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CONVERGENCE ACCELERATION PROCEDURE
FOR THE
METHOD OF STEEPEST DESCENT

ABSTRACT

A procedure 1s proposed which accelerates the conver-
gence rate of the steepest descent or gradient optimization
methods. The previously suggested procedurecs of selecting
a preferred gradient step size for each iteration i1s extended
by defining an easily determined, time dependent weighting
matrix that approximately extremizes the penalty function or
performance index. Numerical results with this modification
are obtained and compared with results obtained by applying
the conventional technique. A significant acceleration in
the shaping of the optimal control program is realized.

INTRODUCTION

In studying procedures for accelerating the convergence
rates of the c.assical gradient methods, it is necessary to

first define the optimization problem. The purpose of this |
investigation is stated, and a brief background sketch is
made. :




Pefinition of the Optimization Problem

In one class of optimization problems, in particular

the spacecraft trajectory optimization problem, it is desired

to determine the history of the control variables in such a

manner that certain specified initial and terminal constraints

are satlisfled while some performance index 1s extremized.

The control varlables are unspecified inputs to the system

which may be chosen to control the spacecraft state; i.e.,

the position and velocity. The initial and terminal constraints
i are simply conditions on the positions and velocitlies that
must be satlsfied at the initial and terminal time, respectively.
The performance index is usually 2 scalar function associated

e

with the spacecraft performance and 1s the quantity to be
extremized.

'Mgw:‘;ﬁ'b,ﬁ MaRini g

The terminal constraints are handled in either the so-
called "hard" or "soft" form. In the "hard" form an effort
is made to satisfy the terminal constraints identically while
in the "soft" form the constraints are satisfied only approx-

imately. It is in the former case that the performance index
approach 1s taken because this index 1s exiremized separate
from the satisfaction of the terminal constraints. It is

3 with the latter case that the penalty functicn concept

5 emanates; i.e., a certain pen.lty is accepted because of the
} less stringent demand of only approximate terminal constraint
i satisfaction,

z‘ Purpose of the Investigation

The ultimate purpose of this investigation is to devciop
an insight into the convergence characteristics of some of the
direct optimization methods. This ultimate purpose 1is approached
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by satisfying the following secondary objectives:

(1) Increase the understanding of the currently
popular optimization methods so that the deficient
convergence characteristics of each method are
discovered.

(2) Extend and modify these methods to eliminate the
deficlencies.

(3) Formulate and successfully implement a realistic
example.

(4) Compare the convergence characteristics of the
proposed procedures with those derived from
previously proposed schemes.

Background Study of the Gradient Methods

An analytical devclopment of a trajJectory optimization
theory was published by Kelley(!) in 1960. This method,
referred to as the gradient method, is based on an extension
of some ideas presented by Courant in 1941. A similar formu-
lation was made, simultaneously and independently, by Bryson,

(3)

Denham, Carroll and Mik?mﬁ(z), and Bryson and Denham .
4
gradient techniques using inequality constraints on the

control variables and a penalty function concept for handling
terminal constraints. 1In an effort to determine the thrust
steering program for the optimization of a second stage
booster, Pfeiffer(s) developed a method of "critical direction"
which is similar to the gradient techniques of Kelley and

Kelley, Kopp, and Moyer presented an analysls of several

Bryson.




In 1963, more attentior. began to center around conver-

gence acceleration for the gradient methods. Wagner and
\ Jazwinski(s) presented a gradient method incorporating botr
terminal and instantaneous inequality constraints. This
investigation also included an interesting method for deter-
mining the control step size magnitude that should be taken
in the gradient direction to approximately maximize the
decrease in the penalty function. A new step size 1s calcu-
lated for each iteration. This scheme involves making three
trial forward integrations with different control step sizes,
and recording the three resulting penalty function values.
A second wrder polynominal is fitted through these points,
and the step size that corresponds to the minimum value of
the penalty function is selected for the next iteration. This
method, therefore, takes full advantage of each adjoint inte-
gration by selecting an optimal step size for that particular

R

iteration.

