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INTRODUCTION

An error frcqucntly committed in statistical analysis

of data obtained for reliability studies is to assume that

the population from which the data is taken has a normal

distribution when, in fact, it does not. One effect of

making such an error is that probabilities and tolerance

limits obtained by standard statistical techniques are invalid;

hence, if the reliability criterion is very stringent, the

conclusions reached might lead to disastrous consequences.

This paper is divided into three sections. The first

section contains an example of the false conclusions that

may be obtained when the data is erroneously assumed to be

from a normal distribution. The second section contains four

theorems that enable the experimenter to perform a reliability

study when the distribution is not normal or is unknown. The

third section illustrates the use of the theorems developed

in Section H.
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SYMBOLS

a
X, R, Vij , Z	 Random variables unless specified otherwise.

n	 Sample size.

Ep	(100 x p) the percentage point of the

distribution of X•

xi	ith Sample value of X.

x(i)	 ith Ordered Sample value of X.

F(z)	 Cumulative distribution function of X.

(i.e., P(z) - Pr {X < 03
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Probability density function of X.

Total number of observations < zo.

Incomplbfe Beta function with parameters

k and m.

Ask
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SECTION I - EXAMPLE OF ERROR

In. many cases, reaction times have a log normal

distribution (l) with parameters p and a 2 ; i.e., their

logarithms are normally distributed with mean.0 and variance

0 2 . If an experimenter observes a sample of reaction times,

R, and estimates probabilities of R exceeding given values,

he incorporates serious errors into his estimates by assuming

that R is normally distributed. The magnitude of the error

can be best illustrated by the following example.

Table I shows 150 observations of a random variable, R,

having the log normal distribution, arranged in ascending order.

A number, t, is desired such that the probability of R

exceeding t is small, for instance, 1-0, where 6 is a number

close to 1.

If R is normally-distributed and B equals .9986, t would

be estimated by the familiar expression:

test ` R + SR	 [1)

where R and SR are the sample mean and standard derivations

of the data. However, R is not normally distributed, and

estimation of t by equation [1] is erroneous. If R is

Incorrectly assumed to be normally distributed, one would

obtain

tincorrect	
.435 + 3(.219)	 1.092



.1420 .2572 .3356 .4214 .5997

.1423 •2578 .3398 •4276 •6062

.1459 .2585 .3433 .4301 .6079

.1477 .2649 .3566 .4411 .6237

.1503 .2658 .3570 .4447 .6361

.1546 .2730 .3600 .4477 .6398

.1558 .2771 .3604 .4620 .6442

.194 .2779 .3613 .4655 .6475

.1982 .2805 .3621 .4678 .6479

.2010 .2855 .3634 .4698 •6530

.2056 .2885 .3635 .4801 .6601

.2100 .2921 .3704 .4828 .6666

.2127 .2921 .3708 .4835 .6681

.2175 .2927 .3810 .4866 .6706
•2183 •2935 .3812 .4936 .6780
.2218 .2936 .3824 .4971 .6839
.2321 .2981 .3827 .4993 .6945
.2360 .3006 .3832 .5055 .8602
.2373 .3028 .3912 .5076 .8624
.2378 .3028 .3919 .5233 .8747
• 2 378 .3052 .3934 .5379 .8825
•2398 .3108 .4024 .5455 .8879
.2 1114 .3139 .4066 .5460 .9177
.2421. •3139 .4085 .5470 .9263
.2429 .31,19 .4091 .5564 .9456
•2449 .3172 '.4115 •5721 •9632
.2456 .3173 .4128 .5803 1.0351
.2504 .3268 .4146 .5837 1.1202
.2508 .3333 .4158 .5854 1.1390

. -- .2512 .334y.-- .4193 4 1.1928

AdMk
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TABLE.I - VALUES OF R ARRANGED IN ASCENDING ORDER

R	 .435

SR = .219

The magnitude of the error can be shown in two ways:

First, consider the true probability (not .9986) of R

exceeding t
incorrect*	 `

1 0. ,



.

.6

Since log R — N(u, o z ), it follows that

Pr, (R • t) - 6 ( lo^Q t -^)

•	 where ` (•) is the standardized normal distribution function.

The 150 observations in Table I came from a •log normal

distribution with ^+ -1 and o - y. Therefore,

log tincorrect - (-1)
P r {R < tincorrect ) _ ; (	 1/2	 )

- o (2.176) - .9852,

as compared with .9986. The probability, . 9852, is

corroborated by the data. Note that, of the 150 observations,

3 exceed tincorrect' If the actual probability of R exceeding

tincorrect were I - .9986 - .0014, it is extremely unlikely

that this event would occur as'many as 3 times out of 15C

trials.
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SECTION II - THEOREMS

Suppose X is an observable random variable. From the

failure analysis viewpoint, it might be desirable to eatimate 1
percentage points and tolerance limits for X. A percentage

point, Cp , is a number such that the probability of X

exceeding Ep is equal to 1-p. Tolerance limits for X define

an interval [x(i), x(j)]. This interval is such that, at

least 100 0 percent of the time, the probability is 1-a that

x(i) < X < x(j), where 1-a is the chosen level of confidence,

_	 and 0 is any arbitrary positive number less than 1.

