial der%vative
matrix has been determined, a multiple linear interpolation is
made to determine the corrections required for the initial con-
ditions. The Euler-Lagrange equations are satisfied on every
iteration, and hence every trajectory is an optimal one.
However, the terminal constraints must be satisfied by an itera-
tive process.

A rather recent developmeﬁt based on the theory of the

second variation was published by Kelley, Kopp, and Moyer (11)



in 1963. 1In the initial phase of computation, the penalty func-
tion concept of handling the terminal constraints is used, and
the process behaves much like the classical gradient technique.
During the terminal phase, the constralnts are satisfled exactly
and the method converges more rapidly than the gradient scheme.
However, the second variation method is significantly more com-
plicated, theoretically and computatlonally, than the first order
gradient theory. However, the reference does state that this
disadvantage is partially offset by a reduction in required comp-
utational fime.

Jazwinski (12) in 1964 presented an extension to the
method suggested by Jurovics and MeIntyre (7) by using the ad-
Jjoint systemhto solve optimlzation problems which contain initial
and terminal boundary conditions that are general functions of
the problem variables. An additlional feature of this scheme is
that after the open-loop optimization problem has been solved
all the informatlion for the closed-loop control problem is avail-
able. This information is also available in Breakwell, Speyer,
and Bryson's (9) paper, but 1t must be pointed out that
Jazwinski'!'s method requires fewer integrations of an equivalent
set of equations. i

A different approach to the solution of the indirect
optimization problem has been suggested by MecGill and Kenneth
(13) in 1964, This method, called the Generalized Newton-Raphson
Method, is formulated through the use of the quasilinearization
concept as presented by Kalaba (14), A convergence procf for the

method was presented by MeGill and Kenneth (35) in 1963. This



method uses the linearized versions of the differential equations
of motion and the Euler-Lagrange equations, and proceeds to solve
a sequence of linear problems, the solutions of which converge to
the solution of the desired nonlinear problem. A set of pertur-
bation or homogeneous equations are used to determlne the partial
derivative matrix. The implementation of the procedure is simi-
lar to the perfurbation method presented by Breakwell, Speyer,
and Bryson (9). The method is distinguished by the fact that an
initial solution must be assumed rather than just the initial
values of the dependent variables. Furthermore, variable termi-
nal time .problems are handled in a very awkward manner.

The awkward handling of terminal time is partially re-
duced by Long (16) by introducing a change in the independent
variable. The method proposed by Long is still rather cumbersome
because an additional differential equation must be integrated
and all the previous equatlions are complicated by another com-
plex term. It is shown, however, by McGill and Kenneth (15),
that if convergence does occur 1t does so quadratically, and tnat
the terminal constraints, which are not general functions of the
problem variables, can be i1dentically satisfied on every tra-
Jectory iteration.

In summary, the indirect optimization methods are usually
formulated in terms of a two-point boundary value problem, and
hence the many methods previously used for solution of this type
of problem become applicable for the solution of trajectory opti-
mization problems. One of the most significant advantages of the

indirect methods is that the convergence properties are excellent.
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Another advantage is that the converged soclution does represent a
true optimal, not just an approximation, The most severe disad-
vantage is that the solution of the differential equations is
highly sensitive to the initially assumed values of the dependent
variables.” This Implies that accurate initial values are needed
to start the integration, and the problem 1s compounded by the
fact that often l1ittle physlical significance can be attached té
the initial values of the Euler variables,

The disadvantages assoclated with indirect optimization
methods are severe enough to encourage the forumulation of meth-
ods that ellminate these difficultlies. The convergence of the
direct optimization methods are not as dependent on the initially
assumed parameters as are the indirect methods, but some ex-
tremely undesirable characteristlcs are introduced. A brief dis-

cussion of the direct metheds is given in the followling section.

1.2.2.2 Direct Approaches

While the gradient theory for flight path optimization
was being developed by Kelley (3), a similar formulation was
being made simultaneocusly and independently by Bryson, Denham,
Carroll, and Mikami (17) (18). In Reference (17), the gradient
method is used to study the problem of determining a control
variable program that minimizes vehlcle heating during reentry
to the earth's atmosphere.

In 1961, Kelley, Xopp, and Moyer (19) presented an
analysis of several gradient methods using inegquality constraints

on the control variables and a penalty function technique for
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handling terminal constraints. It is pointed out in the study
that the numerical results obtained were too limlited for com-
paring the relative merilts of the methods.

In an effort to determlne the thrust steering program
for the optimization of a second stage booster, Pfeiffer (20)
developed a method of "ecritical direction" which was similar
to the gradient technigques of Kelley and Bryson. This same
gradient concept is studied by Wagner and Jazwinski (21) and
both terminal énd instantaneous lnequality constraints are
introduced into the formulation. Wagner and Jazwinski also pre-
sent aﬁ interesting method for determining the step size magni-
tude that should be taken in the gradient direction to approxi-
mately .maximize the decrease In the penalty function.

The gradient technique is well defined and has been
quite successful in avolding the difficulties associated with
the two-point boundary value problem assoclated with the cal-
culus of variation necessary conditions. One of the most costly
deficiencies of this method is the poor convergence characteris—
tics in the terminal stage of convergence. In 1963, Rosenbaum
(22) developed a method similar to a closed-loop guidance scheme
that provides rapld convergence for a variety of missions. The
distinctive feature of this method is that the step size in tne
gradient direction is calculated and becomes a time dependent
quantity. The significant result is that larger deviations from
the nominal trajectory can be tolerated while still satisfying
the terminal constralints, thus it is possible to move more

rapidly toward th optimal trajectory.
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Stancil (23), in 19684, presented a slightly different
approach to the inherent gradient convergence problem. This
approach is similar to Rosenbaum (22) in that a time dependent
weighting matrix is calculated. Basically the formulation
followed a suggestion made, but not used, by Bryson, Denham,
Carroll, and Mikami (17), in which the current control program
was averaged with the Eulerlan control.

The latest innovation to an optimization method is re-
ported by McReynolds and Bryson (2L), and is called a succes-
sive sweep method. To this author's knowledge, no computation-
al results have been published. The procedure represents an ex-
tension and unification of the steepest-descent and second varia-
tion techniques. The procedure requires the backwards integra-
tion of a set of equations, in additlion to the usual adjoint
equations, that generate a linear control law that preserves the
gradient history on the following step. The gradient history,
however, may be changed by specified amounts while also specify-
ing a change in the terminal constraint dissatisfaction. Thus,
in a finite number of steps, the gradient history and the term-
inal dissatisfaction can be forced to approach zero. Actually,
the method has characteristics similar to indirect mefhods as
well as direct methods.

The method seems very promising from a theoretical point
of view, but before a Judgment on 1ts applicability to solving
trajectory optimization problems can be made, some computational
experience must be obtalned.

In summary, the direct optimizatlon methods suffer from
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poor convergence characteristics, as the optimal trajectory is
approached and, in fact, never ylelds a solution which will
satlsfy the classical optimality conditions. The methods, how-
ever, do begin the convergence process with a relatively poor
initial estimate of the control variable history, and seek weak
relative extremals as opposed to points where the functional is

merely statlonary.

1.2.3 Recent Comparisons

The number of published studies that compare the relative
merits of the recently developed trajectory optimization schemes
is extremely limited. The reason for this 1s certainly not be-
cause this type of knowledge is unwanted or meaningless, but be-
cause It is so difficult to select a reasonable basis for compar-
ison, Another discouraging fact is that most optimization
methods are highly problem dependent.

One study of three related successive approximation
gradient schemes by Kelley, Kopp, and Moyer (19) in 1961 con-
cluded that the numerical results were too limited to provide a
comparilison of the relative merlts., The differences 1in conver-
gence speeds were insignificant in comparison to the improvements
attainable by small adjustments in %he penalt& function con-
straints.

A more recent publication by Kopp and McGill (25) and
Moyer and Pinkham (26) compares a gradient, second variatlion and
generalized Newton-Raphson technique on both theoretlical and

somputational basis. The theory is explained by considering an
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ordinary minimum problem with a side constraint. It is stated
in thls reference that the second variation method 1s a specific
approach to the generalized Newton-Raphson method. One con-
clusion made on convergence times is that the second variation
scheme requires approximately 50% less computer time than the
conventlonal gradient technlique, and the generalized Newton-
Raphson method required even less time.

!

1.3 Purpose of the Investigation

The ultimate purpose of this investigation 1s to develop
an insight into the available numerical optimlization methods, so
that, given a problem and a set of circumstances, an intelligent
cholce may be made as to which procedure is best suited for that
particular problem., This ultimate purpose is approached by
satisfying the following secondary objectives:

(1) Increase the understanding of the currently

popular optimization methods so that the de-
ficlient areas. of each method are dlscovered.
Extend and modify these metheods to eliminaée
the deficlencies.

(2) Formulate a basis on which the methods may be

compared, and make a meaningful comparison of

the relative merits of each method.

1.4 Scope of the Investigation

The scope of the investigation includes the theoretical

development of both direct and indirect methods. These methods.
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are formulated in the "open loop" form; 1.e., information is
not fed back to the system to provide control for the inevitable
state variations discovered during the process,

The problem is formulated In a Mayer form, and here the
performance index is simply a scalar function of the terminal
state and terminal time. The terminal constraints, which are of
the equality form, may be generai functions of the problem vari-
ables, and the terminal time may be unknown.

The methods are applied to the study of a two-dimensional
transfer trajectory from Earth to Mars. One control variable,
the fhrust attitude angle, is used. The specified terminal con-

straints do not contain the time explicited.



CHAPTER 2

FORMULATION OF THE OPTIMIZATION PROBLEM

The theoretical development of several trajectory op-
timizatlion methods is made with an objective being the presen-
tation of a unified or common approach. A fundamental factor
in describing the formulation of any trajectory optimization
problem is the derivation of the first necessary conditions
for an optimal trajectory, with the appropriate remarks con-
cerning sufflciency. One other requirement helpful to the
dlscussions presented, especially for the indirect optimization
development, 1s an explanation of how the optimization problem

is reduced to a two-point boundary value problem.

2.1 Derivation of the Necessary Conditions for an Optimal
Trajectory

The ¢lasslcal trajectory oﬁfimization problems require
thaé certain necessary conditions be satisfied. The different
optimization techniques that have been developed tend teo
satisfy these conditions in varlous ways. The necessary con-
ditlons are derived from the consideration of the following
problem. Determine the history of the variables that control
a nonlinear system in such a manner that some index of per-

formance is extremlzed while certain specifiled initial and

16
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terminal constraints are satisfled. This performance index
is usually some function of the terminal state and time.

The differential equations of motion that deséribe
the trajectory of a spacecraft may be derived by applying
Newton's Second Law; and the resulting equations are second
order differential equations. These equations may be reduced
to first order equations and hence, the problem is formulated
in terms of a first order, nonlinear, ordinary, vector differ-

ential equation
x = £(x,u,t) (2.1)

where x 1s an n vector of state variables, f 1s an n
vector of known functions, u 1s an m vector of control vani-
ables, and t 1is the independent variable time. The per-
formance index, which is the functlon to be extremized, is

a scalar
¢ = ¢(xf’tf) (2.2)

and is a functlion of terminal state and time. The specified

initial constraint relations are
n = n{x,,t,) = 0 (2.3)

where n 1is a p vector, and the specifled terminal con-

straint relatlons are

¥ o= ¥(xp,tp) =0 (2.4)
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where Y 1s a q vector.

The classical method of extremizing a function while
satisfying specified terminal constraints is to adjoin the
constraints and the constraining differential equations of
motion to the functional with the Lagrange multipliers vT
and AT, respectively. The functional to be extremized

becomes

T
I = blxp,tp) + vivlxp,ts) (2.5)

+ ‘ftf AT(E)[£(x,u,t) - x]dt
tO
where ¢ 1is the scalar performance index, v 1is a q vector
of constant Lagrange multipliers, Y 1is a q vector of
specified terminal co;straint relations, and X 1s an
n vector of time dependent Lagrange multipliers. Eg. (2.3) is
usually easily solved for p of the initial conditions needed
to integrate Eq. (2.1).
The functional I is simplified by introducing a
quantity P where P = ¢(xf,tf) + vTv(xf,tf) and the general-

ized Hamiltonian H

AT(t)f(x,u,t? . The funetional I Dbecomes

-
|

t
f T.
= P(xp,t0) - tf (A"x - H)dt . (2.6)
0

The first term under the integral sign may be integrated by

parts and the functional rewritten



t t

f f .
+ f (ATx + H)d: . (2.7)

Ey €

T

The functional is now expanded in a Taylor series about some
nominal trajectory such that dI = dI' + 4I" 4 .... where
the term dI' designates the first variation, the second
term d4I", the second variation and so forth. The first

variation dI' 1s given by

tf t

£
o f .
dI' = dP} - d(x"x) + d ,[ (A"x + H)dt (2.8)

0 t'0

t

and taking the total differential of each term and using

Leibnitz's Rule on the last term, the equation becomes

te

r T
di' = (dex + Pvdv + Ptdt)l ~(dr"x + A7dx)

(2.9)

T

+ (A x + H)dtl 'f [6A x + A 6x + sx°f + A (f §X + f su)]dt

Integrating the first term under the integral sign by

parts and noting that to first order dkz = GAT + Afdti 3
where 1 =0 or f, the Eq. (2.9) may be rewritten. After
collecting the terms that must be evaluated at the initial
and terminal times, and making the appropriate cancellations,

the Eq. (2.9) becomes

19
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te

_rfp . 4T
dI' = [(px AT)dx 4 P dv + (Pt + H)dt)

(2.10)

By %

T T opo 1
+ [A7dx - Hdt]l + f [627 (£f~x) + (A +H )éx + H duldt
t

The first necessary conditions for the functional I
and hence for the performance index ¢ to be extremized 1s
that the first variation dI' must vanish. The vanishing of
the first variation implies that each term in Eq. (2.10) must
vanish if the varilations dxf, dv., dtf, dxo, dto, §i, éx and
du are independent varlations. Therefore, the necessary condi-
tions that must be satisfied at the initial boundary are as

follows:

(1) ATax 0 (2.11)
. .

0
This condition implies that if the initial state 1s
specified, 1.e. dx(to) = 0, the equation is identi-

] cally satisfied. If, however, the 1nitial state is
unspecified, the assoclated Lagrange multipliers
must vanish at the initial time. This assumes that
the initial state and time variations are independent of

one another, and if they are Eq. (2.11) yields n

initial conditions.
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(2) - Hdt

&

This condition implies that 1f the initial time is

0 (2.12)

specified, 1.e. dt 2 = 0, the equation is identi-
cally satisfied. If, however, the 1lnitial time is
unspeclified and the initial state and time variations
are independent of one another; the generalized

Hamiltonian ATf must vanish at the assumed initial

time. Thils yilelds one Initial condition.

The necessary condltions that must be satisfled at the termi-

nal boundary are as follows:

2
(1) P dv = 0 (2.13)
v
b
This condition implies that V¥dv = 0 since
%% = ¥ . The specified terminal constraints must be

satisfied, and hence the dv does not necessarily

vanish. This yields q terminal conditions, ¥ = 0.

t
T f
(2} (P, - 27)dx| - =0 (2.14)
This condition implies that 1f the terminal state
£
f

is unspecified, the coefficient (¢x+uTWX-AT)
must vanish. Thls transversality condition yields

n terminal conditions.
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tr

(3) (Pt + H)dt = 0 (2.15)

This condition implies that 1f the terminal time is

t
(unspecified, the coefficient (¢t + vTWt + H) L

must vanish. This transversality condition yields

one terminal condition.

The necessary conditions that must be satisfled at every

point along the trajectory are as follows:

(1) X - f{x,u,t) =0 (2.16)
This 1s the original nonlinear differential equation

of motion and consists of n eguations.

(2) AT+ H_(h,x,m,8) = 0 (2.17)

This equation is the c¢lassical Euler~Lagrange equation

and consists of n equations.

(3) - Hu(Agx,u,t) = 0 (2.18)

This equatlon 1s the classical optimality condition
and conslsts of m equations. This equation may alsc
be recognized as the weak form of the Pontryagin

Maximum Principle.

The problem 1s now theoretically solvable since the

Eqs., (2.11) through (2.15) yield 2n+q+2 1initial and terminal
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boundary conditlons for the 2n first order differential
equations, Eqs. (2.16) and (2.17), and the q+2 unknowns

v, ¢t and t.. The m control variables may either

0°? t

be eliminated from Egs. (2.16) and (2.17) by using the
optimality condition Eq. (2.18), or Eq. (2.18) may be dif-
ferentiated and freated as another differential equation. In
this case

d_

3t [Hu(asxsust)] =0 (2.19)

and expanding Eq. (2.19) leads to the expression
_Hul + Huxx + Huuu + Hut = Q0 , (2.20)

By inverting the Huu matrix, the tlme rate of change of the

control vector becomes

. _1 . .
u = —Huu [HuAA + Huxx + Hut] . (2.21)

Using the differential equations of motion, Eq. (2.16) and

the Euler-Lagrange equatlons, Eq. (2.17), Eq. (2.21) becomes

- -1 T T
u = -H, [HuxHA = HoaHy ? Hut] (2.22)

which may be simultaneously integrated with Eqs. (2.16) and
(2.17).
However, for such an integration, an initial condition

for the control must be known. The optimality condition



yilelds the control in terms of the state and Euler variables,
and since these parameters must elther be assumed or known
initially anyway, the initial condition on the control may

be determined easily.

The Jjustification for the étatement that Hu = Hu =0

0) 4is that the opti-

o ey

(and for that matter Hu = Hu = s

mality conditlon Hu = 0 must be ldentlcally satisfied at

every point along the optimal trajectory and at no point can
there be a deviation from Hu =0

The previously stated first necessary conditions are
the ones necessary for the funetlional I to assume a sta-
tionary value, however these conditions are not sufficient to
insure that a minimum has been obtained. If the Legendre
Condition is satisfied and if no conjugate polnts exist in the
interval of the independent variable, the fourth necessary
condition, and the one that 1s sufficlent to insure a stroné
minimum, involves the Welerstrass E~Function. The E-Functlon
is ekﬁlained by Gelfand (27) and must be equal to or greater
than zero for a minimum. An application of the Welerstrass
E-Function is shown in Appendix A.l for a vehicle moving in an
inverse square grgvitational force fleld under the influence

of a thrust force.

2.2 Reduction of the Optimization Problem to a Two-Point
Boundary Value Problem ’

The classical trajectory optimization problem may be

reduced to‘a t#o—point boundary value problem and hence

24
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several previously known methods become available for its
solution. The first necessary condltions previously derived
in Section 2.1 must be used, and frequent reference is made to
that section. The conditions that must be satisfied at every
point along the trajectory are Egs. {2.16), (2.17), and (2.18),

i.e. the differential equations of motion
x = £{x,u,t) (2.23)

where x i1s an n vector of state variables, the differen-
tial equation that 1s adjoint to the linearized differential

equation of motion and called the Euler-~Lagrange equation
: _ T
A= -fox = -Hy (x,u,x,t) (2.24)

where A 1s an n vector of adjoint varlables, and the

classical optimallity condition
Hu(l,u,x,t) = 0 (2.25)

where H 18 the generalized Hamiltonlan and u is an
m vector of control variables.

The m Egs. (2.25) may be solved for the m unknown
control variables in terms of the state and adjoint variables |
and time, and the control then eliminated from Eqs. (2.23) and
(2.24).

In the general case, where the initial state and time
variations are not independent of one ancther, Eqs. (2.11) and

(2.12) must remain as one equation. Hence, the initial
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conditions that must be satisfied are the initlally specified

constraint relations, Eq. (2.3)

n(xo,to) = 0 (2.26)

where n 1s a p vector, and the transversality condition

(dex - Hdt)

%

The state and time total variations dxo and dt, are not

1
o
L

(2.27)

necessarily independent of one another, and in fact are re-
lated through Eq. (2.6). It is required that for all dx,
and dt, that d"(xo’to) = 0, and to a first order approxi-

mation this condition can be expressed as

an an _
[E—x—]o ax, + [ﬁ]u dt, = 0 (2.28)

Siﬁce dn(x,,t,) is a p vector of conditions, it follows
that p of the n+l total variations dxo and dt, may

be determined in terms of the remaining n+l-p variations.
These p total variétions are eliminated from the varia-
tions in Eq. (2.27), leaving n+l-p independent variations.
The coefficients of these n+l-p Iindependent variations may
be equated to zero to obtain n+l-p additional relations at
the initia; time. Combiniﬁg these n+l-p relations with the '
p 1initially specified constraiﬁt relations in Eq. (2.26) will
result in the qesired n+l initial conditions, g(xo,ta) = 0

and t0 .
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In most cases, the initlal state and time are given,
which would be the required n+l conditions, and the
transversality condition Eq. (2.27) 1s then identically
satisfied,

The terminal conditions that must be satisfied are

the terminally specified constraint relations, Eq. (2.13)
?(xf,tf) = 0 (2.29)

where Y 1s a gq vector, and the transversality conditions,
Eqs. (2.14) and (2,15),

te

(, - 3Tyax] = o (2.30)

te
(P, + Mat| £ =0 . (2.31)

t

Since the Lagrange multipliers v were introduced,
the total variatlons, dxf and dtf sy 1n Eqs. (2.30) and
(2.31) can be treated as independent variations, and the co~
efficients of these varilations may be equated to zero. This
procedure provides n+l terminal conditions, n resulting
from Eq. (2.30) and one from Eq. (2.31). There are, however,
q remaining unknowns to be evaluated, l.e. the gq Lagrange
multipliers v . The q terminally specified consfraints
given in Eq. (2.29) provide the additional conditions for

this operation,
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In summary, the terminal conditions become

hi = ?1fo,tf) for i=1,q {2.32)
h, = (s +viy -2T) for i = qtl, n+ (2.33)
i X X i qti, nTq .
T
and h, = (¢t+v wt-m)i for 1 = n+qg+l . (2.31)

The ntl 1initial conditions are combined with the n+g+l

terminal conditions to obtalin the boundary conditlons for the

Cnth order system of differential equations given by Egs.

