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INTRODUCTION

for computing a pseudo-

Rn -} Rm	 where R 

N and M	 respec-

°rators that are "ill-

are being encountered

programs using standard

solution to these prob-

alternate approach to

This paper presents an algorithm

inverse for any linear operator, A :

and Rm are Hilbert spaces of degree

tively. Problems involving linear op,

conditioned" or "difficult to invert"

in ever increasing numbers. Computer

inversion techniques often provide no

lems and no information indicating an

the problem.

The algorithm to be discussed provides a method for

minimizing JjAx - bil for a fixed vector b in Rm	The

inner products for R  and Rn, are not restricted to the

usual inner product for Euclidean complex space. The nota-

tion for the inner product of two vectors x and y will

be (x,y) and the only norm used will be 11 x II _ (x,x) .

Although the inner product on R 	 may be different from the

one on Rm , there will be no special notation to differen-

tiate these inner products since the space to which the

vectors x and y belong will dictate the inner product to

be used. Computer programs for minimizing (jAx - b1l for

any norm other than the Euclidean norm are essentially

i

is	

^
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nonexistent at MSC. It should be pointed out that standard

inversion procedures are more desirable for inversion of

square matrices, and sometimes for solving the least squares

problem, provided that one is inverting "nicely-behaved"

operatorfi.

AN ALGORITHM FOR PSEUDOINVERSION

Let A : R  -> R 	 be a linear operator. Let

el,e2,•••,en denote unit orthogonal vectors in R 	 and the

vectors A(e i) in Rm will be denoted by b i	The sub-

space of R 	 spanned by the vectors b l ,b 2 , ••• bn will be

referred to as R(A) or the range of the operator A .

If y is an element of R  , then there exists a

unique vector x belonging to the range of A such that

II y - xII	 =	 inf	 II y - m ll	 (1)
meR(A)

The purpose of this paper is to characterize all

vectors, a = (a	 suchsuch that

n	 n

x =	 a  b i =	 ai A(e i ) = A(a)	 (2')
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and to provide an algorithm for calculating sonic of these

vectors.

If an orthogonal basis for R(A) is known, then a

representation for x can be obtained by

	

x = P (Y)	 ( 3^

where P : R  -> R(A) is the orthogonal projection operator

onto the range of A	 Hence the collection of all. vectors,

a	 satisfying (1) are precisely those such that

P (Y) = A ( a )	 (4)

Using the Gram-Schmidt process, a set of vectors,

zl,Z2,••-,zn , which span R(A) can be represented in

terms of the b 	 as follows. Let z l = b l and for

j= 2,3, ••• ,n	 Let

j-1

z	 b	 -	
(b	 z ).i	 ( ).	 =	 .	 z.	 S

1_	 II Zi 'I 2 	1

where the . sum is taken over the z i such that li z i ll # 0 .

	

Define Q = {z i : lizill # 01	 Then Q is a collec-

tion of orthogonal vectors which span R(A) and the

AM

.
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projection operator can be defined by

P(Y)	 _	
(Y' zit z

l 	(6)
i=1 I'ziI1

Il zi l140

If a set of vectors, cl,c2,•••,cn 	 can be defined

	

such that they span Rn and A(c i ) = z i	then any vector,

a = (al,a2,•••,an) , such that

z.(Y'

I Izi1) )

i2	
(7)

Vfor those z i such that Ilz i ll # 0 satisfies

a. C•	 =	 a. z.

i=1	 i=1

(Y. zi)
=	 z. + 0

i=1 
	 zi^^2	

i

II zi I140

P (Y)	 (8)

ai =
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Moreover, this will completely characterize all vectors,

c	 such that A(c) = P(y)	 Suppose there is a vector, c

such that A(c) = P(y)	 then there is a unique set of scalars

(al,a2,•••an) such that c = 	 a  c i (since the vectors

i = 1	 '

C  are linearly independent). The vectors, z i e Q	 are

orthogonal and span R(A) 	 thus the coefficients of the

Z. are such that1

n

AE a  z i = P (Y) z i E Q	 (9)

i=1

are unique. Thus,

a 	 =	 (Y ' zi)/IIZiI'2	 (10)

for every z i in Q .

If the vectors, c1,c2,•••,cn	 can be defined, then

the collection of all vectors 6 such that AM = P(y) is

given by

n

g =	 ai c i	 (11)

i=1

the a i satisfy (10) above
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The vectors, cl,c2,•••,cn 	 are defined by the

following recurrence relation.

