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SERVICE MODULE ENTRY CHARACTERISTICS
By Richard E. Kincade
SUMMARY

Many studies have been performed by the Mission Planning and Analysis
Division to describe the characteristics of the Apollo service module (SM)
when entering Irom near-earth orhital and lunar missions. This document
summarizes these studies and presents the most probable SM motion during
entry and the methods in which these entries can be simulated. Entry
characteristics for both an intact SM and SM fragments following struc-
turel breakup are considered.

INTRODUCTION

A knowledge of the SM entry conditions and subsequent motion is
necessary for mission planning. This information is essential in elim-
inating recontact problems between the command module (CM) and the SM
during entry and in determining the hazards to earth's inhabitants as
the result of impacting fragments of the SM.

The nominal separation of the CM from the SM is defined herein sas
the separation of a nearly fuel-depleted SM with all reaction control
system (RCS) thrusters in operation. The RCS thrusters burn to fuel
depletion approximately 150 seconds after CM/SM separation. As the
result of mess asymmetries, the nominal roll-up of the SM imparts a
certain degrce of oscillaticn. The resultant oscilletions of the RCS
thrust vector reduce translational efficiency to some extent. The
vehicle essentially performs two oscillations about the origin following
each large amplitude oscillation. The majority of the motion ieg near
the origin with very little degradation of the relative velocity. The
SM should in effect experience essentially zero lifting during entry as
a result of the "corkscrew" type motion.




ENTRY CHARACTERISTICS O AN INTACT SM

Reference 1 has considered how the CM/SM separation AV's, SM lift-
to-drag ratios (L/D), and SM bank angle during entry affect the impacts
of the SM in comparison with the CM. It presents the results of a
study of the SM entry conditions computed as functions of the CM entry
conditions. The CM entry conditions were specified by the RCS and ser-
vice propulsion system (SPS) target lines for the low velocity (25 LOO
to 27 000 fps) and for the high velocity (30 000 to 37 000 fps) entries.
Spacecrait welghts were selected to coincide as closely as possible to
the AV capabilities of the SM RCS. Comparisons of the touchdown points
of the CM and SM were made for various SM L/D's and a fixed one-half
1lift entry of the CM. An SM L/D of 0.3 and a bank angle of 60 were
used to obtain maximum crossranges.

The data derived in this study can be used to estimate relative
landing points of the SM and CM and dispersion areas of the SM impact
points (IP). The data indicates that for an SM L/D of 0.3, the SM
will tiave a touchdown point in front of the CM half-1lift point unless
higher than nominal separation AV's are used. For lower SM L/D's the
SM impacts behind the CM. In the event of CM entries on eitner of the
target lines, the SM downranges decrease as the CM entry flight-path
angle and velocity incresse.

A more sophisticated analysis of the moticn of the SM during entry
is presented in reference 2. It discusses the results of the six-degrees-
of-freedom motion study for both the fully propellant-loaded and empty
entering SM. These analyses were conducted in order to obtain & clearer
understanding of SM motion during entry and to verify that this motion
can be approximated by a point-mass simulation.

Entry inertial velocities (Vi) of 10 00C to 25 000 fps, inertial
flight-path angles (yi) of -4° to -150, and a representative range of

values for weight (fully loaded and empty), moments of inertia, spin
rate at entry, and attitude et entry were used in simulating the atmos-
pheric entry of the SM.

The results of this analysis indicate that for the sltitude range
of 400 000 ft to 200 000 ft, differences between trajectories of
tumbling, non-spinning and spin-stabilized SM's are insignificant
(fig. 1). Below 200 G.) ft, the tumbling drag point-mass trajectory for
the empty SM (based on a drag coefficient of 1.8) and the trajectories
simulated for all spin-stabilized empty SM's are nesa 'ly identical.

This condition is also true of the fully propellant-.loaded SM.




Deviations from the tumbling drag and spin-stabilized trajectories
resulted when the spin rates were approximately zero for the empty SM.
This is due to the motion brought about by the highly nonlinear aero-
dynamic forces and moments for the non-spinning SM. Differences between
the full non-spinning SM trajectories and the tumbling drag and spin-
stabilized trajectories were also noted. However, these differences are
much smaller than those resulting from the empty SM. Figure 2 presents
an example of the differences between the tumbling, norn-spinning and

‘ spin-stabilized trajectories for the empty SM, and figure 3 represents
the deviations petween the three simulations for the fully loaded ve-
hicle.

