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THE GENERALIZED FORWARD ITERATOR

by: William E. Moore

SUMMARY

A computer program has been written which constructs optimized
Apollo missions. It is nighly versatile; it will produce a scan of
several related missions or an accurate trajectory of reference qua-
lity. Speed and accuracy are purely dependent on the mathematical
model chosen for each particular case. This model could consist of
an array of two-body approximations, or of a precise numerical inte-
gration of the equations of motion going by the Encke method when
applicable. The program is extremely flexible with regard to the
mission that can be constructed, and the extent to which it can be
optimized. This note indicates how the input describes the mission
and the method of computation to the computer. It also presents the
various mathematical trajectory models that are available.

INTRODUCTION

This Apollo mission design program has been designed to furnish
the analyst with a reliable tool for the desien of a great variety
of missions. It is fast enough to be capable of producing a "scan"
when no great accuracy is required, as in preliminary mission design,
and accurate enough to produce a trajectory of reference quality
when required. It is general and flexible enough to permit the ana-
lyst to assess the effects of many different mission configurations
and the introduction or omission of numerous constraints.

The major constituents of the jrogram are (1) input and initial-
zation, (2) first guess generation, (3) trajectory, mission parameter
and constraint computation, (4) iterative parameter correction for
the satisfaction of constraints and eventual mission optimization
procedure, and (5) progrcm output. These constituent parts are
described in detail in the following sections.



PROGRAM INPUT AND INITTALIZATION

The operation of the program is completely controlled by a set
of input data and switches. Each input number has associated with
it on a card its location in the full input array. This location
appears on the card and the input processor then stores this number
in its proper lccation. Thus, it is necessary only to load those
input numbers which are needed and which differ from previously loaded
value. Physical quantities may be read in a number of different
urits. The unit is indicated by a code letter on the input card,
which enables the processor to apply the proper scale factor for
conversion to internal units. The input processor further has the
capability of using a previously loaded number, of incrementing it by
a specified amount, or of using a specified rultiple or fraction of
the present value.

A first guess for the independent variables obtained previously
may be retained, be incremented or else be recomputed for every case.
In addition, the converged answer of the previous case may be used
as a first guess.

The input array further contains a set of switches which substan-
tially control the flow of the program.

One set of these describes the situation at the beginning of the
trajectory, and thus indicates which maireuvers are still to be perfor-
med. For example, the trajectory might start at the launch site, or
at a later time, such as some position and velocity in earth parking
orbit, or along the translunar leg, in lunar parking orbit, or along
the transearth leg.

Another set of switches describes the independent variables of
the search; i.e., the variables to be determined, and the constraints
to be satisfied. Table II gives a list of all the inputs to the
program.

During initialization all these switches are used to set up a
path through the trajectory computer, so that only the trajectory
segments needed in the problem at hand are computed, and all neces-
sary constraints evaluated. It further guarantees that all neces-
sary partial derivatives are computed. Simultaneously, in addition,
all these switches are checked for consistancy. If an obvious incon-
sistency is detected, the program proceeds to the next case. Because
of the great generality of the program, a complete consistency check
is not feasible. Thercfore, even if the input passes all the



‘emsistency tests, this "consistent" trajectory is not guaranteed to
represent a reasonable problem, but as much checking of the switches

as possible is done.

A third set of switches controls mode of computation of each of
the various sub-arcs in the trajectory. The alternatives here are
computation by numerical integration or by conic approxiations for
the coast phases and idealized arcs for the powered portions.

The choice here will depend on the accuracy required as well as
on the computer time available.

FIRST GUESS GENERATION

In order to insure the most efficient behavior of the iteration
scheme, in some cases, first guesses for one or more of the indepen-
dent variables may be computed. No effort has been made to £ill up the
program with all the known direct methods for getting these values;
rather only those which make the trajectory computer program using or
the iterator operation more efficient are included.

One can choose to compute first guesses for time of launch and
time in earth parking orbit if starting at the launch site. Falling
out, also, is the velocity increment at translunar injection. These
three values are based on the desired translunar flight time, or a
nominal time if a free-return trajectory is desired. From this value
and the base time, the position of the moon at some point after arri-
val is computed as a target. Now the time of launch is chosen so that
the plane of the earth parking orbit contains this target point. Then
the time in that orbit is adjusted so that the translunar trajectory
pesses through the target point. These times are close enough to the
correct ones to be quickly adjusted by the parameter search procedure.