Initialize c l = e l 	then for j = 2,3, ••• ,n let

	

( b	 z )
c j	 = e j -	 b	 2 C. 	 (12)

i=1 lizil)

11zi11+0

It remains to be shown that A(c i ) = z i 	and that the

vectors c 	 are linearly independent. First, note that

A(c l ) = A(e l ) = b l = z l 	Then, for j = 2,3,•--,n

A(c.) = A(e.) - J-1 -3)̂ A(c)	 (13)

i1
J	 J

	
E I I

zi 
I l 2	 i

llzill#o

1	 I

j- 1
A(c j) = b j - E (b) z2) 

A(cj)
i=1	 zi^^

Iizi11+0

V
kWh



Thus

A(cj)	 zj	 !L7or	 j	 2,3,•••,n

One can quickly observe that the vectors c j are

linearly independent by expanding (12), and noting that if

k

a i c  = 0 , a  # 0	 then there exists scalars

dl,d21 ... l dk-1 such that

k- 1

d i e  + e 	 = 0

i=1

which is a contradiction.

Consider now the operator, A 	 defined as follows.

For any q # 0 in R(A) , q has a unique representation'
i

as a linear combination of the vectors in Q . If

q =	 a  zi

;z 1	 .
define

A(q)	 a  ci



R

and

A(0)	 0

If H(A) is used to denote the subspace of R 

spanned by the vectors c 	 such that zi j 0	 then

A : R(A) -► H(A) is a one-to-one onto map. Moreover, for

any x in H(A) , AA(x) = x 	 and for any q in R(A)

AA(q) = q We cannot say that AA = AA since their

domains are different. We cannot say that the matrix

representation of either AA or AA is the identity map

since AA	 R  -* H(A) is the identity only on H(A) and

AA : R(A) -► Rm	but R(A) C Rm may not be generated by

the e 	 ill Rm

The following operator does provide a convenient

representation for a solution to (1). For y c R111	 define

+ (y) = AP (y)	 then a = A+A	 (y) is a solution to (1).

This follows immediately since P(y) belongs to the range

of A	 Thus, A(a) = AA P(y) = P(y) 	 If N(A) denotes

the space spanned by the c i such that' z  = 0	 then

E = {g = A (y) + u : u e N(A)) is the collection of all

vectors satisfying (2).

For those who are familial- with the generalized

inverse, it should be pointed out that A+ satisfies the

0

i
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U

Penrose equations, A + AA+ = A+ and AA+ A = A	 but not

the other Penrose equations. Moreover, A + y satisfies

(1), but it is not necessarily the vector having minimal

norm which satisfies this equation.

\APPLICATIONS TO MATRIX INVERSION

For computational purposes, the following modification

of this algorithm is more practical. Choose a tolerance E

such that if II x II < e for any vector x	 x = 0 .

Normalize all vectors b. and let
1	 .

d i	= bi/Ilb i li 	(15)

Obtain orthogonal unit vectors i by the following recur-

rence relation.

A
Initialize z l = zl = z l = d l	For j = 2,3,•••,n

let

j-1

zj = dj -	 (dj, 
z i ) zi
	

(16)

i=1

IIzi1140

is
k;

j-

I
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Use Wilkinson's modified Gram-Schmidt

j-1

z j	 =	
z 
	 -	 (zj, z i ) 

z 
	 (17)

i=1

lizilli0

If I 1z j II < e	 set zj = 0	 Otherwise, set

z j	 =	 zj/1lzjll

Notice that a is used as a relative error tolerance

since all vectors are normalized.

All other calculations are carried out as before and

we have c l = e i and for j = 2,3,-••,n

j-1

1	 _

(^	 (^ a
	 (d j, z

R

 ) c	 (18

c	 =
i=1

If the vectors z i are stored by columns in a matrix

ZH and the c i are stored in a matrix ZI by columns.

Then

A+ = ZI(ZHT )	 (19)



I 

and

P(Y)	 =	 ZH(ZI-I
'T
 Y)	

(.)0)

For square nonsingular matrices, A+ = A

Moreover, it would be advisable to use standard ;matrix

inversion algorithms for matrices that are not ill-conditioned.