Let x j , x2, ..., xn be a sample of n independent

observations of X; and suppose F(z), the cumulative

distribution function of X, is continuous and strictly

Increasing over the range of interest. If x(1), x(2) ; ...,

x(n) denotes the observed sample arranged ^n ascending order

(that is, x(i) < x(j) for i <	 then the four following
theorems hold•.

THEOREM 1: If z is • any real number, then Pr x(i) < z^
n (n)[p(z)]rr[ 1-F(z)]n-r

Proof



of X less than n equal to z. Then, X has the binomial

distribution with parameter F(z). Thus,

( 1 I

• Pr (S > i) _	 (r) CF(z)) r C1_F(,)]n
-r.

But, S > i means that there are at least i observations

less than n equal to z. This is equivalent to starting x(1)< z.

THEOREM 2: If i and 3 are chosen before observing the data

such that 1 < i < 3 < n,.then Cx(i), x(j)] is a

confidence interval, independent of F, for gyp,

the 100 x p percentage point of the distribution

of X.• Specifically, the level of confidence

equals

Pr Wi) < E
P
 < x(j)) 

	

pr (1_p)n-r _ _ 

	

pr (1_p)n-r

Proof:
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since x(i)	 x(l). Therefore,.

Pr (x(i) < . EP } .. Pr (x(7) < Ep} = Pr (x(i) < EP < x(7)}.

-Since F is continuous,

	

Pr (x(i) < EP } - Pr (x(J) < EPJ	 Pr (x(i) < EP = x(J)}.

Hence, from THEOREM 1, it follows that

Pr (x(i) < EP < x (l)} _) _ r CF(EP ) r C1-F(E
P
 )l
 .

r=i

n /`'

-trl C F (EP )rl El-F(EP)ln-r

r=i \ /

	

n	 n

E( pr (1-p)n-r^ r pr (1-P)n-r

r=i	 r=J

since EP is defined so that F(EP ) = P.

t	 -



that is, Pr (Vij > ^} , is given by

n
1 - n (rn) r (1-, )n-r

10

•

Proof:

X(J)

Let Vij 

	

	 F(z) dz. Then, Pr (Vii.)" 0} . =1 h(v) dv.

x(i)

But, by THEOREM 3,

h(vij)
	 -i-i 4 n n-3+i f31-1 (1-

vi3 )n-J+i
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Hence,

n

(n)Pr {Vis > B}
	 1 --{B)r {1-g)n-r

r=j -i

M

0
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0	 SECTION III - APPLICATION

For the lunar excursion module to land safely, it is

necessary that certain end conditions not be excessive. One

of these end conditions is the vertical component of velocity,

Z. Table II gives values of Z obtained from 122 independent

lunar landing simulations. Statistical tests reject the

hypothesis that these values came from a normal or any other,

well known distribution. (See Ref. 4; Kolmogorov-Smirnov

Goodness of Fit Test.) Therefore, in order to estimate

percentage points and tolerance limits of this unknown

distribution, it is necessary to.use a distribution-free

(non parametric) procedure. It is clear that the range of Z

is an interval on the real line; hence, the conditions_ of
Ask

SECTION II are satisfied.



k ZM k ZM k
2M

1 .30 41 3.60 81 5.88
2 .78 42 3.72 82 5.94
3 1.02 43 3.72 83 6.00
4 1.14 44 3.78 84 6.06
5 1.20 45 3.84 85 6.06
6 1.32 46 3.90 86 6.12
7 1.38 47 3.90 87 6.12
8 1.38 48 3.90 88 6.12
9 1.56 49 3.90 89 6.30

10 1.62 50 3.96 90 6.36
11 1.74 51 4.02 91 6.42
12 1.74 52 4.14 92 6.48
13 1.8o 53 4.14 93 6.54
14 1.86 54 4.14 94 6.78
15 1.92 55 4.38 95 6.90
16 2.22 56 4.38 96 6.96
17 2.28 57 4.50 97 7.14
18 2.34 58 4.74 98 7.20
19 2.52 59 4.	 6

4 .^0
99 7.26

20 2.52 60 100 7.30
21 2.58 61 4.80 101 7.50
22 2.64 62 4.86 102 7.56
23 2.64 63 4.98 103 7.74
24 2.70 64 5.04 104 7.74
25 2.70 65 5.16 105 7.78
26 2.82 66 5.27 106 7.86
27 2.88 67 5.28 107 8.04
28 2.94 68 5.28 108 8.10
29 3.00 69 5.34 109 8.22
30 3.06 70 5.34. 110 8.82
31 3.06 71 5.40 ill 8.88
32 3.30 72 5.46 112 9.12
33 3.40 73 5.52 113 9.12
34 3.42 74 5.52 114 9.12
35 3.42 75 5.64 115 9.48
36 3.48 76 5.70 116 9.54
37 3.48 77 5.70- 117 10.74
38 3.48 78 5.70 118 10.98
39 3.54 79 5.76 119 12.54
30 3.54 80 5.88 120 16.26

