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THE GENERALImD FORWARD ITERATOR 

by: William E. Moore 

SUMMARY 

A computer progrm has been written which constructs optimized 
Apollo missions. It is ilighly versatile; it will produce a scan of 
several related missions or an accurate trajectory of reference qua- 
lity. Speed and accuracy are purely dependent on the mathematical 
model chosen for each particular case. This model could consist of 
an array of two-body approximations, or of a precise numerical inte- 
gration of the equations of motion going by the Encke method when 
applicable. The program is extremely flexible with regard to the 
mission that can be constructed, and the extent to which it can be 
optimized. This note indicates how the input describes the mission 
and the method of computation to the computer. It also presents the 
various mathematical trajectory models that are available. 

INTRODUCTION 

This Apollo mission design program has been designed to f'urnish 
the analyst with a reliable tool for the design of a great variety 
of missions. It is fast enough to be capable of producing a llscanll 
when no great accuracy is required, as in preliminary mission design, 
and accurate enough to produce a trajectory of reference quality 
when required. It is general and flexible enough to permit the ma- 
lyst to assess the effects of many different mission configurations 
and the introduction or omission of numerous constraints. 

The major constituents of the $wogram are (1) input and initial- 
zation, (2) first guess generation, (3) trajectory, mission parameter 
and constraint computation, (4) iterative parameter correction for 
the satisfaction of constraints and eventual mission optimization 
procedure, and (5) progrm output. These constituent parts are 
described in detail in the following sections. 



PROGRAM INPUT AND INITIALIZATION 

The operation of the program is completely controlled by a se t  
of input data and switches. Each inpat number has associated with 
it on a card i t s  location i n  the f u l l  input array. This location 
appears on the card and the input processor then stores t h i s  number 
i n  i ts  proper 1c:ation. Thus, it is necessary only t o  load those 
input numbers which are needed and which d i f f e r  from previously loaded 
value. Physical quantities may be read in  a number of different  
wits. The unit is indicated by a code l e t t e r  on the  input card, 
which enables the processor t o  apply the  proper scale factor  f o r  
conversion t o  internal  units .  The input processor fur ther  has the 
capability of using a previously loaded number, of incrementing it by 
a specified mount, or of using a specified multiple or f ract ion of 
the  present value. 

A first guess f o r  the  independent variables obtained previously 
may be retained, be Pncremented or e l se  be recomputed f o r  every case. 
In addition, the converged answer of the  previous case may be used 
as  a first guess. 

The input array fur ther  contains a s e t  of switches which substan- 
t i a l l y  control the  flaw of the  program. 

One se t  of these describes the s i tuat ion a t  the beginning of the  
trajectory, and thus indicates which =.euvers a re  s t i l l  t o  be perfor- 
med. For example, the  t ra jectory might a t a r t  at the launch site, or  
a t  a l a t e r  time, such a s  same position end velocity i n  ear th  parking 
orbit, or along the tranalunar leg, i n  lunar parking orbit,  or along 
the transearth leg. 

Another se t  of switches describes the indepenaent variables of 
the  search; i.e., the  variables t o  be determined, and the constraints 
t o  be sat isf ied.  Table I1 givew a list of a l l  the inputs t o  the  
program. 

During in i t i a l i za t ion  a l l  these switches are  used t o  s e t  up a 
path through the t ra jectory computer, so  that only the trajectory 
segments needed i n  the  problem a t  hand are  computed, and a l l  neces- 
sary constraints eiraluated. It further guarantees that a l l  neces- 
sary p a r t i a l  derivatives are cunputed . Simultaneously, i n  addit ion, 
a l l  these switches are checked f o r  consistancy. If an obvious incon- 
sistency is detected, the program proceeds t o  the next case. Because 
of the great generality of the  program, a camplete consistency check 
is not feasible.  Theref ore, even if the input passes a l l  the  



.ewsistetlcy t e s t s ,  tk~is " c o ~ ~ s i s t e n t "  trajectory i s  not guaranteed t o  
represent a reasonable problem, but as much checking of t h e  switches 
a s  possible is  done. 

A th i rd  se t  of switches controls mode of canputation of each of 
the various sub-arcs i n  the trajectory.  The alternatives here are  
computation by numerical i ntegrat ion or by conic appraxiat ions f o r  
the  coast phases and idealized arcs f o r  the pmered portions. 

The choice here will depend on the accuracy required as well as 
on the cmputer time available. 

