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EFFICIENCY OF GENERALIZED
MATRIX INVERSION METHODS

y

By Fred C. Delaney, Gary G. Gaffney, and Fred M. Speed

£

_SUMMARY

Generalized matrix inversion has become an increasingly
important concept in matrix theory as well as a useful tool

in engineering, statistics, control theory, and space mission

design. For this reason, the need arises for an efficient

(i.e., fast and accurate) method of computing the general-

ized inverce of an arbitrary n x m matrix. The purpose of

this paper is to present the results of computer tests used
to compare the relative efficiepcy of several compubter pro-
grams designed to calculate the generalized invewse of

an arbitrary real matrix.

INTRODUCTION

The concept of matrix inversion was first generalized
by E. H. Moore (réf. 1) in 1920. In the 1950's |
R. Penrose (ref. 2) and A. Bjerhammer (ref. 3), working
independently, formulated equivalent definitions of the
generalizeq inverse of an arbitrary complex matrix.
The most common definition, given by Penrose (ref. 2) is
a consequence of the following. theorem. .’ |



THEOREM 1:‘ For any real n x m matrix A, there is a unique

real m X n matrix at (the generalized inverse of A) such

that: '
(1) aata =4
(2) atant = a*

(3) - (aah)T = ant

i

) )T = ata

The use of the generalized inverse in engineering
problems, statistics, and control theory gave rise, )
naturally enough, to the development of several diffevent
computational methods. Some of these methods were developed
and programed by reseadrchers at NASA-MSC to solve problems
requiring generalized matrix inversion.

This paper presents the results of an examinatibn of
the various programs for overall efficiency, comparing
them in terms of accuracy and speed.

SYMBOLS
Capital letters denote matrices with real entries.

a, is a row vector. L. . -
Pn is a column vector.

AT denotes the transpose of the matrix A.

s
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A+ denotes fhe generallzed inverse of the matrix A.

(A)ij is the entry in the ith row and Jth column of the
matrix A,

|| || is a matrix norm.

Trace (A) is the trace of the matrix A.

I is the iaentity mabrix.
Ik is the k x k identity matrix.

(A:B) is a matrix partitioned into the matrix A and the
matrix B.

., ¥
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METHODS STUDIED

Although there are numerous matheﬁabical methods for
calculating’pha generalilzed Inverse of a matrix, the purpose
of this study was to determine the most efficlent (that is,
fastest and most accurate) computer method for calculating
this inverse for arbiltrary real matrices, A preliminary
survey of the existing algorithms for generallied matrix
inversion showed that some of them were not readily adapt-
able to computer programing or were more suitable only to
éheoretical investigations and required no further consid-’
eration. One of the Penrose methods (ref. 4) was discarded
because it first requires a type of matrix partitioning
that is time consuming on the computer. The Ben-Israel and’
Wersan method (ref. 5) was eliminated because it depends on
the exact determination of rank, which depends on round-off
and approximation errors. The Householder method (ref. 6)
was'rejected because it depends on predetermining the rank
of the matrix. Since the Ben-Israel and Charnes method
(ref. 7) uses the Lagrange-Sylvester interpolation poly-
nomial, which is sensitive to error in the computer, it, too,
was discarded. Finally, the Decell method based on the
Cayley-Hamilton theorem (ref. 8), which reduires the cal-~
culation of powers of a matrix, was eliminated because of
the error which such a calculgtion causes.,

) BN

The following five methods, having satisfied this pre-
iiminafy requirement of computer adaptability, were then
examined because they showed promise of being efficient



generallzed Jlnverse programs:
(1) the computer program.PENé: EasedAdh“anothg}ﬂéfwéhg
Penrose (ref., 2) methods,

(2) the program SEQINV, based on a method by

s | (3) JPLUS, a method developed and progvamed by two of
. the authors, F. M. Speed of NASA-MSC, and
- F. C, Delaney of LEC,

4
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(k) APLUS, taken from an iterative method devised by’

i*é H. P. Decell, Jr,, and S. W. Kahng (ref., 1.0),
f,% (5) GINV2, an algorithm developed by B. Rust,
ﬁ% W. R. Burras, and C. Schneeberger (ref. 11).
f; ( \ (For the mathematlics underlyihg these methods see
Ao Appendix A.)
4 These methods were programed in FORTRAN IV, i1f they had
gﬁ§ not already been, and were then tested very extensively on
gé the UNIVAC 1108 to determine efficiency.
i Since genéralized matrix inversion is applicable to

~

‘ arbltrary matrices, some preliminary mention should be made
of the variety of matrices used in testing the programs.