(2.23) and (2.24), £y, tf, and the g values of v .

If the terminal constraint relations are not very
complicated, 1t may be easler to eliminate the Lagrange mul-
tipliers v from the start. Hence, an alternative approach,
which considers the functional

£
£ .
I=¢+f1(f—~x)dt,

i’

would yileld transversality conditions
t

te f
+ (¢t+H)dt| = 0 (2.35)

T
(9,=2 ax|
to be satisfied.
However, the total variations dxf and dtf are not
independent, and are related in fact through the terminally
specified constraint relation, Eq. (2.29). It 1s required

that d?(xf,tf) = 0, and to a first order approximation

thls becomes
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Y Ay _
[ﬁ]f‘ dhxf + ﬁl‘ dt, = 0 (2.36)

where d?(xf,tf) s a q vector. Now gq of the n+l
total variations d;f and dtf may be determined in terms
of the remaining n+l-q variations. These q ¢total varia-
tions are eliminated from the variations in Eq. (2.35),
leaving only n+l-q independent varlations. The coefficients
of these ntl-q Independent variatlions may be equated to zero
thus obtaining n+l~q relations at the terminal time. Com-
bining these n+l-q relations with the q terminally speci-
fied constraint relations Eq. (2.29), will lead to the
desired n+l terminal conditions, h(xf,tf) = 0 . This pro-
cedure of eliminating the Lagrange multipliers v , requires
the determination of gq 1less parameters in the iteration
procedure for solving the two-point boundary value problem.
The complete solution of the two-point boundary value
problem requires 2n+l boundary conditions, assuming that
the initlal time 1is given, and these conditions may be de-
rived in the manner described above. To reduce the number
of parameters that require determination, 1t 1s assumed that
the terminal constraint relations are included without the
use of the Lagrange multipliers v . Furthermore, it is
assumed that the control variables are eliminated from Egs.
(2.23) and (2.24), by using the optimality condition, Eq.
(2.25). '
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.In summary, the problem is formulated in terms of an
ordinary, first order, nonlinear, vector differential equa-

]

tion

z = F(z,t) | (2.37)

where 2z 1s a 2n vector composed of n state variables
and n Euler-Lagrange variables and t 1s the independent

varlable time. More specifically,

. X Hf(x,x,t)
z =] .= T = F(z,t) . (2.38)
It is assumed that p 1initially specified constraint rela-

tions

n(zy,t,) = 0 (2.39)

r

and a specified initial time t, are given. Since these

conditions are given, only n-p 1initial relations must be
obtaiﬁed from the transversality condition, Eq. (2.27) and
hence a total of n conditions at the initlal time are

known. These n conditlions are represented as
gl(zgstg) = 0 (2.40)

Consider that q terminally specified constraint

relations

¥(2pstp) = 0 (2.41)



are given. This implies that n+l-g terminal relations must
be obtained from the transversality condition, Eq. (2.35),
which when combined with Eq. (2.41) yields n+l terminal

constraint relations

h(zg,t.) = 0 (2.42)

The 2n+l conditions needed for the two-point bound-
ary value problem solution are specified, n conditions from
Eq. (2.40) and n+l1 conditions from Eg. (2.42).

An application of the reduction of an optimization
problem to a two-point boundary value problem is shown in

Appendix A.l.
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CHAPTER 3

PERTURBATION METHODS

Several of the most promlsing and successful methods
for solving the nonlinear two-point boundary value problem,
associated with the optimizatlon of spacecraft trajectories,
are classified as Perturbation Methods. These methods are
sometimes referred to as Second Variation or Extremal Field
Methods.

The Perturbation Methods are diwided into two groups,
the Methods of Adjoint Functions and the Method of Perturba-
tion Functions. The Method of Perturbation Functions require
the use of functions obtained through a linear perturbation
about some nominal path, while the Method of Adjoint Functions
require the use of functions which are adjoint to the perturba-
tion functions. The adjoint functions, along with the pertur-
bation functions, are used to approximate the influence of
initial variable variations on terminal variable variations.

The theoretical development of the Method of Adjoint
Functions and the Method of Perturbation Functions may be
shown to follow common lines ard in this sense the formulations
are parallel. For the special case discussed later, the two

methods in fact become the same.

32
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As discussed in Chapter 2, the optimization problem is
formulated in terms of an ordinary, first order, nonlinear,

vector differential equation
z = F(z,t). (3.1)

where z and F(z,t) are partitioned as shown in Eq. (2.38).
The perturbation equations are derived by making a
linear expansion of Eq. (3.1) about some nominal path. These

equations are represented by

§z = quaz = Asz (3.2)

3z

where 6z 1s a 2n vector of state and Euler-Lagrange
variable variations and the 2n x 2n matrix of partlial deriva-
tives A 1is evaluated along the nominal path. The equations
that govern the set of functions adjoint to the perturbation

equations, Eq. (3.2) are

T
- —[—3{—] A= —ATA (3.3)

=Y

where A 1s a 2n vector of adjoint varlables. The motiva-
tion for the use of this equation becomes evident when Eq.
(3.8) is developed.

In the general case, the nominal trajectory will not
satisfy the n+l terminal constraint relations on the first
iteration because all the proper initial conditions are not

known. To obtain a relation for the terminal constraint
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dissatisfaction as a function of the total terminal wvariations,

dz(tf) and dt. , the Eq. (2.42) 1s perturbed about the

f

nominal terminal condlitions, to obtain
’ - |?h 3h |
dh = {az] dzf + [EE] dtf (3.4)
£ f
where dh d1s an n+l vector of the change of the dissatisfac-
tion in the terminal constraint relatilons, [%g] is an
f

ntl x 2n matrix of partial derivatives, and

[%%] is an n+l vector of partial derivatives.
£

If allowance is made for the possibility of a state
and/or Euler variable varilation resulting from a terminal time

varlation, the following first order relation may be made
dz(tp) = 6z(t,) + z(tp)at, . (3.5)

When this relation is substituted into the perturbed terminal
constraint relations, Eq. (3.4), and a rearrangement is made,

the resulting equafion becomes

_ {ah .
dh = [a‘E]f 6z(tf) + hdt, (3.6)

where dh 1s an n+l vector of terminal dissatisfaction
change. This relation is an indication of how the terminal
constraint dissatisfaction change 1s affected by variations in
the terminal values of state and Euler variables and total

varlations ip terminél time.
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It may be noted here that if the terminal variation of
z(tf) is determined as some linear function of the initial
variation of z(t,) , 1l.e. §z(tp) = [n)sz(t,) , where 1 1is
some 2n % 2n matrix, the term}nal dissatisfaction change be-
comes a function of the initial state and Euler wvariable
varlation é&z(t,) and the terminal éime variation dto .

This substitution results in

_ 1an .
dh = [ﬁ]f[n]asz(to) + hdt, . (3.7)

An literation procedure may now be designed to reduce the

terminal dissatisfaction by proceeding in the following

manner:

(1) Integrate the nonlinear differential equations,
Eq. (3.1), forward from t, to some assumed terminal
time tf , using the n known initial conditions
given by Eq. (2.40) and assuming n initial values

for the remaining variables.

(2) When the assumed terminal time t, 1s reached,

the matrix [%%] ,» the vector h and the terminal
f

constraint dissatisfaction change dh may be deter-

mined.

(3) The terminal dissatisfaction may be reduced on

the next iteration by requesting that some percentage
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of the present dissatlisfaction be corrected, i.e.

dh = ~ch, where 0 €c¢ 21 ,

(4) Determination of [H]&z(to) must be made in some
manner and willl be discussed 1n the next sections.
(5) The linear algebraic equations, Egq. (3.7), are

T
these values are appllied to the inltially assumed

solved for the corrections 5z(tu) and dt_. , and

values of z(to) and tf

(6) The procedure is repeated until the corrections

being applied are less than some preselected value.

The only remaining theoretical problem is to determine
[H]&z(tO) , and the manner in which this is done determines

whether the technique 1is classified as a Method of Adjoint
Functions or Perturbation Functlions. Technlques for deter-

mining [H]éz(to) are discussed in the following sections.

3.1 Methods of Adjoint Functions

There are several methods of determining the terminal
state and Euler variable variations as a function of the
initial variations, 1i.e. az(tf) = [H)Gz(to). A relation that
contains these two variations may be derived by premultiplying
the perturbation equation, gq. (3.2), by the transpose of the
adjoint vector A , ;nd postmultiplying the transpose of the
adjoint equations, Eq. (3.3), by éz and adding the resulting

equations to obtain
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d T
E?'(A §z) = 0 , (3.8)
This equation may be integrated from to to tf to obtain
AT(6)62(t,) = AT(E Dez(t ) (3.9)
f f 0 0 3.9

where the boundary conditions on the adjoint variables are com-
pletely arbitrary and may be selected sueh that the desired
relationship between sz(tf) and az(to) is obtained. There
are several approaches that may be taken.

The first approach and a most natural one is to inte-
grate the adjoint equations, Eq. (3.3), backwards from te to

to » 2n times with the starting conditions

T AT T
lhl(tr) ) (tf) 1“zn(tr) or 0(ts,ts)

where
*AT(t)-— 100 ... 0
e | [355000
(6t p,t,) : - ) -1, (3.10)
AT () ] 000 ...1
L i J

The presubscript refers to the first approach. When this
1ntegration‘is'Eompleted, Eq. (3.9) may be written
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5z(tf) = le(tf,tp.)ﬁz(to) . (3.11)

Substituting this equation into the perturbed terminal con-

straint relation, Eq. (3.6), ylelds the desired relation

= |3h :
dh = [az]fle(tf,to)sz(to) + hdt . (3.12)
where
dh is an n+l vector representing the change

In the terminal dlssatisfaction.

[}—] Is an n+l x 2n matrilx evaluated at the
f

nominal terminal time, tf

1e(tf,to) is an 2n x 2n matrix resulting from the
2n backward integrations of the adjoint

equations.

5z(t0) 1s a 2n wvector of 1Initial variable varia-
tions that along with dt. produce the

terminal dissatisfaction change.

is an n+l vector which represents the

o 0

time rate of change of the terminal dis-
satisfaction, evaluated at the nominal

terminal time, tf
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dtf is a scalar variation of the nominal

terminal time.

It must be noted that all of the perturbations 6z(t0) are not
independent, but 1in fact are related through the initlal con-
straint relations Eq. (2.40). Assuming that the initial time
is specified, the required first order expansion of Eq. (2.40)

becomes

dg = Eﬁﬂ sz(ty) = 0O (3.13)
0

dZ

This equation may be solved for n of the Gz(to) in terms of
the remaining n elements of az(tn), and these variations are
eliminated from Eq. (3.12). This leaves the n+l Egs. (3.12)
with the n independent 5z'(t0) and terminal time variation
dtf as the n+l unknowns. The prime indicates that the vec-
tor has been reduced In dimension so that only independent
variations remain.

- This approach 1s fundamental and very inefficient, be-
cause more information 1s generated than needed. The computa-
tional difficultles associated wlith the backwards integration
of the adjoint equations may be eliminated by consldering a
second approach.

This approach requires the forward integration of the
adjolnt equatlons 2n times from t, to t. with the start-

T T
A (B v Gy (8g) or ,0(t,,t,)

T
ing conditions 2Al(to) 2Mon

2
where



ho

——

.-
M1 ) Pos il
T
22 (%o o1l

2e(to,t0) = ) = _ = 1. (3.14)
. Sl
thn(to) 0 0 O 1

The presubscript refers to the second approach. When this in-
tegration is completed (and it may be performed simultaneously

with the integration of Eq. (3.1), Ea. (3.9) becomes

,0(t,6.)82(t.) = §2(t,)

and solving for 6z(t,) yields
-1
s2(t.) = [,0(t,,t,)17 62(5,) . (3.15)

Substituting this equation into the perturbed terminal con-

straint relation, Eq. (3.6), ylelds the desired relation

-|an -1 .
dh = [ﬁ]f[ze(to’tf” sz(to) + hdt . (3.16)

where the terms have the same physical significance as in the
first approach. ‘

The obvious disadvantage with this second approach is
that even though the backward integration has been eliminated,
the same number of equations must be integrgted and a 2n x 2n

matrix must be _inverted at the terminal time. It would
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certainly be desirable 1f an approach could be fprmulated such
that the above matrix inversion is unnecessary and a more effi-
clent integration 1s made.

The third approach regulres the examination of Eg.
(3.12) which results from the first approach. Since the ini-
tial conditions on the linear adjoint equation, Eq. (3.3), are
arbitrary and may be selected for convenlence, an equation
ldentical to Eq. (3.12) may be derived by integrating the ad-

joint equations only n+l times with the starting conditions

ol(tr,ts) = [%%] (3.17)
f
where [%%] iz an n+l x 2n matrix evaluated at the nominal
f

terminal time. In other words, since the linear adjoint

equation 1s integrated with starting conditlons 1e(tf,tf) =1

in the first approach and results in le(tf’tu) , if the

starting condition were le(tf,tf) = [%%] I , the result
would be |28 8(t.,t ) . Hence, Eq. (3.12) has been derived
3z pl 270

with n~1 fewer integrations of an equlvalent set of equa-

tions.

For this last approach the deslred equation may be

wriltten

dh = o(t,b )éz(t ) + ﬁdtf ’ (3.18)
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where the terms have the same physical significance as the

previous two approaches, but G(tf,t ) 1is an n+l x 2n matrix

0
resulting from the simultaneous backward integration of the
adjoint equations. Again the dependent initial state and/or
Euler varilable variations must‘be eliminated, and this leaves
n initial variable varilations and one terminal time variation
to be determined from the n+l equations, Eq. (3.18).

The explanation for the third approach gives the jus-
tiflcation for the scheﬁe used by Jazwinski (12) where an ex-
tension is made of Jurovics and McIntyre's (7) presentation.

One additicnal time conserving feature, which may be used, is

the scaling of the Lagrange multipliers. This advantage re-
sults because the Euler-Lagrange equatlons are linear and

homogeneous. The implementation of this idea is discussed in
Section 7.3 and essentially involves the trading of one termi-
nal condition for an initial condition. The decrease in the
dimension of the terminal constraint vector by one, also de-
éreases the number of adjoint integrations by one, and hence
results in less computation time.

One additional remark is in order for cases where the
specified terminal constraints are rather complex and the
lLagrange multiplier v 1s introduced. For this case, the

terminal constraint veetor becomes

h = h(zg,t,,v) = 0 (3.19)
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where h 1s an n+l+q vector, and the perturbed terminal con-

straint relation, Egq. (3.4), becomes

_ [an : ah
dh [a;]f62(tf) 4 hdtf + [}v]fdv (3.20)

where E%ﬂ is an n+l x ¢ matrix evaluated at the nominal
T

terminal time and dv 1is a q vector of total Lagrange multi-
plier variations. It should be recalled that when the
vector is used, there exists n+l+q terminal constraint rela-
tions and this increases the dimension of the dh vector by
@ . This is Just the number of additional equations needed to
solve for the additional unknown variations dv . These varia-
tions are applied to the assumed values of v .

A similar technique 1s used by Breakwell, Speyer, and
Bryson (9)}. It 1s shown in this reference that after the
forward integration of Eq. (3.1) has been made, q of the n
equations represented by Eq. (2.33) may be used to determine
the aq wvalues of v . Then these q values of v are used
to evaluate the terminal dissatisfaction represented by the
remaining n-q egquations of Eq. (2.33). This procedure simply
reduces the dimension of h to n+l , and hence only n+l
backward integrations of Eq. (3.3) are needed.

The computational procedure may be followed by re-

ferring to an illustration of the Method of Adjoint Functions

(MAF) : T



z by

Desired Terminal

Conditilons

¥

(1) Integrate the 2n nonlinear differential equa-

tions of motion and the Euler-Lagrange equations, Eq.
(3.1}, forward from t, to bt. with starting condi-
tions satisfying Eq. (2.40) and n assumed values

for the unknown paramefers.

(2) Evaluate at the nominal terminal time, t. , the
quantities h , h , and the starting conditions for

the backwards integration of the adjoint equations,

b,

(3) Integrate the 2n adjoint equations, Eq. (3.3),

backwards nt+l times from tf to t, with starting

conditions, [%2] and use the value of the variables
f
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stored during the forward integration to form the

coefficients of the adjoint varilables.

(4) Solve the n+l 1linear algebraic equations, Egs.
(3.18), for a linear approximation of the corrections
that must be applied to the assumed initial values and

the terminal time.

(5) Apply these corrections and repeat the process
until the corrections become smaller than some pre-

selected value.

3.2 Methods of Perturbation Functions

Of the several methods avallable for determining the
terminal variations in the state and Euler variables as a func-
tion of the initlal variations, 1.e. 6z(tf) = [H]Gz(to) , the
most natural one involves the dlrect use of the perturbation

equations, Eq. (3.2)
§2 = Asz . (3.21)

As a first approcach, integrate these perturbation equations

forward from to to tf, 2n times with the starting condl

tions

t
ldzl(to), 15Z2(to) ceny lazzn(to) or lé(tu, 0)



46

where ¢(t ,t ) =
1 0" 0

1| 0| 10]
0 1 0
0: 0: :0 (3.22)
6 t 3 t L L I Y t‘ = - » 0 . = -
[1 Zl( 0) 1622( 0), 1Gzzn( 0)] | X 3 T
_II II Il
or ol 11

The presubscript refers to the f;:st appreach. This integra-
tion may be made simultaneously with the forward integration of
the differential equations, Eq. (3.1), and hence less computer
storage 1s required. When this integration is completed, the

resulting equations evaluated at the terminal time may be

represented by

sz(tf) = 1¢(t0,tf)az(to) (3.23)

where 1q:(t tf) is a 2n x 2n matrix of partial derivatives

f

o?

evaluated on the nominal trajectory. This equation may be
substituted into the perturbed terminal constraint relation,

Eq. (3.6), and the desired result becomes

. |an '
dh = [55]f 1#( st p)ez(E ) + hdte (3.24)

where the symbols have been explained previously. These n+l,
equations contain 2n initial state and Euler variable varia-
tions and one terminal time varilation. However, the dependent
variations may be eliminated as explained for the adjoint
methods and only the n+l 1ndependent variatlons must be

.determined.
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This first approach, using the perturbation equations
represents a very speclal case, because 1t can be shown to be
the exact equivalent to the first approach using the adjoint
equations. This can be shown by substituting into Eg. (3.9)

the starting conditions

s2(t ) = a(t ,t ) = I
(3.25)
AT(E) = o(ta,b.) = I
b Abp OV Eps®p
This substitution ylelds

and under these circumstances the algebralc equations for the
adjoint method, Eg. (3.12), and the perturbation method, Eq.
(3.24), become ldentical.

A second approach 1s suggested after examination of Eq.
(3.24). Since the initial conditions on the linear perturba-
tion equations, Eq. (3.21), are arbitrary and may be selected
for convenience, an equation identical to Eq. (3.24) may be

derived by integrating the perturbation equations only n+l
times with the starting conditions

_ [on
2‘15(150,'50) = [ﬁ]f (3.27)

where [%%] is an n+l x 2n- matrix evaluated at the nominal
£ -
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terminal time. The resulting linear algebralc equation to be

solved becomes
dh = 2¢(t0,tf)5z(t0) + hdtf (3.28)

where 2¢(t0,tf)' is generated by only n+l integrations of
the perturbation equations.

This approach loses some appeal, however, when imple-
mentation begins because the starting condition, Eq. (3.27),
cannot be evaluated until a nominal trajectory is integrated.
Since the perturbation equations cannot be integrated simul-
taneously with the differential equations, the nominal path
must be stored and no particular advantage over the adjoint
method is realized.

A third approach, which proves to be the most effi-
cient, may be formulated by observing the manner in which the
1G(tf,to) and 1¢(t0,tf) matrices are generated and used.
For each of the n independent initial variations required a
corresponding column of the 1e(tf.,to) or 1@(to,tf) matrix
is needed. Silnce the 1o(tf,to) matrix is generated by rows,
to determine any one column requires all 2n integrations of

the adjoint equations. This, however, 1is not frue for the per-

turbation methods, because the 1@(to,tf) matrix 1s generated
by columns. The elements of any n columns can be determined

by simply integrating the perturbation equation n f©imes, the

starting vector having the element that corresponds to the
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desired 1initial unknown varlation set equal to unity and all
others zero. With this modification, the linear algebraic

equation becomes

_ |2h :
dh = [EE]f¢(to’tf)6z'cto} + hdt, (3.29)
where o(to,tf) is a 2n x n matrix generated by integrating

the perturbation equation only n times and §z'(t,) becomes
an n vector representing the desired independent initial
varlations.