Based on the results of this analysis of SM motion during entry
“rom 400 000 to 100 000 ft in altitude, the following can be concluded:

l. Point-mass trajectory simulations, using & tumbling drag co-
efficient of 1.8, are acceptable representations of the actual entry
trajectories for reasonable €M spin rates (2 rad/sec for the empty SM
and 0.5 rad/sec for the full SM).

i 2. Six-degrees-of-freedom simulations are required when the empty
SM is not spin-stabilized before entry because the actual entry tra-
Jectory deviates significantly relative to its tumbling drag simulated
trajectory. The fully loaded SM trajectory is far less affected by
spin-stabilization, indicating a tumbling drag trajectory simulation

is probably acceptable.

Reference 3 extends the %nalysis in reference 2 to include an entry
Vv, = 36 300 fps and Yy = -7.3 for the SM. A comparison of a six-degrees-

of -freedom simulation of a spinning SM and a point-mass simulation using
a drag coefficient of 1.8 is presented in figure 4. The comparison of
the two trajectory simulations reveals that the error in range with the
point-mass solution i1s less than 5 n. mi. throughout the entire trajectory
to an altitude of 80 000 ft, while the difference in altitude is less

. than 1000 ft. The errors encountered for skip trajectories were approx-
imately the same as those indicated above. Therefore, a tumbling drag
point-mass simulation for the spin-stabilized SM is applicable for super-
orbital entry velocities.

ENTRY CHARACTERISTICS OF THE SM FOLLOWING STRUCTURAL BREAKUP

All of the preceding sections supply a good knowledge of how the
SM will act during entry if the SM does not experience structural breakup.
However, theoretical analyses have been performed for Apollo orbital
debris hazard evaluations which show that the SM does not impact &s an

1 .
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intact vehicle. Figure 5 presents a representative pictorial view of
the breakup and dispersion of entry debris. Actual tracking of a frag-
ment of the entering AS-201 SM verifies these analyses. The following
rections describe the methods which should be employed in order to de-
fine the structural breakup and impact of SM debris.

In the SM six-degrees-of-freedom trajectory studies performed in
reference 4, a Newtonian pitching moment was compuged about the center
of gravity for angles of attack (@) from 0° to 180 . One of the trim
points near @ = 30" was stable and a relatively strong trim point was
indicated by the slope of the pitching moment curve. Since the mass
properties of the wvehicle and the initial angular rates were known, a
six-degrees-of-freedom trajectory calculation was used to determine the
entry motion. One of the Apollo missions evaluated for SM entry was
AS-204, in which the motion of the intact SM was found to be a circular
precession about a mean angle Qf attack that was 60 at altitudes above
200 000 ft and decreased tc 20 at altitudes below 150 000 ft. Because
of changes in entry conditions and in order to accurately determine “he
prediction of the vehicle breskup altitude, six-degrees-of-freedom .ra-
Jectory simulations-to-impact for the intact vehicle are required for
each mission.

Once the intact SM trajectory-to-impact has been calculated, aero-
dynamic loads and temperature histories at criticel structural locations
are then determined. Structural analyses are performed to establish
primary breakup modes and the altitudes at which they occur. Aerodynamic,
thermal, and structural analyses are repeated to determine secondary
breakup modes and associated altitudes for the resulting pieces of the
primary breakup mode. Conditions are then reached at which it can be
assumed that all vehicle internal components are exposed to the entry
environment and the vehicle is completely broken up.

After the SM has been completely broken up, survivaebility analyses
are conducted on the vehicle components. This requires a detailed
knowledge of sizes, shapes, weights, materials, and aerodynamic charac-
teristics of the components in order to determine which objects will
survive to impact and which will burn up in the atmosphere.