Rosenbaum(7), also in 1963, developed a method similar
to a closed-loop guldance scheme that "provides rapid con-
vergence for a varlety of missions." The distinctive feature
of this method is that the control step size in the gradient
direction 1is calculated and becomes a time dependent quantity.
The significant result is that large.- deviations from the
nominal trajectory can be tolerated while still satisfying
the terminal constraints; thus, it is possible to move more
rapidly toward the optimal trajectory. The approach is
similar to the A-matrix control scheme proposed by Bryson
and Denham(e). Unfortunately, the rates of convergence relative
to previously 5r0posed methods are not adequately illustrated.

AR i e
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1n 1964, Stancil(g) proposed a slightly different approach
to the inherent gradiert convergence problem. This approach

'i




is similar to Roscnbaum(7) in that a time dependeni welghting
matrix is calculated. Basicalxly, the formulation follows a
suggestion made, but not used, by Bryson, Denham, Carroll and
Mikami(z), in which the current control program 1s averaged

with the FEulerian control. The procedure eliminates the guessing
of the performance index decrease and other welghting factors.
Again, the convergence characteristics of this method are

not directly compared with the previously proposed techniques.

(10)
easily determined welighting matrix which is applicable to

Lewallen , In 1966, derives « time dependent and
either minimizing a performance index or a penalty function.
An analyslis and comparison is made using both the proposed
welghting matrix and the unity matrix. When the proposed
matrix is used a significant convergence acceleration is
realized.

FORMULATION

The gradlient method is formulated with both hard and
soft constraints even though the formulation, perhaps in
different form, is presented in available literature. Inclu-
slon of this information in the present report is encouraged
(1) to make the report more self contained and (2) to provide
a basis for the extensions required for convergence accelera-
tion discussions.

Gradient Method Using Hard Constraints

It is desired to determine the control program u(t),
»
where u 1is an m vector, which will yield an extreme
value of some performance index

5




subject to the differential equations of motion

x = f(x,u,t) (2)

where x 1is an n vector and u 1s an m vector, while
satisfying the terminal constraint relaticns

vy = W(xf’tf) = 0 (3)

in hard form, where ¢ 1is a q vector. One of the terminal
constraint relations may be selected as a stopping condition
for the integration process,

2 = a(xp,t = 0. ' (4)

)

If the diffeerential equations (2) are linearized about
some nominal path, the resulting equations become,

§x = f, 6x + f  éu (5)

where fx and fu are partial derivatives of f with
respect to x and u , respectively, and are evaluated on
the nominal trajectory.

The equations adjoint to (%) are
: T .
A - A (6)

where A 1is an n vector of adjoint variables. This
equation may be combined with (5) to yield

d T -
EE(A §x) = A fu su . (7)




Integrating this equation ylelds

T rog T
(A 6x)r - AT su dt + (A" éx) (8)
u 0

t

o]
which is designated the Fundamental Guidance Equation. The
object now 1s to determine how initlial state variations and
integrated control variations influence the performance
index, stopping condition, and the terminal corstraints. 1If,
on separate trials, the terminal values of the adjoint vari-
ables are sct equal to

Mplbg) = [‘g%]f r(bg) = [g‘;%]f vales) = [3]

(9)

where A¢ is an n vector, Aw is a n x g matrix and

An is an n vector, the desired relations are seen to be

d¢ = f ! AT f éu dt + (ATéx) + ¢ dt (10)
t ¢ “u ¢ o f
(o]
-
dv = f g AT £ su dt + (ATex) + v dt (11)
v t y “u v o f
(o]
t
dn = f ; AL P su dt + (ATéx) + 0 dt (12)
Q "u 1) (e} 4




where (') = [iil x + 3£~] and d() = [&() + (") dt]r >

This formulation allows the specification of an allowable
step size to be taken in control space defined by

t
f 3 .
ds = / 7 6u” W éu dt (13)

Yo

where the step is a weighted quadratic function of the con-
trol deviation. The welghting matrix W 1is included to
improve the convergence characteristics by giving more weight
to regions of low sensitivity. However, it is often chosen
unity because of the lack of knowledge concerning the region
of sensitivity. The criteria used for determining the best
elements for this welighling matrix are not easy to determine
and are usually found through trial and error procedures.