In the case where the parking orbit is eslready fixed, the proce-
dure is slightly modified in that the translunar trajectory--still
assumed to be in the same plane as the parking orbit--commonly will
be chosen as close as possible to the target point, but will not, in
general, contain it. In this case, too, the search procedure quickly
adjusts the first guess to their correct value.

Another case involves a point after translunar injection, but
not on the nominal translunar trajectory. In this situation, the
most efficient procedure turns out to be to apply the search technique
in a "backward" manner first. This consists of searching for a time
of pericynthion and a pericynthion velocity vector, given a fixed



pericythion position, which will lie on a trajectory containing the
original given point. At the latter point, the computed velocity
vector provides first guesses for the maneuver to be executed to return
to nominal condition.

Finally, for each of the major burn phases, provision is made to
compute first guesses for the guidance parameters. To use this provision,
the analyst must furnish a vector approximating the state at the end
of burning.

TRAJECTORY COMPUTER

The variables to be determined are, of course, initial and
control variables; these are called independent variables, The con-
straints to be satirfied by the mission are represented by parameters
called dependent variables., They are quantities which can be derived
from states at significant points along the trajectory. Thus, by
the trajectory computer we mean the program which transforms the
independent variables into state variables, follows the values of the
state variables along the mission path, and transforms the state
variables into the dependent variables. The transformations are usally
simple camputations based on geometrical or physical relations and may
cn occasion involve a simple iteration. The trajectory proper - the
propagation of the state variables along the mission path - is more
complicated. Computing the state variables accurately is a time-con-
suming process. Thus, the user has a choice between an accurate but
slow, and a fast but approximate method of computing each arc. These
arcs are divided into two classes, according as power (that is, thrust-
ing) is off or on. The arcs without power are called coasting arcs
and include earth parking orbit, translunar coast, linear parking orbit,
free-return coast, and transearth coast. Each of these may be integra-
ted, if accuracy is desired, by the Encke method with the "universal
incremental anomaly" as independent varisble. Where speed is more
important, as happens when there are many cases to be run(e.g. in a
scan of initial or final parameters) the geometrical-dynamical equations
of two-body motion are used.

The Encke method is, by, now, reasonably femiliar. It consists of
separeting the accelerations into two-parts--one of which gives a
differential equation solvable in closed form (the "two-body" solution),
and the other of which is small, (the "perturbations") so that, even
though they must be integrated numerically, the integrations can proceed
in relatively large steps without the introduction of appreciable
errors. The programming for the two-body solution is available aayway,
in connection with the approximate trajectory methods; hence, no extra
space 1s used to handle it. Moreover, each integrated arc of the



trajectory has & certain termination condition, which ic the product
of an iteration in step size. First guesses for stopping conditions
follow easily from the two-body formulas.

Both the two-body and perturbation equations are written in terms
of the anomaly B and derivatives with respect to g. Doing this allows
the integration step size to adapt itself to changes in distance from
the central attracting body. Furthermore, the computation of the time,
t, from B is decidedly easier than computing g from t. This is because
Kepler's equation is transcendental in B, but linear in t. For a
description of the equations in terms of B, see the Appendix,

The equations for the two-body motion are formulated in terms of
two different anomalies. The "universal incremental anomaly"”, B, and
the "eccentric incremental anomaly", ©. It would be possible to write
all the equations in terms of B but in this way computing time has
to be sacrificed to elegance; hence, the "universal" approach has been
abandoned where necessary. The current method is popularly referred
to as the "Herrick-Beta" method.

The formulas are divided into two classes. The first class contains
procedures for determining the value of the universal anomaly through
which the position and velocity and time must be propagated. Here B
is generally described in terms of the eccentric anomaly, ©. The
second class contains the procedures for propagating the position and
velecity vectors, and the time. In all that follows X , s and t are,
respectively, the position vector, the velocity vector? and the time at
a known point on the trajectory. Let p be the mass parameter of the
attracting body.

