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U AN EMPIRICAL TECHNIQUE FCR COMPUTING NAVIGATION

COVARIANCE MATRICES AND THE APPLICATION OF THE TECHNIQUE TO

POST APOLLO 8 LUNAR ORBIT MISSION PLANNING

By John Bruce Williamson

SUMMARY

C)

Aj; enpir-ical technique used to calculate navigation covariance
matrices is presented which is based on actual postflight tracking
data processing from the Apollo 8 mission and the Langley Lunar
Orbiter III.	 Postflight analyses of the Apollo 8 mission and
Lunar Orbiter III revealed that the lunar gravitational potential
function was not known as weli as had been assumed before these missions.
There is not sufficient information available at this writing to
provide a satisfactory statistical description of the uncertainty in
the model. This technique requires as input empirical errors in
certain crbital parameters determined from postflight analysis. A
numerical description (covariance matrix) of the anticipated navigation
accuracies in lunar orbit is produced by the use of this technique.
The technique is reasonably independent of the potential model which
is used to process tracking data, although different values for the
input parameters must be determined for each model.

This technique has been applied to Apollo Missions F and G
and has been found to medel secular grow-th in down-track position
errors satisfactorily. The technique is limited in its capability to
mrd.el the smaller growth rates expected in radial position errors,
and it does not model oscillatory errors in the radial and down-track
components of position and velocity as well as might be desired. A
conservative estimate of the navigation accuracy is obtained when
the oscillatory behavior is modeled as an independent secular error
the magnitud-e of which is the amplitude of the oscillation. By careful
application, t' ;.s technique can be used to convert the results of
postflight studies into the numerical input required for other :mission
planning tools (e.g., dispersion analysis programs).
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INTRODUCTION

Analysis of tracking from the Langley LunF-- Orbiter ?rogr&m showed
an unusual Doppler data residual pattern. Therefore. navigation of a
spacecraft in lunar orbit with a perilune altitude of less then a
few hundred miles could be inaccurate. Experts generally agree that
this navigation problem is .he result of an inaccurate lunar gravitational
potential function. In other words, a significant amount of uneven
mass distribution is present near the lunar surface. Analytic proce-
dures for estimation of navigation accuracies require that all sources
of error be precisely defined and that the probability distribution
functions of the parameters be known. Studies are now being conducted
to find the best lunar gravitational potential model for spacecraft
navigation and the appropriate values to be assigned to the coefficients
in the model. The probability distributions for the model are unknown
at present. When a satisfactory model is implemented, the parameters
of its probability distribution will be determined by processing
tracking data from a number of different spacecraft. The primary
effect of this problem is on processing earth-based radar drta.

ABBREVIATIONS AND SYMBOLS

a	 semimajor axis of spacecraft orb.,t

MSC	 Manned Spacecraft Center

MSFN	 Manned Space Flight Network

n	 number of revolutions over which the covariance
matrix is to be valid

PTEAP	 Perturbed Trajectory Error Analysis Program

LOI-1	 first lunar orbit insertion maneuver

LOI-2	 circularization maneuver

R	 spacecraft position vector

RSS	 root sum square

RTCC	 Real-Time Computer Complex

r	 radius to spacecraft, r = ^Rj

J )
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D
s
	 speed of spacecraft, s = IVI

u v w coordinate	 spacecraft local orbit plane coordinate system l efined

system	 inertially at a g.ven time by the unit vectors
i = R/r, ,j= (RxV)xh/) NxV)xR I , k = RXV/ I IZxV

V
	

spacecraft velocity vector

. 

4C^_

growth rates per revolution of the errors in local
radius, down-track radius, orbital plane wedge anlge,
and flight-path angle

initial errors at the MSFN tracking epoch in
local radius, down-track position, orbit plane
wedge angle, and flight-path angle

incremental change in u, v, etc.

gravitational constant of central body

the correlation coefficient between the

i th and ,j th parameters

standard deviations in the components of the
spacecraft position and velocity vectors,
expressed in the u v w coordinate system

u

v

0
fr

Y^

u
c:

V
c,

8

Yo

Au ' Av, , etc.