- The generalized inverses of singular and nonsingular square
matrices and of nonsquare matrices of full and less than
full rank were computed by each of the five methods. These
matrices were, for the most part, randomly generated and
differed in size from order 2 x 2 to order 45 x 40. As the
results will indicate, the type and size of the matrix,
whether due to round-off error in the computer, or to the

7 i}
r.-J;
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increased computer time required by larger matrices, or to
peculiarities in the method of generalized inversion, often
had significant effects on the speed and accuracy of the
program. |

Accuracy Determinations - Methods and Results

Before any test results can be presented, a description
of the methods for determining and comparing the accuracles
of the above five programs 1ls necessary.

The four ldentities of THEOREM 1, which define the gen-
eralized inverse, suggest a means for testing the accuracy
of a program designed to calculate it. In the case of real
matrices, norms based on thése ildentities can be defined in
the following way: "

Let A be an n x m matrix with.real entries, and let A .
denote the generalized inverse as calculated by computer.
Then A is an m X n matrix also with real entries.

Define: '

n m ~ 2
. éga EZ%_ [(AAA)iJ - (A)ij]
NORM 1 = |[AAA - A|| = nm
m N . A A
o Y, % [dhabygy - ]’
NORM 2 = IIAAA _ All - i=1 j=1

nm

.74'
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These norms provide a satisfactory test for accuracy
since, first, each is, in fact, the root mean square of an
element in the difference matrix for that norm and, second,
each norm is equal to zero if and only if ﬁ is equal to A+,
the true generalized inverse of A. Note, however, that these
norms will not, as a rule, be zero due to round-off error
in the computer, . ’

In order for a generallzed inverslon program to be con-
sidered dependable and to have wide application, it must be’
capable of computing the generalized inverse of all types
of matrices with'a consistént and predictable accuracy.

The results of the tests in this study showed that not all
of the five programs mentioned above could meet this demand.

Two programs, APLUS and GINVZ2, did, however, perform

‘with more than satisfactory accuracy for all of the matrix

types used in testing. The norms evaluated using the .
generalized inverses computed by these two programs ranged
nearly always between 1 x‘lO"“ and 1 x 10"12, averaging
between 1 % 10~ and 1 x 10™°. (For a more detailed com-

parison see Table I.)

. e
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In order to determine 1f there was a significant
difference in accuracy between APLUS and GINVZ2, an analysis
of variance was performed (see Appendix B for the details
of the analysis). The results of the analysis showed that,
for full rank matrices, it is not possible to reject the
hypothesis that themaccuracies of the two methods are equal.
However, for matrices of nonfull rank (excluding n x m
matrices of rank 1), the hypothesis that the accuracies of
the two methods were equal was rejected in favor of the
hypothesis that GINV2 was more accurate than APLUS.

The remaining three methods, PEN2, SEQINV, and JPLUS,
could not consistently meet the demands on accuracy, and
therefore will certainly have restrictions--in varying
degrees--on their application.’

~ PEN2 gives acceptab;e norms for some small matrices
and for matrices of very low rank but gives very poor results
for all other types of matrices. Tﬁis'program is not very
dependable and should find littie, if any, application.

‘SEQINV yields good results for nonsingular matrices
and matrices with full rank or low rank, but as the order
of the matrix increases past 30 x 30 it begins to fail
noticeably for singular matrices and matrices with less than

- full rank. Even when SEQINV performs well, its accuracy does

not éxceed—~and usually lags behind--that of APLUS and GINV2.
For completeness, it should be noted here that SEQINV con-
tains a zero-test whose epsilon value, when increased slightly,
causes significant improvement in some norms which had



previously indicated that the program had failed. This
epsilon value was not experimented with in detail since.

| varying it caused no smgnificant change in those norms for

which SEQINV formerly gave good results.

Of the above three methods, JPLUS is, by far, the most
consistently accurate and dependable, It yilelds poor norms
in oniy a small number of cases, namely where the matrices
were singular and of large rank and order. out despite its
rather satisfactory performance, its accuracy is not as
great as that of APLUS or GINV?, which limits its application.
JPLUS, like SEQINV, also has a zero-test, whose epsilon
value, when varied, causes changes in the norms with results
very similar to those observed for SEQINV.

-

Results of Speed Determination

. In order to obtain a sample of the relative speed of
each program, a test block consisting of one hundred 10 x 10
nonsingular matrices was generated randomiy. The coméuter
time required by each program (except éEN2) for calculating
the generalized inverse of each matrlx in the block was then
determined for compaflson purposes (See Tdble II.) Because
the levels of accuracy Por PENZ2, SEQINV and JPLUS were not
entirely satisfactory, no further time tests were made on
these programs.

