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EFFICIENCY Off' . GENERALIZED

MATRIX INVERSION METHODS

By Fred C. Delaney, Gary G. Gaffney, and Fred M. Speed

SUMMARY
 f 1

Generalized matrix inversion has become an increasingly

important concept in matrix theory as well as a useful tool
j in engineering, statistics, control theory, and space mission

design.	 For this reason, the need arises for an efficient

a
(i.e.	 fast and accurate) method of computing the general-

ized invern-e of an arbitrary n x m matrix.	 The purpose of

this paper is to present the results of computer tests used

to compare the relative efficiency of several computer pro-

grams designed ^o calculate the generalized invei ,se of

.j an arbitrary real matrix.

INTRODUCTION

s
The concept r of matrix inversion was first generalized

by E.	 1L.	 Moore	 (ref.	 1)	 in 1920.	 In the 1950's

k R. Penrose (ref.	 2) and A.	 Bjerhammer (ref.	 3), working

independently, formulated equivalent definitions of the

generalized inverse of an arbitrary complex matrix.

The most common definition, given by Penrose (ref. 2) is

a consequence of the following. theorem. .

r
r

.
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THEOREM l:	 For any real n x. m matrix A, there is a unique

real m x n matrix A+ (the generalized inverse of A) such

that:

(1)	 AA A .^ A

(2)	
A+AA+	 A+

F (3) • • (AA+ )
T
	AA+

(4)	 (A+A) T = A+A

The use of the generalized inverse in engineering

problems, statistics, and control theory gave rise,

naturally enough, to the development of several diffe,.,ent

' computational. methods.	 Some of these methods were developed

and programed by researchers at NASA-MSCto solve problems 	 •

requiring generalized matrix inversion.q	 g g

s
This paper presents the results of an examination of

the various programs for overall efficiency, comparing

them in terms of • accuracy and speed.

t

rte
SYMBOLS

Capital letters denote matrices with real entries.

an is a row, vector,	 +•

of pn is a column vector.

s; AT denotes the transpose ref' the matrix A.

2
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A* denotes the generalized inverse of the matrix AY

(A)ij is the entry in the i th row and 
jth column of the

% matrix A.

is a matrix norm.

• Trace (A) is the trace of the matrix A.
It

• Y	 l

I is the identity matrix.

' Ik is the k x k identity matrix.

(A;B) is a inatrix partitioned into the matrix A and the

matrix B.a	 .
♦

'f f}

a:

v
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METHODS STUDIED

Although there are numerous mathematical methods for

calculating the generalized inverse of a matrix, the purpose

of this study was to determine the most efficient (that is,

fastest and most accurate) computer method for calculating

this inverse for arbitrary real matrices, A preliminary

survey of the existing algorithms for generali4ed matrix

inversion showed that some of them were not readily adapt-

able to computer programing or were more suitable only to

theoretical investigations and required, no further consid.-'

eration. One of the Penrose methods (ref. 4) was discarded

because it first requires a type of matrix partitioning

that is time consuming on the computet , - The Ben-Israel and

Wersan method (ref. 5) was eliminated because it depends on

the exact determination of rank, which depends on round-off

and approximation errors. The Householder method (ref. 6)
was rejected because it depends on predetermining the rank

of the matrix. Since the Ben-Israel and Charnes method

(ref. 7) uses the Lagrange-Sylvester interpolation poly-

nomial, which is sensitive to error in the computer, it, too,

was discarded. Finally, the Decell method based on the

Cayley--Hamilton theorem (ref. 8), which requires the cal-

culation of powers of a matrix, was eliminated becausp of

the error which su ,-,, h a calculation causes.
I

The following five methods, having satisfied this pre-

liminary requirement of computer adaptability, were then

examined because they showed promise of being efficient

I



generalized inverse programs:

(1) the computer proeram PEN2--,-' based - 'o 'n " another -o=f- the
Penrose (ref. 2) methods,,

(2) the program SEQINV ,, based on a method by
11. P. Decell ., Jr. ,, (ref. 9) of NASA-MSC,

(3) JPLUS, a method developed and progriamed by two of
the authors, F. M. Speed of NASA--MSC, and
F. C. 'Delaney of LEO,

Jj
	

( 11) APLUS, taken from an iterative methodhod devised by'
11. P., Decell ., Jr., and S. W. Kahng (ref, 10).

(5) GINV2, an algorithm developed by B. Rust,4	
'W. R. Burras, and C. Schneeberger (ref. 11).

(For the mathematics underlyihS these methods see
Appendix A . )

These methods were programed in FORTRAN IV, if they had
not already been, and were then tested very extensively on
the UNIVAC i108 to determine efficiency.

Since geAz ralized m^, ,̂;.trix inversion is applicable to
arbitrary ,matrices, some preliminary mention should be made
of the variety of matrices used in testing the programs.
The generalized inverses of singular and nonsingular square
matrices and of nonsquare matrices of full and less than
full rank were computed by each of the five methods. These
matrices were, for the most part, randomly generated and
differed in size from order 2 x 2 to order 45 x 40. As the
results will indicate, the type and size of the matrix,
whether due to round-off error in the computer, or to the
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increased computer time required by larger matrices, ox , to
peculiarities in the method of generalized inversion, often
had significant effects on the speed and accuracy of the
program.