FIRST W 3 S  GENERATION 

In order t o  insure the most eff ic ient  behavior of the  i te ra t ion  
scheme, i n  some cases, first guesses f o r  one or  more of the  indepen- 
dent variables may be computed. No ef for t  has been made t o  f tll up the 
program with a l l  the  knawn direct  methods f o r  gett ing these values; 
rather only those which make the t ra jectory cmputer program using or 
the i t e ra t  or operation more eff ic ient  a re  included. 

One can choose t o  compute f i r s t  guesses f o r  time of launch and 
time i n  earth parking or'bit if s ta r t ing  a t  the launch s i t e .  Falling 
out, also, is the velocity increment at translunar injection. These 
three values are based on the desired translunar flight time, or  a 
nominal time if a free-return t ra jectory is desired. From this value 
and the base time, the  position of t he  moon at some poirrt after arri- 
val  is camputed as a target .  Now the  time of launch is chosen s o  tha t  
the  plane of the  ear th  parking orbit  contains t h i s  target  point. Then 
the time i n  tha t  orbi t  is adjusted s o  tha t  the translunar t ra jectory 
passes through the target  point. These times are  close enough t o  the 
correct ones t o  be quickly adjusted by the parameter search procedure. 

In the  case where the  .parking orbit  is a.lready fixed, the  proce- 
dure is s l ight ly  modified i n  that the translunar t ra jec tory- -s t i l l  
assumed t o  be i n  the same plane as t h e  parking orbit--commonly w i l l  
be chosen as close as  possible t o  the  target  point, but w i l l  nut, i n  
general, contain it. In t h i s  case, too, the  search procedure quickly 
adjusts the  first guess t o  t h e i r  correct value. 

Another case involves a point after translunar injection, but 
nut on the nominal translunar trajectory. In  t h i s  situation, the  
most eff ic ient  procedure turns out t o  be t o  apply the search technique 
i n  a "backward" manner first. This conslets af searching for a time 
of pericynthion and a pericyrrthion velocity vector, given a fixed 



pericythion position, which w i l l  l i e  on a trajectory containing the 
original given point. A t  the l a t t e r  point, the computed velocity 
vector provides first guesses for  the maneuver t o  be executed t o  return 
t o  nominal condition. 

Finally, for  each of the major burn phases, provision is made t o  
compute first guesses for the guidance parameters. To use t h i s  provision, 
the analyst must furnish a vector approximating the s t a t e  at the end 
of burning. 

TRAJECTORY COMPUTER 

The variables t o  be determined are, of course, i n i t i a l  and 
control variables; these are called independent variables. The con- 
s t r a in t s  t o  be s a t i ~ f i e d  by the mission are represented by parameters 
called dependent variables. They are quantities which c m  be derived 
fron? s ta tes  a t  significant points along the trajectory. Thus, by 
the trajectory computer we mean the program which transforms the 
independent variables into  s t a t e  variables, follows the values of the 
s t a t e  variables along the mission path, and transforms the s t a t e  
variables in to  the dependent variables. The transformations are usally 
simple canputations based on geometrical or physical relat ions asld may 
on occasion involve a simple i terat ion.  The trajectory proper - the 
propagation of the s t a t e  variables along the mission path - is more 
complicated. Computing the s t a t e  variables accurately is a the-con- 
suming process. Thus, the user has a choice between an accurate but 
slow, and a fast but approximate method of camputing each arc. These 
arcs are divided in to  two classes, according as power . ( that  is, thrust- 
ing) is off or  on. The arcs without power are called coasting arcs 
and include emth  parking orbi t ,  translunar coast, i inear  parking orbit ,  
free-return coast, and transearth coast. Each of these may be integra- 
ted, if  accuracy is desired, by the Encke method with the "universal 
incremental anomaly" as independent variable. Where speed i s  more 
important, as happens when there a r e  many cases t o  be run (e .g. i n  a 
scan of i n i t i a l  or  f i n a l  parameters) the geometrical-dynamical equations 
of two-body motion are used. 

The Encke method is, by, now, reasonably familiar. It consists of 
separating the accelerations in to  two-parts--one of which gives a 
d i f fe rent ia l  equation solvable in  closed f o m  (the l' two-bodyt' solution), 
and the other of which is s m a l l ,  ( the "perturba+,ionstl) so tha t ,  even 
though they must be integrated numerically, the integrations can proceed 
i n  re1 ztively large steps without the introduction of appreciable 
errors. The programing for  the two-body solution i~ available &way, 
i n  connection with the approximate trajectory methods; hence, no extra 
space is used t o  handle it. Moreover, each integrated arc of the 



t r a jec tory  has a cer ta in  terninat ion condition, which i z  the  product 
of an i t e ra t ion  i n  s tep  s ize .  F i r s t  guesses f o r  stopping conditions 
f olluw eas i ly  from the  two-body formulas . 