121 16 .88
122 20.921-

V

1

13

TABLE II - VALUES OF Z ARRANGED IN ASCENDING ORDER
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where a is a small probability. In other words, a

is the probability that the true value of x ,95 lies

outside the interval of estimation. For example, if i

is 'chosen to be 111, and j to be 120, then x(i)	 8.88,

x(J) = 16.26, and it follows that

• 122

Pr18.88 <	 <	 16.26) = L
—	 —

r22 (.95) r (.05)122-r• 95
r=111

122 
(122)

(.95) r (•05)n-r

r=120

.9805 -.0534	 .9271

Since it is of no concern in this particular problem

if the true value of C 	 less than Z(i), the interval

in equation [2] may be changed to a one-sided form,

In this case, equation [2] reduces to

n
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(CPr	 < 16.261 = 1 -	 .0534	 .9466.
•95

B.	 MAXIMUM CONFIDENCE LEVEL

Note that as j increases, a decreases until, the

maximum confidence level of 1-pn is attained if 3 = n.

For this reason, when p is very close to 1 and n is not

very large, any attempt to estimateE p results in a very

low confidence level.

A rough estimate of a desirable n for a given p

may be obtained using the relation that, for n > 100,

1-pn	1-e-n{l-p).	 If it is stipulated that the maximum

confidence level . should be 1-a, then n must be determined	 =

such that 1-e -n(1-P) T 1-a.	 In other words, let n
^Fy"

- (- log a)
(1-p)

EXAMPLE:

It is desired to find a sample size that could be	 —

used for estimating 
C•9999 

with a maximum confidence of

.99.
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SOLUTION:

Let n be approximately equal to

y

-

 

log (.01)	 =  46050,.0001
• a

C.	 TOLERANCE LIMITS

f
Suppose it is necessary to determine the following

sets of tolerance limits for the data given in Table II.

1. Determine i and	 such that:

a.	 The probability is .90 (that is, 1-a	 .90), that

- AML b.	 At least 85% of the time, Z lies between x(i) and

x(J)	 {s =	 .85). -

2. Determine i and J such that:

a.	 The probability (1-a) _ . 93, that at least

b.	 90% (B . .90) of the time Z lies between x(i)

and x(3)•

Determine j such that:

• a.	 The probability is 494, that at least

b,	 85% of the time Z will be less than x(j). --
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4. Determine i and j such'thdt:
	 t

a. The probability is .999, that at least

b. 99.865% of the time Z will be between x(i) and

x(J)•

Although these tolerance limits can be obtained

by a direct application of Theorem 4, a computer program

has been written providing the necessary information in

tabular form. The output of this program is presented

in Table III. (The computer program that generates,Table

III is available from the Computation and Analysis

Division.)



N - 122

1-1 .85000

ETA

.90000 .95000 .97500 .99865

122 1.00000000 .99999738 .99808452 .95444217 .15711072
121 .99999995 .99996193 .98578505 .81192790
120 .99999939 .99972358

.
.94662098 .59084808

119 .99999541 .99866425 .86417030 .36409954
118 .99997454 .99516255 .73506989 .19113110
117 .99988764 .98598032 ,57471360
116 .99958859 .96608552 .41013740
115 .99871404 .92945379 .26659726
114 .99649551 .87094480 .15799781
113 .99153645 .78859880
112 .98164752 .68520883
Ill .96387916 .56824239
110 .93487493 .44802688
109 .89156544 .33500376
loR .832o6039 .23722979
107 .75645397 .15901061
106 .66722728
105 .56904704
104 .46797915
103 .37035320

1102 .28162844
1 101 .20557864

100 .14396611

l	
•J{	 i

•

H

a

0

18

•



1

0
19

In example C. 2., the set of tolerance limits is read

from the table to be x(i) and x(j) such that-1 a 115.

In-C. J., a one-sided case, the x(j) chosen is such that

110. This means that the probability is .93 that

at least 85% of the time Z will be less than 8.82. Note

that the last set of tolerance limits (example C. 4.)

does not exist for this set of data. That is, there is

no i and j such that the probability is .999 that at

least 99.865% of the time Z will be between x(i) and

x(j).

D.	 SAMPLE SIZE

To find a set of tolerance limits as described in
i

example C. 4., a sample size of approximately 8845

observations would be necessary. The following equation

provides an approximation to the number of observations

required for a given A and a given confidence level.(5)

N	 A	 i + ) +
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/

=	 t

the desired confidence level. (In example C. 4.,

A = 18.5 o	 .99865, and 1-a	 .999)•

E. POISSON APPROXIMATION TO THE BINOMIAL SUM

For large n and B close to 1, the sum

n

r Br (1-B)n-r
r=3-i 

ti

I  awi
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