Accuracy Determinations Methods and Results

Before any test results can be presented, a description
of the methods for determining and comparing the accuracies
of the above five programs is necessary.

The four identities of THEOREM 1, which define the gen-
eralized inverse, suggest a means for testing the accuracy
of a program designed to calculate it 	 In the case of real
matrices ,, norms based on these -identities can be defined in
the following way:

A

Let A be an n x m matrix with.real entries, and let A

denote the generalized inverse - as calculated by computer.
Than A is an m x n matrix also with real entries.
Define:

m
-Jc	 [(AA"A)	 (A) iijA	 i=l	

j
NORM 1	 AAA A	 nm

m n
F X^ [(AAA) i - (A)ijl

NORM 2'= J^ AAA4	 "A'	 M



kay

n	 n
E	 ( (AA ) T )	 2

(AA) ij
ij

NORM 3
.

jJI(AA" )
T	 AÂ11 nrr.,

m	
m	 [((A"A 

) T )	 2(AA)ii	 ij)
NORM I t	 H(AA)T	 A^Ajj nm

These norms provide a satisfactory test for accuracy

since, first, each is, in fact ., the root mean square of an

element in the difference matrix for that norm and, second,

each norm is equal to zero if and only if A is equal to A

the true generalized inverse of A.	 Note ,, however, that these

norms will not, as a rule, be zero due to round-off error

In the computer.'

In order for a generalized inversion program to be con-

sidered dependable and to have wide application ., it must be'

capable of computing the generalized inverse of all types

of matrices with a consistent and predictable accuracy.

The results of the tests in this study showed that not all

of the five programs mentioned above could meet this demand.

Two programs, APLUS and GINV2, did, however, perform

with more than satisfactory accuracy for all of the matrix

types used in testing.	 The norms evaluated using the

generalized inverses computed by these two programs ranged

• nearly always, between I x*10- 
4 
and 1 x 10 -12 , averaging

7
between 1 X 10 -	and 1 x 10-g ,
	

(For a more detailed com

parison see Table* I.)



am

F,
	

1

In order to determine if there was a significant

difference in accuracy between APLUS and CINV2, an analysis

of variance was performed (see Appendix B for the details

of the analysis). The results of the analysis showed that,

for full rank matrices, it is not possible to reject the

hypothesis that the accuracies of the two methods are equal.

However, for matrices of nonfull rank (excluding n x m

matrices of rank 1), the hypothesis that the accuracies of

the two methods were equal was rejected in favor of the

hypothesis that GINV2 was more accurate than APLUS.

The remaining three methods, PEN2, SEQINV, and JPLUS,

could not consistently meet the demands on accuracy, and

therefore will certainly have restrictions- in varying
degrees---on their application.`	

A

PEN2 gives acceptable norms for some small matrices

and for matrices of very low rank but gives very poor results

for all other types of matrices. This program is not very

dependable and should find little, if any, application.

SEQINV yields good results for nonsingular matrices

and matrices with full rank or low rank, but as the order

of the matrix increases past 30 x 30 it begins to fail

noticeably for singular matrices and matrices with less than
full rank. Even when SEQINV performs well, its accuracy does
not exceed--and usually lags behind--that of APLUS and GINV2.

For completeness, it should be noted here that SEQINV con--
.`	

tains a zero--test whose epsilon value, when increased slightly,
i	

fir.

causes significant improvement in some norms which had
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previously indicated that the program had failed, This.F	 v^.

epsilon value was not experimented with in detail since

varying it caused no significant change in those norms for

which SEQINV o formerly gave good results.

Of the above three methods, JPLUS is, by far, the most

consistently' accurate and dependable. It yields poor norms

in only a small number of cases; namely where the matrices

were singular and of large rank and order. gut despite its

rather satisfactory performance, its accuracy is not as

great as that of APLUS or GINAr2, which limits its application.

JPLUS, like SEQINV, also bas a zero-test, whose epsilon

value, when var ed,.causes changes in the norms with results

very similar to those observed for SEQI.NV.

0 Results of Speed Determination	 .

In order to obtain a sample of the relative speed of

each program, a test block consisting of one hundred 10 x 10

nonsingular matrices was generated randomly. The computer

time required by each program (except PEN2) for calculating

the generall..zed inverse of each matrix in the block was then

determined for comparison purposes. (See Table II.) Because~

the levels of accuracy for PEN2, SEQINV, and JPLUS were not

entirely satisfactory, no further time tests were made on

these programs.

Since APLUS and GINV2 were the only programs which met

the demands on accuracy, and since they were found to'have

nearly • equal accuracy, time was the deciding factor in
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determining which was the most efficient computer program

examined. For this reason, time samplings were .run for

blocks of 20 x 20, 30 x 30, and 110 x 40 nonsingular

matrices of `the type described above. (To conserve computer

time, the number of matrices per block was reduced as the

matrix order increased.) The results of these samplings

showed that GINV2 is considerably faster than APLUS. (See

Table: III.)