Both the  two-body and perturbation equations are wri t ten  i n  terms 
of the  anomaly j3 and derivatives with respect t o  P. Doing t h i s  allows 
t h e  integrat ion s t ep  s i ze  t o  adapt i t s e l f  t o  changes i n  distance from 
t h e  centra l  a t t r ac t ing  body. F'urthermore, the canputation of the  time, 
t, from B is decidedly eas ie r  than computing @ Crm t. This is because 
Keplerts equation is transcendental i n  P, but l i nea r  i n  t . For a 
descrip-bion of the  equations i n  terms of j3, see the Appendix. 

The equations f o r  the  two-body motion are formulated i n  terms of 
two di f ferent  anomalies. The "universal incremental anomaly", j3, and 
the  "eccentric incremental anomaly", 8. It would be possible t o  write 
a l l  the  equations i n  terms of P but i n  t h i s  way ccunputing time has 
t o  be sacr i f iced t o  elegance; hence, the  "universal" approach has been 
abandoned where necessary. The current method is popularly referred 
t o  as the  "Herrick-Beta" method. 

The formulas a re  divided i n t o  two classes.  The f irst  c lass  contains 
procedures f o r  determining the  value of t he  universal anomaly through 
which the  posi t  ion and veloci ty and time must be propagated. Here P 
i s  generally described i n  terms of t he  eccentr ic  anamaly, 8.  The 
second c lass  contains t he  procedures f o r  propagating the  os i t ion and 
veloci ty vectors, and the  time. In a l l  t h a t  follows Xo, f , and t are, 
respectively, t he  posi t ion vector, t he  -relocity vector, an8 the  time a t  
a knuwn point on the  t ra jec tory .  Let ~1 be the  mass parameter of the  
a t t r ac t ing  body. 

We start with t he  second c lass  of formulas, t h a t  is, the  propaga- 
t i o n  formulas. Le t  

1 



Formulas (g), (14), and (15) perform the propagations, but fomulas  
( 7) and ( 8) are a l s o  convenient i n  same applications. 

The equation f o r  P depend on some specif ied configuration of the  
s t a t e  such as periapsis,  specif ied distance, and specif ied f l ight-path  * do, and a s  i n  equation (1) - a l e .  For periapsis,  compute ro, v0 , (7 above. 

Then set s = - lil 

If - 1 >0, set 
a E = t a n  taking a l l  four quadrante (19) 

i n to  considerations 



If - 1 (0, s e t  
a 

E = l o g s + c  - 
e 

This arrangement breaks down if 1 = 0, but t h i s  case is impossible - 
t o  c rea te  i n  the  computer. a 

To determine t h e  6 f o r  a given distance,  it is first required 
t k a t  the  current  dis tance r o  i s  l e s s  than, o r  equal t o ,  the  des i red  
dis tance s, It i s  assumed t h a t ,  i n  t h e  case of 2l l ipt i .c  o r b i t s ,  
no more than one revolut ion i s  t raversed frcm input s t ~ t e  t o  output 
s t a t e .  With these two assumptions, f o r  each d i rec t ion ,  incoming and 
outgoing, t h e r e  can be no more than  one place on t h e  orbit a t  t h e  dis tance 
r. Thus a switch, W, is provided. 

+1 if forward 

-1 if backward 

Again formulas (1)  - (4) p r w l d e  d and 1, and (17) and (18) are 
0 - 

used t o  get c and e . a 

Now set C, = - c 
e 

c = A e (1 - r (+I) (22) 
1 If 3 >O, and C < -1, the dis tance  r I s  impossible, and ca lcula t ion  

is suspended; otherwise, compute 

Now if - 1 > 0 
a 

E, = t a n  

and E = t a n  

w i t h  the r e s u l t s  a l loca ted  between quadrants I and 11, 



 our-quadrant a l locat ion does t h i s  automatically because (2 3)  and 
(24) give non-negative resul ts . )  

E = log (C + so) - 0 0 (25')  

and E = log (C + S) (26) 

Now (e l  = I (egn do) Eo - W El (27) 

represents the  absolute value of the t o t a l  
eccentr ic  anomaly. Thus 

To determine the @ f o r  a given f l ight-path  angle we require that 
t he  input state muat be at, periapsis.  Formulas ( l ) ,  (2), and (4) arc 

1 again used t o  get  ro and a. Now the  eccentr ici ty,  e, 18 given by 

Compute 

e cos Y 

and f inal ly ,  



Note t h a t  jn t h e  case of an e l l i p t i c  orb i t ,  formula (31) alluws 
only t h a t  occurrence of t h e  f l i g h t - p a t h  arigle which is  close t o  per- 
i a p s i s .  