The essential feature of the perturbation method is
that only n Integrations are needed, and hence one less inte-
gration of a set of equations equivalent to the adjoint equa-
tions. The third approach to the adjoint method and the above
perturbation method require the solution of exactly the same

linear system, but the required elements of the ¢(t0,tf)

matrix are simply derived In a more efficient manner. The

additional advantage of using the perturbation method is that
the nomlnal trajectory does not require computer storage.

The computational procedure may be followed by re-
ferring to an illustration of the Method of Perturbation

Functions (MPF):
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Desired Terminal

Conditions

'1!'

(1) Integrate the 2n nonlinear differential equa-
tions of motion and the Euler-Lagrange equations, Eq.
(3.1), forward from t,; to te with starting éondih
tions consisting of the n known initial conditions
satisfying Eq. (2.40) and n assumed values for the

unknown parameters.

(2) Simultaneously with the above integration, inte-
grate the 2n perturbation equations, Eq. (3.21),
with starting conditions described above and coeffi-

clients formed from the variables that describe the

nominal trajectory.
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(3) Solve the n+l 1linear algebraic equations, Eg.
(3.29), for a linear approximation of the corrections
that must be applied to the assumed initial values and

the terminal time.

(4) Apply these corrections and repeat the process

until the corrections become smaller than some pre-

selected value,.

3.3 Iteration Philosophy for the Perturbation Methods

The iteration schemes for the Perturbation Methods simply
consist of a procedure for lteratively determining the initial
values of the Lagrange multipliers so as to decrease the terminal
constraint dissatisfaction on the following iteration. The con-
trol is eliminated from the differential equations, Egs. (2.23)
and (2.24), by using the optimallty conditions, Eq. (2.25), and
the nonlinear differential equations are integrated during each
iteration. Since the optimality condition is always satisfied,
every iteration produces an optimal trajectory, but to an un-
desired terminal condition. The only remaining complication is
to satisfy the desired terminal constraints, Eq. (2.42).

Normally, the requested-change in-the terminal dissatis-
faction is equated to the negative of the terminal dissatisfac-
tion resulting from the previous 1teration. Thils requested
correctlon 1s then used in the linear algebralc equations, Eqgs.

(3.18) or (3.29), to make a multiple linear interpolation for
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the variations of the initially assumed values of the state
and/or Euler variables. When these corrections are applied and
a new nominal trajectory Integrated, the terminal constraint
dissatisfaction is usually reduced.

The difficulty with this type of indirect optimization
procedure is that when the terminal dissatisfaction is large,
the linear approximations are not very representative of the
nonlinear system, and the possibility for divergence is in-
creased. The linearization is made about the current nominal
trajectory, and whether or not this trajectory 1s close to
satisfying the terminal constraints on any given iteration is
immaterial. The essential factor is that the trajectory re-
sulting in the next iteration be sufficiently near the previous
one so that the linearization assumptions are not stretched
beyond the limits of validity.

One natural approach, the motive for which resulted
from a suggestion made by Breakwell, Speyer, and Bryson (9), is
to request the correction of only a percentage of the terminal
dissatisfaction resulting from the previous iteration. For
instance, the algebraic equation that contalns the corrections

for the Method of Perturbation Functions 1is

ah

dh = [-ﬁ]fcb(to,tf)ﬁz(tg) + hdt (3.30)

and for a percentage correction let

dh = -ch (3.31)
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where ¢ 1s the deslred percentage to be corrected. The
iteration factor ¢ may have values in the range 0 € c¢ € 1.
A correction for the Method of Adjoint Functions is applied in
the same manner.

It is also reasonable to expect that as the optimal tra-
jectory is approached, successive trajectories will be suffi-
ciently near one another. Hence, the linear representation
becomes accurate enough to reguest the complete correction of
the fterminal dissatisfaction. Also, as successive trajectory
iterations begin to converge, successive adjoint and perturba-
tion solutions begin to converge, and hence integration of
these equations for every iteration may be unnecessary.

A summary and extension of the conjectures stated
above, which result in somé of the desired characteristics of

an iteration scheme, are that:

(1) An iteration factor may be speclfied initially
and changed during subsequent iteratlons by specifying
an iteration rate factor. As the 1lterations proceed,
the 1teration rate factor 1s used to control the per-
centage of the terminal dissatisfaction corrected on

any given iteration.

(2) There may exist an initial value of the iteration

factor that minimizes the convergence time or maximizes

the chance for convergence,
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(3) It may be unnecessary to update the o(t ,t.)

0°"f
and e(tf’to) matrices on every lteration.

(1) A correction of more than 100 percent may be

reasonable and desirable.

These conjectures are investigated by using the following dif-

ferent iteration schemes:

Iteration Scheme 1 - This scheme for both the Methods

of Adjoint and Perturbation Functions requires the arbitrary
selection of an initial value of the iteration factor and the
iteration rate factor. An iteration is made and the corre-
sponding iteration factor is applied to obtain corrections for
the next iteration. If the norm of the terminal dissatisfac-
tion decreases on the next iteration, the iteration factor is
increased by the value of the iteration rate factor. This
process is repeated, never allowing the iteration factor to be
zerc or greater than unity, until the corrections for each

assumed value is less than some preselected value.

A detalled procedure of Iteration Scheme 1 follows:

(1) Starting values of the iteration factor and the

iteration rate factor are selected.

(2) Integrate the nonlinear differential equations of
motion forward, noting the norm of the terminal dis-

satisfaction. If the Method of Adjoint Functions is
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being used, integrate the adjoint equations backwards.
If the Method of Perturbation Functions is beling used,
the perturbation equations may be integrated forward
simultaneously with the differential equations of

motion.

(3) Solve the algebrailc equations, using the specified
value of the iteration factor, to determine the correc-

tions required for the initially assumed values.

(4) If all corrections are less than some preselected
value, terminate the iteration. If any one correction
is greater than the preselected value continue the

process as follows.

(5) Apply the corrections to the assumed initial con-
ditions, integrate the differential equations again,
and determine the terminal dissatisfaction. If the
norm of the terminal dissatisfaction is less than the
norm that results on the previous 1lteration, increase
the iteration factor by the value of the iteration
rate factor and continue to iterate. Never allow the

iteration factor to be greater than unity.

(6) If the norm is greater than the previous norm,
decrease the iteration factor by the value of the

tteration rate factor and continue to iterate. Never



56

allow the iteration factor to be less than the value

of the iteration rate factor.

Iteration Scheme 2 -~ During the initial efforts to

solve a problem with either the Method of Adjoint Functions or
the Method of Perturbation Funcfions, a low initial wvalue for
the iteration factor is usually assumed. This requests a small
change from a solution which is probably far from optimal, and
thus reduces the possibility for divergence. However, this
could be an unreascnably low estimate and if the iteration fac-
tor is systematically increased, as in Iteration Scheme 1, a
great number of iterations would be required before a full
correction would be requested. This scheme reduces the con-
vergence time by avoiding the integration of the perturbation
or adjoint equations on certain iterations. The criterion used
to establish when a perturbation or adjoint equation integra-
tion is made is that either a divergence of the fterminal con-
straint norm occurs or the integration is forced after a
specified number of corrections have been made. The iteration
factor is still increased each ﬁime a norm convergence og¢curs
and the trajectory that produces this convergence 1s called a
nominal. When the terminal norm diverges the iteration factor
is decreased and the last convergent trajectory 1s used as a

riominal.
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A detailed procedure of Iteration Scheme 2 follows:

(1) Starting values of the iteration factor and the

iteration rate factor are selected.

(2) Inﬁegrate the nonlinear differential equations of
motion forward, noting the norm of the terminal dis-
satisfaction. If the Method of Adjoint Functions is
being used, integrate the adjoint equations backwards.
If the Method of Perturbatlion Functions is being used,
the perturbation equations may be integrated forward

simultaneously with the differential equations of

motion.

(3) Solve the algebraic equations, using the specified
value of the iteration factor, to determine the correc-

tions reguired for the initially assumed values.

(4) If all corrections are less than some preselected
value, terminate the iteration. If any one correction
is greater than the preselected value continue the

process as follows.

(5) Apply the corrections to the assumed initial con-
ditions, integrate the differential equations again,
and determine the terminal dissatisfaction. If the
norm of the terminal dissatisfaction 1is less than the

norm that results on the previous iteration, increase
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the iteration factor by the value of the iteration rate
factor. If the Method of Adjoint Functicns 1s being
used, avoid the adjoint integration on the present
iteration. If the Method of Perturbation Functions is

being used, avold the perturbation integration on the

next iteration.

(6) If the norm is greater than the previous norm, or
if a specified number of iterations have been made, de-
crease bthe iteration factor by the value of the itera-
tion rate factor. If the Method of Adjoint Functions
is being used, the adjoint eguations are lntegrated
backwards where the coefficlents are obtained from the
last convergent forward trajectory. If The Method of
Perturbation Functions is belng used, the perturbation

equations are integrated on the next lteration.



CHAPTER U
QUASILINEARIZATION METHODS

The previously discussed Methods of Adjolnt and Pertur-
bation Functions involve the integration of a set of nonlinear
differential equations. The coefficients for the linear
adjoint or perturbation differential equations are formed with
the varilables generated by the nonlinear equations. A somewhat
different approach can be formulated by linearizing the differ-
ential equations, and then using the adjoint and perturbation
functions in the same general manner as before. The coeffi-
cients used to generate a new nominal trajectory are formed
from the solution that corresponds to the previous nominal tra-
Jectory. This, essentially, is the quasilinearization concept.

The theoretical development of the Quasilinearization
Methods may be shown to follow common lines, and in this sense
the formulations are parallel. The approaches involve the
solution of a set of linear differential equations, the solu-
tion of wﬁich converges, under appropriate condlitions, fo the
solution of the deslred nonlinear problem. 8ince the equations
are linear, the termlnal constraints can be satisfied on every
iteration, 1f desired. However, the classical optimality con-
dition 1s not satisfied until convergence has occurred, and
even though the end points of the trajectory are satlsfied,

some care must be taken to insure that the trajectory shape

59
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between these end points is correct. One other characteristic
of the quasilinearization techniques is that an initially
assumed solution is required. If a reasonable estimate of the
solution caAnot be made, a star?ing solution, derived from the
integration of the nonlinear differential equations, may be
good enough to result in convergence. This requires that only
the initilal values of the unknown variables be assumed, rather

than the complete solution.

4.1 Methods of Generallzed Newton-Raphson

The complete solution of the two-point boundary value
problem by using the Method of Generalized Newton-Raphson may
be obtained in a manner similar to the Method of Perturbation
Functions discussed in Section 3.2. The exception to this
similarity is that the differential equations, Eq. (3.1), are
linearized about the previous nominal. '

The problem 1s formulated In terms of an ordinary first

order, nonlinear, vector, differential equation
7z = F(z,t) (4.1)

where 2 1s a 2n vector composed of n state variables and
n Euler-Lagrange variables and t 1s the Independent variable
time. This nonlinear equation may be expanded about the pre-
vious nominal trajectory, say the nth trajectory, and by

ignoring the nonlinear terms yields
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Zo41 = Zp + A(zn,t)(zn+1 - zn) (4.2)
where A(zn,t) is the partial derivative matrix [%g]
n

This matrix is evaluabted on the previous nominal trajectory
and is similar to the A(z,t) matrix discussed in the develop-
ment of the Perturbation Methods. This eqguation, Eq. (4.2),

can be expressed as
z = Az + B (4.3)

where A 1is described above and B = én - Azn . Note that A
and B are known from the previous nominal trajectory.

The first approach to the Method of Generalized
Newton-~Raphson 1s simlilar to the method outlined by MeGill and
Kenneth (13), and this provides a starting point for further
development. Suppose that p of the initial values of z are

specified, i.e. Zi(to) = i =1, p . This implies that

210 °
2n-p 1nitial values of z must be assumed along with an
assumed value of initial time ¢, . The homogeneous part of

Eq. (4.3) may be expressed as

and hence it is similar to the perturbation equations, Eq.

(3.21). Eq. (4.%) may be integrated forward from ¢, to t.

2n-p times with each successive starting vector consisting of
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all zero elements except for the element that corresponds to
one of the unknown initial conditions. This element is set
equal to unlty. This procedure leads to a 2n x 2n-p matrix
of solutions Y(to,t) . The forward integration amounts to
making a unit perturbation in.each one of the unknown initial
conditions.

The nonhomogeneous solution to Eq. (4.3) may be ob-

tained as a solutlon to
w=Aw + B (4.5)

which generates a particular solution when integrated from €,

to t with the p known 1nitial conditions and n-p assumed

£
initial conditions. ©Now, the general solution of the linear

system of Egs. (4.3) becomes
z(t) = Y(t ,t)C + w(t) . (4.6)

where =z 1is a 2n vector of state and Euler variables, Y 1is

a 2n X 2n-p matrix of homogenecus solutions, € 1is a 2n-p

vector of constants and w 1s a 2n vector of nonhomogeneous
solutions.

Since 2n+l-p conditions on the terminal value of =z
must be specified for a variable final time problem, any 2n-p
of these conditions may be selected and the appropriate 2n-p
members of Eq. (4.6) may be evaluated at the assumed terminal
time. Then these equatlions are solved for the 2n-p constant

corrections C . These correctlions are used to update the
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assumed initial conditions for the next iteration. For the
purpose of saving computer storage the nominal trajectory is
not formed by the linear combination of Eq. (4.6), but by in-
tegrating Eq. (4.3) with the updated initial conditions. This
requires only the storage of the final values of the homogene-
ous and nonhomogeneous solutlons.

- This procedure is continued until a metric (that repre-
sents the maximum distance, over the complete independent
varlable range, between successive nominal trajectories) be-
comes less than some preselecﬁed value. This metric is given

by

Zoey — Zn . (u.7)

p = 5& max
i=1 t
Since this metric represents the maximum distance between suc-
cessive nominal tqajectories, 1ts wvalue decreases as the opti-
mal trajectory shape.ls converged upon. When this metric has
been reduced to an acceptable value, convergence has occurred
for the specified value of terminal time. The one remaining
unused terminal condition 1s used in a conventional scalar ap-
plication of the Newton-Raphson iteration technlque to produce
a more accurate determination of terminal- time. This finite

difference equation 1s
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th

where the subscript k refers to the k time iteration and

Z is the desired terminal value of the variable selected.

£
This new terminal time is used and trajectory lterations are
made until the metric , is reduced once again. When the
time iterations result in time changes smaller than some pre-
selected value, the desired solution has been determined and
the procedure is terminated.

One of the principal differences of the Method of
Generalized Newton-Raphson as opposed to the Perturbation
Methods 1s that an initial solution of the state and Euler
variables is required. Alsco the method by which the terminal

time 1s determined is very time consuming, especially when a

large error is made in the assumed terminal time. A major ob-

jection is that the initial and terminal conditions must simply
be values of the variables involved, rather than general func-
tions of these variables. The above stated difference can be
avoided, in some cases, by slmply using the solution generated
by integrating the nonlinear equations, Eq. (4.1), and this
approach requires only starting values of the variables, P
of which are known. The above stated objection has been par-
tially removed by Long (16). _ )

The method proposed by Long, designated here by the
Modified Method of Generalized Newton-Raphson, involves a

change of the independent varilable

t = as (4.9)



where a 1s a constant and s is a new independent variable
having values 0 < g € 1 . The differential egquations, Eq.

(4.1), now become

z! = s = aF(z,as) . (4.10)

The constant a 1is considered a new state variable and an

additional differential equation

a =20 (4,11)

may be added, but this is clearly not necessary since the solu-
tion to this equation is trivial. The value of a 1is initially
assumed and then corrected on each iteration just like any other
initially unknown state variable. The value a represents the
terminal time as cén be seen by evaluating Eq. (4.9) at the
terminal value of the independent variable.

The determination of the terminal time now beéomes an
iritegral part of the iterative écheme, and its separate con-
éideration, as required by the first approach, is not required.
However, this does not save as much time as one might think,
since a term that corresponds to the new state variable a
must be added to each differential eguation. Also another inT
tegration of the 2n homogeneous equations must be made since

the value of a must be iteratively determined. The other

objections discussed for the first approach are not
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eliminated. The effectiveness of Long's proposal 1s evaluated

and discussed further in a later chapter.

4,2 Modified Quasilinearization Methoed

The method proposed in the present study, called the
Modified Quasilinearization Method, uses the quasilineariza-
tion concept but removes the restrictions on the Methods of
Generalized Newton-Raphson discussed in Section 4.1. The
manner in which the terminal time 1s determined proves superior
to the modification proposed by Long.

The Eq. (4.6), derived for the Method of Generalized
Newton-Raphson, can be rewritten and evaluated at the terminal

time
Y(to,tf)c = z(tf) - w(tf) . (4.12)

The right hand side of this equation is the diiference between
the desired terminal value of 2z and the linear calculation

of the terminal value of w . This difference 1is interpreted

as the variation of z(tf) , and is expressed as Gz(tf)

Now, if both sides of Eq. (4.12) are premultiplied by [.g_;l:t ,
£

the resulting expression becomes

?h _ fan
[a_z]f“to:tf)c = [—az]fw(tf) (4.13)
where E%ﬂ is a2 2n+l-p x 2n matrix describing the partial
f--.

change of a general set of terminal boundary conditilons,
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h(zf,tf) , to a change in the terminal values of =z itself.

£
The right hand side of Eq. (4#.13) is the variation of this
general set of terminal boundary conditions sh(to) . A first
order expansion of the terminal boundary conditions may be

made, dh = éh + hdb. , and substituted into Eg. (4.13) to

f 3
yield

_ |2h X
dh = I:'a—'z"]fY(to’tf‘)C + hdt, (4.14)

where dh is a 2n+l-p vector of terminal constraint dis-

satisfaction, [%2] is an 2n+l-p x 2n matrix of partial de-
hil

rivatives, Y(to,tf) ig an 2n x 2n-p matrix of the terminal
values of the homogeneous solutions, C 1is a 2Zn-p vector of
corrections to be determined, h is a 2n+l-p vector of
time rates of change of the terminal constraints and dtf is
the time correction to be determined. !
The Eq. (4.14) just derived is analogous to Eq. (3.29)
developed for the Method of Perturbation Functions. The major
exception is that in the present case the nonlinear differen-
tial equations of motion and the Euler-Lagrange equations are
linearized. If the optimization problem is reduced to a two-
poiné boundary value problem as discussed in Section 2.2, D
becomes equal to n and the implementation of the two methods

is similar.
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The computational procedure may be followed by re-

ferring to an illustration of the Modified Quasilinearization

Method (MQM):

(1) Integrate the 2n 1linear nonhomogeneous differen-
tial equations, Eq. (4.3), forward from t, to te
with starting conditions consisting of the n known
initial conditions and n assumed values for the un-
known parameters. The A and B matrices are
evaluated fzom the previous nominal (on the first

iteration the assumed nominal is used).
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(2) Integrate the 2n linear homogeneous differen-
tial equations, Eq. (4.4), forward, simultaneously

with the Eq. (4.5), from- t, to t. with n start-

f
ing conditions consisting of a unit perturbation of
the variables that corresponds to the unknown initial

conditions.

(3) Solve the n+l 1linear algebraic equations, Eq.
(4.14), for a linear determination of the corrections
that must be applied to the assumed initial values and

terminal time.

(4) Integrate the 2n 1linear nonhomogeneous differ-
ential equations, Eq. (4.3}, forward from t, to

tf + th

recently calculated corrections. This integration

£

with the initial conditions updated by the

yields a new nominal.

(5) The process is contlnued until the metric o
_and the corrections become less than some preselected

values.

It should be noted that this approach could have used'
the adjoint functions rather than the perturbation functions.
In this case, its implementation will require the use of a
set of ‘equations adjoint to the homogeneous equations, Eq.

(4.4), and its development runs parallel to the method
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discussed 1n Section 3.1. The algebraic equation to be solved

becomes
. -
dh = 0 (t,,t )éz(t ) + hdt . (4.15)

' -
where 0 is an n+l x 2n matrix resulting from the simul-

taneous backward iIntegration of the adjoint equations.

4,3 Iteration Philosophy for the Quasilinearization Methods

The iteration scheme for the Quasilinearization Methods
simply consist of a procedure to lteratively determine the
Initial values of the Lagrange multipllers so as to decrease
the metric p . The control is eliminated from the differen-
tial equations, Eq. (4.1), by using the optimality conditions,
Eq. (2.25), and the linearized differential equations are in-
tegrated during each iteration. Even though the optimality
conditions are used, the trajectory 1lterations do not repre-
sent optimal solutions because the trajectories are generated
from a linearlzed verslon of the nonlinear differential equa-
tions. The only remalning requirement 1s to reduce the metric
p to an acceptable value, which means that an optimal solution
has been converged upon.

With the Method of Generalized Newton-Raphson, the
terminal values of the desired variables are introduced and
essentially forced to satisfaction on each iteration. The
metric p 1s reduced to an acceptable value by iterating on

an assumed value of terminal time. Then one of the desired
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terminal values 1s used in a scalar application of the NewbLon-

Raphson method to determine a new terminal time.

Iteration Scheme 1 - This scheme 1s used with the

Method of Generalized Newton-Raphson, and is one which allows
a time lteration to be made while the metriec p is being de-
creased. This scheme effectively reduces the metriec p 1in

conjunction with convergence on the desired terminal time.
A detailed procedure of Iteratlon Scheme 1 follows:

(1) Assume a solution for the 2n trajectory

variables and a terminal time.