The GINV2 program must do an additional set of operations

for any dependent column in a matrix whose generalized

inverse is to be computed.	 For this reason, the times

required by APLUS and GINV2 were also compared for singular

matrices.	 Various blocks, each of 15 matrices of the same
4r

rank and order, were again generated randonly. 	 The matrix
s types tested were order 10 x 10 matrices of ranks 1 through

^x 10 and order 20 x 2Q matrices of ranks 1 through 20. 	 (See

Table IV.)
I'4

•

A

It was observed that for matrices of'rank 1, botYi of

order 10 x 10 and of order 20 x•20, APLUS is slightly faster
.	 5 than GINV2.	 It seems reasonable to conclude that for the

rank 1 case APLUS makes a sufficiently accurate initial guess

at the generalized inverse and the iteration process stops

.immediately.	 However, for matrices of rank 2, APLUS

- becomes considerably slower while GINV2 becomes slightly

-faster so that the times for the two methods compare much

as they did in the nonsingular case.	 As the rank increases

to full rank, APLUS becomes generally slower while GINV2

becomes increasingly faster. 	 For a fixed matrix size, GINV2

i

`,	
10
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is at its fastest when the rank is maximum. 	 It was observed

that GTNV2 averages 10 to 15 times faster than APLUS.

CONCLUSION

The results of this study clearly indicate that GTNV2

" is the most efficient program (among the computer subroutines
R

studied) for calculating the generalized inverse of a matrix.

(See Figure 1.)	 Both APLUS and GTNV2 are dependable methods

in terms of accuracy, but GTNV2 is considerably faster.

APLUS is more efficient than GTNV2 in only one special

case---matrices (other than m x 1 matrices) of rank 1; and

in this case the following simple formula exists for com-

puting the generalized inverse:

.s5
trace(ATA)

f Further information as well as copies of the computer

programs can be obtained from:

F. M. Speed

'Theory . and Analysis Office

National Aeronautics and Space Administration

Manned Spacecraft Center

Houston, Texas

R
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Norm Values For GTNV? and APLUS

For Selected Randomly Generated Matrices

(The norm v9.lues for AP1,US appear first for each matrjx type)

r
r
z

4

i

ORDER RANK NOW4 1 NORM 2 NORM 3 NORM 11

1.9 x 10 -8 j.1 x .10 -10 0 0
2 x 2 1

1.4 x 10 -7 x 10
-10

?.6 x 10 -9 2.6 x 10-8

1.6 x 10 -6 8. 7 x 10-9 1 1 .0 x 10 `9 4 .0 x] 0-9

x	 2 ?
3. 8 x 10 -7 1.1 x 10-9 0 0

4.5 x 10 -7 5.5 x 10 11 0 2.2 x 10 9
? x 3 1

2. 4 x 10 -8 1.2 x-10
-11

0 4.3 x 10_ 3

4 . 1 1 	 x	 1.0 -6 1.7	 x	 30 -7 11 .3	 x	 10-9 1.0	 x l o-, 8 
2 x 3 2

1.2 x 10 - ^ ?.0 x 10 9 1.1 x 10-9 9.9 x 109

1.6 x 1.0 1.7 x 10
-1.1

6.6 x
10-10

0
11	 x	 5 1

1.5 x 10 -6 3.3 x 10 -11 1.3 x 10 - 9 6.9 x10-8

3.0 x 10 '7 1.1 x
10--8

1.3 x 10 ~8 1.2 x 10-8
11	 x	 5 2

1. 4

2.1

x

x

10 -6

10 ^7

1 1.2 x 10-10 6.6 x ]0 -9 1.7

1.1

x

x

10-7

10 88. 1 1	 x	 10-10 7.3	 x	 10-9
11	 x	 5 t1

2.2 x 10 -6 6.0 x 10-9 2.4 x 10-7 1.3 x 10-7

9.2 x 1.0-102.2	 x	 10	 6 2.9	 x	
10--11

7.1	 x	 10 -10
10	 x	 8 1

11.6 x 30 -6 8.1 x 10 -11 9.2 x 10-10 4.8 x 10-7

v	
13
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Table I (Continued)

0

ORDER RANK NORM 1 N0HM ? N0RINI	 3 NOW 4

3.5 x 10-6 5. 1 1 x 10 -9 1.4 x 10 -8 11.1 x 10-8
10	 x	 8 ?

3.9 x 10 -6 2.6x
'

10 -10 7.1 x 10 -9 1.2

1.7

x

x

10-7

10	 87.6	 x 10 -7 1.0	 x	 10 -8 1.7	 x	 10 -8
]o	 x	 8 5

1.7 x 1.0 -6 3.0 x 10
-10

6.7 x 10 -9 2.1 x 10-7

1.0 x 10	 6 2.1 x 10 -8 1.11 x 20 -8 1.8 x 10-8
10	 x	 8 8

4.2 x 10 -7 9.6 x 10 -10 1.3

5, 1 1

x

x

10 -8

10 -10

1.5

1 1.5

x

x

10-8

10-102.9	 x 70 -6 2.7	 x	 10 -11

8	 x	 10 1
5.7 x 10 -6 1 1.8 x 10 -11 1.1 x 10 -9 3.8 x 10-7

2.9 x 10 -6 3.9 x 10 -9 9.5 x 10 -9 1.1 x 10-8
8	 x 10 ?