For matrices that are ill-conditioned, this algorithm

provides the following advantages:

1. The reason for the error return "ill-conditioned

matrix" is accompanied by reason as to why A -1 is

difficult to compute. For example, if

z5 	 = 10
-6
	then there exists scalars

91,92,93194 such that

g i b  + b 5 = e	 (21)

i=1

where

11EII	 <	 10-6 jib511

2. Although the matrix is ill-conditioned, a solution

x is computed such that 6 = JjAx - b1) # 0 is a
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minimum, where x = A + y	 Even though

d = 11Ax - b1l # 0	 the value for d is often

quite acceptable.

3. The range of A

vectors. Using

can be computed

without calcula

d = (1ZH(ZHT y)

is characterized by unit orthogonal

these, the value for inf11Ax - yl)

for any number of values for y

ting A+ 	that is

- Y11

4. The null space, N(A)	 is characterized by

linearly independent vectors.

If the computation of A + y is the primary objective,

then the error check for equation (17) could be augmented

or replaced by the alternate check

(Y, z •)
if	 < e	 set z-.	 = 0

j-1	 I

1( y , z i ) 12
i=1

1

0



APPLICATION TO "LEAST SQUARES" PROBLEMS

13

The problem of minimizing JjAq - yll	 where
A = {a ij } = f j

 
(X

i
)	 for i = 1,2,- • -,m and j = 1,2,•••,n

occurs frequently in applied mathematics. If

JjAq - Y11 2 = (Aq - y) * (Aq - y) then this problem is

usually solved using orthogonal polynomials, or in the case

of general functions, by the solution to the normal equations

q = (A* A) -1 A* y

provided A* A is nonsingular.

®	 Polynomial approximations are insufficient for solving

a large class of problems. For this class of problems and

for polynomial problems where nonconsecutive coefficients

must be zero, the algorithm described in this paper has the

following advantages:

1. The matrix A* A is often "ill-conditioned" when

A is not. The matrix A* A is never used, thus

avoiding excessive rounding error in some insta.ces.

2. A solution is always obtained even when A is not

of full rank, that is, when A* A is singular.

e
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3. If k significant decimal places are desired in the

solution, then set e = 10 -k and all functions which

individually do not affect the first k significant

digits of the solution will be discarded. This will

permit more accurate orthogonalization and conse-

quently a more accurate estimation of the coeffi-

cients for the more significant functions. This

also allows more functions to be used for fitting

and is sometimes the deciding factor in obtaining

an acceptable value for II Aq - y II .

4. The value for minjjAq - yII can be computed with-

out computing the solution q = A+ y	 Thus, if

the value is not acceptable, no time need be used

to compute A+	that is,

min llAq - y II = II Z F1 ZHT y - yII

S. The process described in 3 and 4 can be carried out

sequentially with respect to the functions f  .

That is to say that after J columns of the ZH

matrix have been computed, if d = II ZH ZHT Y' - yII

is sufficiently small, then the solution,

A+ = ZI(ZHT) , can be computed using only that

•r
portion of the matrices available and setting

0



:o_	 s

is

q i = 0 for i > J . If d is not acceptable, then

the process can be continued until the number of

functions is exhausted or an acceptable value is

obtained.

It should be pointed out, as in the case of square

matrices, that standard procedures for solving the least

squares problem require less computer time and fewer storage

locations than the algorithm discussed. In this sense, the

standard procedures are much more desirable provided an

acceptable solution is obtained.

CONCLUSION

The fact that other algorithms are often more desirable

must be emphasized strongly. There are highly recommended

methods based upon extremely well planned numerical analysis

using less computer storage and less execution time. The

Gram-Schmidt orthogonalization is known to be an unstable

process and the accuracy of the process has not been opti-

mized in the procedure presented in this paper. This algo-

rithm does have the advantage that all quantities computed

have an obviou ,^ relation to the original operator. This per-

t	 .
mits one to determine the reasons for the difficulty in
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inverting an operator or in computing A+	For "least

•.	 squares" or minimum norm type problems, the method has the

advantages.that 1) solutions can be computed sequentially

with respect to the approximating functions, 2) the norm of

the error vector can be determined without computing A+

and 3) functions affecting the solution in "insignificant"

decimal places can be automatically discarded. Problems

requiring only two or three significant decimal places occur

quite often in problems related to spaceflight. Discarding

functions in this manner can also improve the behavior of

the solution at points between the values of the independent

®	 variable used for the regression analysis.

n
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