{2) Make one tfajectory iteration by integrating
forward the homogeneous and nonhomogeneous equations,
Egs. (4.4) and (4.5), respectively. Determine the
corrections and integrate the nonhomogeneous equation
once again with the new 1nitlal conditions. This last
integration 1s considered a new nominal and the metric
Py 1s determined for this nominal and the assumed

trajectory.

(3) 'Make one more trajéctory iteration and obtain a

new metric, Py

(4) Using one of the desired terminal values make a

Newton-Raphson iteration to obtaln a new value of

terminal time.



72

(5) Make two more trajectory iterations and record

the value of the metric Py

-

{6) If the metric py 1s less than the metric 0, >

make another time iteratlon and continue the process.

{7) If the metric p, 1s greater than the metric
Py s continue the trajectory iterations until the
metric becomes less than Py = Then make a time

iteration and continue the process.

(8) Terminate the procedure when the time corrections

and the current metric become less than some pre-

selected values.

Tteration Scheme 2 - This scheme is used on the Modi-

fied Quasilinearization Method and is similar to Iteration

Scheme 1 presented for the Perturbatlon Methods. When the

MGNR 1s used, the terminal values of the desired variables are
introduced in such a manner that a full correction is requested
on every iteration. It is expected that if a full correction
is requested 1n cases where the linear representation is poor,
the sequence of linear solutions willl diverge. The less

severe request of only a percentage correction is applied with
the Modified Quasilinearization Method and the linear algebraic

equation that contalns the n+l corrections is
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dh = [?-}l] ¥(ty,6.)C + hdt, . (4.16)
£

The terminal dissatisfactlion change for a percentage correc-

tion is

dh = -ch

where ¢ 1s the desired percentage to be corrected, and the

iteration factor ¢ may have values in the range 0 <€ c 2 1

A detailed procedure of Iteration Scheme 2 follows:

(1) Starting values of the iteration factor and the

iteration rate factor are selected. Assume a solution

for the 2n trajectory variables, and a terminal time.

(2) Make one trajectory iteration by integrating
forward the homogeneous and nonhomogeneous equations,
determining the corrections and lntegrating the non-
homogeneous equation once agaln with the new initial
conditions and new terminal time. This last integra-
tion 1s considered a new nominal and the metric »

is determined for this nominal and the assumed tra-

Jectory.

(3) 1If all the corrections and the metric p are
less than some preselected values, termlnate 1tera-

tions. If any one correction or the metric o 1s
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greater than the preselected value continue the

process.

(4) Apply the corrections and make another trajectory

iteratlion, obtalning a new metric ,p .

{(5) If the new metric i1s less than the old metric,
increase the iteration factor by the value of the
iteration rate factor and continue to iterate, Never
allow the lteration factor to be less than the value

of the iteration rate factor or greater than unity.
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CHAPTER 5

GRADIENT METHODS

The general theory of the gradient concept is now both
well known and ﬁidely used for the approximate solution to
trajectory optimization problems. These methods have a common
characteristic in that the influence function concept is used
to determine how the performance index and/or a combination of
the terminal constraint relations are changed as the controcl
variables are changed. Then a control step is taken in the
negative gradient directilion, i.e. the direction of steepest
descent, so as to extremize the performance index while satis-
fying certain specified terminal cénstraint relations.

The implementation of the gradient techniques has been
widely varied and relatively arbitrary because although the
gradient direction is well defined, the proper sized step in
control space 1s not. The convergence properties of the methods
are dependent on judilcious selection of this step size and the
manner in which it is changed, and several efforts have been
made to improve the rather slow terminal convergence of the
gradient methods. Unfortunately, because of this inherent
arbltrariness in the gradient method, a great amount of human
intervention is required to select a proper control step size

and still avold violating the linearity constraints imposed
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on the problem. In this sense the implementation of the
gradient techniques is an art.

The theoretical development of the gradient technlques
discussed here may be shown to follow common approaches. The
primary difference being the manner 1in which the terminal con-
straints are handled and the method of selecting the control
step size. The Method of Steepest Descent uses the terminal
constraints in the so-called "hard" form, i.e. the constraints
are to be satisfied identically. The Modified Method of
Steepest Descent uses the terminal constralnts in the so-
called "soft" form, i.e. the constraints may be only approxi-

mately satisfied.

5.1 Method of Steepest Descent

The theoretical development of the Method of Steepest
Descent is well known as discussed in References 17 through
21, and is summarized here only to provide background for the
iteration scheme modification. It 1is desired to determine the
control program u(t) , where u 4is a m vector, which will
yleld an extreme value of some performance index
= b(xot) (5.1

subject to the differential equatlons of motion

X = f(x,u,t) (5.2)
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where X 1s an n vector whille satisfylng the terminal con-

straint relations
Yy = W(xf,tf) =0 (5.3)

where ¥ 1is a gq vector. One of the desired terminal con-

straint relations may be used as a stopping condition,

@ = a(xp,t) = 0 (5.4)

The integration process continues until this stopping condi-
tion 1s satisfied. If the differential equations, Eq. (5.2),
are linearized about some nominal path, the resulting equa-

tions become
§x = Féx + Géu (5.5)

where F and G are nxn and n xm matrices of partial
derivatives evaluated on the nominal trajectory, respectively.

The equations adjoint to Eq. (5.5) are

A = ~FTa (5.6)

where 1 1s an n vector of adjolnt varilables. This equation
may be combined with Eq. (5.5) by premultiplying Eq. (5.5) by
AT and post multiplying the transpose of Eq. (5.6) by &x

and adding the equations to yleld

%E(lTéx) = 2Tgsu . (5.7)
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Integrating Eq. (5.7) from t, to tf ylelds

t

T £ T
(A76x), = [ ATGsudt + (A78x), . (5.8)

s
The boundary condltions on the adjoint variables are arbitrary
and may be chosen for convenience. The object now is to de-
termine how initial state variatlons and integrated control
variations influence the terminal values of the performance
index, stopping condition and the termlnal constraint rela-
tions., If, on separate trials, the terminal values of the

adjoint varlables are set equal to

AE(tg) = [.g.g]f Ag(tp) = [g;]f Aa(t,) = [g—g]f (5.9)

where l¢ i1s an n vector, A? is a2 nxq matrix and Ao

is an n vector, the desired relations are seen to be

t

as = fATGGudt + (ATsx). + ¢dt (5.10)
b $°%7 0 £ '
to
ay = f A Géudt + (;\ §x) ‘I’dtf. (5.11)
£ .
an = '/. A Gdudt + (a Gx) + ﬂdtf (5.12)
%

0
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where
g 7
_ 8¢ L 3¢
’ i
sy , a3y
"P - Lﬁ-x + 'a'"f:‘-f (5-1“)
o
Q = ;%x + s%ﬁf (5.15)
and
de¢ = [8¢ + ¢at]y (5.16)
dv = [y + t'vdt]f (5.17)
dn = [§0 + s’zdt]r ) (5.18)

The approach presented by Bryson and Denham (18) allows
for the specification of a requested terminal dissatisfaction
improvement and an allowable step slze to be taken 1n control

space. The control step size 1s defined by

2

0 -
. where the step 1s a weighted quadratic functlon of the control

£
£
as = f LsuT w oeu dt (5.19)
t

deviation. The welghting matrlix W 1s included to improve
the convergence characteristics by glving more weight to
regions of low sensitivity. However, it is often chosen to

be the unity matrix because of the lack of knowledge


http:2dtJ~(5.18
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concerning the regilon sensitivity. The criteria used for de-
termining the best elements of this matrix are not given and
are found through trial and error procedures.

The stopping condition, Eq. (5.4), is to be identically
satisfled so Eq. (5.12) is eqﬁéted to zero. The terminal time

variation dtf 1s eliminated from Egs. (5.10) and (5.11) to

yield
Lp
T T
d¢ = ./‘ A¢QGGudt + (A¢96x)0 {(5.20)
L,
bp
_ T 1
dy = jf AwﬂGﬁudt + (AWQGX)O (5.21)
ty
= _ 9 h ve
where A¢9 A¢ élg (5.22)
i} ¥h g vt :
Agg = Ay - Agé 7 (5.23)

The total varliatlon in the performance index due to
initial state varlations and integrated control variations

may be expressed as

t t

£ £ '

. - T P T T T

d¢ = f A¢RGaudt+(xwdx)0+v dy- f lwneéudt‘("m“)o
t t

0 0
tf
+u as - f 5 fu” W dsudt
t

(5.24)

|-
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where the terminal constraint and the contrel step relations
are adjoined by the use of the vT and y Lagrange mulfti-
pliers, respectively. 'The multiplier v 1s a g vector and
v 1s a scalar constant. Since 1t 1s desired to determine the
control varlation which corresponds to the maximum change in

the performance index, the first variation of Eq. (5.24) must

vanish

t

£

o

This implies that the desired control variation is
u = 2 WTET(A, - Aygv) (5.26)
) ¥Q . .

When this equation is substituted back into Egs. (5.19) and

(5.21) the values of v and u are determined as

- -1 -1 .2
ulyydp + IWWIW¢ (5.27}

<
I

I -1% 17} 2
dd VYo YY Yo

o= s
o1
ds -4 1,,,d8

where

- _ (4T .2
dg = av¥ (Awnsx)o (5.29)

“r Tl
- Ty = AgqGU™ GT Ay dt (5.30)
ty
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&

I, = T awleTh at

Yo ¥Q $Q (5.31)
ty
£

I, = : ow leTh, at 2)

s¢ ~ Y 42 ‘ (5.3
to

and va is q x g matrix, iw¢ is a q wvector and I¢¢

is a scalar.
Now, combining Egs. (5.26) through (5.32) yields the

desired control program

e » a8 - A I pas \/2
Su = £ WIET( o = AyeTyyTyy) RN G
o6 VoYY Y
\
~-1,.T -1 .
+ WieTA, I, .dp (5.33)

¥Q Yy

where the positive sign is used if ¢ 1s to be maximized and
the negative sign used 1f ¢ 1s to be minimized. The pre-

vious control program is now modified as follows:
+ 61

The computational procedure for the Method of Steepest

Descent may be summarized by considering the following.

(1) Integrate the n differential equations of
motion, Eq. (5.2), forward in time using an assumed

control program and the desired initial conditions
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for the state variables. This integration is con-
tinued until the stopping condition, Eq. (5.4), is
satlsfied. The value of the state variables are

stored at each polnt in time.

(2) Integrate the n adjoint equations, Eq. (5.6),
backward q+2 times wlth the starting conditions,
Eq. (5.9). The coefficlent matrix F is obtained

from the nominal generated on the forward integration.

(3) Integrate the Egs. (5.30), (5.31) and (5.32)
o

backwards simultaneously with the adjoint equations

using zero as initial conditions to yield the values

for I , and I

vy 2 Lyg T

(4) Select a desired improvement in the terminal

dissatisfaction dY for the next iteration.

(5) Select a reasonable value for the mean sguare
control deviation from the previous control program

by using

. 1 2 a
as = z wmave(tf to)

This will provide a value for the control step dS .
(6) Use the selected values of d¥ and dS to cal-

culate the numerator under the radical in Eq. (5.33).

If this quantlty 1s negative, determine the d¥ that
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makes the quantity vanish. It 1s 1s positive, use

the quantity as it 1is.

(7) GCalculate the éu as given in Eq. (5.33) and

alter the assumed control program.

(8) This procedure is continued until the control

variations are less than some preselected value.

5.2 Modified Method of Steepest Descent

The theoretical development of the Modlfied Method of
Steepest Descent, which uses the penalty function technique
for handling the terminal constraints, is similar to the con-
ventional method dlscussed in Seetion 5.1. The primary dif—
ference is that the terminal constraint relation is included,
in the "soft" form, with the .performance index to form a

penalty function
“\

2 a 2

where the Wi‘s are welghting constants. If these constants
are sufficiently large, minimizing the penalty function is
essentially the same as minimizing the performance index ¢
and driving the terminal constraints ¥ to zero.

To determine how this penalty function is related to

initial state_yariations and the 1ntegratlon control variations,
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the Eq. (5.8) is used. Selecting the terminal boundary condi-
tion for the adjoint equations, Eq. (5.6) to be
T Cap |
A(tl) = o= (5.36)
PYL Lax_f
T _ [aq]
where AP. is an n wvector and 19 1s a scalar, yields
17
dp = fATGaudt + (Ade) + Pdt (5.38)
P P 0 T :
£y
te
- T Tox) + gt = 0 (5.39)
ag = AﬂGsudt + (xgax o adt . = .
to
where
< [sp: | ap
P—_’H'X'l'*a*—f (5__-:‘10)
S ET IS 1
Q= 3% x + atJf (5.41)

The stopping condition, Eq. (5.39), must be ldentically satis-

fied. Hence dtf can be determined from Eq. (5.39) and used
to eliminate dt. from Egs. (5.38). The result can be ex-
pressed as
t
L

dpP = J[
t

0

‘pa

Gsudt + (APnﬁx)

0 (5.42)
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where

T‘a
*pg

—

P
Ap — ;,2—19 . (5.43)

Now, 1t 1s desired to determine the control variation
which maximizes the change in thq'penalty function ¢P . To
insure the predominance of first order effects, a control step
size constraint is adjoined to the total variation of the pen-
alty function, to obtailn

" (5.44)

ar = fk’ Gsudt + 4s - tf%-auTa at [ + OF sx)
= PQ s 2 u pa°*’0
to £,

If the above Eq. (5.44) 1is to assume a maxlmum value, the

f;rst variation must vanish, or

tf T Ty .2
6(dp) = (A5.G - pdu™)é udt = 0 (5.45)
PQ T
tO
which implies that
I !

where K 1s a constant equal to 1l/u . This expression could
be written

su = KH " (5.47)

where H 1s defined as the generalized Hamiltonian, AgQG
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This equation implles that the control variation which
maximizes the penalty function change 1s proportional to the
magnitude of the control gradient and in either the positive
or negative gradlent direction, depending on the sign of K .
The constant K may be interpreted as the control step size
in the gradient direction., When the gradient Hu approaches
zero, the control variation alsoc vanishes.

The penalty function change 1s evaluated by substi-

tuting Eq. (5.47) into Eq. (5.42) to yield

oo
dpP = K H H, 4t . (5.48)
t

The computational procedure for the Modified Method
of Steepest Descent may be summarized by considering the

following:

(1) Integrate the n differential equations of
motion, Eq. (5.2), using an assumed control program
and the desired initial conditions of state. This
integration is continued untll the stopping condition,

Eq. (5.4}, 1s satisfied.

(2) Integrate the n adjoint equations, Eq. (5.6),
backward one time with the starting condition, Eq.
(5.43), or



88

T _|fap P \f20
e = |(82)- (B,

forming the coefficient F from the nominal path

generated on the forward integration.

(3) Having obtalned the solution Agn(t) the term

T
Hu = APQG may be formed.

(4) The square of AgQG may be integrated from ¢,

to t Then, using Eq. (5.48), the step size K

f
may be determined by specifying a deslred penalty

function change 4P .

(5) The control variation may be determined from Eq.

(5.47) and applied to the assumed control program.

(6) The procedure continues until the penalty func-

tion reaches a minimum.

It must be noted that the specified penalty function change,
and hence the step slze X 1s arbitrary, and the judiclous
selection of K becomes a key factor in lncreasing the con-
vergence rate. An automatic procedure for 1ts selection is

desired.
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5.3 Iteration Philosophy for the Gradient Metheds

The iteration schemes for the gradient methods simply
consist of a procedure to iteratively determine a control pro-
gram so as to extremize a performance Index while simultaneous-
ly driving the terminal constraint dissatisfaction to zero.
The nonlinear differential equations of motion are integrated
during each iteration, and the adjoint equatlions are used to
determine how the variation of different terminal quantities
are influenced by initlal state varlations and Integrated con-
trol variations. The optimality condition, Hu = 0, is not
used in the formulation, and hence is never identically satis-
fied.

A minimization of performance index requires a control
step to be taken in the negative gradient direction, con-
sistent with the specified terminal constraints, but Ehe size
of this step is not defined by considering the theoretical
déveIOpment of the gradient ftechnique itself: Hence, the most
severe disadvantage of these techniques is the arbiltrariness.
Usually a satisfactory convergence rate can only be achieved
by experienced personnel.

A primary objective of the present study 1s to develop
an iterative scheme that removes some of the arbitrariness and
inereases the convergence rate. Since the welghting mabrix
W , introduced in Eq., (5.19) is arbitrary, some ratlonal basis

for its selection 1s needed. Thils problem is approached by
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examining an integral form of the Welerstrass E-Function which
approximates the change in the performance index or the penalty
function. This change 1s approximated by
Tk “r ¥ ok
dP™ o E(x", x , x,t)dt (5.49)
t

0

where E 1s the Welerstrass E-Function as developed by Gelfand
and Fomin (27). The E-Function 1s defined as
¥ . * . BF ¥ l* + %
E = F(x ,x,t) - F(x ,x ,8) - = (x",x7,L)(x-x") (5.50)
ax

and for the system belng conslidered

F(x,i,t) = H(x,u,t) = ATi (5.51)

where H = ATf . The asterisks refer to the optimal path, and

the absence of asterisks refer to any nearby path. From the
caleulus of variations a necessary condition for the existence
of a minimum value of performance 1Index is that E be non-
negative durlng the interval tU € t <€ tf .

It is noted, by examining Eq. (5.2), that a variation
in control is accompanied by a variation in x , and that a
state variation will occur only after a finite duration of
time, Hence, the expansion of Eq. (5.49) is made by consider—

ing that the control deviation is not accompanied by a change

in state. The Eq. (5.49) is now written
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£
ar* ~ f (H - H)at . (5.52)
L

The first term of the integrand may be expanded in a Taylor's

serles about the optimal path at each point in time

¥ ¥ 1..T *
HyH +H 6u+ 58uH “éu+ ... . (5.53)

hY

and substituting the above equation into Eq. (5.52) and re-

calling that Hu* = 0 on the optimal path results in

£

¥ 1. T ¥

ap v f s6u"H -~ oudt . (5.54)
t .

0
This eqﬁation represents the deviation in the performance in-
dex associated with the deviation of the control program from
an optimal control program. It must be stated that Huu* is
not known until the optimal trajectory is converged upon, but
the expression, Eq. (5.58), becomes increasingly accurate as
convergence progresses.

An expression identical to Eq. (5.54) may be derived
for the performance lndex change by considering the second
variation of the functional I as presepted in Eq. (2.5).
This approach requires that the control varilations are not

accompanied by state deviations and that an optimal trajec-

tory 1s used as the reference path.



The term Huu* is approximated by using the general-
ized Hamiltonlan and the optimality condition, and may be

derived as

H

¥ T 2
. uu m

2, (5.55)

e

for the Barth-Mars transfer and the Earth launch examples dis-
cussed in Appendlx A.Z2.

The Eg. (5.54) indlcates that the performance index
increase is approximately eq;al to the integral of a weighted
quadratic form of the control deviation, where the weighting

is given by H * . This same quadratlc form appears in Eq.

uu

(5.19) for the Method of Steepest Descent, except the weighting
matrix W 4is undefined. This matrix was introduced to provide
different welghts to control regions of different sensitivity,
and may still be used to restrict the control step size. The
Eq. {5.19) is then introduced into an expression for the per-

formance index increase as shown in Eq. (5.24). Hence, it is

¥

reasonable to interpret the weighting matrix to be Huu s

thus becomlng an easlly determined specifled matrix.

Ilteration Scheme 1 - The first iteration scheme for the

Method of Steepest Descent follows the procedure outlined in
Section 5.1. The weighting matrix W 1s set equal to the
unity matrix, and hence the control variations at all points

in time are given the same weight.
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Iteration Scheme 2 -~ The second 1lteration scheme for

the Method of’Steepest Descent also follows the procedure out-
linediin‘Section 5.1. However, the welghting matrix W 1s set
equal to Huu* s and hence the control variation is influenced
by a time dependent welghting matrix. The only procedural ex-

¥

ceptlion is the one assoclated with determining the Huu

matrix.

One of the inaccuracles introduced in the above analy-
sis is‘that the Huu* matrix must be evaluated with current
trajectory information, rather than the desired optimal values.
This problem is eliminated in the Modified Method of Steepest
Descent by making the Taylor's expansion about the current

-

nominal trajectory. This expansion results in

% 1.7
H® » H + H su + Sfu Huudu + ..., (5.5?)

When this equation 1s substituted into Eq. (5.52), the rela-
tionship for the penalty function change becomes

ap* & - (H su + = suTH_ su)dt (5.57)
= u 2 uu ’ ’

o
The negative sign is now present because the control deviation
is toward the optimal, instead of away from 1t as before.

It is deslred for the penalty function change to be
extremized, and a necessary condition for this to occur is

that the first wvarlation of dP* vanish. The first variation

of Eq. (5.57) is set equal to zero
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%
5(aP ) n o (H. + 6uH_)s2udt = 0 8)
= u uu u - . (5-5
£y

This implies that
su = -H H (5.59)

where Hu and Huu are evaluated with current trajectory in-
formation. Thils equation implies the optimal control is in the
negative gradien% direction, weighted by Huunl . The
approximations involved become increasingly accurate as thq
convergence process approaches the optimal. It is in this
near optimal region that the gradient techniqpe is most defi-
cient, and it is expected that the control law, Eg. (5.59},
will assist in nullifying the inherent slowness of conver-
gence. By comparing Egs. (5.47) and (5.59), it is seen that

-1

the gradient step now becomes time dependent, where K = -Huu s

and may be easily calculated on each iteration.