The stopping condition (4) is to be identically satisfied
so do in (12) is equated to zero. The terminal time varia-
tion dt, 1is elimlnated from (10) and (11) to yield

t

f
_ T T
d¢ = _{ Aw f  éu dt + (Awax)

(14)

u 0O
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The total variation of the performance index may be
represented by

d =ffAT  § 6udt.+(AT6x)
¢ t ¢ "u (3] 0
(e}
te
T J{ T K
+ v’ |dy A Awn fu su dt - (Awn 6x)o
(o]
te
1 T
+ ulds - 7 6u” W éu dt (16)
t‘O

where the terminal constraints and the control step are ad-
Joined by the use of the vT and u Lagrange multipliers,
respectively. Since it is desired to determine the control
variation which corresponds to the maximum change in the

performance index, the first variation of (16) must vanish;
therefore

t
f
T T T 2 -
§(d¢) = J[ (A¢Q fu - v Awn fu - p du” W) udt =0
o
(17)
This implies that the desired control variation is
vou.o= Lyt T _
éu : LI (A¢Q Aog v) (18)




and when this equation is substituted back into (13) and
(15), the values of v and u are seen to be

-l -]
v -quw dg + Iw Iw (19)
and
T 1 IQ
I, -1 171
o= d¢¢ Yo oy v (20)
S - dBg Iww dg
where dg = dv - (AT §x)
ST My o
t
I., = Jf ! AT e owt el gt (21)
Yy t Yo “u u “yo
(o}
t
T AL powtt el gy (22)
Ve t, e u u ¢
(e}
; t
I.. = Jf ! AL e oWl ey at (23)
¢ t ¢80 “u u "¢0 3
(e}
and Iww is a gxq matrix, IM is a q vector, and I¢¢

is a scalar.

Now combining (18) through (23) yields the desired
control program

: 10




l
T .- 2
dS - dg” 1 : as

-1 .7 -1 Yy
= 4 -
su +W fu“m Ava Iw IM) . T ;

o0 = Tve Tuv Tve

-1 T -1
+ W fu AWQ IWW dg (24)
where the positive (negative) sign is used if ¢ 1is to be
maximized (minimized). The previous control program is now
modified by

u = u + su . (25)

new old
The computational procedure for the Gradient Method
using hard constraints may be summarized as follows:

(1) Integrate the n differential equations of motion
(2) forward, using an assumed control program and
the desired initial conditions. This integration
is continued until the stopping condition (4) is
satisfied. The state variable values are stored
at each integration step.

(2) Integrate the adjoint equations (6) backwards
q+2 times with the starting conditions (9). The
coefficient matrix £y 1is formed from the state :
variables stored during the forward integration. §
(3) Integrate the I equations (21) through (23) back-
wards simultaneously with the adjoint equations
using initial conditions of zero to yield values at

t for I and I¢¢ :

0 vy’ IW¢ i

(4) Select a desired improvement in the terminal dissatis-
faction dy for the next iteration.
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(5)

(6)

(7)

(6)

Select a rcasonable value for the mean square
control deviation from the previous control
program by using

= L su? N
ds > SUZe (tr to),

which provides a value of dS .

Use the selected value of dy and dS to calcu-
late the numerator under the radical in (24). 1If
this quantity 1is negative, determine the dy that
makes the quantity vanish. If it is positive, use
the quantity as it is.

Calculate the éu as given by (24) and alter the
assumed control program. The quantity dS must
be decreased according to some selected criteria
to prevent stepping across the optimal point into
a nonoptimal region.

The procedure is continued until the control varia-
tions are less than some preselected value.

12




Convergence Acceleration Using Hard Constraints

A primary objective of the present investigation is
to develiop an iterative scheme that reduces some of the
arbitrariness and increases the convergence rate of the
Gradient Method when using hard constraints. Since the
welghting matrix W , introduced in (13) is arbitrary,
some rational basis for its selection 1s needed.