We start with the second class of formulas, that is, the propaga-
tion formulas. lLet

(xc> . xo)2 =T (1)
()'(0 . xo) = v02 (2)

X, o Xy = A (3)
1=2-Y

2 to R (4)

a =-i’ g2 (5)

c - 1% ok

i k=0 (2k+1)! (£ =0, 1, 2, 3) (6)



r=rg Go + d0 Gl o (7)
JH
1
d =fu (1 -, (5)) G +d Gy (8)
1
t =t +/ﬂ-(ro G +d G, + G%) (9)
. Ju
f=1-2 Gé (10)
O
g = fg G, + EQ G, (11)
Ji M
p = JE
£ =- T G, (12)
1
g=1-% G, (13)
x=fx_ +gx (1%)

x=fx + X
o &%,

(15)

Formulas (9), (14), and (15) perform the propagations, but formulas
(7) and (8) are also convenient in some applications.

The equation for B depend on some specified configuration of the
state such as periapsis, specified distance, and_specified flight-path
angle. For periapsis, compute ro, V2, d,, and é as in equation (1) -
)

above.
Then set s = EE" % (16)
\'['
_ 1l
c—l-ro-a- (17)
2 2 1
e+ 2 (18)
T
Ir 1l >0, set

¢ ) into considerations

a E=tan T (s) taking all four quadrants (19)
c



Ifl <O, set
a .

E=1logs + ¢ (19')
e
1

b= w7 F (20)

This arrangement breaks down if l = 0, but this case is impossible
to create in the computer.

To determine the B for a given distance, it is first required
tr.at the eurrent distance ro is less than, or equal to, the desired

distance s. It is assumed that, in the case of elliptic orbits,

no more than one revolution is traversed frcm input stete to output

state. With these two assumptions, for each direction, incoming and
outgoing, there can be no more than one place on the orbit at the distance
r. Thus a switch, W, is provided.

+1 if forward
W = (20)
-1 if backward
Again formulas (1) - (4) provide d  end 1, and (17) and (18) are
used to get ¢ and e. 8
Now set C_ = g (21)

C =

o=

(1 - r (%)) (22)

1l
It3g >0, and C< -1, the distance r is impossible, and calculation
is susPended otherwise, compute

5., \]ll - ¢ 2 (23)
8 \'Il - & (24)

Now if l > 0

a
-1 (s
E, = tan o (25)
co
and E = tan - §) (26)
C

with the results allocated between quadrants I and II.



(Four-quadrant allocation does this automatically because (23) and
(24) give non-negative results.)

1

If 5 <0

B, = log (Co + So) (25')

and E = log (C + 8) (26)
Now |8] =| (egn do) E, - WE| (27)

represents the absolute value of the total
eccentric anomaly. Thus

= W e} (28)

l;l

To determine the B for a given flight-path angle we require that
the input state must be at periapsis. Formulas (1), (2), and (4) arc
again used to get r, and §. Now the eccentricity, e, is given by

5 (29)
Compute
S = ‘ez-ll ein ¥ (30)
e cos ¥
1-8 ifl >0
c J a (31)
1+ 8 if1 <O
a
=1 .
- (tan c i1 >0
= ¢c = (32)
log CT+C ifl <9
e a
and finally,
= 0 (33)



Note that in the case of an elliptic orbit, formula (31) allows
only that occurrence of the flight-path angle which is close to per-
iapsis.

If any arc has to pass frcm the vicinity of one attracting body
to the vicinity of another an iterative procedure is used to muke
sure that the arc is a continuous piecing together of two-Lody arcs.
At the point where the arcs join, both the positions and velocities
must agree. This "patch" point is defined as the intersection of the
initial two-body arc with the surface around the moon where the ratio
of the distance from the moon to the distance from the earth has a
given value.

To start the procedure, tne initial state is used, by means of
the distance formula previcusly given, to find two values of the univer-
sal aanomaly B for which tiie ratio desctribed above will bracket the
given valve. Tf this is imposcitle, the precedure ie terminated because
the initial state is not such as tc determine an arc intersecting the
surface. From these first two values of B, a third value is ovtained
by linearly interpolating to get the desired ratio. Then these three
values are used to start a quadratic iteration proncess, at each stage

of which the outer two of three values of § used are chosen to bracket
the value of the ratio, and the inner value is the last value computed.