5.8 x 10
-6

8.4 x 10 -11 11.2

1.4

x

x

10" 9

10 -8

6.9

1.;r

x

x

10-7

10  81.8	 x' 10 -b 3.1	 x	 10
-p

8	 x	 10 5
1.11 x 1.0 -6 6.2 x.10-- 10 7.2

9.11

x

x

10 -9

10 -9

3.5

2.0

x

x

10 - 7

l0-83. 1 1 	x	 10 -7 1.0 x	 10 -9
8	 x	 10 8

5.5 x 10 .7 1.? x 10 -9 2.8 x 10'-8 6.2 x 10-8

3.1	 x	 lo - 6 2.0	 x	 10 -11 5. 1 1	 x	 10 -1.0 11.5	 x 10-1 0
10	 x 10 ]

9.11 x 10 -6 5.7 x 10 -11 1.3 x 10 -9 3.8 x 10-7

5.9 x 10 -6 8.3 x 10 -9 1.2	 x	 10 -8 3.4 x 10-8
1.0	 x	 10 ?

t.3 x 10 -6 3.? x 10 -10 1.7 x 10 -9 11.5 x 10-7

0
111
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Table T (Continued)

ORDER RANK N0ki-1	 1 NORM 2 NORM 3 NORM 4

5.8 x 10 -6 ?.6 x 10 -8 1.1; x 10 -8 1.3 x to-7
]0	 x	 10 5

3.1 x 10-6 3.4 x 10 -10 5.9 x 10 9 2.9 x 10-7

1-.o x 10 6 1.6 x 10	 8 11.1 x 10 - 8 1.'( x 10-7
10	 x	 10 lU

9.0 x 10 -7 1.1 x 10 -8 ^.6 x 10 8 9.6 x 10 -8

8. 1 1 x 10 -5 4.5 x 10-101.8 	 x.	 10-11 9.0	 x	 10 -10
10 x 20 1

8.7 x 10-5 1 .9 x l0
_

1 i 8.5 x 10 -10 1.6 x lo-

'.0	 x	 10 -5 7.2	 x	 10-9 1.3	 x	 10	 8 8.1.	 x
8lo -

20 x 20
.

2
5.4

3.0

x

x

10 -5

io-5

2.9 x 10 -10 7.0 x 10

_
.9 1.7 x 10-6

6.0	 x	 1.0 -9 1.9	 x	 10 -8 5.2	 x 1.0-8
?0 x 20 5

3.5 x 10 --5 7.1 x
10--10

6.3 x 10~9 1.7 x 10-6

2.6 x 10` 5 3.4 x 10` 8 2.8 x 10 -8 1.7 x 10-7
2 0 x 20 t o

3. 3 x 10 `5 7.0 x 10 -70 9.1 x 10 -9 1.6 x 1.0-6

2.2 x 10-8 1.5 x 10- 78.2	 x	 10 -6 1.0	 x	 1.0 -7
20 x 20 15

3.2 x 10 -6 8.1 x 1.0--0 1.1 x 10
-8

5.2 x 10- 7

1.2 x 10	 6 1.3 x 10 -7 2.7 x 10	 8 1.0 x 10-7
20 x 20 20

1.1 x l0 -6 5.7 x 10_
9

5..4 x 10 -8 6.6 x 10-8

3.0 x 10 -5 2.8 x
10-1.1

9.9 x lo- 
20

3.4 x
10-10

30 x	 10 1
2.9 x. 10 -5 2.8 x 10 -11 1.0 x 10 9 4.1 x 10-7

•T

15
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Table I (Continued)

0

ORDER IiANK

2.0

NORM

x

1

l0
-5

NORM 2 NORM 3 NORM 4

2.9 . x	 10 -9 1.6	 x	 10 -9 2.1	 x 10--8
30 x	 10 2

1.8 x 10 -5 1.5

3.0

x

x

10 -1n

10 -9

2.9 x 10 -9 6.2 x 10-7

1.. 4	 x	 20 -5 ?.0	 x	 lo- 8 1. 8	 x lo- 8 
30 x	 ]0 5

1.5 x 10 -5 2. 1 1 x 10 -1U 2.8 x 10 -9 11.1 x 10~7

- -- 7.5 x 10 ~7-- 2.. 8 x 10 `1 0 1. 1 1 x 10
-g

3.5 x 10-9
30 x 10 10

5.11 x 10 -7 2.2 x 10 -1 0 5. 8 x 10
-9

5.0 x 10-9

7.2 x *10 -5 11.9 x 10 -1 ? 3.5 x 10 `10 3.8 x 1 0'-10

[
1 0 :c	 30 ]