The problem 1s approached by examining an integral form
of the Welerstrass E-Function which approximates the change
in the performance index. This change is

by
d¢ = / E(x',i*,i,t)dt ~(26)

b

where E 1s the Welerstrass E-I'unction as developed by
Gelfand and Fomin{'!), The E-Functlon is defined as

E o= £(x ,%,t) = £(x % ,t) - Aox" x5 ,8) (x - %) (27)
9X

and for the system to be considered

Ty . (28)

f(x,x,t) = H(x,u,t) - A
The asterisks refer to the optimal path, and the absence of
asterisits refer to any nearby path. From the calculus of
variations, a necessary condition for the existence of a
minimum valwed performance index is that E be non-negative
during the interval t < £ s« te

13
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It is noted, by examining (2), that a variation in con-
trol is accompanied by a variation in X », and that a state
varlation will occur only after a finite duration of time.
Hence, the expansion of (26) 1s made by considering that the
control deviation 1s not accompanied by a change in state.
The relation (26) is now written

t
f *
d¢ ¥ / (H - H ) at . (29)

Yo

The first term in the iIntegrand may be expanded in a Taylor's
series about the optimal path at each poinu in time to yleld

Sul HY. 8u + eeooees (30)

H ¥ H. + H' +
u su uu

N~

and substituting the above equation into (29) and recalling
#*
that Hu = 0 on the optimal path results in,

t
r X
~ 1 T
d¢ = 7 du’ H . dudt . (21)

Yo

This equation represents the performance index change
associated with the deviation of the control program from an
optimal control program. It must be stated that H:u is not
known until the optimal trajJectory 1is converged upon, but the
expression (31) becomes increasingly accurate as convergence
progresses. It is during this terminal phase of convergence
that the Gragient Methods have the greatest need for con-

vergence acceleration.




The convergence acceleration technique proposed in the
present investigation uses the expression (31) to approximate

the performance index change rather than the one previously
mentioned in (14). When this 1s done and the control step
size constraint is not included, d¢ may be written

t

f ¥
d¢ = Jf 3 6u’ H_  6u dt

t(;

+ vilap - ! AT £ gu dt (32)
v “u ' '

Requiring that &(d¢)

m
o
<
[
®
[
jo N
©

-1 T
su (H,_ ) £y A

i va v (33)
: and when this equation is substituted into (15),
t -1 a (34)
v Lov B
where
s

- T $ =1 T
S / Aoa Tu (y) 70 £y Ao dt . (35)
3 to
¥ Therefore, the desired control deviation becomes
: # -1 7T -1

§u | (Hyy) ™ Ty Ay Typ 48 - (36)

>
.
;
:
:
:

15
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In comparing equations (36) and (24), it should be noted
that (36) is simply the last term of (24) where W has been
replaced with H:u . Since the step size constraint was
eliminated, the control varlation can be controlled by
requesting only a percentage of the terminal dissatisfaction
to be corrected by

dg = ~C dg , (37)

Al
Q
A

where 0 1.0
It is interesting to note that the control variation
law (36) proposed in the present investigation 1s similar
12
to the one =uccessfully used by Tapley and Fowler( ) in a
closed-loop cortrol scheme.

Gradient Method Using Soft Constraints

The theoretical development of the Gradient Method using
soft termi~al constraints is similar to that used for hard
constraints. The primary difference 1s that the terminal
constraints are adjoined to the performance index to form a
penalty function

2 \ 2
P(Xf,tr) - wO ¢ (xf’trl él wi wi(xf’tf) (38)

where the wi's are welghting constants. If these con-
stants are sufficiently large, minimizing the penalty func-
*lon is essentially the same as minimizing the performance
index while driving the ter.ainal constraints to zero.

16
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To determine how this penalty function 1s related to
initial state varlations and the integrated control varia-
tions, the Fundamental Guidance Equatior. (8) 1s used.
Selecting the starting conditions for the adjoint equations
(6) to be

T P T AN
\I(t,) = [a—,—(-]f \I(tp) = [-a-,;]f (39)
where AP is an n vector and *n is a scalar, ylelds
t
dp = i A R N T (40)
P "u P (¢] f
to
t
de = ' AT £ gu dt + (ATex) + f dt (41)
R "u Q 0
to

If the stopping condition do 1is identically satisfiled,
the penalty function change may be expressed as

dp = & AT £ sudt + (AL 8x) (42)
PR “u PR [¢)
to
where
L ]
T p

17




Now, it is desired to determine the control variation
which maximized the penalty function change dP . Adjoining
an unwelghted control step constraint to the penalty function
change yields

te ] Lo |
- T 1 suT su dt
dp APQ fu du dt + u|dS - 5 Su u
£, . £ |
T I |
g (Apnéx)o . (uh)

Requiring that 6(dP) vanish implies that

= T = T =
su K £, Apg K H, (hs)

where K 1s a constant equal to 1/y , Hu is defined as

Agn fu . This equation Is similar to the one developed by

(6)

as a control step size in the gradient direction.