Sihce APLUS and GINV2 were the only programs ﬁhich met
the demands on accuracy, and since they were found to have
nearly equal accuracy, time was the deciding factor in

AN



determining which was the most efflclent computer program
examined. For this reason, time samplings were run for
blocks of 20 x 20, 30 x 30, and 40 x 40 nonsingular

matrices of'phe type described above. (To conserve computer
time, the number of matrices per block was reduced as the
matrix order increased.) The resu;tﬁ of these sahplings
showed that GINVZ2 is considerably faster than APLUS. (See
Table III.) '

The GINV2 program must do an additionzl set of operations
for any Cependent column in a matrix whose generalized
inverse is to be computed. For this reason, the times
required by APLUS and GINVZ2 were also'compared for singular
matrices. Various blocks, each of 15 matrices of the same
rank and order, were again generated randonly. The matrix
types tested were order 10 x 10 matrices of ranks 1 through
10 and order 20 x 20 matrices of ranks 1 through 20. (See
Table IV.) '

It was observed that for matrices of rank 1, botﬁ of
order 10 x 10 and of order 20 x-20, APLUS is slightly faster
than GINV2. It seems reasonable to conclude that for the
rank 1 case‘APLUS makes a sufficiently accurate initial guess
at the generalized inverse and the iteration process stops

immediately. However, for matrices of rank 2, APLUS

becomes considerably slower while GINVZ2 becomes slightly

-faster so that the times for the two methods compare much

as they did in the nonsingalar case. As the rank increases

. to full rank, APLUS becomes generally slower while GINVZ2

becomes increasingly faster. For a fixed matrix size, GINV2

. X0



is at its fastest when the rank is maximum. It was observed
that GINV2 averages 10 to 15 times faster than APLUS.
| CONCLUSION

The results of this study clearly indicate that GINV2
is the most efficlient program (among the computer subroutines
studiéd) for calculating the generalized inverse of a matrix.
(See Figure 1.) Both APLUS and GINV2 are dependable methods
in terms of accuracy, but GINVZ2 is considerably faster.
APLUS is more efficient than GINV2 in only one special
case--matrices (other than m x 1 matrices) of rank 1; and
in this case the following simple formula exists for com-
puting the generalized inverse:

-

l .
At = AT,

trace(ATA)

Further information as well as copies of the computer

programs can be obtained from:
' ¢

F. M. Speed

. ‘Theory and Analysis Office

National Aeronautics and Space Administratfion
Manned Spacecraft Center
Houston, Texas

N N

e .
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Norm Values

Table I

For GINV2 and APLUS
For Selected Randomly Generated Matrices

(The norm values for APLUS appear first for each matrix type)

ORDER | RANK NORM 1 NORM 2 NORM 3 NORM U
2.9 x 1078 [1.1 x 20710 0 0
2 x 2 1
1.4 x 107 [5.7 x 10029 | 2.6 x 1072 | 2.6 x 1078
1.6 x 1070 18.7 x 1079 |u.0 x 1072 | 4.0 x 1079
2 x 2 2 >
3.8 x 1077 |1.1 x 1072 0 0
4.5 x 1077 |5.5 x 10721 0 2.2 x 1072
ez 3 1 - -
2.4 x 1078 | 1.2 x 10712 0 §.3 x 1070
.4 x 10"6 1.7 x 1077 4.3 x 1079 1.0 x 10“8
2 x 3 2 .
1.2 x 1077 2.0 x 1072 1.1 x 1072 | 9.9 x 1079
u 1.6 x 10°% 1.7 x 1072 | 6.6 x 10°20 ‘0
x 5 |
1.5 x 1070 3.3 x 2072 [1.3 x 1072 | 6.9 x 1078
u 3.0 x 1077 |1.1 x 1078 |1.3 x 1078 |1.2 x 1078
X 5 2
1.4 x 1078 | 4.2 x 1071° 6.6 x 1072 |1.7 x 1077
u 2.1 x 1077 | 8.4 x 1071%|{7.3 x 1079 |1.1 x 1078
X 5 Y
; 2.2 x10°8 6.0 x 1002 2.4 x 1077 |1.3 x 1077
. 2.2 x 1070 2.9 x 1071 | 7.1 x 10719 | 9.2 x 10710
10 x 1
1.6 x 1072 18.1 x 107 [ 9.2 x 10710 | 4.8 x 1077

- 13




Table I (Continued)