If any a r c  has t o  pass frcm t h e  v i c i n i t y  of one a t t r a c t i n g  body 
t o  t h e  v i c i n i t y  of another an i t e r a t i v e  procedure is  used t o  make 
suwe t h a t  t h e  a r c  is a continuous piecing together  of two-5ody a rcs .  
A t  t h e  point where t h e  a r c s  ,loin, both t h e  pos i t ions  and v e l o c i t i e s  
must agree.  This "patch" point is def lned as t h e  in te r sec t ion  of t h e  
i n i t i a l  two-body arc with t h e  surface around t h e  moon where t h e  r a t i o  
of t h e  dis tance from t h e  moon t o  t h e  dis tance from t h e  e a r t h  has a 
given value. 

To start t h e  procedure, tine i n i t i a l  state is used, by means of 
t h e  distance formula previcusly given, t o  f i n d  two values of the univer- 
sal a,iomaly fl  f o r  which t k e  r a t i o  described above w i l l  bracket t h e  
given va1n.e. Tf t h i s  is imposei5le, t h e  precedwle i e  terminated because 
t h e  i n i t i a l  s t a t e  is not such a c  t r  determine an a r c  in te r sec t ing  t h e  
surface.  From these  first two values of j3, a t h i r d  value is obtained 
by l i n e a r l y  in te rpo la t ing  t o  ge t  t h e  desired r a t i o .  Then these  t h r e e  
values a r e  used t o  start a quadratic i t e r a t i o n  process, a t  each s tage  
of which t h e  outer  +.wo of t h r e e  values of 0 used a r e  chosen t o  bracket 
the  'value of t h e  ra:io, and the inner  value i s  the  l a s t  value computed. 
The process is  stopped when t h i s  last  value changes by a negl ig ib le  
amount. 

For the burning arcs  i n  t h e  in tegra ted  mode, the  t h r u s t  accelera- 
t i o n  is  incorporated among the  terms t o  be in tegra ted .  It is camputed 
from the  guidance log ic  appropriate t o  each maneuver. I n  the  approxi- 
mate mode a geometrical representat ion of the  e f f e c t s  of burning i s  
used. That is, the  changes i n  time, dis tance,  veloc!.ty, and fligtl' -?ath 
angle are applied, and the e f f e c t s  o f  r o t a t i o n  i n  the previous r ' .%.~e  
of motion, a d  out of i t ,  are  incorporated. ?he ckanges m d  amounts 
of r o t a t i o n  have t o  be calculated beforehand by  studying .the r e s u l t s  
of the  in tegra t ions  of the  burn arcs. Let xo, ice be the  posli.tion 
and ve loc i ty  vectors a t  the beginning of the  burn arc.  Let Ar, Av, 
and be t h e  changes i n  d is tance ,  veloci ty ,  and f l ight -pa th  angle,  
r e ~ p e c t i v e l y .  Let AS, AA, be the  amounts by which the  pos i t ion  vector  
is  ro ta ted  i n  th2 plane of motion, and by which the  ve loc i ty  vector  
is  ro ta ted  out of t h e  plane of motion, respect ively.  

c. 



2. Then xl = x cos As + r xo - dx 
0 

s i n  Ax 

h 
2 

t& - v x  
X1 
' = ; o c o s ( ~ - ~ * )  + 0  o s i n  (AS - A Y  

. 
Let dl = xl X1 

261"1 . 
x =- 
2 2 s i n  - 

r 2 
1 r 1 

1 . 
r = (x2 2 

. x2P = r and v2 = (x2 . 
1 

are the position and velocity vector at t h e  end of the  burning arc. 

The mass ratio is exp ( ' 0  I) w h e r e  I ie the  speclflc 

impulse and g is the acceleration due t o  gravity at the  ear th 's  surface. 