9.8 x 10 -5 1.1 x 10
-11

1.1 x 10
-9

3.4 x 10`6

2.11 x 10 -83.5	 x	 10
-5

2.1	 x	 10 -8 1.2 X10- 8 

30 x	 30 ?
5.0

3.4

x

x

10 `5

10 -5

1.7

4.8

x

x

to -1C

1 G -8

4.6

11.2

x

x

10 -9

10 -8

3.8

11	 .,

x

x

10 ` 6

10-7
10 x	 30 5

6.o x 10 -5 1.3 x.10 -9 1.1

1.9

x

x

10 -8

].0 -9

5.6 x l0-6

6.5	 x	 10 -7 2.6	 x	 1 0 -1 0 (. 7	 x 10-9
10 x	 30 10

9 .1 x 10 -7 3. 11 x 10 -10 1.7 x 10-8 7.1 x 10-7

1.6 x 10	 11 1.7 x 10
-11 7.2 x 10-10 3.1 x 10-10

30 x 30 1
1.6 x

_
10	

11
1.8 x 10 -11 5.8 x

_
10	

10
4.? x

_
10 6

2.4 x 1.0 -4 1.7 x 10 -8 1.9 x to-8 5.8 x 10-8
30

L-j
x	 30 2

2. 6 x 10 -11 1. 4 x 10 -10 2. 0 x 10 -9 11.3 x 10- 6

0
16



Table I (Continued)

v

v

ORDER RANK NOW-I 1 NO 113-1 2 NONM 3 r10I*1 4

1.2 x 10 9. 8 x 10 -9 2.5 x 1.0- 8 7.2 x 10! 8
30 x	 30 5

1.? x 20 '1 3.5 x 10' 10 9.6 x 10 -9 3.7 x 10"6

1.0 x lo - x 10 -8 2.9 x 10 -8 2.2 x 10`7
30 x 30 in

1.1 x to_ !! 7.4 x 10 -10 1.1 x 10 -8 11.8 x 10_ 6

8.6 x lo-8 4.2 x 10_
8

3.3 x 10-73.4	 x	 l o -`'
30 x	 30 15

3.8 x 10 -5 1.4 x 10_
9

I.I. x 10` 8 5.3 x 10-6

1. 1 1 x 10 -7 7.7 x 10~73.0	 x	 10 -5 3.5	 x	 10 -8
30 x 30 20

2.9 x 10  5 1.2 x 10 -9 1.2 x 10 -8 2.8 x 1.0-6

1.3 x 10 -6 3.5 x 10-9 1.7 x 10 '-8 7.7 x 1.0-8
1 i0 x	 30 30

- - - -
1. 1 1 x 20 -6 3.0 x 10 -9 11.7 x 10" 8

5.0 x l0"8
-	 --

3.9	 x	 lo - 5 x	 20 -
 8. 7	 x	 10 -10 2.6 	 x 20-1 0

35 x	 35 1
3.8 x 10 1# 2.5 x 10

-11
11.9 x 10 10 7.9 x 10-6

2.6	 x	 10 - x	 10 -9 1.2	 x	 10 -8 1.7	 x 10-7
35 x 35 2

2.7 x 10 - 1-5 x. 10 10 6.2 x 10 -9 5.2 x 10_6

2.1 x 10-71.8	 x	 Jo - 1. 8	 x	 10- 8 2. 4	 x	 to -8
35 x	 3`> 5

2.0 x 10_
1

6.0 x 10 -10 9.3 x 10 -9 6.7 x 10-6

1.5 x 10 - x 10 -6 7.5 x 10 -8 2.7 x 10-7
35 x	 35 10

2.5 x 10- x 10 -10 7.3 x 10 -9 6.0 x 10-6

O	
17
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Table T. (Continued)

O

v

v

ORDER PANT, NONM 1 NOFt%1 2 NORM 3 NOM 14

1.5	 x	 10 `11 6.1	 x	 10 `8 11.5	 x	 10 `8 4.7	 x 10`7

35 x	 35 15
1.6 x 10- x 10 `10 1.0 x 10 -8 5.1 x 10`6

1.2 x 10 `72.4	 x	 10 -5 3.3 x 10 `8 3.1. x 10`7
35 x	 3 1 ) 20

1.1 x 10 -5 8.8

2.6

x

x

1.0`1 
in

10 `.7

1.2 x 10` 8 4.0 x 10`6

1. 8 	x	 10 `5 ?.6	 x	 10 `8 2.7	 x 10-7

35 x	 3 1 ) 30
] . 3 x 10 `5 1..6 x 10 ` 9 2.0 x 10 "8 1.5 x 10`6

1.8 x 10 `6 3 .11 x 10 `5 2.3 x 10 `8 1.5 x 10`.7

3^ x	 35 35
1.8 x 10` 6 1 1 . o x 10 `9 6.5 x 10` 8 7.0 x 10`8

7.7	 x	 10 x	 1.0
-11

9 .0	 x	 10 0 x 10`1
1 1 0 x 15 _1

7.8 x 10 `5' 2.5 :c 10- x 10 `10 1.2 x 10`6

7.0 x 10 -5 6.5 x 10` 9 1.8 x l0` 8 6.4 x i0 `8
1 1 0 x 15 2

7.1 x 1 0 -5 1_.6

3.9

x

x

10 -10

10` 9

3.1

?.3

x

x

10 `9

10` 8

5.1 x 10`7

5.8	 x	 10` 5 3.6	 x l0"8
110 x	 15 5

5.6 x 10 `5 2. 11 x 10 `10 1 1 .6 x 10 `9 11.3 x 10-7

2.1 x 10-5 5.3.x 10` 9 2.0 x 10 `8 1.9 x 10-8
110 x 15 10

2.0 x 1 0--5 2.2 x 10 -10 4.8 x a0 -9 5.1. x 10 ` 7

8.9 x 10 `7 2.7 x to
-10

1.4 x 10 `8 3.1 x 10`9
4 0 x	 1 5 15

L_ 9.0t x 10 +7 2 . ^^ x 10- 
10
 6.7 x 10 -9 6.14 x 10`9

18
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0
Table 1 (Continued)