u

i j

Q
U

Q
V

a
w

Q-
U

Q•
V

G.
W
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°uS	 covariance between radial rosition and
down-track velocity

o	 covariance between down-track position
vu	

and radial velocity

a
Y	

standard deviation in flight-path angle

v T	standard deviation in orbital period

T	 period of spacecraft orbit

PROCEDURE

The Mathematical Physics branch of MSC has suspended the use
of ordinary analytic tools for analyzing lunar orbit navigation
based on the MSFN S-band radar stations. Instead, an interim
technique has been devised which empirically models the trajectory
effects observed in postflight processing of Lunar Orbiter III and
Apollo 8 tracking data. This technique deals with trajectory parameters
only and does not attempt to define the lunar potential model. Post-
flight data processing provides the inputs to the technique as local
errors and propagation effects observed with a particular lunar
potential model. The resultant navigation accuracies are checked by
propagating them with the standard analytic tools and by comparing
these results with the postflight results. This assures that the
application of the results (e.g., dispersion analysis) using existing
analytic tools will approximate the actual behavor of the spacecraft
as observed in real time, to within the accuracy provided by the
calibration with postflight results.

ANALYSIS

The et.rrent technique used to generate covariance matrices for
vehicles in lunar orbit is based on the assumption that the navigation
errors consist of independent local fit errors in four parameters and,
independently, growth rates in these errors because of propagation.
These parameters are as follows.

u the local radius	 3v	 the local down-track position

e	 the angle between the estimated and actual angular momentum
vectors

the local flight-path angle of the vehicle

i
i
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All other errors in the state vector of the vehicle are derived
from this set. In general, the growth rate 6 g An	 errors is so

small that it is neglected for these studies.

The WIFN tracking epoch is assumed to be in the middle of a
front -side pass at approximately 0° longitude. This choice is
arbitrary, and was made because it resulted in a formulation for
out-of-plane errors which is convenient for lunar landing, and rendezvous
studies. If the tracking epoch is chosen to be in the middle of the
data .arc for one puss, the following equations are assumed for cross-
track position and velocity errors.

a	 -- 0
w	

(1)

a w = s Sin 0

To account for some uncertainty in the longitude of the ascending
node acid argument of latitude at the fit epoch a 	 is customarily
set equal to 1000 feet. This does not result in a significant change
in 60.

The errors in radial position and flight-path angle must be
constructed to include the error growth rate for a certain number
of revolutions n. This construction is required because ordinary
covariance propagation techniques do not model growths in these errors,
which is one of the main restrictions on the technique.

a 11 V = (u0 ) 2 + (n X ug)'
(2)

a Y 2 = (Y 0 ) 2 + (n x Yg)2

The growth rate in down-track position error is the most significant
error growth, and this growth can be modeled with current propagation
techniques. Therefore, 'he error in down-track position at the tracking
epoch is simply

av = v0	(3)

The development of the equations for the radial and down-track
velocity errors and their covariances with the radial and down-track
position errors are included in the appendix. In sununary, the equations
are the following.

10
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r	

v	 Y2	
(	 ^2 a2 + 

sl a2	
(4)

av2 = (- r)2 ,,u2 +	 l	 (5)
3,

s a 2	 (6)
uv	 r u

s	
2	 (7)Vu	 r v

All other correlation coefficients are zero.

The covr-,riance matrix at the MSFN tracking epoch may be found by
use of equation (1) (modified) and equations (2) through (7). Because
th:s matrix is symmetric, the numbers in the lower triangular portion
Pre replaced by their corresponding correlaticii coefficients, which

nvey more intuitive information than covariances. The equation for
t.. correlation coefficient is

	

P iJ =	 ji	 (8)

a i a 

The covariance matrix is always presented in the vehicle's local
u v w coordinate system defincd inertially at the time associated
with the matrix.

RESULTS

The error models empirically determined from unpublished post-
flight tracking data analyses of the Langley Lunar Orbiter III and
Apollo 8 are presented in table I. The three cases were used to provide
navigation accuracies for Mission F planning and dispersion analysis
support. Case 1 represents the assumptions that one pass of MSFN data
will be processed in the RTCC orbit determination program with a
triaxial lunar gravitational potential model and that both RTCC and on-
board state vector predictors will use the triaxial model. Case 2
represents the assumptions that one pass of MSFN data will be processed
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with the Boeing R-2 lunar gravitational potential model (ref. 1)
and that both ground and onboard state vector predictors will use the
R-2 potential model. Case 3 is the same as case 2 except that data
from two consecutive passes will be processed. The Perturbed
Trajectory Error Analysis Program (PTEAP) (ref. 2) was used to predict
the at a vector uncertainties for the next two revolutions. The
initial covariance matrices for these three cases are presented in
table II. Plots of the predicted component and RSS position and velocity
uncertainties for cases 1 through 3 are presented in figures 1, 2, and 3.