ORDER | RANK NORM 1 NORM 2 NORM 3 NORM U
- 3.5 x 1008 | 5.4 x 1079 | 1.4 x 1078 | 4.1 x 1078
X .
3.9 x 1070 2.6 «x }0‘10 7.1 x 1072 | 1.2 x 1077
7.6 x 1077 [ 1.0 x ;0'8 1.7 x 1078 | 1.7 x 1078
10 x 8 5 1.7 -6 -10 =0 -7
.7 x 10 3.0 x 10 6.7 x 10 2.1 x 10
ol 1.0 x 10‘6 2.1 x 10"8 1.4 x 10"8 1.8 x 10'8
10 x
4.2 x 1077 [ 9.6 x 1072%] 1.3 x 1078 | 1.5 x 10°8
A 2.9 x 10°% [ 2.7 x 1073 | 5.4 x 10710 4.5 x 10-10
X
5.7 x 1078 | 4.8 x 10711 [ 1.1 x 1079 | 3.8 x 1077
: 2.9 x10°%]3.9x10°% |9.5 x 1072 | 1.1 x 1078
it o 5.8 x 1070 | 8.4 e -9 =7
x 10 4,2 x 10 6.9 x 10
: . 1.8 x 107 13.2 x 1078 | 1.4 x 1078 | 2.7 x 1078
& 8 1.4 x 1076 6.2 -10 |- -9 ‘ =1
" x 10 7.2 x 10 3.5 x 10
W 3.4 x 1077 1.0 x 1079 | 9.4 x 1072 | 2.0 x 10”8
X
5.5 x 1077 [1.2 x 1077 | 2.8 x 1078 | 6.2 x 1078
Ny 3.1 x 1079 [ 2.0 x 1072 | 5.4 x 10720 4.5 x 10710
x 10| 1
. 9.4 x 1078 |5.7 x 1072 | 1.3 x 1077 | 3.8 x 1077
I 5.9 x 10°°]8.3 x 100 1.2 x 1078 | 3.4 x 1078
. .
-6 “10013.7 x107? | 4.5 x 1077

14




Table I (Continued)

ORDER  |RANK NORM 1 NORM 2 NORM 3 NORM 4
5.8 x 10°% 2.6 x 1078 | 1.4 x 1078 .3 x 1077
10 x 10| 5
3.1 x 1070 [ 3.4 x 10729 ]| 5.9 x 10~9 .9 x 1077
1.0 x 10°% 1.6 x 10 | 4.1 x 1078 7 x 10”7
10 x 10 10 _7 8 “8 8
9.0 x 10 1.1 x 107 5.6 x 10 6 x 10~
v+ 6 8.4 x 1072 | 1.8 x 10711 | 9.0 x 1071°| 4.5 x 10720
0 x 1
8.7 x 1072 [ 1.9 x 10722 | 8.5 x 10720 1.6 x 10°6
vo s o0l 5.0 x 1072 | 7.2 x 1079 |1.3 x 1078 1 x 1078
X
5.4 x 1072 [ 2.9 x 10719 7.0 x 1079 7 x 1070
I 3.0 x 102 [ 6.0 x 1072 [1.9 x 1078 2 x 1078
X
3.5 x 1072 | 7.1 x 10729 6.3 x 1079 7 x 1078
R 2.6 x 10™° 3.4 x 10“8 2.8 x 10‘8 «7 X 10”7
x 20| 10 y
3.3 x 102 | 7.0 x 10729 9.1 x 1079 6 x 1076
8.2 x 1070 [ 1.0 x 1077 | 2.2 x 1078 .5 x 1077
20 x 20 15 o "0 8
3.2 x 107° (8.1 x 1072 1.1 x 107 .2 x 1077
A 1.2 x 107 ] 1.3 x 1077 | 2.7 x 1078 .0 x 1077
X
1.1 x 107 5.7 x 1072 | 5.4 x 1078 6 x 10°°
- 3.0 x 1072 [ 2.8 x 1072 | 9.9 x 10719 3.4 x 10710
> 4
‘ 2.9 x 1072 2.8 x 1071 ] 1.0 x 1079 .1 x 10”7

15




Table I (Continued)