Trajectories are generated for each surviving piece to determine
their zero-lift impact locations. Impact dispersions of each surviving
piece of debris are determined by assuming a constant L/D end orienting
the 1ift vector to provide the maximum downrange, uprange, and cross-
range deviatiors from the non-lifting impact point. This is accomplished
by pogitioning the lift vector, relative to the wvelocity vector, upward
at 90~ and away frgm the earth, downward at 90~ and toward the earth,
and sideward at 45 to the plane of the trajectory and away from the
earth. It should be noted that impact dispersions computed in this




manner are not realistic, but because of all the uncertainties associated
with the mass properties, shapes, and L/D for each surviving piece, it
does represent a fixed-lift vector orientation that gives the maximum

dispersion that could take place.

A summary of SM structural breskup and the number of surviving
pieces of debris information for various Apollo missions are shown below.
A more complete description can be found in the designated references.

Vi bt Yq ke Weight| Primary Secondary |Number of
Mission entry, |entry, at breakup breakup | impacting
fps deg entry, |altitude, altitude, Pieces,
1b ft ft n.d.
AS-201 (ref. 5) | 25 262 | -7.59 9 430| Not cal- | Not cal- |Not cal-
culated culated culated
prior to }rior to prior to
mission. mission. mission.
Actusl is
212 000 ft
based on
radar ob-
servation.
AS-202 (ref. 5) | 28 462 | -3.67 10 670| 239 500 224 500 48
AS-204 (ref. 6)
SPS deorbit 25 758 | -1.48 10 820] 260 000 255 000 69
with SM
tumbling
SPS deorbit 25 758 | -1.48 10 820| 271 000 266 000 69
with SM
tr&mmed at
90
RCS deorbit 25 831 | -0.93 11 105/ 281 000 271 000 67
with SM
tumbling
AS-501 (ref. 7) | 36 309 | -7.23 | 20 158{ 231 500 | 226 500 Lk
As-502 (ref. 8) | 36 334 | -7.13 230 000 | 225 000 Ll

9 9801




CONCLUSIONS

The nominal SM motion during entry can be defined as a circular
precession about a mean angle ?f attack until it reaches its structural
breakup altitude. The majority of the motion ie spent near the origin
("corkscrew" motion) with little degradation of the relative velocity.
As & result, the SM should experience essentially no lift until the
vehicle breaks up.

For either the fully propellant-loaded or empty SM, the entry tra-
Jectory of a spin-stabilized SM can be adequately simulated by assuming
the body to be a point mass with tumbling drag. The entry trajectories
of the empty non-spinning SM are not properly represented by point-mass
simulations and would require six-degrees-of-freedom motion studies to
simulate this type of entry. The fully propellant-loaded vehicle with
zero spin can probably be simulated successfully as a point-mass body
with tumbling drag.

Estimations of landing points of the SM (assuming the vehicle does
not breakup) relative to the CM and estimations of SM dispersion areas
can be made by varying the CM/SM separation AV's, SM bank angles, and
SM L/D's. For an L/D of 0.3, the SM will impact in front of the CM
half-1ift point unless high separation AV's are used. For lower L/D
ratios, the SM has & touchdown point behind the CM. For CM entries on
either of the target lines, the SM downranges decrease as the CM entry
flight-path angle and velocity increese.

In order to present a true picture of SM entries, the breakup of
the vehicle in the earth's atmosphere must also be considered. To
simulate this requires a much more detailed analysis than those required
for the entering intact SM. A knowledge of aerodynamic, thermodynamic,
and structural properties of the intact wvehicle is required to perform
breskup analyses. Then, thermodynamic and aerodynamic characteristics
of the pieces of the SM must be known to predict their survivability
and dispersions. These evaluations are required for each Apollo mission
because of differences in velocity, flight-path angle, and weight at
entry. In these calculations six-degrees-of-freedom trajectory simula-
tions are required.

All of this information can be utilized, according to the user's
requirements, to simulate the entry trajectory of the SM. For real-
time planning and other time-critical studies, the best method to employ
in determining the nominal intact SM trajectory to impact is a tumbling
drag point-mass simulation. Then, to account for the breakup of the SM,
transfer the position of the dispersion ellipse (determined previously
for the particular mission's operational trajectory SM impact point) to
the new calculated tumbling drag point-mass impact r~int.
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