For comparison, postflight state vector comparisons from Apollo 8
that correspond to case 3 are presented in figure 4. 	 A state vector
was determined from the two- Fuss data arc in revolutions three and four
by constraining the orbital plane to coincide with the orbital plane
determined by a prediction of the pre-LOI-1 state vector through the
confirmed MI-1 and LOI-2 maneuvers. 	 This vector was compared with
the local one-pass unconstrained state vector solutions for revolutions
four, five, and six.	 These comparisons are presented as differences in
the components of the state vectors in the local u v w coordinate
system.	 The view periods for this mission last from 40 minutes after
the beginning of the revolution until 1 hour 50 minutes after the
beginning of the revolution.	 Comparisons between error analysis and

a postflight results should be made only during the view period.

CONCLUSIONS

The results presented are not intended to be independent deter-
minations of navigation accuracies for Apollo missions.	 Rather, the
technique is presented by which insight from postflight tracking data
analyses is transformed into numerical input for the various studies
which are performed in planning an Apollo-type mission.	 The figures
should be compared with the postflight analyses to verify the technique.
This comparison has been made informally and indicates that the
technique models cases 1 and 2 quite accurately. 	 In case 3, postflight
analyses have revealed undamped (i.e., growing in amplitude) oscillatory
errors, especially in radial position and down-track velocity (fig. 4),
which are not modeled by this technique. 	 However, the technique does
model the secular effects satisfactorily. 	 A conservative estimation
of the navigation accuracies is obtained if the oscillatory behavior
is modeled as an independent secular error the magnitude of which
is the amplitude of the oscillation. 	 Case 3 is by far the most
satisfactory from a navigation standpoint. 	 The cross-track errors
in case 3 are the same as in case 2 because the cross-track components
of the state vector are determined by a one-pass data fit, and the two-
pass fit is constrained to maintain these values.	 Recent ui:published

4
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postflight anf+lyses indicate that a better estimation of cross-track
Position and velocity during lunar orbit o perations can be obtained by
Prediction of the pre-!,0I-1 state vector through the confirmed maneuvers.
This technique would be used with the one-Vass technique as a m,-)nitoring
tool. Hence, the error estimates described in this note should be
conservative in cross-track Position and velocity.

J



TABLE I.- ERROR MODELS

V

c

Cr

.Faramoter Case I Case II Case III

u0 ,	 ft	 .	 .	 .	 .	 .	 .	 .	 . 1000 1000 1000

► .	 ,	 ft	 .	 .	 .	 .	 .	 .	 .	 . 3000 3000 3000
0

A O , deg 0.1 0.1 0.1

y 0 ,	 deg	 .	 .	 .	 .	 .	 .	 .	 .	 . .01 .01 .01

u	 ft/rev	 .	 .	 .	 .	 .	 .	 .	 . 1500 500 500
8

V	 ,	 ft/rev	 .	 .	 .	 .	 .	 .	 .	 . 15 000 L1 000 1500
g

A g ,	 deg/rev	 .	 .	 .	 .	 .	 .	 . .005 .005 .005

),	 ,
g	

deg/rev	 .	 .	 .	 .	 .	 .	 . .005 .005 .005



10
f \

TABLE II.- COVARIANCE MATRICES FOR LUNAR ORBIT

MjUNNED SPACE FLIGHT NETWORK (MSFN) TRACKING DATA

(a) Navigation covariance matrix for case 1, one-pass triaxial fit
at MSFN tracking epoch's

9.9999996 x ?_0 6 	 0	 0	 0	 -88o9.4843 0

0 9.0 X 10 6 	0	 -7928.5361	 0 0

0 0	 1.0 x	 1.0 6	0	 0 0

0 -.78466998	 0	 11.344o84	 0 0

-.97036671	 0	 0	 8.2429547 0

0 0	 0	 0	 0 81

(b) Navigation covariance matrix for case 2,
one-pass R-2 fit at MSFN tracking epocha

2.0 X 10^ 0	 0	 0	 -1761.8969	 0

o 9.0 X 10 6 	0	 7928.5361	 0	 0-

0 0	 1.0 X 10^	 0	 0	 0

0 -.8945489	 0	 8.7284141	 0	 0

-.92565272 0	 o	 O	 1.8114854	 0

0 0	 0	 v	 0	 88.o63182

aFormat for matrices in table II.