ORDER  |RANK NORM 1 NORM 2 NORM 3 NORM U
2.0 x 1072 [2.9 x 1079 | 1.6 x 1079 | 2.1 x 10°8
30 x 10| 2 .
1.8 x 1072 | 1.5 x 10719 2.9 x 1072 | 6.2 x 1077
1.4 x 10™° 3.0 x 1072 | 2.0 «x 10"8 1.8 x 10“8
30 x 10| 5 - . " N
1.5 x 1072 | 2.4 x 10719 2.8 x 1072 | 4.1 x 1077
7.5 x 1077 [ 2.8 x 1072 1.4 x 107® | 3.5 x 1079
30 x 10| 10
5.4 x 1077 [ 2.2 x 1072} 5.8 x 1072 [5.0 x 109
ool 7.2 x 1072 | 4.9 x 10712 | 3.5 x 10710 3.8 x 1071
10 x 3
9.8 x 102 [1.1 x 10721 | 1.1 x 1079 [ 3.4 x 107
3.5 x 1072 [ 2.1 x 1078 | 2.4 x 107® | 1.2 x 1078
10 x 30| 2 -. N
5.0 x 1072 1.7 x 1072% | 4.6 x 1079 | 3.8 x 1078
3.4 % 1072 | 4.8 x 1078 | 4.2 x 1078 | 4.3 x 1077
10 x 301 5
6.0 x 1072 [1.3 x 2072 | 1.1 x 107® |5.6 x 1076
16 ol 16 6.5 x 1077 | 2.6 x 20°1%] 3.9 x 1079 | 7.7 x 1079
X
9.1 x 1077 [ 3.4 x 10720 | 1.7 x 107 [ 7.1 x 1077
~10
: 1.6 x 1077 [ 1.7 x 1072} | 7.2 x 1070 3:1 x 10
0 x 301
. 1.6 x 10~ " 1.8 x 10711 | 5.8 x 10720 | 4.2 x 1076
2.4 x io'“ 1.7 x 10"8 1.9 x 10'8 5.8 x 10’8
30 x 30| 2 .
2.6 x 10°% | 1.0 x 10729 2.0 x 1079 [ 4.3 x 1076

16
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'1‘.‘!‘)], | ((. ‘ \l
ORDER RAN e (h . o
30 1.2 x 107" e | ' ; i
x 30 p 10 ~° ) ¢ -8
7/ l(_) - " s
] ) X 10’“ "4).() ]’)-4]() » {o/ 10
- o 7:‘..: \ (J.f ]O’() 3 ’/ _F
: 1.0 -1 e ———— R x 10
30 X 3(} 10 x 10 ). 0 X 1()-.8 . ] 2 R
o o " " .
roma— 1.1 x 207" | 7.4 x 10720 2.2 x 10
N 1 | 1.1 x 2070 | 4.8 x 107
0 Ll X 0 | R0 D )
30 x 30 | 15 3.4 x 10 > 8.6 x 71—8 b o -8 —e
3.8 =5 A 3.3 x 1077
h x 10 l.u X 10“9 -8
1.1 10" " 5.3 x ]O“C
30 x 30 |20 3.0 x 1072 | 1.4 x 1077 | 3.5 10:5“"_-—-”»_—__
b ' 7:1 -T
L9 230 5 2 % 10_9 . x 10
l.2 8
s 6 10 2.8 10*6
30 x 30 | 30 T e 3.5 x 10"9 1.7 ‘0" ) ' -
1.4 x 1070 ' 7.7 x 1078
300 = 10—9 _
4,7 10 8 -
3 9 - 5.0 x ]Q
35 x 35 |1 B 530" 135 x 107 8.7 ~10 N
3.8 - §7. 8 & 2.6 x 1010
B a0 108 % 107!
4.9 10“10 . *6
2.6 -l 7.9 x 10
35 x 35 |2 6 x 10" |7.9 x 1072 |1.2 e e
27 -l : 10 : W | 10‘7
: x 10 1.5 b'e 10’10 =
s 6.2 x 107° | 5.2 x 107°
.108 b u = |
35 x 35 15 10 1.8 » 10~8 e .
.0 5 3 -l 2.1 10“/
!. TSl 90.3 10-9 6_7 10"6
- 5 -
s« 35 ho [RECIENIRE RN f 15 « 20°° -
2.6 x 1 -4 - % | 10‘7
0 801 x 10-10 7 3 10-9
v 6.0 10-6

17



Table I (Continued)

ORDER | RANK NORM 1 NORM 2 NORM 3 NORM 4
1.5 x 10'“ 6.1 x 10‘8 4.5 x 10'8 b,7 x 10”7
35 x 35| 15 - -10 -8 6
1.6 x 10°" 7.3 x 10719 | 1.0 x 10 5.1 x 10"
. ol 40 2.4 x 1072 [1.2 x 1077 3:3 x 10'8 3.1 x 1077
N X
1.1 x 1072 [8.8 x 10739 1.2 x 1078 [ 4.0 x 1076
1.8 x 1072 |2.6 x 10°7 |2.6 x 10°% | 2.7 x 1077
35 x 35| 30 " -9 8 6
1.3 x 1072 |1.6 x 10 2.0 x 107° | 1.5 x 10”
1.8 x 1078 [3.4 x 1077 |2.3x10°% | 1.5 x 1077
35 x 35| 35 . -6 . =9 | -8 | . -8
.8 x 10 4.0 x 10 6.5 x 10 7.0 x 10
. 7.7 x 10°2 2.5 x 1072 | 9.0 x 1071°| 4.0 x 10710
X
B 7.8 x 1072 |2.5 x 1071 | 6.5 x 1071%| 1.2 x 107
w0 x 15| 2 w0 x 1072 16.5 2 1077 1.8 x10"0 | 6.4 x 10°°
X
7.1 x 10™° 1.6 x 10719 [ 3.1 x 1072 | 5.1 x 1077
w0« 15| s 5.8 x 1072 (3.9 x 1072 [2.3x 1078 | 3.6 x 1078
X
5.6 x 1072 |2.4 x 1071% | 4.6 x 1072 | 4.3 x 1077
2.1 x 102 |5.3.x 1079 [2.0x 1078 | 1.9 x 1078
4o x 15| 10 5 10
2.0 x 1072 | 2.2 x 10 4.8 x 1079 | 5.1 x 10”7
W 8.9 x 10°7 [2.7 x 1072 | 1.4 x 1078 | 3.1 x 1079
X
9.0 x 10°7 2.9 x 10719 | 6.7 x 1072 | 6.4 x 107°

