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CONVERGENCE ACCELERATION PROCEDURE

FOR THE

METHOD OF STEEPEST DESCENT

ABSTRACT

A procedure is proposed which accelerates the conver-

gerice rate of the steepest descent or gradient optimization

methods. The previously suggested procedures of selecting

a preferred gradient step size for each iteration is extended

by defining an easily determined, time dependent weighting

matrix that approximately extremizes the penalty function or

performance index. Numerical results with this modification

are obtained and compared with results obtained by applying

the conventional technique. A significant acceleration in

the s hap.inE of the optimal control program is realized.

INTRODUCTION

In studying procedures for accelerating, the convergence

rates of the c:,assical gradient methods, it is necessary to

first define the optimization problern. The purpose of this

.investigation is stated, and a brief background sketch is

made.

.
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Definition of the Optimization Problem

lr: one class of optimization problems, in particular

the spacecraft trajectory optimization problem, it is desired

to determine the history of the control variables in such s

manner that certain specified initial and terminal constraints

are satisfied while some performance index is extremi.zed.

The control variables are unspecified inputs to the system

which may be chosen to control the spacecraft state; i . e. ,

the poSitiun and velocity. The initial and terminal cunstrainnts

are simply conditions on the positions and velocities that

must be satisfied at the initial and terminal time, respectively.

The performance index is usually 	 scalar function associated

with '..he spacecraft performance and is the yuantii;y to be

extremized.

The terminal_ constraints are handled in either the so-

called "hard" or "soft" form. In the "hard" form an effort

is made to satisfy the terminal constraints identically while

in the ":oft" form the constraints are satisfied only approx-

imately. It i.s in the former case that the performance index

approach is taken because this index is exiremized separate

from the satisfaction of the terminal constraints. It is
with the latter case that the pe,ialty furlctieri concept
emanates; i.e., a certain pen-lty is accepted because of the

less stringent, demand of only approximate terminal constraint

satisfaction.

Purpose of the Investigation

The ultimat:^ purpose of this investigation is to dev op

an insight into the convergence characteristics of some of the

direct optimization methods. This ultimate purpose is approached

1
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by satisfying; the following secondary objectives:

(1) Increase the understanding of the currently

popular optimization methods so that the deficient

convergence characteristics of each method are

discovered.

(2) Extend and modify these methods to eliminate the

deficiencies.

(3) Formulate and successfully implement a realistic

example.

( 11) Compare the convergence characteristics of the

proposed procedures with those derived from

previously proposed schemes.

Background Study of the Gradient Methodu

An analytical development of a trajectory optimization

theory was published by Kelley 0) in 1960. This method,

referred to as the gradient method, is based on an extension

of some ideas presented by Courant in 1941. A similar formu-

lation was made, simultaneously and independently, by Bryson,

henham Carroll and Mikami(?) 	
(3)

and Bryson and Denham	 .

Kelley, Kopp, and Moyer (4) presented an analysis of several

gradient techniques using inequality constraints on the

control variables and a penalty function concept fur handling,

terminal constraints. In an effort to determine the thrust

steering program for the optimization of a secon r'_ stage

booster, Pfeiffer 
(5) 

developed a method of "critical direction"

which is similar to the gradient techniques of Kelley and

Bryson.

3

^..^- .- - --.c.___. ^. ___ _ - •- .. - - - - 	 -- ,r--x: - ^=-	 .̂^r^z ...._ _ -	 _	 . may„	 _.,,..:,ice.



In 1963, more attention began to canter around conver-

gence acceleration for the F;radicnt methods. Wagner and

Jazwinski (6) presented a gradient method incorporating bott-

terminal and instantaneous inequality constraints. This

investigation also included an interesting method for deter-

mining the control step size magnitude that should be taken

in the gradient direction to approximately maximize the

decrease in the penalty function. A new step sire is calcu-

lated for each iteratioi ► . This scheme involves making three

trial forward integrations w.-Ah different control step sizes,

and recording the three resulting penalty function values.

A second %rder polynominal is fitted through these points,

and the step size that corresponds to the minimum value of

the penalty function is selected for the next iteration. This

method, therefore, takes full advantage of each adjoint inte-

gration by selecting an optimal step size for that particular

iteration.

Rosenbaum (7) , also in 1963, developed a method similar
	 1•

to a closed-loop guldance sc}icine that "provides rapid con-

vergence for a variety of missions." The distinctive feature

of this method is that the control step size in the gradient

direction is ..alculated and becomes a tirne dependent quantity.