(au ) 2 	0	 0	 0	 0
cuv 

0(ov ) 2	 0	 Q	 0	 0

0	 0	 (Q	 ) 2 	0	 0	 0
w

0	 p^	 0	 (a ) 2	 0	 0

p uV	 0	 0	 0	 (QV)2	 0

0	 D	 0	 0	 U	 (0.)2
w



auv

0

0

0

( a )2

0

0

0

0

0

0

((1.)2
W

F.7

e
c	 11

TABLE II.- COVARIANCE. MATRICES FOR LUNAR ORBIT

MANNED SPACE FLIGHT NETWORK (M.,FN) TRACKING DATA - Continued

(c) Navigation covariance matrix for case 3,
two-pass R-2 fit, at MSFN tracking epoch"

2.0 x 10 6 0 0 0 -1761.897 n

0 9.0 x 10^ 0 -7928.536 0 0

0 0 1.0 x 10 6 0 0 0

0 -0.89455 0 8.728412 0 0

-0.99845 0 0 0 1.556963 0

0 0 0 0 0 81.0

C)

`iFormat for matrices in table II.

(o ) 2	 0	 0	 0
u

0	 ( cT 1 2	 0	 cvu
0	 0	 (a ) 2	 0

w

0	 pvu	 0	 (°li ) 2

puv	
0	 0	 0

0	 0	 0	 0

f 0.
f:

K
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APPENDIX

DERIVATION OF THE EQUATIONS FOR THE ERRORS

IN RADIAL AND DOWN-TRACK VELOCITY AND THEIR COVARIANCES

WITH RADIAL AND DOVN-TRACK POSITION ERRORS
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APPENDIX

DERIVATION OF THE EQUATIONS FOR THE ERF,ORS

IN RADIAL AND DOWN-TRACK VELOCITY AND THEIR COVARIANCES

WITH RADIAL AND DOWN-TRACK POSITION ERRORS

RADIAL VELOCITY

The radial velocity error is assumed to be a function of flight-
path angle error and phasing (i.e., down-track position) errors.
Assuming that these two error sources are independent, one may write

au 2	 \ av / 2 ovl + \ ay ^ 2 cY2	
(Al )

I.	 The equation relating radial velocity to flight-path angle is

u = s sin y

so that aY = s cos	 Since we are dealing with near-circular

orbits, we may write

,r-0
cos Y = 1	 (A2)

1	 .

au = s

ay

For circular orbits, in which the flight-path angle is constant, a
phasing error translates into an error in the direction of the velocity
vector, of the same magnitude. Thus an angular phasing error
translates into a radial velocity error

V

;r
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Au = -s sin '

where

sin	 AVr

Ali = -s AV
r

So

l
or

3u	 s
av	 r	 (A3)

Substituting equations (A2) and (A3) into (Al) we have

Qu 2 	
\ r / 2 j 2 + s2 ° 2	 (A)+)

Y

DOWN-TRACK VELOCITY

The down-track velocity error is also assumed to be caused by
independent error sources. The first of these is the relationship
between speed and radius derived from the energy equation assuming
a fixed semimajor axis. The second is a period error. The period
error translates directly into an error in semimajor axis and the
energy equation is used to relate this error to speed. This results
in the following equation

0.2	
au )	 cu t + ^a ) 2 (aT ) 2 aT2	 (A5)

Taking the partial derivatives of the energy equation for
elliptical orbits

1 _ 2 _ s2
a r	 u

4



i
I

	 29

We have

():_ u
as	 2sa2

arid

k
i

I

as _ —!1

ar	
r 

2 
s
	 (A6)

The relationship between period and semima,jor axis is obtained from

= ^ I1
a3

T 
W

which can be solved for semima,joi• axis

u
a	

112 z	 213=
2n

which differentiates to yield

3a	 2a
TT 3T

(A7)

For nearly circular orbits the following relationsnips hold

u = r and v = s

and from the energy equation

2a = r and u = rv.	 (AB )

0.-^^.
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uv	 u

c= a
vu	 v

All other correlation

^aV
Du

DA
av

coe

0
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An addit{onal assumption involved in this derivation is that the
down-track position error growth rate is it result of the period error
which is contained entirely in the down-track velocity error at the
t:••-,-!king epoch. This assumption can be stated as

v

T	 S

Substituting the relationships W) into equations (A6) and (A7), ,end
substituting this result along with (A9) into equation (A5) we have

V

o.?	
s 

2 Q 2 + __L1	 (A10)
v	 r )	 u	 3T

) 

COVARIANCES

Since the uncertainties in the in-plane velocity components
were computed from the uncertainties in the in-plane position
components, these errors are correlated. We may compute the correlation
coefficients as follows

Q	 = _ S Q 2	 (All)
u	 r u

s	 2
Q	 = -	 Q

V
	 r v

fficients are zero.

0

1
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