a

U

ORDEH 'HANK NORM J NORM 2 NOhl,l ;i NORM 4

11.4 x
It

lo- 1.2 x 10
-11

6.0 x 10
-10

? ,4 x 10 - 10
I IU x	 40 1

11.3 x
- 11

10 1.2 x
-11

10
^ 

1 .8 x
-10

x0 1.1 x
-c^

10

4.1	 x	 10- x	 10 -8 1.6	 x	 10-8 1.6	 x 10-8
1 10 :K	 1; Q ?

11.1 x 10 -i1 9.2 x 10 -11 5.7 x 10
-9

9.11

1.7

x

x

10- 6

10-72.0 x	 10 - x	 10 -6 7. 1 1	 x	 10-8
I lo x 40 5

3 .2 x 10_
11

1.6 x 10 -10 1.1 x 10 -8 7.0 x 10-
6

1.4 x 10	 4 3.0 x 10	
6

2.8 x 10-79.1	 x	 l0	 8
11 0 x	 110 10

1..9

1. 2

x

x

10
-11

10
-11

6.5 x 10 -10 1.4 x 10  9
8.5

2.6

x

x

10-6

10-72.6	 x	 i o-6 8.3	 x	 1.0-8
110 x	 40 15

2.1 x 10- x 10 10 1.3 x '10-8 7.2 x 10- 6

x 10- 8 1 1.3 x 10-8 11.6 x 10 - 71.3	 x	 10 -
4o x	 110 20

1. 4 x 10 -11 1.0 x 10 -9 1.1 x 10 -8 4.7 x 10-6

3.7 x 10 -5 6.2 x 10 -8 3.0 x l 0 -8 5.3 x 10-7
1 1 0 x	 1 1 0 30

3.5 x 10-5 1.2 x 10-9 1.2 x 10 -8 11.5 x 10 -

3.1 x 10-8 1.0 x 10-61.1	 x	 10 -5 5.5-x	 10 -r
40 x	 110 35

1.0 x 10 -5 1.9 x 10
-9

2.7 x 1.0 -8 4.3 x 10-6

5.4 x 10 -
6

1-3 x 10 -7 ?.6 x 10 -8 2.11 x
f

10- 7

1 10 x	 40 39
7.2 x 10 - ° 2.1 x 10 -9 3.8 x 10 -8 3.8 x

.,
10-'

0
19
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Table I (Concluded)

ORDER FLANK NORM 1 NORM 2 NORM 3 riom ^I

2.6 x io -6 ^ .l x 10 -9 3.7 x 1 0 -8 2.6 x 10-7
X 1 0 	 x	 X 10 X10

2.5 x to -6 8.2 x 10 -9	 1 9.3 x 10 -8 1.3 x 10-7

7.2	 x	 10 -5 ^ .7 x	 10
-8

3.o	 x	 1.0	
8

2.8	 x 10^,

1 15	 x	 11 0 30
E.9 x 1.0 -5 7.9 x 10 -10 1.1 x 10 -8 3.7 x 10-6

2.8 x 10 -82.2	 x	 10^ 5 1. 2 ' x 	 10 -7 1. 5 x 10-7
16	 x	 t l p 35

1.8 x 10 -5 9. 1 1 x 10-1
 In

1.'s x 10_
8

3.1

1.3

x

x-TO- 7

10--F

2.5	 x	 10 -5 i I.8	 x	 10 -7 1.9	 x	 10 ~8
115	 x	 l l U

...
39

w^^w.w.•
5.7

....
x 10-6
^w..^Y^.^..t.wf1^MM._1YYMW.M^..rI

 
9.0	 x	 10 -1,0

w
1.7

YY^w.
x 10 ~8 1-3

w^www
x

•wwlrl._r.^y
1-0-7

^.

n

.w_ 1

20
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Table II

Computer 'Times Required to Calculate the Generalized

Inverse of a 10 x 10 Nonsingular Matrix

v

t

PROGRAM

GINV2

SEQINV

JPIIUS

APLUSirrr • -. -r

MEAN TILE' (M1LLI-SECONDS)

34.9

I

50.3

390.5

417.2

O Table III

Computer Times Required by GINV2 and APLUS

for Selected Randomly Generated Matrices.

MATRIX	
T	

MEAN TIME (MILLI-SE.-:CONDS)
...w..r.wr.r... r.r wrr ... •-.....v..w..... 	 .mow....... u..w.v+w w.ww.r.a.rs......r.. sur.r.u..rr.

0

TYPE
............•....»......rr..^.r.. ..•w«.......+.......

ORDER
^.. • ^.. ..^.r.....

GINV2
w.r.....^.v..w•.►.....^r..+ •.^.w..r•.

APLUS
w...a........ v.^.^r.w....