18
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Table I (Continued)
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*
ORDER | RANK NORM ) NORM 2 NORM 3 NORM 4
b4 x 10" [ 1.2 x 10711 6.0 x 10730 2.4 x 10710
4o x 40| 1
4.3 x 107" [ 1.2 x 1071 4.8 x 10729 1.1 ¥ 1070
4.1 x 107" 1.2 x 1078 | 1.6 x 1078 | 1.6 x 1078
ho x Lol 2
5.1 x 1070 [ 9.2 x 1072 5.7 x 1072 | 9.4 x 107
2.0x 107" 3.2 x107® | 7.6 x 1078 | 1.7 x 1077
4o x 4ol s
3.2 x 1070 1.6 x 1073°) 1.1 x 108 | 7.0 x 1076
1.4 x 1o°" 3.0 x 10’6 9.1 x 10'8 2.8 x 10”7
ho x ol 10
1.9 x 107 [ 6.5 x 10729) 1.4 x 10°% | 8.5 x 10°°
O u 1.2 x 107" 2.6 x 2076 | 8.1 x 1078 | 2.6 x 10”7
4o x uo| 15 , i
2.1 x10° " 9.7 x 10719) 1.3 x 10°8 | 7.2 x 107
1.3 x 107" | 6.7 x 1078 | 4.3 x 1078 | 4.6 x 1077
4o x uo| 20 ,
1.8 x 107" 1.0 x 1079 | 1.1 x 1078 | 4.7 x 107
R 3.7 x 1072 6.2 x 1078 | 3.0 x 1078 | 5.3 x 1077
3.5 x 1079 (1.2 x 1072 | 1.2 x 1078 | 4.5 x 1076
‘o 1 1.1 x 1072 |5.5.x 1077 | 3.1 x 1078 | 1.0 x 1076
0 0F 35
1.0 x 2072 [1.9 x 1079 | 2.7 x 1078 | 4.3 x 10°6
5.4 x 10°° [1.1 x 1077 | 2.6 x 1078 | 2.4 x 1077
4o x 4o| 39
7.2 x 107% |2.1 x 1072 | 3.8 x 1078 | 3.8 x 1077

19
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Table I (Concluded)
r
L?RDER RANK NORM 1 NORM 2 NORM 3 NORM U
2.6 x 1072 |7.1 x 1072 | 3.7 x 10°8 6 x 1077
4o x bol| uo 6 ” _8 0
2.5 x 10 8.2 x 10 9.3 x 10 .3 x 10
. . 7.2 x 1072 6.7 x 10-8 3.0 x 10'8 .8 x 1077
5 x 40| 30
6.9 x 1072 7.9 x 10710 1.1 x 10’8 ;T X 10’6
. 2.2 x 1072 [1.2°x 1077 | 2.8 x 1078 5 x 1077
5 x ho| 35 .
1.8 x 1072 9.4 x 10729 1.4 x 108 1 x 10°8
. u 2.5 x 1072 |4.8 x 1077 | 1.9 x 1078 .3 x=10"7
5 x 40| 39 '
5.7 x 100 19.0 x° 10729 1.7 x 1078 .3 x 1077

20
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Table 11

Computer Times Required to Calculate the Generalized

Inverse of a 10 x 10 Nonsingular Matrix

PROGRAM MEAN TIME (MILLI-SECONDS)
GINVZ2 34.9
SEQINV 50.3
JPLUS 390.5
- APLQE,; . 417.2

Table ITI

Computer Times Required by GINVZ2 and APLUS

for Selected Randomly Generated Matrices.