The significant re;;ult is that large:- deviations from the

nominal trajectory can be tolerated while still satisfying

the terminal constraints; thus, it is possible to move more

rapidly toward the optimal trajectory. The approach is

similar to the A-matrix control scheme proposed by Bryson

arid Denharn. Unfortunately, the rates of convergence relative

to previously proposed methods are not adequately illustrated.

In 196 11, Stancil (9) proposed a slightly different approach

to the inherent gradient convergence problem. This approach

4
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is similar to Rosenbaum 
(7) 

in that a time dependent, weighting

matrix is calculated. Basically, the formulation f ,̂ llows a

sugprestiori made, but not used, by Bryson, Denham, Carroll and

Mikami (2) , in which the current control program is averaged

with the l:ulerian control. The procedure eliminates the guessing

of the performance index decrease and other weighting factors.

Again, the convergence characteristics of this method are

not directly compared with the previously proposed techniques.

Lewall-en (10) , in 1966, derives a time dependent arid

easily determined weighting matrix which is applicable to

either minimizing a performance index or a penalty function.

An analysis and comparison is made using both the proposed

weighting matrix and the unity matrix. When the proposed

matrix is used a significant convergence acceleration is

realized.

F'OP.:UL,ATION

The gradient method is formulated with both hard and

soft con ' traints even though the formulation, perhaps in

different form, is presented in available literature. Inclu-

sion of this information in the present report is encouraged

(1) to make the report more self contained and (2) to provide

a basis for the extensions required for convergence accelera-

tion discussions.

Gradient Method U ing Hard Constraints

It is desired to determine the control program u(t),

where u is an m vector. which will. yield an extreme

value of some performance index

W

V :	 _ _



subject to the differential equations of motion

X	 -	 f(X,u,t)	 (2)

where x is an n vector and u is an m vector, while

satisfying the terminal constraint relations

_	 ^(X f ,t f,)	 =	 0
	

(3)

in hard form, where	 is a q vector. One of the terminal.

constraint relations may be selected as a stopping condition

for the integration process,

Q	 -	 n(x f.1 t: f )	 =	 0 .

If' the differential equations (2) are linearized about

soine nominal path, the resulting equations become,

	

6  = f  6  + fu du	 (5)

where f 	 and fu are partial derivatives of f with

respect to x and u , respectively, and are evaluated on

the nominal trajectory.

The equations adjofnt to (^) are

= -fT X	 (6)

where a i.- an n vector of ad,j oirit variables. This
equation may be combined with (5) to yield

dt (a T dx)	 =	 fu 6u	 (7)

E



t f,d	 f
t0

a T f ly bu dt + (A T 6x) 0 + ^ dt f	(10)
41

Integrating this equation yields

t

(A 71f A T f du dt + (ATdx)
f	 t	 u	 o

0

which is designated the Fundamental Guidance Equation. The

object now is to determine how initial state variations and

integrated control variations influence the performance

index, stopping condition, and the terminal corstraints. If,

on separate trials, the terminal values of the ad,joint vari-

ables are set equal to

A^ (t.)	 _ [^-fl	 arI(t ) = ral	 a^ (t,)	 _ [asp]
f	 af	 4)	 f	 ax 

f	
Q	 i	 ax

(9)

where a^ is an n vector, a^ is a n x q matrix and

XSi is an n vector, the desired relations are seen to be

(8)

t 
d^ = f

t0

tf

dQ = f
t
0

a^ fu bu dt {- (X 6x) 0 + ^ dt f 	(11)

X T fu 6u dt + (X T 6x) 0 + S dt f	(12)

7
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where	 ( * )	 =	 [a	 )	
x +	

)J	
and	 d () _	 [ d ()	 f	 ( ^)	 dt] f,

L	 at
f

This formulation allows the Specification of an allowable

'	 step size to be taken in control space defined by

tf

d s 	 = f	 2 auT W au dt	 (13)
L
0

where the step is a weighted quadratic furiction of the con-

trol. deviation.	 The weighting matrix W	 is included to

Improve the convergence characteristics by giving more weight

to regions of low sensitivity. 	 However, it is often chosen

unity because of the lack of knowledge concerning the region

of sensitivity.	 The criteria used for determining the best

elements	 for this weighting matrix are not easy to determine

and are usually found through trial and error procedures.