NONSINGULAR 10	 x	 10 34.9 417.2

NONSINGULAR 20 x 20 245.8 3391

NONSINGULAR 30 x	 30 784.1 1 098 1 	 ^Y

NONSINGULAR 40	 x	 1 10 1825.0 27383

(Note:	 The mean is,	 in general, calculated fo- a block of

100 matrices)

*Calculated for a block of only 50 matrices
"Calcul_ated for a block of only 25 matrices

"'*Calculated for a block of only 15 matrices

21
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Table IV

Computer Times Required by GINV2 and APLUS

for Selected Randomly Guiierated Matrices.

0

t^

MA`1'RIX TYPE MEAN TIME (MILLI-SECONDS)

ORDER RANK

1

GINV?

113

APLUS

10 x	 10 29

10 x 10 2 11 3 37

10 x 10 3 42 395

10 x 10 11 112 404

10 x 10 5 41 11111

1.0 x 10 6 110 436

10 x 10 7 39 4 42

10 x 10 8 38 461

10 x 10 9 37 1177'

10 x 10 10 35 41 6

20 x 20 1 301 266

20 x 20 ? 300 32113

20 x 20 3 300 32011

20 x 20 4 299 33511

20 x 20 5 294 3254

20 x 20 6 293 3390

20 x 20 7 291 31109

22
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Table IV (Continued)

n

MATRIX 'i'YPE MEA14 TIME (MILLI-SECONDS)

ORDER RANK

8

GINV2 APLUS

20 x 20 287 3468

20 x 20 9 283 3461

20 x 20 10 282 3556

20 x 20 11 282 3533

20 x 20 12 278 3612

20 x 20 13 277 3730

-20 x 20 14 275 3776

20 x 20 15 269 37911

20 x 20 16 2611 371.0

20 x 20 17 259 3943

20 x 20 18 2511 3857

20 x 20 19 2119 3993

20 x 20 20 243 3354
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APPENDIX A

THEORETICAL BACKGROUND

The following is a brief ,description of the mathematics
used in each of the five programs examined in this study.

{1)	 PEN2 is based on a method, devised by R. Penrose
j	

4J

(ref. 2), which computes the generalized inverse

Yt

of a matrix A using the formula

i (a)
•

A+	
D AT

where D is any matrix satisfying

(b) A 
T 
A = D(ATA)2

• (Note that multiplication of (a) on the right

b	
A+(A+)TA-^♦ y ields	 (b).)Y	 Y

Define a sequence of matrices C k , k = 1223...
a Q	 c by

i

C2	 I	 1 trace (0 1 B) _ C,B

" CJ+1 = I	 trace (C A B) - CAB

Where B - ATA.
n"t If r is the rank of A, then C	 B = 0 andr+

trace CrB	 0.

•	
A 1

f



V

e

it

Then D can be calculated by the formula

--	 r^

	

D	 r
•	 trace (CrB )

(2) SEQ1NV is based on a sequential method for com-

puting the generalized inverse (ref. 9). Let An_i

be the matrix containing the i-irst (n-1) rows of
'the matrix A and an be the nth row of A. The

Fgeneralized inverse of A is then calculated

sequentially by the formula

	

An - n- i	 an 
A

n i 	 pn

(an (I - An- i An_i) 
+ i

f an	 an A
n- 

1An- i

with pn =

1 + a ( A+ )
TaT )_ 1

A+ ( A+ ) TaT if a = a A+ A

	

n n- 1 	 n	 n--1 n-- i	 n	 n	 n n- 1 n-

A+A and A ( A+ ) T are computed sequentially as
n n	 n n 

follows:.

e
+	 +	 +	 An- 1

;	 AnAn - A
	 P an-- i - nnAn- i	 pn

an

S	 +	 +

	

An- iAn- 1	 PnanAn-^ An-i + pnan •

If a = a A+	 en A+A = A+ A

	

-1 n- 1 3 	n n	 n-i n-n	 n n	 i

A-2
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-O^pl

_	 r

a

•	 r,

If an	 anAn_ 1 A n-^ 1 then AnAn	 An-^ An- 1 	 pnPn

	

A *	 T -- (A+ % rVaT T
A A+ T = (A+	

-- p a A+	 p	
n--1	 n'" x n pn

n n	 n-1	 n n n--1	 n	 T
pn

A+ . A+	 T ^.	 a A+	 A	
T

n-• 1 n-• 1	 pn n n-1( n--1

	

+T T	 T4. pn anAn-l(An_1) an + 1) pn

A+ (A+ ) T aT T
n- 1 n--1	 npn

If an = anAn -1 An-1 then

A+ A+ T A+ A+ T p a A+ A+ .\ T
n n	 n- i n--1	 n n n-•1 n--1^

(3) The method JPLUS uses the property that i.f. A is an

n x n symmetric matrix, there exists an n x fn

matrix P such that

PAP  = D

whPra n i r the di n.c_rnnal matrix whose diaconal



J

L

R

{

If A is an n x m matrix, then let B = AT A. 	 Then,

by the above, there is an m x m matrix P such that

'	 D = PBPT

M

k 

where D is again diagonal with the eigenvalues of

B as its diagonal. elements.

Then

dw	

B+ = PTD+P	 .

Using the fact that

 TA) +AA+ ='(A
4

`- it follows that

f A+	 B+A.