A narrative description aP the  acts method af computing the  
traJectory follows . The independent and dependent variables are ref erred 
to as xi  and yi ,  respectively. For example, x25 i s  the independent 
variable time of launch, and y3 i s  the dependent variable time of launch. 
Many quantities required by the trajectory computer may be computed, once 
for a l l  trajectories,  as soon as the input i s  available. Thus the reader 
need not assume t h a t  every computation shown i s  performed every time the 
trajectory computer i s  passed through. Instead, the trajectory computer 
is intended t o  take care of the effects of changing values of any of the 
X i  . 



We s t a r t  at the launch s i t e .  Knowing the la t i tude and longitude 
of launch, and the time of launch, x we knowthe posi t ionof  the 
spacecraft at launch. An artificia12?Llocity vector is made up out 
of the  launch azimuth and the circular velocity at the  height defined 
by the LY f o r  ascent. Now an application of the  appraximate burn 
formulas furnishes the state a t  the end of ascent (or a t  the  beginning 
of earth parking orbi t ) .  In the process the deviations i n  flight-path 
angle and velocity f ran  circular conditions, x22, and x23, are used. 
N o t e  t ha t  there i s n ' t  any pravision fo r  integrating the ascent t ra jec-  
tory. 

The time and azimuth a t  launch, y and y , are simply transferred 
over as dependent variables. T W O - b & f o d s  are  ncu applied t o  the  
s t a t e  at t h e  beginning of earth parking orbit  t o  get y and y , the 

S I perigee and apogee, heights, respectively, of the  orbi . If he 
orbit  is circular, t he  i n i t i a l  height is used. Next the s t a t e  at the 
beginning of earth parking orbit  is propagated t o  the  state at the end 
of earth parkipg orbit, by using the  time i n  ear th  parking orbit, x 
This computation may be e i ther  accurate or appraximate. 21 

Fcr the  appraximate translunar injection change i n  velocity and 
plane change, x and x , are  used i n  the  burn formulas t o  get the  
s t a t e  at the  enpof  t a l u n a r  injection (or the state at t h e  b e g n n i n g  
of translunar coast). For the accurate translunar injection, the ob- 
solete MIT guidance is used, pending an exact definit ion of something 
better .  In  e i ther  case, the  mass af'ter translu=r i a e c t i o n ,  y , is 
available. 7 

The s ta t e  a t  the  beginning of translunar injection I s  ei ther  
pr-ted through the patching i teratioa,  or  integrated t o  pericynthion, 
where the  height, y8, and translunar flight time, ylb, are available. 

The flight-path angle at the  beginning of lunar orbi t  insertion, 
x14, is used, together with the state at pericynthion, t o  get the  state 
a t  the beginning of the lunar orbit  insertion maneuver. This is done 
either by the  appraxhate formula given above or  by integrating accura- 
t e ? ~  t o  s state whjch has the given flight-path angle. A t  the start 
of lunar orbit  i m  -rtion, the  height 3, is available. The c&inates 
of the s t a t e  are then transformed so that they are  referenced t o  the- 
earth-moon plane, and the inclination, latitude, longitude, and azimuth, 
~ 1 0 ,  3'11, 5'12, and ~13, are  computed i n  tha t  reference frame. 

If free-return constraints m e  t o  be canputed, the  state at  the 
beginning of lunar orbit insertion is propgated back t o  the earth 
t o  get a s t a t e  of perigee, from which the height and inclination, n 5 ,  
and Y16, can be obtained. 



Next the s t a t e  at the s t a r t  of lunar parking orbit  is used t o  
compute the effects of t h e  lunar orbit insertion maneuver. I n  the  
process, e i ther  xi3 or x l l  and x l 2  are  control parameters f o r  t h i s  
manever. As a result ,  w e  get the s t a t e  at the beginning of lunar 
parking orbit  and the height y l 8  and mass y17 a t  that point. If the 
parking orbit  is  t o  be non-circular, xg and xlO, the f l ight-path angle 
and excess (above circular)  velocity, are introduced. Then from the 
resulting s t a t e  a t  the beginning of lunar parking orbit,  the  heights 
at pericynthion and apocynthlon, ylg and y20, are  obtained. Now the  
s t a t e  is propagated through the  time x8, resulting i n  a state supposedly 
direct ly  over the  landing s i t e .  Thus x21 and y 2 ~  the  la t i tude and 
longitude of t h s t  point, a re  determined. The time of' staying on the moon 
is  used t o  pr-te t h i s  l a s t  state t o  the s t a t e  of the  CSM at the 
time of departure frm the moon's surface. This state is used t o  derive 
the angle y23 by which the LEM is out of the  lunar orbit  plane. 