MATRI X MEAN TIME (MILLI-SECONDS)
‘PYPE ORDER GINV2 APLUS
NONSINGULAR 10 x 10 34,9 417.2
NONSINGULAR 20 x 20 245, 8 3391 *
‘NONSINGULAR 30 x 30 784.1 10981 ¥
NONSINGULAR 40 x 40 1825.0 27383 %

(Note: The mean is,

100 matrices)

in general, calculated for a block of

¥Calculated for a block of only 50 matrices
¥¥Calculated for a block of only 25 matrices
¥%¥%¥Calculated for a block of only 15 matrices

21




Table IV

PR L —

Computer Times Required by GINV2 and APLUS

for Selected Randomly Generated Matrices.

MATRIX TYPE

MEAN TIME (MILLY-SECONDS)

ORDER RANK GINV2 APLUS
10 x 10 1 43 29
10 x 10 2 43 377
10 x 10 3 42 395
10 x 10 Yy 42 4oy
10 x 10 5 41 41y
10 x 10 6 4o 436
10 x 10 7 39 k42
10 x 10 8 38 461
10 x 10 9 37 477 e
10 x 10 10 35 416
20 x 20 1 301 266
20 x 20 2 300 3243
20 x 20 3 300 3204
20 x 20 4 299 3354
20 x 20 5 294 3254
20 x 20 6 293 3390
20 x 20 7 291 3409

22
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Table IV (Continued)

MATRIX TYPE MEAN TIME (MILLI-SECONDS)
ORDER RANK GINV2 APLUS
20 x 20 8 . 287 3468
20 x 20 9 283 3461
20 x 20 10 282 3556
20 x 20 11 282 3533
20 x 20 12 278 3612
20 x 20 13 277 3730
20 x 20 14 - 275 3776
D 20 x 20 15 269 3791
20 x 20 16 264 3710
20 x 20 17 . '259 3943
20 x 20 18 ' 251 3857
20 x 20 19 249 3993
20 x 20 20 243 3354
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APPENDIX A
THEORETICAL BACKGROUND

- The following 1s a brief description of the mathematics
used in each of the five programs examined in this study.

{1) PEN2 is based on a method, devised by R. Penrose
(ref. 2), which computes the generalized inverse
of a matrix A using the formula

(a) A% = pal

-

‘where D is any matrix satisfying

(b) %TA = D(ATp)2

@g' . ' ' (Note that multipllcatlon of (a) on the right
= by At (A yTaY yields (b).) '
Define a sequence of matrices Ck’ k =1,2,..
by ° ,
C;y =1I
L 1,
. Co =1 ¢« T-trace (C;B) - C;B
C,,. =1 - 1 ;;ace (C B) - C,B
Jt+1 , J J

T R e

where B = ATA.

If r is the rank of A, then C_, B = 0 and
trace CrB # 0.
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" Then D can be calculated by the formula

rC

D = r .
trace (CrB)

(2) SEQINV is based on a sequential method for com-
puting the generalized inverse (ref. 9). Let Any
be the matrix containing the 1irst (n-1) rows of
the matrix A and a, be the nth row of A. The
generalized inverse of A is then calculated

, sequentially by the formula

+ .+

Ay = (An~1 - pnan n-1 : pn)
+
n-

r .
+ +
< (a (I - AnulAn_li) it ey # aphy An
with p_ = . '
n
T _T\-1,+ + \T_T _ +
L(l + an(An » an) A (A Da, ifa, =a A A

A A and A (A+)T are computed sequentially as

follows:

A
+ _ + _ + . n-1
AnAn - (%n—1 pnanAn-—l : pn)

n
ceat A —panat A 4pa
n-1n-1 n"n n-1"n-1 nn '’
Ifa =aA’ A then ata_ = at &

n nn-1n-1? nn ‘nm-1"n-1°




' + Fo0 b 4
If a, #a Ay A, then A A = A A, +pp, .

+ T + \.T T

A - (A a
+\r _ [+ + (I‘l-—~1) ( n~1) n Pn
An(An) - (An-l - pnanAn—l :.?n) T
Mo pn

: | RPN SRR I + f, \T
= An—l(&n—l) pnanAnﬁl(An~1)

‘ T N T
t pn(anAn~1<An-1) an + 1)pn

+ (,+ Yo 70T
- An-~1(An—1) &P

_ +
1fa, = a A, AL, then

@E@ | +f +\T _ .+ + \T + + AT
.én(An> B Anml(An~1) B pnanAn~1(An~1)
(3) The method JPLUS uses the property that if A is an

Y
n x n symmetric matrix, there exists ann xmn
matrix P such that

#

" : PAPT = D
where D is the diagonal matrix whose diagonal

. ‘ elements are the eigenvalues of A. It can be J
shown that




(4)

If A is an n X m matrix, then let B = ATA. Then,

by the above, there is an m x m matrix P such that

: 'D = PBPY

where D 1s again diagonal’with the eigenvalues of
B as its diagonal elements.