Wagner and Jazwinski The constant K can be interpreted

The penalty function change is evaluated by substituting
(45) into (42) to yield

t

f T
dP = K / H, H. dt . (46)

to :




The computational procedure for the Gradient Method
using soft constraints may be summarized as follows:

(1) Integrate the n dJdifferential equations of
motion (2) forward using an assumed control program
and the desired initial conditions. This inte-
gration is continued until the stopping condition
(4) is satissied. The state variable values are
stored at each integration step.

(2) 1Integrate the n adjoint equations (6) backward
one time with the starting condition (43). The
coefficient matrix f is formed from the state

X
variables stored durlng the forward integration.

(3) Having obtained the solution Agn(t) s the term
_ T
Hu = XPQ fu may be formed. The square of Hu

may be integrated from to to tf and the step
size K may be determined by specifying a desired

.'-l{‘w w

-

penalty function change dP

(4) The control variation may be determined from (45)
and applied to the previous control program.

e -

(5) The procedure is continued until the control vari-
atlons are less than some preselected value.

It must be noted that the specified penalty function
change, and hence the step size K , 1is arbitrary, and
the judicious selection of K becomes a key factor in

increasing the convergence rate. An automatic procedure for
2. its selection 1s desired.

=y »
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Convergence Acceleration Using Soft Constraints

The formulation for determining a convergence accel-
eration procedure when using soft constraints is similar to
that when hard constraints are used. The performance index

change or penalty function change in the case of soft termi-
nal constraints 1s approximated by

t

dp ¥ f E(x',:’c*,i,t) dat . (47)

o

In the same manner as discussed for hard constraints, this
relation may be reduced to

f ¥
dap = / (H - H ) dt (48)

which states that the penalty function change may be

approximated by a time integral of the Hamiltonian deviation
from the optimal value.

Now, the second term in the integrand of (48) may be
expanded in a Taylor's series about the current (nonoptimal)
path at each point in time to yileld

*

~ . ‘
H H + Hu su + = su Huu su + : (49)

20




Substituting this expression into (48) results in

t

f
~ 1 T
dp = j{ - (Hu Su + Y su “uu su) dt (50)
t

O

which states the penalty function change in terms of the
control deviations.

It 1s desired to determine a control deviation which
will maximize the penalty function change on each iteration,
and hence a necessary condition 1s that 6(dP) = 0 which
leads to

-l T
uu Hu

su = -H (51)

where Huu and Hu are evaluated on the current trajectory.
This equation implies that the optimal control is in the
negative gradient direction, weighted by H;; . By comparing
(51) with (45), it 1is seen that the constant K , calculated
only once for each iteration, is replaced by the time

1

dependent and easily calculated weighting matrix H;u ]

APPLICATION AND RESULTS

The theoretical developments made in the previous section
are applied to a realistic example which is difficult enough
to demonstrate the convergence advantages but simple enough
to be easily implemented. The example chosen is the two-
dimensional.hinimum time, constant low thrust Earth-Mars
transfer trajectory. The transfer is assumed to leave the
Earth region with initial conditions corresponding to that

21




of Earth, transfer through heliocentrlic space to match con-
dition of the Mars orbit. The orbital parameters used are
shown 1n Appendix A, and the differential equations used are
shown in Appendix B. An example procedure for setting up the
Method of Steepest Descent using hard constraints is shown in
Appendix C,.