The	 stopping condition	 ( 1 1)	 is to be identically	 satisfied	 i

so	 dQ	 in	 (12)	 is equated to zero.	 The terminal time varia-

tion	 dt f 	is eliminated from	 (10)	 and (11)	 to	 yield	 1

tf

d^	 =	 al	 f	 au dt	 + (a T	 dx)	 (14)
L	 ¢Q	 u ¢SZ	 o

0

t ^,
1

d^	 _	
x^^ f

u	 du dt+ (,^^^6x)	 (15)
t 0

• •T

where a^'
Sl S2

8
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the control step are ad-

11 Lagrange multipliers,

to determine the control

maximum change in the
tion of (16) must vanish;

The total variation of the performance index may be

represented by

tf

dm	 ).1	 f du dt 4	
T

mst	 u	 (^^stax)ot 0

t
f

+ V  day -	
XT f

u du dl.- (X T 6x)o
L0

t t,

+ u dS f
L

U

1 du W du dt2 ( 16 )

where the terminal constraints and

,joined by the use of the v  and

respectively. Since it is desired

variation which corresponds to the

performance index, the first varia

therefore

Lf

d(d¢) = fT  f - 
V 

	 f - U 6u  4') 6 2 u dt =_0 .L	 Q, S2	 u	 ^ S2	 u
G

(17)

This implies that the desired control variation is

W-1 fT

,	 k	 4



and when this equation is substituted back into (13) and

(15), the values of v and p are seen to be

	

-ul^y dR + 
1 -^ 1	

(19)

and	 1

1	 - IT
W	 +	 V	 (20)

dS - do I-^ dE'

where	 do = do- - ( aT 6Y)

	

^, St	 o

tf

1	
J	

XT^ f 1 W-1 f 	
dt	 (21)

L	
t	 u	 St

0

tf

I cy¢	 _	 ^^nf fU W-1 fu
0	

X	 dt	 (22)
t

.^	 t f

I	 = f XT^ fu
 W
	 a	 dt 	 (23)t

0

and I 	 a qxq matrix, I 	 a q vector, and I^^

is a scalar.

Now combining (18) through (23) yields the desired

control program

10
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ds 
1^^ 

d6
du	 - +W	 f u (a 	 - ^4Q 

1	 1^C)I11 I	 I
 ^

+ W-1 fu X^n 
I -1 d6	 (24)

where the positive (negative) sign is used if 	 is to be

maximized (minimized). The previous control program is now

modified by

anew	 uol.d + 611 .	 (25)

The computational procedure for the Gradient Method

using hard constraints may be su ►niiiarized as follows:

(1) Integrate the n differential equations of motion

(2) forward, using; an assumed control program and

the desired initial conditions. This integration

is continued until ttie stopping; condition ( 11) is

satisfied. The state variable values are stored

at each integration step.

(?) Integrate the adjoint equations (6) backwards

q+? times with the starting conditions (9). The

coefficient matrix f 	 is formed from the state

variables stored during the forward integration.

(3) Integrate the I equations (21) through (23) back-

wards simultaneously with the ad,joint equations

using initial conditions of zero to yield values at

t o for I, I^^ , and I^^ .

(4) Select a desired improvement in the terminal dissatis-

faction dV, for the next iteration.

11
t-
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I
V".

(5) Select a reasonable value for the mean square

control deviation from the previous control

program by using,

dS	 1. 6U2 e 
(t f - to)'

which provides a value of dS .

(E^) Use the selected value of cl^	 and dS to calcu-

late the numerator under the radical in (24) . If

this quantity is negative, deterird ne the d^ that

makes the quantity vanish. If it is positive, use

the quantity as it is.

('t) Calculate the du as given by (A) and alter the

assumed control program. The quantity dS must

be decreased according to some selected criteria

to prevent stepping across the optimal point into

a nonoptimal region.

(&) The procedure is continued until the contra) varla

tions are less than some preselected value.

k



Convergence Acceleration Usink, Hard Constraints

A primary objective . of the present investigation is

to develop an iterative scheme that reduces some of the

arbitrariness and increases the convergence rate of the

Gradient Method when using hard constraints. Since the

weighting matrix W , introduced in (13) is arbitrary,

some rational basis for its selection is needed.

The problem is approached by examining an integral form

of the Weierstrass E-Function which approximates the change

in the performance index. This change is

tf

d^	 _'	 I,(x ,z ,x i t ) d 	 (26)
t

0

where F is the Weierstrass E-function as developed by

Gclfand and Fomin (1 1) . The E--Function is defined as

.	 .*	 a ff(x ,x,t) - f'(x,x ,t),t) (x -- x )	 (2()
ax

and for the system to be considered

f(x,x,t)	 =	 H(x,u,t) -- A Tx	 (28)

The asterisks refer to the optimal path, and the absence of

asterisks refer to any nearby path. From the calculus of

variations, a necessary condition for the existence of a

minimum valtLed performance index is that E be non--negative

during the interval to < t < t  .