Jteration Scheme 1 - The filrst iteratlion scheme asso-

ciated with the Modified Method of Steepest Descent requires
the gradient step determination to be made by using Eq. (5.48).
- This eqdation will yield a gradient step after performing the '
indicated integration and specifying a desired improvement in
the penalty function. Caution must be exercised so as not to
request such a large penalty function improvement that the

linearity assumptilons are violated.
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A detalled procedure of Iteration Scheme 1 follows:

(1) Integrate the nonlinear differential equations

of motion, Eq. (5.2), forward from t, to the te

which satisfies the stopping condition, Eq. (5.4).

The desired initial conditions and an assumed control
program are used. An initial evaluation of the

penalty function P0 is made.

(2) Integrate the adjoint equations, Eq. (5.6),

backwards from ¢ using the wvariables from the

f
forward integration to evaluate the coefflicients.

The starting condltions are determined by evaluating
Eq. (5.43) at the terminal time and are used to gene-

rate the solution Agn(t) .

(3) Having obtained the solution A?n(t), the quan-
= T |
tity Hu = APQG may be evaluated

(4) The square of H, may be integrated f'rom‘»t0

to t,. and using Eq. (5.48), K may be determined

i
by specifying a desired change In the penalty func~

tion.

(5) This step size K is used to modify the control
variation as stated in Eq. (5.87), and a new control

program is determined.
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{6) This new control program is used to generate a

new nominal and the procedure is repeated.

Iteration Scheme 2 - The second iteration scheme asso-

clated with the Modified Method of Steepest Descent is similar
to a technilque used by Wagner and Jazwinski (21). This scheme
involves making three trial forward Integrations using dif-
ferent but constant gradlent step slzes, and recording the
three resulting penalty function values. A second order poly-
nomial is fitted through these points and the step size that
corresponds to the minimum value of the penalty function is
selected. This method takes full advantage of each adjoint
integration by selecting an optimal step size for that itera-

tion.
A detailed procedure of Iteration Scheme 2 follows:

(1) Integrate the nonlinear differential equations of
motion, Eq. (5.2), forward from t, to the tf which
satisfies the stopping condition, Eq. (5.4). The de-

sired initial conditions and an assumed control program
is used. An initial evaluation of the penalty function

P0 i1s made.

(2) Integrate the adjoint equations, Eq. (5.6), back-

wards from tf using the variables from the forward
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integration to evaluate the coefficients. The start-
ing conditions are determined by evaluating Eq. (5.43)
at the terminal time and are used to generate the

T
soclution APg(t) .

(3) Having obtained the solution Agn(t) , the quan-

_ 4T
tity Hu = A

PQG may be evaluated.

(4) The square of Hu may be integrated from t, to

tf and using Eq. (5.48) K, may be determined by

specifying a desired change in the penalty function.

(5) This step size K, 1s used to modify the control
variation as stated in Eq. (5.47), and a new control

program is determined.

(6) Integrate the differential equations of motion
again using the new control program and record the

assocliated penalty function P1

(7) Depending on whether P1 is greabter or less than

P0 , the step slze K1 is either halved or doubled,

respectively.
(8) The control is modified once again and an integra-

tion of the differential equations of motion yield a

penalty function P,

(9) A second order polynomial is fitted through the

three polnts, and the step size K,/ ls determined
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that corresponds to the minimum value of the penalty

funetion.

(16) The control is modified with this Kmin and the
differential equations are integrated to ylield a new
nominal trajectory. The penalty function resulting

from thls integration is used to starf the cycle over

again.

Iteration Scheme 3 -~ The third iteration scheme asso-

ciated with the Modified Method of Steepest Descent requires
reference to the results given in Eq. (5.59). The implementa-
tion of this scheme 1is extremely simple compared to the first
iteration scheﬁe, because no trial forward integratiéns are re-—
quired., The time dependent matrix Huu s which maﬁ be formed
as the adjoint equations are Integrated backwards, is easily
determined. The control variation for the next lteration is

then determlined as the Huu matrix is formed.

A detalled procedure of Iteration Scheme 3 follows:

(1) Integrate the nonlinear differenfial equations of
motion, Eq. {(5.2), forward from t, to the t. which
satisfies the stopping condition, Eq. (5.4). The de-
sired initlal condltions and an assumed control program
is used for the first iteration. An initial evaluation

of the penalty function PO is made.
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(2) Integrate the adjoint equations, Eq. (5.6), back-
wards from tf using the variables from the f{orward
integration to evaluate the cogfficients. The starting
conditions are determined by evaluating Eq. (5.43) at

the terminal time and are used to generate the solution

T
APQ(t) .

(3) Having obtained the solution kgn(t) , the guan-
tltles Hu and Huu may be evaluated, hence the

control modification, Eg. (5.59), may be determined.

(4) The previous control program can be modified ang

the process continued.



CHAPTER 6

COMPARISON AND DISCUSSION OF THE OPTIMIZATION
METHODS AND ITERATION SCHEMES

A meaningful comparison of the optimization methods and
assoclated iteration schemes 1s extremely difficult to make.

One primary reason for thils difficulty is that most methods are
highly problem dependent, 1l.e., the characteristics of each
method are different for each problem attacked. Furthermore,
difficulties arise even if a comparison is made between the op-
timization methods based on the same physical problem, As an
example, suppose 1t 1s desired to compare the convergence times
of several optimization methods. It is obviohs that the conver-
gence time is highly dependent on the integration step size se-
lected, and therefore some reasonable eriteria for this selec-
tion must be established.

The comparison of the optimization methods and iteration
schemes on a numerical basis requires a realistic and represen-
tative trajectory problem. The example chosen 1is a spacecraft
moving under the influence of thrust in an inverse square gravi-
tational force field. Specifically, the problems investigated
are (1) a low thrust transfer trajectory from Earth to Mars, and
(2) an atmospheric Earth launch to circular orblt trajectory. A
more detalled discussion of the specific applications is made in

Appendix A.2. The time histories of the varilables and control

100
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programs that correspond to the optimal trajectories are shown in

Figures A.,2.1 through A.2.%4,

6.1 Selection of Methods for Comparative Study

The trajectory optimization problem has been shown to
be theoretically solvable by using several different indirect and
direct methods. Of the methods, presented in Chapters 3, 4, and
5, several different approaches are discussed, Some of the more
promising methods and associated lteration schemes were selected
for computational investigation.

The methods selected for computatlonal investigation
are referred to by the following abbreviated names. These meth-

ods are:

(1) Method of Adjoint Functions (MAF) - the third

approach discussed in Seetion 3.1.

(2) Method of Perturbation Functions (MPF) - the

third approach discussed in Sectien 3.2.

{3) Method of Generalized Newton-Raphson (MGNR) -

the first approach discussed in Section U.1.

(4) Modified Method of Generalized Newton-Raphson
(MMGNR) - the second approach discussed in Section
4.1,

(5) Modified Quasilinearization Method (MQM) -~ the

approach discussed in Section 4.2,
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(6) Method of Steepest Descent (MSD) - the approach

discussed in Section 5.1l.

(7) Modified Method of Steepest Descent (MMSD) - the

approach discussed 1in Section 5.2.

. The constants used in the numerical study are given in

Appendlx A.3.

6.2 Basis of Comparison

A basis of comparison must be established for the com-
parative study of the optimization methods selected in Section
6.1. The comparison is to be made not only between optimization
methods, but between the associated iteration schemes as well.

In a general sense, the following items are considered

a basis for comparison for the optimization methods:

(1) Required formulation, application and programming

complexity.
(2) Required amount of computer logic and storage.
(3) Ease of use by inexperilenced personnel.

(4) Required programming effort for solving different

problems.

(5) _Effectiveness in solving different problems.

(6) Sensitivity of the convergence characteristics to

Initially assumed parameters.
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(7) Resulting time for convergence.

The iteration schemes are not only concerned with the

above ltems but with the fpllowing items as well:

(1) Effectiveness of decreasing the sensitivity of
‘the convergence characteristiecs of the method to

initlally assumed parameters.

(2) Effectiveness of decreasing the time for conver-

gence.

6.3 Perturbation Methods

The comparison and discussion of the Perturbation
Methods will consist of two separate analyses. The Method of
Adjoint Functions, including the normal procedure and Iteration
Schemes 1 and 2, is discussed first. The Method of Perturbation
Functions with Iteration Scheme 1 is discussed last. The dis-
cgséion content will include the applicable ltems listed in

Section 6.2,

6.3.1 Method of Adjoint Functilons

The required formulation of the Method of Adjoint
Funetions as discussed in Section 3.1 is simple and straightfor-
ward. A general discussion of the applications is presented in
Appendix A.2 and a speciflc application of the MAF is made in
Appendix A.2.1, The examples chosen are described by four, first

order, nonlinear differential equations of motion, 1i.e., Newton's
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equations for motion in a plane.

The programming effort requires the forward integration
of the four differential equations of motion and the four Euler
differential equations. Integration of the differential equ§tion
for the rate of change of control, i.e., Eq. (2.22), 1s not re-
quired since the control 1s easily determined and eliminated from
the state and Euler equations. These eight dependent variables
and the independent varliable are stored in computer memory or on
tape at each time step during the forward integration for use in
forming the A(z,t) matrix. This requires less storage than if
eac% element of the A(z,t) matrix 1is stored since this would re-
qplée 64 quantities to be stored at each time step. The A(z,t)
matrix must be formed during the backward integration, but this
requires very little additional time.

The backwards integration of the eight adjoint differ-
ential equagions must be made with four different starting vec-
tors, and hence a large percentage of the computation time is
spent 1n this backward integration. The adjoint equations are
linear and it 1s conceivable égét a lafger integration step or a
variable step could be taken, This, however, requires additional
programming complexity to insure that the proper coefficients are
being formed from the variableé stored dﬁring the forward inte-
gration.

There 1s an alternative approach that .eliminates the
storage préblem, and hence becomes attractive for problems of

large dimension or for ones that require many integration steps.
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This approach is one where the differential equations of motion
and the Euler eguations are integrated backward simultaneously
with the adjoint equations. This does not eliminate the forward
Iintegration because the ‘terminal wvalues of the state and Euler
variables are requlred to start the backward integration. The
sacrifice to eliminate the storage and magnetic tape problems 1s
made by having to integrate an additional set of equations.

For the numerical investigation made, the former pro-
cedure is used which means more programming complexity, but also
less computer time required. A constant step size was selected
for both the forward and backward integrations.

The computer program that uses the MAF reguires two
initially assumed Lagrange multipliers and an agsumed terminal
time. These estimates require a familiarity with the physacal
problem and, to some degree, experience. The computer program
is bullt such that only the subroutines containing thé dafferen-
tial equations of motion, the Eulepr-Lagrange equations, and the
adjoint equations must be changed to solve different problems,

Iteration Scheme 1 requires very little computer logic
in addition to the Normal Scheme which Just requests 100 percent
terminal constraint satisfaction on each iteration. Operation is
simply transferred to a subroutine where the iteration factoeor is
altered In accordance with the terminal norm criterion explained
in Section 3.3.

Iteration Scheme 2 requires some additional programming

and computer storage. Basically, the scheme 1s such that the
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iteration factor 1s inecreased, omitting an adjoint integration,
until either the terminal constraint norm diverges or a specified
number of forward integrations have been made. If the norm does
diverge, the last convergent trajectory is used as a nominal, and
hence this trajectory must be saved until it is determined
whether or not it will be needed. The storage problem can be
eliminated, however, by simply regenerating the last convergent
trajectory.

The Earth--Mars transfer 1s completely defined when

X105 X220, and ¢ have been determined, as shown in Appendix

T
A.2.1. The quantity iy 1s easily determined to be zero. In
an effort to determine how sensitive the method 1s to poor ini--
tial assumptions for the above three quantlities, many cases are
investigated. Thesc numerical results are best illustrated by
building envelopes of convergence, the boundary of which repre-
sents the last convergent trial. Points beyond this boundary do
not result in a convergent solution. The percentage numbers on
the axes represent the percent deviation from the values that re-
sult in an optimal solution.

The envelopes of convergence for the MAF, using the
Normal Iteration Scheme of requesting a 100 percent correction in
the terminal constralints regardless of the terminal norm re-
sponse, are shown in Filgures 1, 2, and 3 for the cases of -20, 0
and 20 percent error in terminal time, respectively.

The physical significance of the convergence envelopes

1s clear when 1t 1is realized, by referring to Appendlx A.1l, that
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lteration method: MAF
lteration scheme: Normal
Initial iteration factor: 100%
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Figure 3, - Convergence envelope for the MAF using the normal iteration
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the thrust or control angle with respect to the local hori-
zontal is given by sin B = -11/(112 + Azz)% and cos B =
-12/(A12 + Azz)% . Points along a M5° diagonal lying in the
first and third quadrants represent the optimal initial control
angles, but with different values for fthe individual magnitudes
of the Lagrange muliipliers. The signs of the initial Lagrange
multiplier errors are the same. Points along a HSO diagonal
lying in tﬂe seceond and fourth quadrants represent nonoptimal
initial control angles for various values in the indavidual
magnitudes of the initial Lagrange multipliers. Down and to the
right in the fourth quadrant means the initial control angle is
decreasing and up and to the left means the initial control anglé
is increasing. The signs of the initial Lagrange multiplier
errors are opposite.

It is seen that the convergent solutions in Figures 1,
2, and 3 remain near the diagonal passing from the second to
fourth quadrants. The conclusion must be that for these cases
the method is more sensifave to changes in the optimal values of
the initial Lagraﬁge multiplier errors that have the same sign,
even though the initial control angle remains near optimal for
these cases. The method is less sensitive to changes in the
initial Lagrange multiplier errors that have the opposite sign,
even though the initial control angle is not near optimal. One
other interesting characteristic is that as the error in termirel
time increases from negative to positive, the envelopes increase
in size and move further down into the third and fourth guad-

rants. The convergence envelope in Figure 2 is approximately

-



30 percent larger than the one in Figure 1, and the convergence
envelope in Figure 3 1s approximately 70 percent larger than th
one in Figure 2. When a positive terminal time error exists, t
method becomes less sensitive to negative Ay errors, but
highly sensitive to positive i, errors.

Iteration Scheme 1, using an initial value for the ite
ation factor of 100 percent, is effective in increasing the con
vergence envelope slightly, as illustrated in Figures 4, 5, and
6. These envelopes exhibit the same characteristics as those
shown in Faigures 1, 2, and 3, except that the envelopes are
slightly larger. This increase in size is attributed to the
ability of the Iferation Scheme 1 fto decrease the iteration
factor when the terminal norm diverges. This easement of the
requested percentage correction allows some cases to converge
when divergence would have occurred had the iteration factor
been forced to remain 100 percent for all iterations.

The convergence envelopes are significantly increased t
'using"IE?ration Scheme 1 and an initial iteration factor of 50

percent rather than 100 percent. These envelopes are shown in

Figures 7, 8, and 9, and are approximately 360, 350 and 260
percent larger, respectively, than the corresponding envelopes
for initial l1teration factors of 100 percent. The convergent
solutions of these envelopes do hot remain so near the second tc
fourth quadrant diagonal as the previous cases although the
skewed appéaranéé is still perceptible. One characteristic seer
in Figures 4, 5, and 6 becomes more pronounced in Figures 7, 8,

and 9 and that is the downward movement of the en%elope as the

4
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Earth-Mars transfer
Optimization method: MAF
lteration scheme: 1

Initial iteration factor: 100%
Terminal time error: ~20%
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“igure 4, =~ Convergence envelope for the MAF using iteration scheme 1,
initial iteration factor of 100% and terminal time error of ~20% ,
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Earth-Mars transfer
Optimization method: MAF
iteration scheme: 1

Initial iteration factor: 100 %
Terminal time error: 0%
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Figure 5, = Convergence envelope for the MAF using iteration scheme 1,
initial iteration factor of 100%and terminal time error of OF,
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Earth~Mars transfer
Optimization scheme: MAF
lteration scheme; 1

Initial iteration factor: 100%
Terminal time error: 20%
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Figure 6, - Convergence envelope for the MAF using iteration scheme 1,
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Earth-Mars transfer
Optimization method: MAF
lteration scheme: 1

Initial iteration factor:
Terinal time errop:
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Figure 7, = Convergence envelope for the MAF using iteration scheme 1
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Eaith-Mars transfer
HOptsm:zatlon rcthod: MAF
Iteratron schame: 1 and 2
[mtsal iteration’ factor: 50 %
Termma! time error; 0%
Update integer: 1
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) . NOT REPRODUCIR £
Optimization method: MAF

Iteration scheme: 1 Note;

Initial iteration factor: 50%
Terminal time error: 20%
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positive terminal error is increased. This seems reasonable
since a negative X,y .error, which decreases the initial control
angle, combined with a positive tf error would probably cause
the vehicle to intercept Mar's orbit at a low angle. This tra-
jectory would conceivably terminate closer to the optimal point
than if the time error were less.

Figures 7, 8, and 9 also display the characteristic that
the envelope boundary becomes poorly defined, i.e., more irregu-
lar. This emphasizes the fact that many times only a slight
numerical difference exists between convergence and divergence,
and hence the scheme becomes very unpredictable near the bound-
aries. This is emphasized further by noting that in many cases
a divergence occurs immediately after a relatively low iteration
convergence case.

Iteration Scheme 2 continues to integrate the differen-
tial equations forward and skips the adjoint equation integration
unless a divergence occurs or a specified number (updating inte-
ger) of forward passes have been made. Figures 10, 11, and 12
show Iteration Scheme 2 for an initilal iteration factor of 50
percent and updating integers of 2, 4, and 6, respectively. The
figures indicate the total iterations and the number of adjoint
integrations required. Figure‘B, showiné Iteration Scheme 1,
may be considered a speclal case of Iteration Scheme 2 where the
updating integer is unity. A comparison of these figures reveals
that no significant change in the convergence envelope size or

shape has resulted from the application of Tteration Scheme 2 or
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Optimization method: MAF
Iteration scheme: 2
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Optimization method: MAF
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Earth~Mars transfer

Optimization method; MAF

Iteration scheme: 2

Initial iteration factor: 50%
Terminal time error; 0%
Update integer: 6
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inereasing the updating integer. The total number of iterations
reguired increased, but the number of adjoint integrations de-
crease as the updating integer is increased. This trend con-
tinues until the updafting integer reaches four of six and this
appears to be a point of diminishing return for thié particular
problem.

It becomes apparent that the initial value of the itera-
tion factor has a pronounced effect on the convergence envelope
size, and in most cases convergence time as well. An initial
value of iteration factor of 20 percent, with either iferation
scheme, produces a significantly larger envelope than the ones
for 50 percent shown in Figures 7 through 12. This increase in
envelope size is accompanied by a significant increase in the re-
gquired computer convergence time for Iferation Scheme 1. Figure
13 illustrates this influence of the initial values of iteration
factor on the convergence time for the particular but ‘represen-
tative cases where the Lagrange multiplier and termlinal time
errors are as indicated on the figure. For Case 1, where the two
Lagrange multipllers and terminal time errors are -10, -10, anrd
20 percent, respectively, the largest values of initial iteration
factor result in the most favorable convergence times. On the
other hand, for the case where the initial error is larger, aé
illustrated by Case 2 where the Lagrange multipliers and terminal
time errors are -20, 10, and 20 percent, respectively, some inter-
mediate value of 1initial iteration factor results in the most

favorable time.
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Figure 13 also reveals the existence of an uncertainty
about the selection of the initial iteration factor. When a
problem is first attacked, one has little or no feel for iLie per-
centage correction to request. A low initial value for the iter-
ation factor is usually selected because it is expected that this
results in a large envelope of convergence. A low initial itera-
tion factor results in a convergence time penalty as shown in
Figure 13. However, in some sltuations a high value for the
initlal iteration factor results in a convergence time penalty.
It is not known how to determine tﬂe best initial iteration
factor before a series of investigations is made.

Iteration Scheme 2 attempts to overcome this problem by
seeking the largest iteration factor that can be used, witnout a
trajectory divergence, before the time consuming adjoint inte-
gration is made. Since only forward integrations are made in
bringing the iteration factor from a low initial value’to the
best value, the time penalty is reduced. The influence of ini-
tial iteration factor on the convergence time is illustrated in
Figure 14 for Iteration Scheme 2., This plot may be compared to
one ¢of the cases In Figure 13, and it is easily seen that for low
Initial values of the iteration factor the time penalty is not so
severe. The objection to an initial low iteration factor 1s re-
moved now, and yet good convergence possibilities remain because
large envelopes of convergence are associated with low initial
iteration factors.

The influence of the update integer on convergence times

is illustrated in Figures 15, 16, 17, and 18. These envelopes
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Earth-Mars transfer
Optimization method: MAF
lteration scheme: 1 and 2
Initial iteration factor; 50%
Terminal time error: 0%
Update integer: 1
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correspond to the envelopes in Figures 8, 10, 11, and 12, but
indicate the convergence times rather than the required itera-
tions. A most interesting characteristic of Iteration Scheme 2
is revealed. For a given initial iteration factor of 50 percent,
the convergence times are generally reduced by increasing the up-
dating integer to the four to six range. Larger values of the
updating integer result in higher convergence times. It is ex-
pected that for this problem the best update integer approxi-
mately equals the number of steps required between the initial
value of the iteration factor and unity.