The Method of Steepest Descent using hard constraints is
selected to i1llustrate the convergence acceleration procedure.
The value of using the H:u matrix in the expression for
control deviation (36) rather than using the unity matrix
in the conventional formulation (24) is 1llustrated in
Figures 1, 2, and 3. The three figures represent cases
| where three widely different initially assumed solutions or
-l control programs are used. The plots are of thrust angle
above local horizontal in degrees as a function of mission

time in days. Each figure also includes the Eulerian or

Hit <o RS

optimal control program solution so that the state of con-

o gl
]

vergence of the other illustrated solutions may be assessed.
The two remaining solutions on each figure are the ones that
have been developed after 13 iterations. The curves marked

A by W = I wused the conventional technique described by (24)
and the ones marked by W = H:u used the proposed technique
(36).

The significant fact illustrated is that for all three
assumed solutions, the control program, after 13 iterations,
that uses the proposed acceleration procedure is well ahead
of the conventional procedure in shaping the curve. Both
procedures q}timately approach the Eulerian program,
therefore illustration of the converged solution is not
instructive.
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Although 1t is not shown, for the W = 1 case illus-
trated in Figure 2, approximately 12 more iterations are
required to duplicate the shape obtained by the W = H:u
case in only 13 iterations. Hence, for this particular
case, the proposed procedure reduces the computational time
required to 50 percent of the time required by the conven-
tional method.

One additional plece of information that can be extracted
from the figures is that of how the assumed solution influences
the convergence rate for this particular problem. Since the
control program state of development 1s shown for the 13th
iteration in each case, a comparison may be made.

CONCLUSIONS AND RECOMMENDATIONS

The conclusions of this investigation are that the
proposed procedure, where W = “:u s produces a significant
acceleration in the convergence rate of the Method of
Stecpest Descent using hard constralnts. In one of the cases
presented, the computational time was reduced to one-half
of that previously required. A byproduct in the investi-
gation is seen in that convergence occurs for three widely
different initially assumed control programs--a real con-
trast to the highly sensitive indirect methods. It 1s seen,
however, that the assumed control program does influence the
rate of convergence. This is illustrated in the figures by
comparing the control program shape after 13 iterations for‘
each different initially assumed solution.




This theoretical development for the Method of Steepest
Descent with soft constraints has not been verified by
application to the above example. It 1. recommended that
this be completed, so that a comparison of the two procedures

can be made.
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Appendix A
ORBITAL PARAMETERS

Astronomical Unit, AU
Orbital Radlius of Earth, .
Orbital Radius of Mars, L/

Gravitational Constunt

of Sun, GM
Initial Spacecraft Mass, Mq
Spacecraft Thrust, T

Spacecraft Mass Rate, ﬁ

.14959870
10000000
15236790
13271504

67978852
.10312370
.10123858

10!?2 meters

10! AU

10! AU

102! meters3/sec?

103 kilograms

10! newtons

10" kilograms/sec
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Appendix B
DIFFERENTIAL EQUATIONS

The differential equations used in this investigation
are (1) the differential equations of motion

r? GM , T sin B

A = ) = — - — — =
1 = r p2 m 1
. uv T cos B
= = - 4
Zy v T m fz
&g ® r = 4y = f3
4 \'
= = -_— =
Zy 0 - fy

and (2) the adjoint differential equations
i
CR
. (> u 1
(I’) A+ (1") Ay = (I’) Ay
. 2 2GM
A3 = dei = Al - 32 Ay + . 4 Ay
r? r.3 r2 2

> e
—
!

>
N
!
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Appendix C
EXAMPLE PROCEDURE

The differential equations of motlion are integrated
forward from to with starting conditions

0

z(to) =

and some initially assumed control program g(t).

The performance index to be minimized is

and the terminal constraints are

n

n
o

V1 u(tf) - uf

Wz - V(tf) - vf = 0

if
o

WS r(tf) — rf

The stopping condlition used 1is 9 = a(tf) - 0, =0, and the
starting conditions for the backward integration are

x’i(tf) = [-g%]f = [0 0 0 0]




LO 0 1 OJ

3 Ry
An(tr) = [%%]f = [0 0 0 1] .

The time rates of change of performance index,
terminal constraints, and stopping condition are

: = |94 4 99 . -
¢ [:at toax g]f 1
; Y
X u
- = 9% ., 3y .
P v [at t a9 "] ¥
-4 J r
b L 5 ]r
n = |98t , 9% ° = &
4 Q [;t + X {]f ef )
\
¥ c-2
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