13
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It is noted, by examiningr. (2), that a variation in con-

trol is accompanied by a variation in x , and that a state

variation will occur only after a finite duration of time.

Hence, the expansion of (26) is made by considering that the

control deviation Is not accompanied by a change in state.

The relation (26) is now written

tf
dd	 ==	 (}I -- }I ) dt	 ( 29)

ti0

The first term in the integ;rand may be expanded in a Taylor's

serl es about the optimalath at each oirn, in time to y ieldP	 P	 ^

+ 1 1 a 611 + 1- du^ 	 uu	 u1I 	d	 + ......	 (30)2 

and substituting; the above equation into (?9) and recalling;

that 11 u = 0 on the optimal path results in,

tf
1

d^	 2 6u 
7'}luu 6u dt	 (?] }

t 0

This equation represents the performance index change

associated with the deviation of the control program from an

optimal control program. It must be stated that 
ffuu 

is not

knows, until the optimal trlsijectory is converged upon, but the

expression (31) becomes increasingly accurate as convergence

progresses. It is during this terminal phase of convergence

that the Gradient Methods have the greatest need for con-

vergence acceleration.

P
	 14
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The convergence acceleration technique proposed in the

present invoutigation uses the expression (31) to approximate

the performance index change rather than the one previously

mentioned In (1 11) . When this is done and the control Step

size constraint is not included, d^ may be written

t
f

dm	
2^ 

bu d klu u du dt

t f

f
+ VT (.i	

X52 
fu bu dt	 (32)

t 0

I;equiring that d (dy) = 0 yields

au -	 (} l
H
uu F I fu 

X^Q V	
(33)

and when this equation is substituted into ( 1 5) ,

^^	 =	 I O W d 	 (311)

where

t 
I^^	 =	 a^
 
	 f'u (11 uu ) -1 fu ^	 dt	 (35)

t 0

Therefore, the desired control deviation becomes

du	 =	 (11 * ) - i fu X^^ I-I dQ	 (36)

15
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In comparing equations (36) and ( 2 11) , it should be rioted

that (36) is simply the last terra of (24) where W has been

replaced with huu	 Since the step size constraint was

eliminated, thc control variation can be controlled by

requesting only a percentage of the terminal. dissatisfaction

to be corrected by

dB L -C dR ,
	

(37)

where	 0 < C `< 1.0 .

It i.s interesting to note that the control variation

law (36) proposed in the present investigation Is, s i ini lar

to the one zuccessfully used by Tapley and Fowler (1 
2) 

in a

closed-loop control scheme.

Gradient Method Using; Soft Constraints

The theoretical development of the Gradient Method using

soft termi-;al constraints is similar to that used for hard

constraints. The primary difference is that the terminal

constraints are adjoined to the performance index to form a

penalty function

9
P(x f ,t f )	 = 410 ^	 f,tf) + ?^=] 1 W i 12 (x f 2t f,)	 (38)

where the WI I sare weighting constants. If these con-

stants are sufficiently large, minimizing the penalty func-

'Ion is essentially the same as minimizing the performance

index while driving the ter,.iinal constraints to zero.

16
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To determine how this penal_Ly function is related to

initial state variations and the 1ntegrC:ted control varia-

tions, the Fundamental Guidance Equation (8) is used.

Selecting the starting conditions for the adjoint equations

(f) to be

aTtf.)	 IX	 ^	 ? f

	

^(t f.)	 -	 a	 (39)
1 

where X P i. an n vector and a 0 is a scalar, yields

tf

dP

	

	 XP fu du dt + (X T 6x ) o + P dt f 	(110)

L0

t i.
du =	 XT fU du dt 4 (X T 6x ) + S1 dto	 f	 (111 )

t 0

If the stoppinU, condition dot is identically : atisfied,

the penalty function change may be expressed as

rt f
dP =	 XTu	 of	 du dt + (X T 6x)	 (112)J

t0

where

^
T2 	 a r -	 X^	 (113)

17
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Now, it is desired to determine ti, control variation

which maximized the penalty function change dP . Adjoining

an unweighted control step constraint to the penalty function

change yields

tf

d I'	 -	 X P ii f `i d u d t--

t
0

t 
du du d 

to

+ (X T
S26x)o	

(11 1)

Requiring that d (dI') vanis:i implies that

du	 -	 K fu X 	 K 11 91	 (115)

where K is a constant equal to 1/p , 11  is defined as

X T fu 	This equation -Is similar to the one developed by

Wagner and Ja%winski (6) . The constant K can be interpreted

as a control step sire In the gradient dlrectjon.