It is very interesting to take a specific and repre-
sentative example, and examine the norm of the terminal con-
straints as a function of computation time. Figure 19 shows the
terminal dissatisfaction norm decreasing for Iteration Scheme 1
for initial values of the iteration factor of 20, 50, 70, and 100
percent. Not only is the increase in convergence time for the
smaller iteration factors evident, but the characteristics of the
" convergence rate are also seen. Filgure 20 illustrates these same
characteristics for Iteration Scheme 2 using an initial iterationl
factor of 50 percent. The norm of the terminal dissatisfaction
is plotted as a function of computation time for update integers
of 1, 2, 4, and 6. With an update integer of six, the conver-
gence time 1s approximately reduced by 50 percent when compared
to the extreme case where the integer 1s unity.

In an effort to determine some of the complications

associated with solving a different problem, the atmospheric
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Optimization method : MAF
lteration) scheme : 2
Initial Iteration factot|

Case

57t10 ==~10%
5?\20 =-~-10%
ﬁtf = 20%

*50%

\ Note: Numbers shown are
values of the update
integer,
i
6l 4
o 1
5 10 15 20 25

Figure 20, - Norm of terminal constraints as a function of computation time

Computation time, seconds

for the MAF using iteration scheme 2,

30



Earth launch to circular orbit described in Appendix A.2 was
formulated and solved. These results are shown in Flgures 21,
22, and 23. It was discovered, for the Earth launch problem,
that the convergence envelopes were less sensitive to terminal
time errors than for the Earth-Mars transfer. Hence, the plots
shown are the same as for previous cases with the exception tha:
terminal time variations are only 10 percent.

It is obvious from the figures that the method is rela-
tively sensitive to A;p errors and relatively insensitive to
Asp errors. This Earth launch example reveals some of the same
characteristics seen for the Earth-Mars transfer, namely, as the
terminal time error inecreases the convergence envelope increases
in size and moves downward. This downward movement means a re-
duction of negative i, error sensitivity.

One interesting characteristic, not seen in the Earth-
Mars transfer example, is that when the iy error is 100 per-
cent, considerable convergence difficulty is experienced. Thas
case corresponds to the initial control angle of 90 degrees. It
is rather remarkable that convergence still results for some
cases where the initial control angle is greater than 90 degrees

In summary, for Iteration Scheme 1 the envelope of con-
vergence increases with positiée increasés in terminal time
error, for a given initial iteration factor. The envelope size
is increased further with a reduction of initial iteration fac-
tor, but unfortunately the convergence time i1s increased. The

convergence envelope for Iteration Scheme 2 1s alsc increased by
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Earth launch
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Figure 21, - Convergence envelope for the MAF using the normal iteration .
scheme, initial iteration factor of 100 % and terminal time error
of =10 % (Earth launch),
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reducing the initial iteration factér, for a given update inte-
ger. For a given initial iteration factor, the convergence time
is reduced by increasing the update integer. The best times re-
sult for update integers of approximately six, and lncreased
times result for further increases in the integer.

The significant fact is that Iteration Scheme 2 is
superior to Iteration Scheme 1 because low, and hence safe, ini-
tial values of the iteration factor may be used without resulting
in an unreasonably large convergence time.

The application of this optimization method to a differ-
ent problem resulted in approximately the same general conver-

gence characteristics.

6.3.2 Method of Perturbation Functions

The required formulation as discussed in Section 3.2 is
simple and straightforward, and even more natural than MAF since
the perturbation equations are used directly. A general dis-
cussion of the applications 1s presented in Appendix A.2 and a
specific application of the MPF is made in Appendix 4.2.2.

The programming effort requires the forward integration
of the eight differential equations of motion and the Euler
differential equations. The éight pert&rbation equations must
also be integrated forward, and this must be done with three
different starting vectors. The coefficients for these pertur-
bation equatfidns may be formed as needed and no storage is re-

quired. This represents a decided advantage over the MAF,
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especially when the problem is of large dimension, because the
back spacing of tapes 1s not necessary. The programming com-
plexity is reduced also because no checks are required for the
acquisition of proper coefficients, i.e., the coefflcients are
simply formed as the forward integration is made. It may also
be noted that one less integration is required for the MPF as
opposed to the MAF, and this results in less tofal integration
time.

The integration of the perturbation equations requires
a large percentage of the total computational time. It is con-
ceivable that the same numerical accuracy might result when a
variable integration step size is used, however, this increases
the programming complexity considerably. A constant step size
was selected for the integration of all equations.

The computer program that uses the MPF requires two
initially assumed Lagrange multipliers and an assumed’ terminal
time. These estimates require a familiarity with the physacal
problem and, to some degree, experience. The computer program
is built such that only the subroutines containing the differ-
ential equations of motion, the Euler-Lagrange equations, and the
_perturbation equations must be changed to solve different prob-
lems, and the effort is comparable to that required for the MAF.

Iteration Scheme 1 requires very little computer logic -
in addition to the Normal Scheme of requesting 100 percent term:-
nal constraint satisfaction on each iteration. Operation is

simply transferred to a subroutine where the iteration factor is
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&ltered in accordance with the terminal norm criteria explained
in Section 3.3. The process 1s essentially the same as that for
the MAF.

Iteration Scheme 2 requires some additional programing
and storage, and is comparable to that required for the MAF.
Basically, the scheme is such that the iteration factor is in-
ereased, omitting a perturbation integration, until either the
norm of the terminal constraints diverges or a specified number
of nominals have been generated. If the norm diverges, the last
convergent trajectory is used as a nominal, and hence this tra-
jectory must be saved until it is determined whether or not it
will be needed. The storage problem can be eliminated by simply
regenerating the last convergent trajectory.

An extensive analysis of the MPF 1s not made since the
theoretical development in Section 3.2 shows that exactly the
same algebralc equation used for the MAF 1s used to determine the
corrections. The only difference between the MAF and MPF is that
one less integration 1s required for MPF, and therefore a re-
duced convergence time 1s expected. The envelopes of convergence
for Iteration Scheme 1 using initial iteration factors of 100
and 50 percent, respectively, are shown in Figures 24 and
25. The obvious fact is that the envelopes have the same size
and shape as the corresponding envelopes for the MAF shown in
Pigures 5 and 8, and the numbers on the figures indicate an
equal number of iterations are required. Figures 26 and 27

illustrate the convergence times for the above cases. A
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Figure 24, ~ Convergence envelope for the MPF using iteration scheme 1,
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Earth~Mars transfer
Optimization method: MPF
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comparison of the convergence times may be made between The MAF
and MPF by comparing the times shown in Figures 15 and 27, re-
spectively. It is seen that the MAF must integrate a comparable
set of differential equations four times rather than only three,
as required by the MPF. Iterafion Scheme 2 for the MPF was not
programmed.

The significant fact is that the MPF results in the
same envelope of convergence and requlires the same number of
iterations as the MAF, but approximately 20 percent less com-

puter time is required because one less integration is needed.

6.4 Quasilinearization Methods

The comparison and discussion of the Quasilinearization
Methods will consist of two separate analyses, The Method of
Generalized Newton-Raphson, including the normal procedure and
Iteration Scheme 1 is discussed first. The Modified Quasilinear-
ization Method including the normal procedure and Iteration
Stheme 2 1s discussed last. The Modified Method of Generallzed
Newton-Raphson 1s also discussed briefly, but the MQM i1s empha-~
sized. The discussion content will include the applicable items

listed in the Section 6.2.

6.4.1 Method of Generalized Newton-Raphson

The requlred formulation of the Method of Generalized
Newton-Raphson as discussed in Section 4.1 1s simple and rela-

tively easy to apply, although this particular method 1s not
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capable of handling terminal constraint functions or determining
the terminal time in an efficient manner. For these reasons, an
extensive investigation of this method is not made. However,
several runs are made, and spot comparisons illustrate its effec-
tiveness with respect to the other methods.

The programming effort reguires the forward integratibn
of the homogeneous parts of eight linearized differential egua-
tions of motion and the Euler differential equations, Also the
nonhomogeneous parts are integrated forward once, and all coeffi-
cients for the solution of a linear system must be included for
use after each trajectory iteration. When convergence is ob-
tained for the specified value of terminal time, a time iteration
is made by making a scalar application of the Newton-Raphson
technique.

If the solutions to both the homogeneous and nonhomo-
geneous equations are stored, a new nominal is immediately avail-
able. However, to conserve storage only the terminal values of
the solutions are stored and the next nominal is simply generated
by an additiconal integration.

The current trajectory 1is generated from the preceding
trajectory, however, after a positive correction of terminal time
has been made, no previous infdfmation ig available. This fact
represents a problem that does not exist for the MAF or MPF. The
program is qritten so that a linear extension of all tne varia-

bles of the previous nominal is made to provide information for
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the current trajectory.

The computer program that uses the MGNR requires two
initially. assumed Lagrange multipliers, an assumed terminal time,
and an Initial trial solution consisting of the time histories of
all eight variables. The estimates require a familiarity with
the physical problem to insure that the assumed quantities are
close enough to optimal that convergence will result. The sig-
nificant difference between MGNR and MAF or MPF is that a com-
plete solution must be assumed rather than just initial starting
values of the variables. If no reasonable sclution can be de-
cided upon, the nonlinear equations may be integrated to provide
the first solution. However, in the nmore. complex problems, this
solution may not be adequate to resulft in convergence.

The program is bullt such that only the subroutines con-
taining the nonhomogeneous and homogeneous equations and the
trial solution must be changed to sclve different problems. A
constant integration step size was selected for all integrations.

The Normal Scheme of the MGNR is that of making tra-
Jectory iterations, requesting 100 percent correction in the
terminal constraints, until convergence results for the assumed
terminal time. Then a time iéeration is made and the process
continued. Iteration Scheme 1 requires very little additional
computer logie. This scheme amounts to avoiding fime iterations
until the present metric becomes less than the previous metric.
The logic is simply inserted in the program, and an additicnal

subroutine 1s not used.
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A typical example of the convergence characteristics of
the MGNR is shown in Figure 28. This illustration shows how the
metric decreases as a function of computation time for the case
where the Lagrange multipliers and fterminal time errors are -10,
~10, and 20 percent, respectiveély. A linear initial trial solu-
tion is used and this solution is represented by long dashed
lines in Figure A.2.1. Trajectory iterations are made until the
metric is less than 10"5, then a time iteration is made. During
the initial stages, the time iteration essentially destroys the
reduced metrle that has just been obtained. This characteristic
is not quite so severe when terminal time errors are small.

The convergence characteristics for the same example,
using Iteration Scheme 1 are shown in Figure 29, and a signifi-
cant reduction in computation time is evident. This scheme
appears superior to the normal procedure, but it must be pointed
out that a theoretical analysis of this scheme has nobt«been made
to.define a bounds for convergence. For a given terminal time,
the convergence proof given by MeGill (14) applies, but the time
iterations could be so poor that divergence would result. The
examples in Figures 28 and 29 show that the Iteration Scheme 1
results in a convergence time that is 43 percent less than that
required b& the Normal Scheme. -

The Modified Method of Generalized Newton-Raphson, dis-
cussed in Section 4.1, is modified in the sense that a change in
the independent variable is made to eliminate the cumbersome de-

termination of terminal time. One advantage of this method is
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Figure 28, -~ Metric p as a functjon of computation time for the MGNR
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that the independent variable range 1s the same for all itera-
tions, thus simplifying the programming slightly. A disadvantage
is that one additional equation must be integrated and a rather
complex term is added to each of the existing equations. The
most significant advantage is that the terminal time determina-
tion becomes an integral part of the iteration process.

The convergence characteristics of the MMGNR is illus-
trated in Figure 30 for the same case shown in Figures 28 and 29
for the Normal Scheme and Iteration Scheme 1, respectively, using
the MGNR. The metric reduction becomes a monotonie function of
computation time, and when a linear iniftial solution is used the
convergence time is 27 percent less than that required by the
MGNR using the Normal Scheme. Figure 30 also shows the conver-
gence characteristics for the case where the initial trial solu-~
tion is determined from integrating the nonlinear differential

equations,

6:4.2 Modified Quasilinearization Method

The required formulation of the Modified Quasilineari-
zation Method as discussed in Appendlix A.2.3 1s simple and rela-
tively easy to apply and this method is capable of handling
terminal constraint functions. The terminal time determination
1s included as an integral part of the process and this method is
very efficient compared tc the MGNR. Also, no additional egqua-
tions or terms are needed as with the MMGNR,

The programming effort requires the forward integration
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of the homogeneous parts of eight linearized differential equa-
tions and Euler-Lagrange equations. Also, the nonhomogeneous
parts are integrated forward and all coefficients are evaluated
from the previous nominal. The corrections that must be applied
for the next iteration are determined by solving a linear system.
Only the terminal values of the forward integrations are stored
as explained in Section 6.4,1. When a positive terminal correc-
tion is made, a linear extension of the variables from the pre-
vious nominal is made.

The computer program that uses the MQM requires two ini-
t;ally assumed Lagrange multipliers, an assumed terminal time,
and an initial ftrial solution. In a manner similar to the MGNR,
if a reasonable initial solution cannot be selected, the non-
linear equations may be integrated to provide an initial solu-~
tion. The program is built such that only the subroutines con-
taining the nonhomogenecus and homogeneous equations and the
trial solution must be changed to solve different problems.

The Normal Scheme of the MQM is that of requesting a 100
percent correction in the terminal constraints. Iteratlon Scheme
2, used with the MQM, is similar to Iteration Scheme 1 for the
MAF or MPF, where a percentage correction in the terminal con-
straints is requested. The logic required to determine whether
the iteration factor is increased or decreased in the Quasi-
linearization Methods is more complex than that required for the
MAF or MPF, because the metric p must be determined. This cal-

culation requires several operations on all elight dependent



variables at each time step and hence requires a relatively large
amount of time compared to the calculation of the Aorm in the MAF
or MPF,

The convergence envelopes for the MQM using the Normal
Scheme, a nonlinear initial trial solution and -20, 0, and 20
percent errors in terminal time, respectively, are showﬁ in
Figures 31, 32, and 33. The nonlinear initial trial solution is
the one that results from integrating the nonlinear differential
equations. Cémparing these Figures with the Figures 1, 2, and 3
for the MAF reveals that while the general shape of the envelopes
are the same, the MQM results in slightl& smaller envelopes. For
negative and zero terminal time errors, the method is extremely
sensitive to Lagrange multiplier errors that have the same sign.
For positive terminal time errors, the method is much more sen-
sitive to positive A, errors than to negative i, errors.

An attempt to generate the same envelopes by using the
MOM with a constant initial trial sclution must be recorded as a
failure, because no convergent solutions were obtained. The con-
stant initial trial solution used is illustrated in Figure A.2.1
by short dashed lines.

Figures 34, 35, and 36 illustrate the convergence en-
velopes for MQM using Iteration Scheme 2 with an initial itera-~
tion factor of 50 percent, a nonlinear initial solution and -20,
0, and 20 percent errors in terminal time, respectively. These
envelopes are significantly larger than the envelopes for the

Normal Scheme shown 1n Figures 31, 32, and 33. It 1s interestingz
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Earth-Mars transfer
Optimization method: MQM
lteration scheme; Normal
Initial jteration factor: 100%
Terminal time ertor: 0%
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Earth-Mars transfer
Optimization method: MQM
lteration scheme: Normal
Initial lteration factor: 100%
Terminal time error: 20%
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to note that whale the envelopes for the Normal Scheme are
slightly smaller than the corresponding envelopes for the MAF,
the envelopes shown in Figures 34, 35, and 36 are slightly larger
than the corresponding envelopes for the MAF shown in Figures 7,
8, and 9. This suggests that Iteration Scheme 2 for the Quasi-
linearization Methods is more effective than Iteration Scheme 1
for the Perturbation Methods. The Figures 34, 35, and 36 follow
the pattern préviously mentioned for the other methods in that
the method is increasingly sensitive to positive 1, errors as
the terminal time error increases.

It is of definite interest to note the reguired conver-
gence times for the cases illustrated for the MQM. As an ex-
ample, Figure 37 shows the convergence times for the envelope of
Figure 35. This envelope may be compared directly with the
corresponding envelopes generated by the MAF in Figures 15, 16,
17, and 18 and the MPF in Figure 27. An obvious fact is that the
MQM requires slightly more computation time than the MAF and MPF,
but shows considerable Improvement over previous quasilineari-
zation technlques such as the MGNR and MMGNR. In all fairness,
however, it must be pointed ocut that more time was spent in trying
to make the programming efficient for the MQM than for the MGNR
and MGNRM.

An insight to the convergence characteristics of the MOM
may be seen in Figure 38 for the special case where the Lagrange
multiplier and terminal time variations are -10, -10, and 20 per-

cent, respectively. This figure may be compared directly with
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Figures 28, 29, and 30 for the MGNR using the Normal Scheme,

MGNR using Iteration Scheme 1 and MMGNR, respectively. Figure 38
may also be compared, In a sense, with the 100 percent curve in
Figure 19 for the MAF. Caution must be exercised, however, be-
cause the ordinates represent different quantities. It is ex-
peéted that a reduction of the metric p 1is more stringent a re-
quirement than reduction of the terminal constraint norm. The
more stringent requirement results from the fact that the metric
p is composed of so much more information than the terminal con-
straint norm.

Figure 39 illustrates the effect of the initial value of
iteration factor on convergence time for two specific cases of
initial parameter error. This figuré may be compared to Figure
13 which represents the same iInformation for the MAF for the same
cases. The same characteriséics are noted in that for some cases
the best 1Initial iteration factor is somewhat less than 100 per-
cent and that this best value 1s not the same for all cases. One
additional characterlistic, noted in Figure 39, is that very large
penalties in the convergence times are paid when low initilal
iteration factors are used. This defieciency is attributed to the
metric criteria used to determine how the iteration factor must
be changed. When only a small percentage correction 1s re-
quested, the metric does not decrease raplidly at first. This is
because the metric is interpreted as the maximum distance between
successlive trajectories. 1In fact, in application the metrie

sometimes increases slightly and this causes the iteration factor
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to decrease. This process could conceivably have a decelerating
effect on the convergence. This phenomena may be seen in Figure
40 for the case where the initial iteration factor is 20 percent.

Figure 40 also illustrates the convergence characteris-
tics for several different initial iteration factors and may be
compared to Figure 19 which represents the same information for
the MAP for the same case. It should be noted that near the
terminal phase of each trial the metric reduction is nearly quad-
ratic.

In summary, the Quasilinearization Methods show a wide
range of convergence characteristics, but the proposed method,
the MQM, successfully reduces the convergence times and increases
the convergence envelopes to become competitive with the MAF and
MPT.

Generally speaking, the MQM displays the same characfer-
istics that are seen for the MAF and MPF. For the case when an
initial iteration factor of 50 percent 1s used, the envelope of
convergence for the MQM is slightly larger than the corresponding
envelope for the_ﬁii and MPF. But the convergence times are al-
ways slightly larger than for the MAF.

6.5 Gradient Methods

The comparlison and discussion of the Gradient Methods
will consist of two separate analyses. The Method of Steepest
Descent, including Iteration Schemes 1 and 2, is discussed first,

and the Modifled Method of Steepest Descent is discussed last,
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The discusslon content will include the applicable items listed

in Section 6.2.

6.5.1 Method of Steepest Descent

The required formulation of the Method of Steepest de-
scent as discussed in Sectlon 5.1 is simple and straightforward,
but slightly cumbersome when compared to the MAF or MPF. A spe-
¢ific application of the MSD is presented in Appendix A.2.14.

The programming effort requires forward integration of
four differential equations of motion, storing the dependent
variables in computer memory or on tape at each time step. This
requires less storage than storing the A and B matrices. The
four adjoint differential equations, Eq. (5.6), are integrated
backwards five times using the variables stored during the for-
ward integratlion to form the coefficlents. One additional com-
plexity 1is that Eqgs. (5.30) through (5.32) must also be inte-
grated backwards, and may be carried along simultaneously with
the adloint equations. To reduce the programming complexity, a
constant integration step 1s used for all integrations. Th; com~
puter storage problem can be eliminated by integrating the dif-
ferential equations of motion backward along with the adjoint
equations, Eq. (5.6), and Eqs. (5.30) through (5.32). This is.
not done in the present method because the equations of motion
must be integrated forward anyway to determine the terminal
values of state.

In addition to the programming effort explained above,



168

the most serious disadvantage of the M3P is that a moderate
amount of human intervention and experience is required to im-
plement the program. For example, the weighting matrix W 1s
not defined, and by just using the unity matrix the less sensi-
tive regions of the control prdgram are very slow in acquiring
the optimal shape. The weighting matrix may be used to speed
this optimal shaping process, but the insensitive reglons of the
control program are not always known.

An examination of Eq. (5.33) reveals that the first
group of terms are related to the minimizing effort while the
last group of terms are related to the terminal constraint satis-
faction. There is, however, some cross coupling of the terminal
constraint satisfaction in the first term. The procedure used to
affect convergence requires a selection of an allowable average
control deviation, based on Eq. (5.19), that does not invalidate
the linearity constraints on the problem. This allowable control
deviation must be reduced in some specified manner as the process
progresses., If the numerator of the radical in Eq. (5.33) is
negative when 100 percent correction in the terminal dissatis-
faction is requested, the percent correction that causes the
radical term to vanish is determined. When this occurs, emphasis
is placed on reducing the terminal dissatisfaction. If the
numerator is positive when 100 percent correction 1s requested,
the radical is used and both The performance Index is reduced,
and the terminal constraints are driven toward satisfactlon. The

computer logic involved in the above operations requires a
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significant amount of the iteration time.