The process is stopped when this last value changes by a negligible
amount.

For the burning arcs in the integrated mode, the thrust accelera-
tion is incorporated among the terms to be integrated. It is camputed
from the guidance logic appropriate to each maneuver. In the approxi-
mate mode a geometrical representation of the effects of burning is
used. That is, the changes in time, distance, velocity,and fliz’ -vath
angle are applied, and the effects of rctation in the previous 1 .-ae
of motion, and out of it, are incorporated.  'he ckanges and amounts
of rotation have to be calculated beforehand by studying the results
of the integrations of the burn arcs. Let xg, Xo be the position
and velocity vectors at the beginning of the burn arc. Let Ar, Av,
and AY be the changes in distance, velocity, and flight-path angle,
respectively. Let As, AA, be the amounts by which the position vector
is rotated in the plane of motion, and by which the velocity vector
is rotated out of the plane of motion, respectively.

Let r2 =X o X
o
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h=|x_ X x|
o o

Do

'Ihenx1=xo cosAs+rxo-dx sin Ax
h
: . ax_ - v2x
X, = X €8 (as -av) + 0 ) sin (as - A7)
h
Let dl = xl . xl
1
rl=(xl.xl)§
Then x2 =X
. 2d,x . .
= sin LA +x cosnA-X1° % sin AA
2 r2 2 1 EEra—
1l 1l
( P x, . x.F
r2 = x2 . x2 = rl and v2 = x2 . x2
Finally,
Ar
X5 = X, 1+ r'2)
L ] -. A-—v
Xs = X, (1 + =

2
are the position and velocity vector at the end of the burning arc.

The mass ratio is exp _'iz ) J.(o' where I is the specific
impulse and g is the acceleration?gue to gravity at the earth's surface.

A narrative description of the actual method of computing the
trajectory follows. The independent and dependent variables are referred
to as xij and yj, respectively. For example, xp5 is the independent
variable time of launch, and y3 is the dependent variable time of launch.
Many quantities required by the trajectory computer may be computed, once
for all trajectories, as soon as the input is available. Thus the reader
need not assume that every computation shown is performed every time the
trajectory computer is passed through. Instead, the trajectory computer
is intended to take care of the effects of changing values of any of the
Xq.
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We start at the launch site. Knowing the latitude and longitude
of launch, and the time of launch, xa » we know the position of the
spacecraft at launch. An artificial ?elocity vector is made up out
of the launch azimuth and the circular velocity at the height defined
by the Ar for ascent. Now an application of the approximate burn
formulas furnishes the state at the end of ascent (or at the beginning
of earth parking orbit). In the process the deviations in flight-path
angle and velocity from circular conditions, x2p,and xp3, are used.
Note that there isn't any provision for integrating the ascent trajec-

tory.

The time and azimuth at launch, y, and y,, are simply transferred
over as dependent variables. Two-b formulﬁs are now applied to the
state at the beginning of earth parking orbit to get y. and y,, the
perigee and apogee, heights, respectively, of the orbit. If the

orbit is circular, the initial height is used. Next the state at the
beginning of earth parking orbit is propsgated to the state at the end
of earth parking orbit, by using the time in earth parking orbit, x21
This computaticn may be either accurate or approximate. *

Fcr the approximate translunar injection change in velocity and
plane change, x,. . a8and x,_. , are used in the burn formulas to get the
state at the enf‘of trahflunar injection (or the state at the beginning
of translunar coast). For the accurate translunar injection, the ob-
solete MIT guidance is used, pending an exact definition of something
better. In either case, the mass after translunar injection, y., is
available. 1

The state at the beginning of translunar injection is either
propagated through the patching iteratioa, or integrated to pericynthion,
where the height, Yg> and translunar flight time, Y2 are available.