The penalty function change is evaluated by substituting

( 115) into ( 112) to yield

tf

dP =	 K	 if II I dt

t	
u u

0

(116)

18
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The computational procedure for the Gradient Method

using soft constraints may be summarized as follows:

(1) Integrate the n differential equations of

motion (2) forward using an assumed control program

and the desired initial conditions. This inte-

gration is continued until the stopping; condition
( 1I) is satisi'i.ed . The state variable values are

stored at each integration step.

(2) Integrate the it ad,joint equations (G) backward
one time with the starting; condition (113.). The

coefficient matrix f 	 is formed from the state

variables stored during; the forward integration.

(3) Having; obtained the solution XT (t) , the term
}iu	

^Pi^ f
u may be formed. The square of Hu

may be integrated from t o to t 	 and the step

size K may be determined by specifyingfyi.ng; a desired

penalty function change dP .

(^I) The control variation may be determined from (115)

and applied to the previous control program.

(5) The procedure is continued until the control vari-
4	 ations are less than some preselected value.

It must be noted that the specified penalty function

change, and hence the step size K , is arbitrary, and

the judicious selection of K becomes a key- factor in

increasing the convergence rate. An automatic procedure for

its selection i:) desired.

19
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(118)

Convergence Acceleration Using Soft Constraints

The formulation for determining a convergence accel-

eration procedure i-.,hen using soft constraints is similar to

that when hard constraints are used. The performance i.ndcx

change or penalty function change in the case of soft termi-

nal constraints is approximated by

d 	 -	 F(x ,x ,x,t) dt	 (Il)
t 0

In the same manner as discussed for hard constraints, this

,,elation may be reduced to

t 
dP	 ft 0

( 1 — }l -Y; ) dt

which states that the penalty function change may be

approximated by a time integral. of the Hamiltonian deviation

from the optimal value.

Now, the second terin in the integrand of ( 118) may be

expanded in a Taylor's series about; the current (nonoptimal)

path at each point in time to y1el.d

tf	 tf + fi u 6u 4 1 du H	 du + •••
2	 uu

20
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du	 =	 -If-- I Ifuu u (51)

Substituting this expression into ( 1I8) results in

t
f,

dP	 - (it u du + ? du i il uu du) dt

t
0

(50)

which :Mates the penalty function change in terms of the

control deviations.

It is desired to determine a control deviation which

will maximize the penalty function change on each iteration,

and hence a necessary condition is that d(dP)	 0 which

leads to

where Ituu and 
11  

are evaluated on the current trajectory.
This equation implies that the optimal control is in the

negative gradient direction, weighted t)y iIuu 	 By comparing

(51) with ( 1 I 5) , it is seen that the constant K , calculated

only once for each iteration, is replaced by the time

dependent and easily calculated weighting matrix Nuu

APPLICA`1'ION AND RESULTS

The theoretical developments made in the

are applied to a realistic example which is d

to demonstrate the convergence advantages but

to be easily implemented. The example chosen

dimensional minimum tin ge, constant low thrust

previous section

ifficult enough

simple enough

is the two-

F,arth-Mars

transfer trajectory. The transfer is assumed to leave the

Earth region with initial conditions corresponding to that

21
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of Earth, transfer through heliocentric space to match con-

dttion of the Mars orbit. The orbital parameters used are

shown In Appendtx A. and the differential equations used are

s hown In Appendix B. An example procedure for setting up the

Method of Steepest Descent using; hard constraints is shown in

Al:pendi.x C.

The Method of Steepest Descent using hard constraints is

selected to illustrate the convergence acceleration procedure.

"Phe value of using the 
lluu 

matrix In the expression for

control deviation (36) rather than using the unity matrix

in the conventional formulation (2 I1) is illustrated in

Figures 1, 2, and 3. The three figures represent cases

where three widely different initially assumed solutions or

control programs are used. The plots are of thrust angle

above local horizontal in degrees as a function of mission

time in days. Each figure also includes the Fulerian or

optimal control program Solution so that the state of con-

vergence of the other illustrated solutions may be assessed.