The computer program that uses the MSD requires the 1ni-
tial value of the state variables, a stopping condition and an
assumed control program. These estimates require some familiar-
ity with the physical problem.” The stopping condition that is
chosen must be one that will be satisfled. The control program
selectlon is not as critical as 1t is for the MQM. The cemputer
program is not so easlly generalized as 1t is for the MAF, MPF,
or MQM, i.e., extensive programming is required to accommodate a
dif'ferent problem.

Iteration Scheme 1 simply uses the unity matrix for W
and Iteration Scheme 2 uses the Huu* matrix. This second
scheme requires some additional computer storage and programming
When Iteration Scheme 2 is to be used, Huu* must be formed witl
the varlables that result from integrating the adjeint differen-
tial equations backwards, using v as given in Eq. (5.27) for
the starting conditions. A major problem when using Iteration
Scheme 2 1s that when a percentage correction in the terminal
constraints is requested, thereby forcing the radical term in
Eg., (5.33) to vanish, v becomes infinite. Clearly this cannot
be used as a starting condition for the adjoint equations.

With the examples discussed, this radical term vanishes
for the first few iterations, and when thils happens the unity
welghting matrix 1s used. As soon as the radical becomes finite,
the H * matrix 1s calculated for use on the following tra-

uu
jeectory.
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The thrust angle as a functlion of mission time for the
Earth-Mars transfer 1s shown in Figures 41, 42, 43, and 44, and
the convergence process from the assumed history to the Bulerian
history is 1liustrated. Figures 41 and 42 show the convergence
characteristics for two widely different initially assumed con-
trol programs, designated Case 1 and Case 2, using Iteration
Scheme 1. It is 1interesting to note that the number of itera-
tions required is relatively independent of the initial control
program. After 30 iterations both cases yileld control programs
that almost obscure large portions of the Eulerian program, and
hence are not shown. When to terminate the iteration process is
not clear since the Eulerian optimal is really never reached.

The method used here was to continue until no further improvement
was being made, i.e., until the solutlon began to osclillate about
some mean path. A more sophisticated method would be to termi-
nate when a time 1integral of Hu or HuTHu became arbitrarily
small.

An apparent discontinuity begins to develop at approxi-
mately 100 days, as seen in Figure 41, and becomes more severe as
the lterations progress. After 30 iterations the apparent dis-
_continuity becomes very sharp and the Eulerian control is accu-
rately approximated. The same characteristlc is noted In Figu}e
42.

The effectiveness of Iteration Scheme 2 1n shaping the
optimal control program is lllustrated in Figures 43 and 44, and
it 1s seen that the number of l1lterations required is signifi-

cantly reduced. In comparing Figures 41 and 43, for instance,
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it is seen that the apparent discontinuity developmenﬁ is much
faster in the latter figure. These two cases are identical for
the first 11 iterations because the radical in Eq. (5.33) van-
ishes and W = (, but starting with the 12°" iteration, the H_ '
matrix is formed and used. It 1s during these final iterations
that the.full value of Iteration Scheme 2 becomes evident. Afte:
only four additional iterations the apparent discontinuity, as
shown in Figure 43, is well beyond the development shown in
Figure 41. Moreover, the Eulerian is much better approximated,
for a given number of literatlons, when Iteration Scheme 2 is
used,

The same characteristics are seen in Figures 42 and U4.
For this case, however, the Huu* matrix is not calculated until
the 23rd iteration. After only two additional iferations, Itera-
tion Scheme 2 in Figure 44 shows marked improvement in the devel-
opment of the apparent discontinuity.

An average lteration for Iteration Scheme 1 requires
approximately 2.75 seconds of computer time, while approximately
3.0 seconds is requlired with Iteration Scheme 2 when the Huu
matrix must be formed. However, an extenslve step size study was
not made for the MSD. The step size used was the same as that
used for the Integrations in the indilreet methods.

It should also be polnted out that the terﬁinal con-
dition resulting from Eq. (2.14) may be used to determine the

terminal value of the Lagrange multipliers. These values are

used to start the backward integration of the adjoint equations,
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for tne Huu* determination, and alsc may be used to estimate
the Lagrange multipliers required for starting the indirect opti-
mization methods. For the case illustrated in Figure 44 the
first time Huu* is determined, the values of i;gp and Aigzp

are calculated to be 2.15 and 6.65 percent larger than the values
that correspond to the optimal trajectory, respectively. This
error 1s well within the envelope of convergence of all the in-

direct methods studied.

6.5.2 Modified Method of Steepest Descent

The required formulation of the Modified Method of
Steepest Descent as discussed in Section 5.2 1is simple and
straightforward, and is not as cumbersome as the MSD. A spe-
cific application of the MMSD is presented in Appendix A.2.5.

The programming effort requires forward integration of
four differential equations of motion, storing the depéndent
variables in computer memory or én tape at each time step. This
r;quires less storage than storing the A and B matrices. The
four adjoint differentdial eguations are integrated backward only
once, using the variables stored during the forward integration.
The Eq. (5.48) must also be integrated so that after a desired
penalty function decrease is specified, a step size K may be
determined. The MMSD requires a significantly reduced number of
operations, as opposed to the MSD, because the adjoint equation

is integrated backwards with three less starting vectors and the

integration of Eq. (5.48) is much less time consuming than the
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integration of Egs. (5.30) through (5.32) in the MSD. The stor-
age problem associated with the first forward integration may be
avolded in a manner similar to that suggested in Section 6.5.1.
The present method does store the forward integration and use a
constant integration step size for all integrations.

In addition to the programming effort explained above,
the most serious disadvantage of the MMSD is that a considerable
amount of human intervention and experience is required to imple-
ment the program, even more than that required for the MSD. For
example, the step size K 1is not defined, and must be approxi-
mated by using Eq. (5.48). A still more serious deficiency is
that a constraint on the control deviation is not included as an
integral part of the method itself, and hence apprOpriéte COM=-
puter logic must be used to insure that the linear constraints of
the problem are not violated. One further complexity is that the
convergence characteristics are highly dependent on the factors
that welght the terminal constraints in the penalty function, and
the magnitude of these factors are not specified. To compound
the matter, the rates at which these factors are changed to
tighten the terminal constralnts are not known. It is seen that
the price that must be paid for the simplicity of the method is
that of increased arbitrariness, and a conslderable amount of
5kill and experience is required to obtain meaningful results,
This method has been programmed and 1s in the stage of evalua-

tion, but no results are presented here.
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6.6 Summary of the Comparison

The comparison of optimization methods thus far has con-
sisted of individual analysis of each method with an occasional
comment concerning the relative merits of one method with respect
to the others. It would be helpful to summarize the conclusions
of the comparison with particular emphasis on the basis of com-

parison as outlined in Section 6.2. A summary of the comparison

is:

(1) The programming complexity and required formulation
time 1s greater for the MQM and MSD than for the MAF,

MPF and MMSD, because more computer logic 1s required.

(2) The MAF and MSD requires more computer storage than

the other methods.

(3) The MSD and MMSD require more human intervention
and intuition than the other methods, and hen;e are
difficult for inexperilenced personnel to use. However,
.the indirect methods become difficult to implement when

the problem dimension is large.

{4) The computer program for the MSD requires consider-
able modification for solving a different problem, while

the other programs require less modification.

(5) The convergence envelope sizes for all the indirect
methods are essentlally the same when the initial itera-

tion factor is near 100 percent. The MQM envelope 1s
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slightly larger than the envelopes of the other methods
when the initial iteration factor 1s in the 50 percent

range.

(6) The time penalty assoclated with the lower initial
iteration factors 1s greater for the MQM than the other

indireet methods.

(7) The MPF is superior to the MAF and MQM when conver-
gence time is considered, because of the one less equa-

tion that must be integrated.

(8) The approximations to the Lagrange multiplier val-
ues as derived by the MSD are well within the conver-

gence envelopes of all the indirect mefhod investigated.



CHAPTER 7
DESCRIPTION AND EVALUATION OF NUMERICAL PERFORMANCE

The evaluation of numerical performance is an essen-
tial feature in assessing the accuracy of an optimization
technique. The primary sources of error are encountered dur-
ing numerical integration and solving of linear systems
(which includes matrix inversion). Most of the computational
time i§ taken during numerical integration and hence, in-
creasing the speed of the integration will have a pronounced
effect on the total computer time. The criterion used for
defining convergence 1s also a factor in determining total
time, and 1if caution is not exercised an unrealistic com-

parison between different optimization methods could result.

7.1 Numerical Integration

There are many characteristics that must be con-
sidered when selecting a particular numerical integration
scheme; some of the most Important are accuracy, stablility
and speed, The method and procedure to be explalned takes

excellent advantage of the above characteristics.

7.1.1 Numerical Integration Routine

The numerical integration routine consists of two

~

subroutines and either a control subroutine or a control

180
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block of code. A Runge-~Kutta fourth-order routine 15 used as
a starter, supplying the initial and three succeeding deri-
vatives, Contrel 1s then shifted to a subroutine that con-
tains a fourth~order Adams-Bashford predictor and a
fifth-order Adams-Moulton corrector. An option for the
iteration of the corrector is provided.

One of the nicest features of the inftegration package
is the method by which the derlvatives are stored and moved.
The names that refer to these locations are simply changed,
rather than changing the location of each derivative itself,
and the values are used as if being rolled from a drum.
Credit for this unique and time saving 1idea 1is given to
W. T. Fowler and G. J. Lastman of the Engineering Mechanics
Department, The University of Texas.

An additional capability of the subroutine is that
the starting value of the integratlion step size may be sub-
divlided into N substeps, thus providing extremely accurate
starting values for the derivatives. The Runge-Kutta 1s
then called 3N times and the derivatives are saved every Nth
integration step. Four derivatlives now belng available, the

integration proceeds using the usual predict-correct cycle.

7.1.2 Numerical Integration Procedure

The numerical Integration proceeds using N = 3 and

the Runge-Kutta 1s called nine times, hence a derivative is
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saved on every third substep. This provides the initial
four values required by the Adams-Bashford predictor. A
constant value of step-size is used to continue the inte-
gration.

Two methods are used to terminate the integration,
and the method selected depends on whether or not a back-
wards integration of the adjoint equations is expected. If
the adjoint equations are to be integrated, when the remain-
ing time is less than four steps this time is subdivided into
3N substeps and control is shifted fo Runge-Kutta. This pro-
vides values of the dependent variables which will be used to
form coefficients for the backwards integration of the
adjoint equations. If backwards integration is not antici-
pated, when the remaining time is less than one step, control
is shifted to Runge-Kutta for the final time increment.

The subdividing of integration steps at the beginning
and end of the trajectory increases the programming complex-
ity, however, 1t was decided that this additional difficulty
was more than compensated for by the increase in accuracy of

the starting derivatives.

7.1.2.1 Successive Application of Corrector

Successive application of the Adams-Moulton corrector
was made for an optimal Earth-Mars transfer trajectory using

from one through five applications. No impro%ement was made



in the optimal values of the Lagrange multipliers and termi-
nal time after the number of applications reached three.
Hence, it was decided that two appiications of the corrector
would be sufficient. ) -

The computation time 1s reduced by approximately 20
percent when only one application of the corrector is made
and increased By approximately 20 percent when three correc-
tions are made.

The selection of a corrector with two iterations was

encouraged further by examination of the terminal values of

the state variables after the first iteration.

7.1.2.2 Step Size Selection

‘The step-size of the numerical integration technigue
is extremely important. Not only does the accuracy of the
method depend on this selection, but the resulting computer

«time as well. So much depends on this selection that a con-
siderable effort for i1ts determination is justified. One
complicating factor that exlsts for comparison studies is

that convergence time is to be compared for all methods,
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some of which might require different integration step sizes.

The criteria that is used in selecting step-size is
determined in the following manner:
(1} Use the near optimal starting conditions of

-10, -10, and 20 percent error in the initial
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Lagrange multipliers and terminal time, respectively.
Proceed to a convergent condition using integration
step sizes that range on either side of some reason-

able value.

(2) Record the resulting optimal values of the
Lagrange multipliers and terminal time and the time

required for convergence.

(3) Small integration steps result in large round-
off errors and large steps result in large trunca-
tion errors. A step-size value in the range where a
maximum number of signficant figures agree is in-

terpreted as a desirable one.

The integration step-size of 0.03 units of time was
chosen for the Earth-Mars transfer because the value of the
estimated variables on either side of the selected step
agreed to at least five places. The step-size for the Earth
launch trajectory was selected to be 2.0 seconds.

The plot in Figure 45 of convergence time as a fune-
tion of integration step-size for the MAF¥, MPF, and MQM and
the Earth-Mars transfer reveals that a larger step would
result in fewer places of numerical agreement, while a
smaller step would suffer from a severe time penalty as well

as fewer places of agreement.



34
32
30

28
26

24

b n
(o) o

p—
o~

-
I

Convergence time, seconds

s
N

et
(=]

WL s

'\ \ - agreement

MQM (nonlinear)
--—"]\
\M F \'\

t....

!....

Figure 45, - Convergence time as a function of integration step size

.01 .02 ,03 .04 .05 .06 ,07

Integration step size, time units

using normal iteration scheme,

.08

.09

.10

185



186

1.2 Linear System Routine

The computer routine that solves a general linear
system of equations AX = B 1s composed of six subroutines.
The routine has the additional capability of returning the
determinate of A , an inverse of A , an indication if A4 1is
singular ‘and an estimate of the condition number of 4 .

The first operation of the master driver program is
to row equilibrate the matrix A by an exponent procedure.
The equilibrating multipliers are stored for later use to
scale the right hand side B . An initial estimate of X
is determined and a residual vector is found that defines a
new linear system. This system is solved and a correction
is added to the previous solution. Sufficient information
is then available to Initiate an iteration for the final

solution of X .

7.3 Numerical Criteria Affecting Accuracy

The numerical accuracy of a computer solution depends
not only on programming skills, but other criteria as well.
For instance, it is desirable in numerical studies to achieve
some degree of numerical magnitude compatibility. This 1s
conveniently accomplished by normalizing of the state vari-
ables, Lagrange multipliers, and time.

One additional item that affects numerical accuracy

is the criterion for establishing when convergence has
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occurred. Since it 1s desired to compare the results of
several different optimization methods on a convergence time
basis, 1t 1s essential that the methods result in the same

order of numerical accuracy.

7.3.1 Normalization of Numerical Parameters

In many cases, such as the ones presented here, the
correction to several of the varlables is used to determine
some of the procedures followed in the iteration scheme,
even though these variables have different units. Hence, it
1s desirable, from a computational point of view, to achieve
some degree of numerical magnitude compatibillty.

This normalization is accomplished for the state
variables by selecting certain quantities to be new units of
that variable. As shown in Appendix A.l, three wvariables
are selected and these selections dictate new units for the
remaining variables. An effort 1s made to chcoose the three
variables such that the range of a2ll variables is near unity.
In an effort to make the Lagrange multipliers numerically
compatible with these state va?iables, a scaling process 1is
used,

In any two-point bouﬁdary value problem where 2n
differential equations are involved, 2n+2 boundary condi-
tions must be specified, all of which are not necessarily at

the same boundary. If an additional initial boundary
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condlition is obtained, a terminal boundary condition must be
ignored. Now, since the Euler Lagrange equations are linear
and homogeneous, the solution 1s simply a linear magnifica-
tion of the initial conditions.

In the optimization problem, the Lagrange multipliers
may be normalized by selecting one multiplier to be positive
or hegative unity and in this manner adding one initial
boundary condition. This simply scales the multipliers by
the unnormalized value of this multiplier. With the addition
of this initial boundary condition, a terminal condition must
be ignored. It is recommended that the ignored terminal
‘condition be one of the conditions that result from the
transv;rsality equations because usually there is little
intuitive feel for the physical significance of these equa-
tions. In requesting a desired improvement in the satisfac-
tion of terminal constraints, it may be helpful to have a
intuitive feel for the meaning of these constraints.

The fact that one of the transversality conditions
is ignored does not mean that this condition is not satis~
fied. For instance, 1f the ignored transversality terminal

constraint .

_ T
h-(¢x+a)f

is perturbed so that the terminal dissatisfaction becomes



T
dh = (¢xxdx + o, dt + da )f

t

it 1s seen that when the solution does converge, the termi-
nal dissatisfaction vanishes because dxf, dtf, and=dA?

vanish.

7.3.2 Criteria for Defining Convergence

Establishing when convergence has occurred is an es-
sential part of determining the characteristics of a conver-
gence process. Defining convergence becomes a matter of
arbltration.

In the present study the criterion used is that the
corrections being applied to the 1nitial estimates of the
Lagrange multipllers and terminal time must be less than
some small number. There are, however, several other tra-
Jectory characteristics that must be observed. For 1nstance,
in the MAF and MPF an improvement in the terminal constraints
15 requested, but this request is not always completely ef-
fective. Therefore, the norm of the terminal constraints is
improved as the method proceeds, and hence the convergence
definition could hinge on the‘terminal Qissatisfaction being
less than some small number. Even 1f this criterion is not
used, as 1in the case presented here, the norm of terminal
dissatisfaction is of great interest and should be observed

closely.

1 8¢
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In the investigation of the MGNR the terminal con-
straints are satisfied identically, but the trajectory shape
does not correspond to the shape assumed by a trajectory
that satisfies the optimality conditions. Hence, one logical
criterion for this method is a metric that represents the
maximum Aistance between corresponding time points on the
present and previous trajectory. This - metric is recorded
and is used in the selection of the correction criterion.

The iteration procedure for the indirect methods
continue until change in the norm of terminal dissatisfaction
between the final two iterations in MAF and MPF is comparable
.in numerical magnitude to the metric described in MGNR.

These criteria for establishing convergence may result in
slightly different values of correction criterion for the
different methods. The over-riding factor of concern is
that trajectorles to be compared should have approximately
the same numerical accuracy.

A correction criterion of 10”° for an Earth-Mars
transfer using MAF and MPF produced a final terminal norm
change of order 10—5. The correction cyiterion that re-
sulted in a metric of approxiﬁately 10™° was also 1075. The
MSD is difficult to compare with the indirect methods since

convergence Iin the same sense is never reached,
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7.4 Computation Facilities

The numerical investigation was made at the facili-
tles of NASA-Manned Spacecraft Center, Houston, Texas. The
facllity used for the numerical calculations was the directly
coupled IBM T7094. All programs were programmed in FORTRAN IV

compiler language.



CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS

There have been many significant conclusions based on
both the theoretical and numerical results described in the
previous chapters. Detailed results and conc}usions have been
presented in Sections 6.3, 6.0, and 6.5. 1In Section 6.6, a
summary of the prelative merits of the methods is made with
particular emphasis on the basis of comparison as exp%ained in
Section 6.2. A general summary of the most significant con-
clusions are presented in this chapter.

- The many gquestions that have been successfully answered
during this investigation have brought forth many new un-
answered questions, and this is as it should be. The existence
of these new questions provide a motivation for additional and
perhaps rewarding studies, and several possibilities for con-

tinued investigation are suggested.

8.1 Summary of Conclusions

The major theoretical conclusions resulting from the

analysis are:

(1) The Method of Adjoint Functions and the Method
of Perturbation Functions are recognized as essen-
tially the same method. The Method of Perturbation

Functions, however, requires one less integration
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because of the more efficient manner in which the co-
efficient matrix of the perturbvation equation 1is

generated.

(2) The Modified Quasilinearization Method is an ex-
tension of the Method of Generalized Newton-Raphson
which accommodates problems that have terminal bound-
aries given as general functions of the state and/or
Euler variables. Moreover, the terminal time deter-
mination is made an integral part of the iteratlve pro-
cedure itself, and no additional terms must be added to
the existing differential equations and no additional

differential equatlons are needed.

(3) A unique and easily determined welghting matrix
has been derived which increases the convergence rate
of the Method of Steepest Descent. This matrix assists
the method in accelerating the shaping of the optimal

control program during the terminal iterations.

The other major conclusions resulting from the analysis

{1) Two iteration schemes which significantly increase
the possibility for convergence have been successfully
implemented for the indirect methods. This desirable
charazcteristic is obtained with one of the schemes with-

out an appreciable increase in convergence time.
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(2) The Modified Quasilinearization Method is success-
fully implemented and results in a significant decrease
in convergence time when compared to the other quasi-

linearizaticn methods studied.

¥

(3) The Method of Steepest Descent, after only a few
iterations, provides initial values of the Lagrange
multipliers which are well within the convergence

envelopes of all the indirect methods investigated.

The results of this investigation support the claim
that a hybrid optimization method would be the most desirable
method to build for a general purpose capability. This hybrid
method would consist of the Method of Steepest Descent for the
initial phase of optimization and switch to the Methed of Per-
turbation Functions for the later phase. It must be pointed
out, however, that building a general purpose optimization
method would result in a very time consuming method, whereas
by knowing the specific nature of a gilven sltuatlon, a very
efficient method can be tailor-made for that particular situa-

tion.

8.2 Recommendations for Continued Study

The present investigation has succeeded in developing
a new method, based on the theory of quasilinearization, which
places the Quasiliﬁearization Methods in a more competitive
position with the Perturbation and Gradient Methodg. Several

iteration schemes are formulated and applied, and significant
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reductions in computation time and 1nitial parameter sensiti-
vity have been réalized. A foundation has been laid for build-
ing more complex methods which will in turn handle more compleX
and realistic problems.