•
(	 )	 APLUS in an iterative method (ref. 10) based on

the following formula
F

Xn = Xn^1 (21 - AX n-1)

where A is the matrix whose generalized inverse is

to be computed.	 After, initially setting

Xo -	
AT	 , the iteration process is continued

JJAA	
11

• until a near--zero test indicates that X 	 can be

.Y assumed to be A+ for some m.	 (Note that here)

.,:	 n	 m	 1/

.	 AAT (( -	 Z	 AAT)2	 . )
=1 J =1

F
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(5)	 GlNi2 is based on an extension of the orthogonal-
ization process for computing the inverse of non-
singular matrices (ref. 11).	 The problem of
computing the generalized inverse of an n x in
matrix A can be reduced to the problem of com-
puting the inverse of an n x m matrix (RS),
partitioned so that R is the matrix of all
linearly independent columns (say there are k of
them) of A and S is the matrix consisting of the
remaining (m-k) dependent columns.	 (Note that
(R :. S) can be obtained from A by a finite number
of permutations of columns of A.)

• A Grain-Schmitt orthogonalization process is per-
formed on (R : S) and the same operations performed
simultaneously on the n x n identity matrix. 	 The
e)	 (R:S) is a matrixresult of the Gram^Schmitt on

of the form (Q 0) where Q is an n x k matrix and
0 is the n x (m-k) zero matrix.	 The identity
matrix will become of the form

Z	 _U
where Z is k x k

0	 in-k)

• 0 Is the (n-k) x k zero matrix, -U is k x (n-k)
and In-k	 -is the (nk) identity matrix.

Performing a Gram-Schmitt orthogonalizat.ion on

_U
yields a matrix of the

in-k

A-5
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w
f Orm,

-up
. ) where P is (n-lc) x (n-• k) and

'	 F

-UP is k x n-•1c.
•

Ater these orthogonal^,zat ions are completed, all.

of the matrices necessary for the computation of

A* have been calculated.

;E
It can be shown that A is given by

	

r	 r

T	 T	 T T

	

*	 Z	 --UP	 Q	 ZQ	 (UP)(UP) ZQ
A

.	 0	 P	 (UP)TZQT	 P(UP)TZQT
M	

1

n§

:^ 
	 r	 I

t

k

•	 r .

,.k
YI

r

A-6
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APPENDIX B

ANALYSIS OF VARIANCE

This appendix describes the analysis of variance used

to test the hypothesis that the accuracies of GINV2 and APLUS

w are equal.	 The observations used in the analysis were the

absolute values of the logarithms of the norms, which were
''r

defined ort' page 6 of the report.

CASE I.	 Full rank.

A three-way full factorial was assumed as the model,	 i.e.

Y .
.t

3a Yijk = u + ai + O3 + Yk + (a$) ij ( a Y) ik +	 (PY) jk + P ijk'
 1

where:

,	 {
1	 1,2

w
 - 	 5

y

k =	 1,2,3,4

a i : effect due to APLUS

a* : ,effect due to GINV2
Ir

. effect due to order (orders
J.

considered were--

.( 2 	x	 2 ) .	 (2	 x 	 (3
x . 2), .(4 x	 5),	 (10	 x 8),

J'. (8 x 10),	 (10 x 10), (20 x 20),	 (30	 x	 10),

(10 x 30),	 (30 x 30), (35 x 35),	 (40 x	 15),
.,; (40	 x	 40'),	 (45 x	 40)

B-1
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1	 ^

r

r
r y r •

•

Yk : effect due

r	 •

to norms

(aO) i j : effect of interaction due to ai and

(ay) jk :'effect of interaction due "Co a i and Yk

. (SY) j k : effect of interaction due to 0 j and Yk

rI,
p ijk : effect due to random error

t!

c
The null hypothesis is as follows:

{
f Ho; accuracy of GINV2	 accuracy of APUUS

The results of the analysis are tabulated below:

® '
M

Analysis of Variance'

3 Source of
Variation D.F. SS	 MS F

C Method 1 0.01391	 0.01397 0.1405

Order 14 1	 ll	 1.	 839379	 3	 7 13.91

i Norm 3 911.9728	 31.6576 318.89
{

Method x Order 14 7.0123	 0.5009

Method x Norm 3 1.•4788	 o-.4930

Order x Norm 42 12.2357	 0.2912

y Error 42 4.1762	 0.0994

Since the F ratio for the methods is	 .1405 it is not

possible to . reject H	 based on the data so far collected.^y ,

B-2
1,.
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CASE II.	 Nonfull rank..

The model assumed in this case was a four-way

partially•-nested factorial, in which rank is nested in any

order.	 The results of this case are tabulated below.

;r Ho: accuracy of GINV2 = accuracy of APLUS
6 •

Analysis of Variance

Source of Variation	 D.F. SS MS	 F
{k

Method	 1 2.596 2.596	 60

Order	 9 22.525 2.503

Rank	 1 0.633 0.033

Norm	 3 324.595 108.198
Interactions

Error 1.1496 0. 04 25

y
J.

Since the F ratio for the method is 60, the hypothesis

. that the two methods are equal must be rejected in favor of

the hypothesis that the accuracy of GINV2 is better than

that of APLUS .

j

;s

s
B-3
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