The two remaining solutions on each figure are the ones that

have been developed after 13 iterations. The curves marked

by 41	 l u ;ed the conventional technique described by ( 2 1 1 )

and the ones marked by W = Il uu used the proposed technique

(36)•

The significant fact illustrated is that for all three

assumed solutions, the control program, after 13 iterations,

that uses the proposed acceleration p?ocedure is well ahead

of the conventional procedure in shaping the curve. Both

procedures &ltimately approach the Eulerian program,

therefore illustration of the converged solution is not

instructive.

22
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W

Although it is not shown, for the W = I case illus-

trated in Figure 2, approximately 12 more iterations are

required to duplicate the shape obtained by the W ` 
11 u

case in only 13 iterations. hence, for this partscular,

cane, the proposed procedure reduces the computational time
required to 50 percent of the time required by the conven-

tional method.

One additional piece of information that can be extracted

from the figures is that o!• how the assumed solution influences

the convergence rate for this particular problem. Since the

control program state of development is shown for the 1
3 t

Iteration in each case, a comparison may be made.

CONCLUSIONS AND RECOMMENDA` 1014S

The conclusions of this Investigation are that the

pi-oposed procedure, where 41 	 ifuu , produces 9 significant-

acceleration In the convergence rate of the Method of

Steepest Descent using hard constraints. In one of the cases

presented, the computational time was reduced to one-half

of that previously required. A byproduct in the investi-

gation is seen in that convergence occurs for three widely

different initially assumed control programs---a real con-

trast to the highly sensitive indirect methods. It is seen,

however, that the assumed control program does influence the

rate of convergence.	 This is illustrated in the figures by

comparing the control program shape after 13 iterations for

each different initially assumed solution.

26

r	 _



This theoretical development for the Method of Steepest

Descent with soft constraints has not been verified by

application to the above example. It i- recommended that

this be completed, so that a comparison of the two procedures

can be made.
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Appendix f.

ORBITAI. PAIZV . TENS

Astronomical Unit, AU 	 .1 11959870 x 10 12 meters
Orbital. Radiu. of Earth, re	 .10000000 x 10 1 AU

Orbital Radius of Mars, vm	 .15236790 x 10 1 AU

Gravitat i oval Constttnt

of Sun, GM

Initial Spacecraft Mass, me

Spacecraft Thrust,, T

Spacecraft Mass Rate, m

0-

A-1

^	 ^ - -	 - _ 

^	 •^.. -----
	 ~	 _ . ^ ^ ..	 ^,	 .,. ' v ^S'`'IC..'"'''"+

.^.- ^^ _ .

.67978852

.110312370

.10123858

.13271 r)0 1 1 x -10 21  rneter.^ 3/sect
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Appendix b

DIFFER>~:NTIA1, EQUATIONS

The differential equations used in this investigation

are (1) the differential equations of motion

ZI	
r? — GPI + T sin B	

fr	
r?	

m	 1

Z 2 =	 _ _ uv + T cos B = f
2

	

r	 m

Z 3	 = t' = u —	 f3

ZL,	 p	 _	
t	

--	 f4

and P) the adJoint differential equations

a I	 —	 (1) X2 -- X3

a	 =	
Y ? _ 2GI^I	 (UV	 + (

Y)a.
3r2t,3 	 1	 r?2,2	 F

^4 - 0

B-1

Ir
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Appendix C

EXAMP1,H PROCEDURE
.

The differentia]. equations of motion are integrated
forward from t  with starting conditions

L1

0'L(t)
	 v

I'

0 t

0

and some initially assumed control program P(t).

The performance index to be minimised is

= t 

and the terminal constraints are

4) 1 	-	 u(t f,) -- u f	 =	 0

^ 2	 -	 v(t
f,) -- v 
	

=	 0

y- 3	 -	 r (t f ) --- 
r f,	

-=	 0 .

The stopping; condltlon used Is 0 = b(t f ) - of = 0, and the

starting conditions for the backward integration are

J^ 1 (t )	 =	 ^l^ 	 [0 0 0 0]
f	 a xJ f,

C-1

E.

''

t J



a oX4 ( tf)	 =	 2yx
_ f

T	 a n
a si ( t f )	 =	

a
- f

1 0 0 0

=	 0 1	 0 0
L0 0 1 0_

C0 0 0 11 .

The time rater, of change of performance index,

terminal constraints, and stopping; condition are

at +	 x	 = 1
ax f'

U

_	 a	 =
at + ax x f

.	 f.

_	 asa 	 asz X	 o
a t; +a x	 i.	 f

t

C-2
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