Then

e gt = plp*p

Using the fact that
at = (aTa)*a

it follows that

APLUS in an iterative method (ref. 10) based on
the following formula

Xn = Xn_1(2I - Axn_l)
where A is the matrix whose generalized inverse 1is
to be computed. After initlally setting
. T ¢ - ’ -
A

Xo =
| [anT]]
until a near- zero test indicates that X can be

, the iteration process is continued

assumed to be A for some m, (Note that here,

- (5 (n))% o
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(5)

GINV2 is based on an extension of the orthogonal-
ization process for computing the inverse of non-
singular matrices (ref. 1ll). The problem of
computing thelgeperalized inverse of ann x m
matrix A can be reduced to the problem of com-~
puting the inverse of an n x m matrix (R:S),
partitioned so that R is the matrix of all
linearly independent columns (say there are k of
them) of A and S 1s the matrix consisting of the
remaining (m-k) dependent columns. (Note that
(R:8) can be obtained from A by a finite number
of permutations of columns of A.)

»

A Gram-Schmitt orthoéonalizébion process 1s per-

~ formed on (R:S) and the same operations performed

simultaneously on the n x n identity matrix. The
result of the Gram-Schmitt on (RES) is a matrix
of the form (Q:0) where Q ;sian n x k matrix and
0 is the n x (m~k5 zero matrix. The identity

- matrix will become of the form

7 -U
where 2 1s k x k

n-k

0 is the (n-k) x k zero matrix, -U is k x (n-k)
and I . is the (n-k) identity matrix.

Performing a Gram-Schmitt orthogonalizatian on

-U
yields a matrix of the
Tn-x

A-5



form

where P 1s (n-k) x (n-k) and

LX)

P

~UP is k x n-k. .

After these orthogonalizations are completed, all
of the matrices necessary for the computation of
A+ have been calculated,

It can be shown that A+ is given by

79T - (UP)(UP)TzQ"

O . o p / \«up)¥zq"/ " p(Up) Tzt
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~ APPENDIX B
ANALYSIS OF VARIANCE

This appendix describes the analysis of variliance used
to test the hypothesis that the accuracie° of GINV2 and APLUS
are equal, The cbservations used in the analysis were the
absolute values of the logarithms of the norms, which were
defined on page 6 of the report.

CASE I. PFull rank.

A three-way full factorial was assumed as the model, i.e.

Tagre = v tog H By by b (aB)yg  (ovdgy + (By)gy + o0y

I

where:

1=1,2

o
Il

1,2,...,15

~
]

1,2,3,4
a,: effect due to APLUS
: effect due to GINV?2

. effect due to order (orders considered were—
" (2x2), (2x3),(3x2), (4 x5), (10 x8),
(8 x 10), (10 x 10), (20 x 20), (30 x 10),
(10 x 30), (30 x 30), (35 x 35), (uo x 15),

(40 x HO), (45 x L0))

'
y o
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The null hypothesis

+

Yy effect due to norms

(aB)iJ: effect of interaction due to @y and BJ

(ay)jk:‘effect of interaction due %o ay and v,

(By)jk: effect of interaction due to BJ and v

pijk: effect due to random error

is as follows:

HO: accuracy of GINVZ2 = accuracy of APLUS

-

The results of the analysis are tabulated below:

Analysis of Variaflee'

Source of

Variation D.F. SS MS F
Method 1 0.01391  0.01397  0.1405
Order 14 19.3749 1.3837 13.91
Norm 3 94,9728 31.6576 318.89
Method x Order 14 7.0123 0.5009
Method x Norm 3 '1.4788 0.4930
order x Norm 2 12.2357 0.2912
Error 42 §,1762 0.0994

Since the F ratio for the methods is .1405 it is not

B-2

possible to reject Ho based on the data so far collected.
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CASE II. Nonfull rank. -

‘The model assumed in this case was a four-way
partially-nested factorial, in which rank is nested in any
order. The results of this case are tabulated below.

_Hé: accuracy of GINV2 = accuracy of APLUS

Analysis of Variance

Source of Variation D.F. SS | MS F
Method 1 2,596 2.596 = 60
Order 9 22.525 2.503
" Rank 1 _ 0.633 0.033
Norm 3 324.595  108.198
: Interactions ; 5 : E
Error | ‘Af 1.1496 0.0425

Since the F ratio for the method is 60, the hypothesis
that the two methods are equal must be rejected in favor of
the hypothesis that the accuracy of GINV2 is better than

that of APLUS.

' B-3
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