A natural extension of the current investigation would
be to study several more example problems that have a larger
dimension, more control variables and that reqguire inequality
constraints, such as a three-dimensional, atmospheric, reentry
problem.

Some thought has been given to developing a method for
approximating the initial values of the Lagrange multipliers
by assuming a control program for the first iteration in the
indirect methods, or by using the constants of motion aé de-
rived by Melbourne (28).

The applicability of several other methodé for solving
the nonlinear two-point boundary wvalue problem, associated with
the trajectory optimization problem, should be investigated,
such as the ones proposed by Merriam (29) and Sylvester and
Meyer {(30). A comparison should be made between the methods
discussed in this study and the methods recently proposed
by McReynolds and Bryson (24) and Kopp and Moyer (11).

A generalized hybrid optimization program may be
easlily builf in which the initial wvalues of the Lagrange multi-
pliers are approximated by using a direct method, then switch-
ing, when the estimates are within the convergence envelope,
to an indirect method for rapld convergence. The detalls of

such a procedure should be studied.



APPENDIX A.1l

Application of the Reduction of an Optimization Problem to a
Two=-Point 'Boundary Value Problem

The following application is formulated to illustrate
the procedure explained in Section 2.2. The equation numbers
in parenthesis refer to the corresponding equation in Section
2.2. The nonlinear, ordinary, differential equations of

motion are

X, = ¥V = oV
2 r m 2 (A.1.1)
. . (2.23)

x3 = pr =14 = f3

- _ - _ z _

xL+ = @ = 7 fq

and the nonlinear, ordinary, Euler~Lagrange differential

equations are

2 e
[

[}
o~
H g
v
>.l
[

I
B
w
i
y
wn

. 2
AS = .V_.. _2.9_.9.4. A - H‘X.A + Y——l = f
2 3 1 24 2 2 f b 7
r r r r (A.l.2)

. (2.24)
A
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The optimality condition Hu = 0 leads to
Z(x cos -1, sin 8 ) = 0. (4.1.3)
m 1 2 ) ‘At

This condition implies that

A A A

1 Y
tan 8 = -1 sin B = ————— cos B = ———t—
Ay +/2 74,2 /X 242, 2

where the sign in fron? of the radicaliterms is selected ac-
cording to the Weierstrass E-Function.

The Weierstrass Condition i1s the fourth necessary
condition which must be satisfied for a glven trajectory to be
an extremal. It 1s defined as
E=F(x¥,x,t)-F(x*,x¥,5)-28 (X5X50) (4 tuy 5 g (A.1.4)

ax¥ .
for a minimum where E 1s the Weierstraés E~Function and
F = AT(f - x). The asterisk refers to the optimal trajectory.
Since the equations of motion must be satisfied on

the optimal, as well as the nearby trajectory, F = F¥ = 0

and the Weierstrass E-Function becomes
' T M -*
Making the proper substitutions in Eq. (A.1.5) ylelds
E=X [g(sins-sins*ﬂ + A 2(cosB - cosg¥*¥)} > 0 (A.1.6)
1 m 2 m . - .

The optimality conditions, 1.e. Egq. (A.1.3), leads to the

requirement that
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which implies

A A

* 1 2
sin 8 = ———— and cos B¥ = ——"T—— ., (A.1.7)
x¢a12+lzz =¢112+A22

Eq. (A.1.3) does not indicate which sign should be selected on
the radical terms. Substituting Eq. (A.1.7) into Eq. (A.1.6)
yields

E = % [;f112+A22] [ -1 +cos (B - 8%)]) >0 and (A.1.8)

for this equation to be satisfied for all admissible
values of B , the negative sign on the radical must be
chosen. Hence, the optimal control program is given by

M

—1’?&12"["122

sin B*

A

/i, 2412

1 2
The specified initial boundary conditions are

cos B*

n, <8, < u(to) ~uy, =0

n, =g, = v(to) -V, = 0

2 (A.1.9)
(2.26)

ﬂ3=g3=r(t0)—r0=0

N, T8, = O(t) -0, =0

where t, 1s specified. Hence no initial conditions are obtained
from the transversality conditions because the initial state

and time are specified.
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The specified terminal boundary conditions are

Wl = hl = u(tf) - Uy = 0

¥, = h, = v(t,.) - v. =0 (A.1.10)
2 2 £ £ (2.29)
¥, = h3 = r(tf) - reo = 0 .

If it is desired to determine the minimum time trans-
fer, the performance index is ¢ = tf, and the terminal
fransversality conditions are

-(Aldu + 2,8V + A dr + ,\qde)f +

(A.1.11)
(2.35)

(1 + xlfl + x?_f‘z + A3f‘3 + Aqf“)f dtf =0 .

The terminal state perturbations in Eq. (A.1.11) are not
independent. They are related through Eq. (2.36). The

1N

application of this equation results in
dup = dv, = drp, = 0 . (A.1.12)

Combining Eqs. (A.1.11) and (A.1.12), the fourth terminal

boundary condition becomes

h, = Ahf =0 (A.1.13)

since it 1s not desired to constrain the terminal value of
the angle 0 . If, however, it is desired to constrain the

erminal angle, def must vanish and A, Would not
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necessarily be zero. In this case, the fourth terminal

boundary condition becomes

h, = e(tf) -6, =0. (A.1.1h)

Allowing for the possibllity of a variable terminal
time, Eq. (A.1.11) also yields the fifth and last terminal

condition
= + = R v 1.
h5 (1 + Alfl + szz + Aafs quq)f 0 (A.1.15)

If it is desired to normalize the Lagrange multipliers
as discussed in Section 7.3.1, one multiplier is Initially
éelected plus or minus unity and one terminal boundary condi-
tion is 3gnored. The initial boundary condition
Ay (8,) = -1.0 , is used in place of the fifth terminal bound-

ary condition, and the result is

By mulEy) mwy = 0 h, = u(t,) ~u, =0 (4.1.16)
i £ f i
By T VB m vy = O h, = v(ty) ~ vp =0
g, =r(ty) ~ry =0
hy, = r(t.) - r, = 0
g, = o(ty) - ey, =20 i )

=
n

Y l“(tf) =0

{13
v
1

= A,(t) +1.0=0
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For the solution of 2n differential equations,
2n+2 boundary conditions must be known. Assuming that the
initlal time is zero, 2n+l conditions are needed. These

are the boundary condltions given above.



APPENDTIX A.Z2

Discussion of the Applications

The example class of problems used to apply the
theoretical formulations presented in Chapters 3, U, and
5 is the minimum time trajectory of a thrusting spacecraft
under the influence of an inverse square gravitational
force field. The specific examples used to obtain the

numerical results discussed in Chapter 6 are:

(1) A constant low thrust Earth-Mars transfer tra-
jectory which leaves the Earth's circular orbit about
the Sun with a velocity equal to that of the Earth,
The ¢ontrol or thrust angle is unbounded and only

the Sun's gravitational influence is considered.

The spacecraft arrives at an arbitrary heliocentric

angle in the circular Mars orbit having velocity

conditions that matech that of Mars.

(2) A constant high thrust Earth launch to a 100
kilometer circular orbit leaving the Earth's sur-

face with zero velocity. The control or thrust

angle is unbounded. The Earth's inverse square
gravitational influence is considered. The dissa-
pative terms of the atmospheric drag are also included.

The spacecraft arrives at an arbitrary heliocentric

202
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angle in the circular orbit. The effects of other

bodies are neglected.

In the optimization reduction problem shown in Appen-
dix A.1 it is seen that the initial state is specified and
hence n = p = 4 . The terminal velocity and radial position -
are specified and hence q = 3 . Two additional terminal
constraints are derived from the transversality conditions.
Assuming that the initial time is specified as zero, five
initial conditions and five terminal conditions are speci-
fied, therefore the problem is solvable.

When the numerical parameters are normalized as dis-
cussed in Section 7.3.1, the initial value of the Lagrange
multiplier associated with the radius is equated to a negative
unity, and hence p = 5 , and the last transversality condi-
tion is ignored. This means that six initial conditionsrand
four terminal conditions are specified, where the initial time
is included. The problem is still solvable, but the com-
plexion of the applications 1is changed slightly from that
described in the detailed procedures presented in Chapters
3 and 4.

It should be pointed out that the fourth differential
equation of state and the corresponding Euler-Lagrange egua-
tion 1is not necessary for the analysis made here. These

equations are simply inc¢luded for the sake of generality,
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and hence the same computer programs may easlly be converted
to solve the class of problems where terminal state is com-
pletely specified.

The time histories of each variable that correspond
to the optimal solution for the Earth-Mars transfer are il-
lustrated in Figure A.5.1. The optimal control'history for
this problem is shown in Figure A.5.2. The time histories
of each variable that correspond to the optimal solution for
the Earth launch are illustrated in Figure A.5.3. The opti-

mal control history for this problem is shown in Figure A.5.4.
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APPENDIX A.2.1

Application of the Method of Adjoint Functions

The nonlinear, ordinary, vector differential equa-~
tion =z = F(z,t) is composed of n = I differential equa-
tions of motion (with control eliminated by use of the
optimality condition) and n = 4 Euler-Lagrange equations.
These equations arelintegrated from a known tO to an assumed

Ef with the known initial conditions and assumed values for

those not known, l.e.

z(tﬂ) =

=l > > > 0 B8 <« C

Fow N e

L

where the bar indicates an assumed value.

When the assumed terminal time Ef is reached, the
terminal dissatisfaction h and dissatisfaction rate h are |
'

evaluated. The starting vectors for the backwards integra-

tion of the adjoint equations are also evaluated.
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These adjoint equations, A = - [%%] A , are
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-
+
1
T
H L‘w
~
=
w»
+
——
%)
w‘y
—
~—
=
o

1
—[—2- (2V)t1 - ui, + Au):l A7
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3 r2 3 r2 r? r2

1 2 ) vl i
[——2(2vxl-ux2+xh)]rts —(ratuvxz VA, -V A1]+ q[sGM%]} A,

——
1

r r
Aq =0
2 .
. Ta TA. A
A = 2 A - 12 A+ (E_V) A (ﬁ
5 . 1 2 r} e A2 ~
m(x 24 2)%/2 m(r 2+a,2) %72 r
. 1 a2 1 2
. Ta, A Tx 2 (v) (u) (uv
1" 2 ) A-(E)a —()a, +[9Y
= - + 5 6
m(;\1 +A2 ) m(}\1 +2, )
A, = g

1)
t
i
|._l
el
=
on
|
T
'1|<‘.
X}
S~
=
~J
-

and are integrated backwards from tr to to forming the

coefficients from the variables stored during the forward
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integration. The 2n+l-p = § sgtarting vectors for this back-

ward integration are

P - - “ — - -
1 0 0 o
0 1 0 0
0 0 1 0
1o 1o o _ 1o
M(te)y = | o | A(te) = | o | Ay(tp) = | o | A (tg) 0
0 0 0 0
0 0 0 0
L0 Lo ] L 0 _ . 1

When the initial time to 1s reached, 2n+l-p

algebraic equations are solved for the linear estimates for

the porrections that must be applied to the assumed initial

—

‘o Tzo’ X,,) and the assumed terminal time

(Ef). These algebraic equations are

conditions (%

~ - - . -1 - -
le(to) 051 8¢, 981 Ugp du
62, (ty) 0, %, %% Gf dv
63, (t,) 5, O3 93 Ty dr
Ldtf _ Lesu %4 %84 Mur _ L a, -
£

where the elements of the © matrix are evaluated at to.

These corrections are applied to the injtially assumed values

s Ay A, and Eé and a new nominal trajectory is:

integrated using z = F(z,t) .

of A



APPENDIX A.2.2

pplication of the Method of Perturbation Functions

The nonlinear, ordinary, vector differential eguation

= F(z,t) 1is composed of n =} differentiq} equations of
otion (with control eliminated by use of the optimality con-
ition) and n = 4§ Euler-Lagrange equations. These equa-

ions are integrated from a known t0 to an assumed Ef
ith the known 1initial conditions and assumed values for

hose not known, 1l.e.,

z(to)

P> > > o 8 g &
w M e

»

r
=
{

0

here the bar indicates an assumed value.

¥

%e perturbation equations éz aF]dz are
I

. 2
2, = Gbgﬁz +(?GM ¥
1 r 2 I'3

8%
3/2 5

+

m(k 2+l 2) °/2

|:(A 2+2,2)
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$§z, = ~{=\dz, - (] 6z, + {— |8z, *+ 8z
2 (r) ! (I) 2 (rz) o ma,240,2) 2] 0

2
Th,
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1
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N

O

N o
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]
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O

N
%)

5
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T

O
[n)
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]
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"S[ P
)

VA
2 v
)622 - ("—é>623 + (F)ﬁzs - 627
T
A 2A
2 1 1
I = - + LA
6 Q,>ézl ( = )622 + r2(2vA1 ux, A“)J ;

s (- @

. vlz 1
8§z )6z +{ —(2vr_, =~ uix, + A, )| 6z
7 2 1 2 1 2 Y 2

1 (6GMA1

(o]
M.
1}

1

L Bl e
r3

2 ;
_V_ - 2—GM>(5Z5 - (E.Y..)azs + X...... 628
r? rd r? r?

- 2 -
2v Al + 2uvl2 2vlu) 6z3

and are integrated forwards from to to tf forming the

coefficients from the variables calculated by the integration
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of 2z = F(z,5) . The integration of the differential and
perturbation equations may be done simultaneously, where the

2n-p = 3 starting vectors for the perturbation equations

are

0 [0 ] 0

0 0 0

0 0’ 0
6z, (5) = | ° 62,(ty) = | ° 62,(ty) = | °

1 0 0

0 1 0

0 0 0

0 0 1.

When the terminal time is reached, 2n+l~p = 4
algebraic equations are solved for the linear estimates for

the corrections that must be applied to the assumed initial

conditions (% Xy09 X,,) and the assumed terminal time

107
(fr) . These algebralc equations are
- M - . .—1_1 [~ -q
82, () 11 %2 %13 YUg du
61, (t ) 2,0 %25 935 Vo dv
-Glu{to) 9y, 3, @33 Ty dr
dt 95, ®a, Ogs A da

where the elements of the ¢ matrix are evaluated at tf .
These corrections are applied to the initially as-
sumed values 6f Tl, X,s A, and E% and a new nominal tra-

(} Jjectory is integrated using z = F(z,t) .
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Vlz

1

z = A = - (___) u oo+ | =(2va, - ur, + A, v

Th+1 3n41 2 1 n+1 [;2 1 2 47, ntl
1

.
.

1 GGMA1 )
+ ;; - 2v Al + 2uvl2 - 2vA9 r

r n n+i
v2 2GM uv v
+ ||~ Y Al - (T) )«2 + (""é‘) A!}
r r n n+1 r n n+1 r n h+1
+ (57)n
2 = = (B)
8n+1 hn+1 8°n
/‘
where -
Y
8,y =f- 30 __Th

1°n 2 A 3
r m Al +12

TA
h m/x 24,2 )
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(Bs)n =0
A
(B) =...._.‘:.>
o'n rn
6GMA VA
1 L
(B,) = +
7'n 3 2
r I“n

(Bg), =0 .

These nonhomogeneous linear eguations are integrated

from t, to tf with the starting vector

- =

|le ¥ < &

2(to)p4y =

>—']>a>-'|$—-
FOOw N -

where the bar indicates an assumed wvalue. This determines
the variables for the n+1th ite;ation by ;sing the vari-
ables resulting from the n¥h lteration to form the re-
quired coefficlents.

The homogeneous linear equations (same as above ex-

cept without the (Bi)n , 1 =1, 2n terms) y = Ay, are



integrated from t, ¢to ff in the same manner as the non-

homogeneous equations but with the 2n-p=3 starting vectors

o C 0" 0 )
J_‘= i ﬂ
3 E :
U : 0 r‘t
0 0 -
ey =LY [ ¥ = 0 ] ¥ (Eedny 0
0 1 0
0 0 0
0 0 1
L- — gt - s .-J

When the terminal time is reached, 2n+l-p = §
algebraic equations are solved for the corrections that must

be applied to the assumed initial conditions (X,,, X,p, X4p)

and the assumed terminal time (Ef) .  These algebralc equa-
tions are
B " - a7 -1 =)
§x, (t,) Yy, Yy, Y., Uy du
sxz(to) _fgl Yo, Y54 Ve av
83, (ty) Ysi  Yaz  Yas  Fp | dr
. dt y y Yoo A da, |
5 £ Ve 82 83 uf |9

where the elements of the matrlx are evaluated at tf.

These corrections are applied to the initially as-<

sumed values of i., X., ., and t, and a new nominal tra-

1? 727 Tu

jectory 1s integrated using z = Az+B . where the A and .B

matrices are formed from the previous nominall
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APPENDIX A.2.4

Application of the Method of Steepest Descent

The nonlinear, ordinary, vector differential equation
x = £(x,u,t) dis composed of n = 4 differential equations
of motion. These equations are integrated forward with the

Initilal conditions

x(t,) =

r
_©
and the initial estimate of the control program u(t) .

The performance index %o be minimized is

and the terminal constraints are

¥ = ultp) ~up =0
¥, = v(tf) - Vp = 0
¥, = r(tf) = Tp =0

The condition that 1is used to stop the integration is

n=e(tf)-ef=0.
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The equations adjoint to the differential equations

of -motion, A .= —fxTA y are

and the starting conditions for the backward integration are,

xi(tf) = [%—i—] =[0 0 0 0]
£
1 0 0
g _[ae] L
B S P 1

T N Y -
xﬂ(tf)~ [ﬁ]f (o 0o o0 1] .

The time rates of change of the performance index,

terminal constraints and stopping condition are

. 3 3 . .
p = [5% + 3% x] . =1
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The starting conditions for I‘”,, I‘i’d: and IM are
0 0 o
Tyy(tp) = |0 0
0 0
L.
0
I,,(tp) = o
0
b
=0,
I¢¢(tf)



APPENDIX A.2.5

Application of the Modified Method of Steepest Descent

The nonlinear, ordinary, vector differential equation
x = f(x,u,t) 1is composed of n = 4 differential equations
of motion. These equatlons are integrated forward with the

initial conditions

x(t,) =

o],

and the initial estimate of the control program u(t). .
The penalty function to be minimized 1s
= 2 ~u.]2 -v._12 -r_12
P e Wyt 24 [u(to)-u J24W, [v(to)-vp 1240 [r(to)-r,]
and the stopping condltion is

Q‘E*e(tf) - 0p = (.
The equations adjJoint to the differential equatlons

of motion, A= -fxTA s are
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The starting conditions for the backward Integration

are

J
T 2P Pl
an At =[-—]— ——[—] = [a by A A ]
PO i ax [Jﬂ] IX Pﬂl’ Pnz’ Pna’ PQli

where

APQZ = 2w2[v(tf) - vf]
kPna = 2w3[r(tf) - rf]
APﬂl fl +1P92 f2 + ana f3 + EWth
A -
Pnu fq

The new control program 1s given by

v [ ]
su mpne = K [m“Pnl sin 8 - APQZ cos s)]



APPENDIX A.3

Numerical Constants

Earth-Mars Transfer.

Astronomical Unit, AU .14959870 X 1012 meters
Orbital Radius of Earth, Ty .10000000 X 10! AU
Orbital Radius of Mars, ro .15236790 X 10l AU
Gravitational Constant of Sun, GM_ .13271504 x 102!
meters?®/second?
Initial Spacecraflt Mass, m, .67978852 X 103 kilograms
Thrust, T .40312370 X 10! newtons
Mass Rate, m . .10123858 X 10~*
kilograms/second

Earth Launch

Radius of Earth, R, .63781700 X 107 meters

Gravitational Constant of Earth, GM .39860640 X 1015
meters?/second?

Initial Spacecraft Mass, m, .15000000 X 10* kilograms

Thrust, T .27000000 X 105 newtons

Mass Rate, m 45000000 X 10!

kilograns/second

The terms that must be added to the differential
equations f1 and fz to include atmospheric resistance

are:
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where

and where

pC Au/uit+yve

D

b

L m

pCDAv/u2+v2

2m

p. € E (ma< “ensity)

0.3, 0 ¢ M < ,6950 (dr.. coefficient)

K2 K3
=K 4 — - =, M > .6950
MZ M3
)
= Yu ;V (mach number)
=D - B(r - Re) {(speed of sound)
= 0.52 kilograms/meter?
= 7600.0 meters
= 0.1368
= 1.6218
= 1,0724
D = 340.0 meters/second
B = 0.6b071 !/seconds
A=14,0 meter:s2
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APPENDIX

Normalization Scheme

Earth-Mars Transfer

Unit of Length (1 AU)

Unit
Unit

Unit

Unit

of Mass (mo)

of Veloclty Ve =

of Force

of Time

Al

.14959870 X 1012 peters
.67978852 X 10°% kilograms

,29784901 X 105
meters/second

.40312370 X 10! newtons
.50226355 X 107 seconds
58132355 X 102 days

The normalized values of the parameters of Interest are:

= 1.0

Gravitational Constant of Sun, GMS
Initial Spacecraft Mass = 1.0
Initial Spacecraft Velceclty = 1.0
Initial Spacecraft Radius = 1.0

Terminal Spacecraft Veloecity = 0.81012728
Terminal Spacecraft Radius = 1.5236790
Thrust = ,14012969

Mass Rate = 0.074800391

Earth lL.aunch - No normalization scheme.
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