The flight-path angle at the beginning of lunar orbit insertion,
Xy}, 1is used, together with the state at pericynthion, to get the state
at the beginning of the lunar orbit insertion maneuver. This is done
either by the approximate formula given above or by integrating accura-
tely to a state which has the given flight-path angle. At the start
of lunar orbit int._rtion, the height xg, is available. The coordinates
of the state are then transformed so that they are referenced to the
earth-moon plane, and the inclination, latitude, longitude, and azimuth,
¥10; ¥11» Y12, 8nd y13, are computed in that reference frame.

If free-return constraints ere to be computed, the state at the
beginning of lunar orbit insertion is propagated back to the earth
to get a state of perigee, from which the height and inclination, Y15,
and y,g, can be obtained.
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Next the state at the start of lunar parking orbit is used to
campute the effects of the lunar orbit insertion maneuver. In the
process, either x)3 or x)) and xjp are control parameters for this
manever. As a result, we get the state at the beginning of lunar
parking orbit and the height y18 and mass yi7 at that point. If the
parking orbit is to be non-circular, xg and x;g, the flight-path angle
and excess (above circular) velocity, are introduced. Then from the
resulting state at the beginning of lunar parking orbit, the heights
at pericynthion and apocynthion, yi9 and yog, are obtained. Now the
state is propagated through the time xg, resulting in a state supposedly
directly over the landing site. Thus x5) and yop, the latitude and
longitude of thut point, are determined. The time of staying on the moon
is used to propasgate this last state to the state of the CSM at the
time of departure from the moon's surface. This state is used to derive
the angle yp3 by which the LEM is out of the lunar orbit plane.

From the last state, we propagate to the state at the end of lunar
parking orbit, by introducing enough time to exhaust the total time in
parking orbit xq. This state is then operated on by the control para-
meters for transearth injection and the mass Yol

The state after transearth injection is then propagated back
toward the earth, obtaining the state at perigee. The transearth flight
time yp5 is the time to perigee. 1In approximate calculations, if the
orbit is elliptical, but very close to the center of the earth, this
time could be negative. To create smoother convergence, an orbital
period is added to the time in this case. At perigee, we have the return
inclination yo7. The next quantities are dependent on the state at
reentry. This state is defined to have a certain flight-path angle,
vhich is a function of the energy of the return orbit. From perigee
we propagate the state back to this flight-path angle. At reentry, thern,
the height, yo8, and the velocity, yoq, are available.

The calculation of the rest of the constraints is always approxi-
mate, and is based on the assumption that the motion of the spacecraft
during reentry may be approximately represented by a circular orbit.
Finding the landing site may be done in either of two ways, at the ~
option of the user. First, he may specify a fixed reentry range. The
circular orbit is calculated as to traverse this ru.._e. Thus we have
a state at landing, from which azimuth at landing y,o, total mission
time y3;, and latitude at landing ¥3 are easy to derive. Alternatively,
the user may specify the longitude o% the earth landing site, in which
case an iteration is performed to choose the time elapsed so that the
spacecraft and the landing site have the same longitude. (For partial-
derivative computations, this time may be adjusted by one revolution, so
as to remove discontinuities.) From the time of landing, we get azimuth
at landing, y26, reentry range, y3p, total mission time, y3, and latitude
of landing, y32-
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If it is desired to pick up an initial state vector, rather than
starting at launch, this can easily be achieved by setting a switch
to describe to the program how far into the mission the state is. If
enough stages of the trajectory have been camputed to derive all the
dependent variables, then the remainder is by-passed. Thus, in all
instances, only the desired parts of the trajectory are computed, so
as to save computer time.

PARAMETER CORRECTION SCHEME

Generally speaking, the first guesses applied to the trajectory
computer will not yield values of the dependent variables that satisfy
the constraints. This program makes use of an iteration scheme to
correct the independent variables until the constraints are, indeeqd,
satisfied. The scheme is described in detail elsewhere (see ref. 1).

OUTPUT

The output section provides the value of all the converged input
variable and the values of all the dependent var.ables. In addition,
for each of the states appropriate to the crnverged trajectory, about
a hundred parameters are displayed. These include coordinates of the
spacecraft and the attracting bodies relative to several reference
system, the polar angles corresponding to these coordinates, orbital
elements, the orbital parameters, etc.
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APPENDIX

AN ENCKE METHOD ADAPTED TO MISSION ANALYSIS
1. The Standard Encke Method

In the standard formulation of the trajectory problem, we are given

x'=a%% =0 x_ +F, (1)
dt 2 I %P
X = (to) =x, X (to) =X

where x is the vector from the central body to the spacecraft, u is the
attraction coefficient due to the central body, F is the sum of the
other forces acting on the spacecraft, and X &o are the initial
position and velocity vectors. According to the standard Encke method,
we introduce another differential equation

5 = — (2)

e solution p = p (t) of this equation, with p(ty) = x, and
6(t,) = % can be found with extreme accuracy in closed form.

Thus we set
x =P+ (3)

so that, since §{ = x -P, we have to solve the differential equation

o e S -X D
=X - ¢] = - - +F ll.
: (3 % *)
with the initial conditions
13 (to) = X (to) - Q(to) =x -X=0

and & (to) = X (to) - P (to) =k, -k =0.
In the region where (1) is difficult to solve, that is, near

1X| = 0, equation (4) is much easier to integrate, so that, in general,
the same accuracy can be obtained with less computing time.
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2. Change of Independent Variable

In the construction of the closed-form solution for (2), a para-
meter g arises, related to t by the equation

t Jdt
A Wy (5)

o)

In terms of g, Kepler's equation takes the form

t=1o% ‘%7éﬂl‘ (6)

where £ 1s a transcendental function of g, and is obtained by summing
several power series.

If t is taken as the independent variable, eaquation (€) has to be

solved for g by an iterative method, requiring numerous time consuming
evaluation of the function f for each integration step. Using g as the
independent variable, however, only requires a single evaluation.

It remains, of course, to see what becomes of equations (2) and (4)
if g 1s is the independent variable. We have from (5) that

at _ _o
dg v

at any point along the solution of (2).J,A prime (').degotes differen-
tiation with respect to p. Thus p = o —5— and p' =p zz— at any
point along the solution gf (%). Thus tge initial condltions become
0(Bo) = xo and o' (Bo) = ;L' o when By = B(to) = O.

Now the solution of (2), o and p', can be written in clcszd form for
any B. As auxiliary quantities in this solution we have |p| and

_p .p'

D=

They are computed as functions of B before p and o' ¥nown, that
is, with accuracy at least as good as that of p and 0. Not only are
they needed and easy to compute, but also they have the interesting
property that

dt

iy = T% , as we saw above, (7)
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and det D

2"
Thus equation (2) is solved more economically in terms of g than in
terms of t.

Now we turn to equation (4). To treat it, we want to express ¢" in
terms of ¢. From (7) we have that

v=§g_t_ = {' 101
¢ dB u

Differentiating with respect to B,
"o_ dé ip| + : d Y
egr et fap T
y (e} + pVE D
S \u o Jo

2
= -1p12 (—53-—35-)+—:’1— F+ g 2 (8)

Thus (8) is the equation to be integrated numericall--, instead of (k).

The coefficients 1EE and Tgr can be calculated with much more

accuracy than the factors involving {, since they depend only on the
two-body soiution.

For analysis of error propagation, we write (8) as

wo_ =1 TEA 14 , D .
g—lﬂ-l [(pﬂ) ol > p] i Bt 1ol

The mechanics of the procedure, then, are easy to enumerate. The
initial conditions are x  and io. Iet

o(t,) =x

[ ]
x Ixl
O| (o)

Ju

p' (t,) =



2
p '
Using these initial conditions, evaluate t, JE;-, Bs P P for each

value of § to be considered.

Let 60 = Go' = 0. Using these initial conditions, integrate equation

(8) to get ¢(B) and §' (B8). Note that the first two terms on the
right-hand side of equation (7) are functions of x and possibly x'.
These are obtained by

x (B) = P(B) + &(B)
x'(8) =0 (B) + £ (B).

If, at any point % is required, it can be found from

% (£(8)) = x' (B) 7&,,57

Depending on the rectification control logic, there will be places
where the solution to equation (2) must be started over.

At this point, B, &, and &' are reset to zero, while the value
t, X, X become the new ty, %, Xo. In particular, then,

xo' =X |p! .

1|