Fram the last s ta te ,  we propagate t o  the s t a t e  a t  the  end of lunar 
parking orbit,  by introducing enough time t o  exhaust the  tutal time i n  
parking orbit  x?. This state is then operated on by the  control para- 
meters f o r  transearth injection and the  mass y24* 

The s t a t e  after transearth injection is then propagated back 
toward the earth, obtaining the s t a t e  at perigee. The transearth f l igh t  
time y25 is the  time t o  perigee. In appraximate calculations, if the 
orbit is e l l ip t i ca l ,  but very close t o  the center of the  earth, t h i s  
time could be negative. To create smoother convergence, an orb i ta l  
period is added t o  the time i n  t h i s  case. A t  perigee, we have t h e  return 
inclination y27 . The next quantities a re  dependent on the state at 
reentry. This s t a t e  is  defined t o  have a certain flight-path angle, 
which is a f unct ion of the  energy of the return orbit .  From perigee 
we propagate the state back t o  t h i s  flight-path angle. A t  reentry, then, 
the  height, y28, and the velocity, y a ,  a re  available. 

The calculation of the  r e s t  of the  constraints is always approxi- 
mate, and is based on the assumption tha t  the mot ion of the spacecraft 
during reentry may be appraximately represented by a circular  orbit.  
Finding the  landing site may be done i n  e i ther  of two w a y s ,  a t  the  ' 
option of the  user. First ,  he may specify a fixed reentry range. Tbe 
circular orbit  Is calculated a8 t o  traverse t h i s  rti..,e. Thus w e  have 
a s t a t e  at landing, fran w h i &  azimuth at landing Y ~ ~ ,  total mission 
time y31, and la t i tude at landing y a re  easy t o  derive. Alternatively, 
the user may specify the longitude 8 the  ear th  landing site, i n  which 
case an i terat ion is performed t o  choose the time elapsed s o  that the 
spacecraft and the  landing s i t e  have the  same longitude.  o or partial- 
derivative computations, this time may be adjusted by one revolution, so  
a s  t o  remove discontinuities.) From the time of landing, we get azimuth 
a t  landing, y26, reentry range, 530, t o t a l  mission time, n, and la t i tude 
of landing, ~32. 



If it is  desired t o  pick up an i n i t i a l  s t a t e  vector, ra ther  than 
starting at launch, t h i s  can ea s i l y  be achieved by setting a switch 
t o  describe t o  t he  program how far in to  t he  mission the  s t a t e  is. If 
enough stages of the  t raJectory  have been cmputed t o  derive a11 the  
dependent variables, then the  remainder is by-passed. Thus, i n  a l l  
instances, only t he  desired par t s  of the  t ra jec tory  are ccmputed, s o  
a s  to save cmputer  time. 

PARAMETER CORKECTION SCHEME 

Generally speaking, the  first guesses applied t o  t h e  tra.lectory 
computer w i l l  not y ie ld  values of the  dependent variables t h a t  s a t i s f y  
t h e  constraints.  This program makes use of an i t e r a t i on  scheme t o  
correct the  independent variables u n t i l  t he  constraints  are, indeed, 
s a t  isf led. The scheme is  described i n  d e t a i l  elsewhere (see ref. 1 ) .  

The output sect ion provides t h e  value of a l l  t he  converged input 
variable and the  values of a l l  t h e  dependent var ~ a b l e s .  In  addition, 
f o r  each of the  states appropriate t o  the  cmverged trajectory,  about 
a hundred parameters are displayed. These include coordinates of the  
spacecraft and the  a t t r ac t ing  bodies r e l a t i ve  t o  several  reference 
system, t he  polar angles corresponding t o  these coordinates, o rb i t a l  
elements, t he  o rb i t a l  parameters, e t  c . 
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APPENDIX 

AN ENCKE METHOD ADAPTED TO MISSION ANALYSIS 

1. The Standard Encke Method 

I n  the standard formulation of the trajectory problem, we are  given 

* .  2 x = d x = - p x  - -I- F, (1) 

d t  * I x? 

where x is the vector from the  central  body t o  the  spacecraft, p i s  the  
a t t ract ion coefficient due t o  the central  body, F is the sum of the 
other forces acting on the spacecraft, and xo, f are  the i n i t i a l  
position and velocity vectors. According t o  the standard Encke method, 
we introduce another d i f fe rent ia l  equation 

The solution p = p ( t j  of t h i s  equation, with p( to)  = xo ant! 
;(to) = 2, can be found with extreme accuracy in  closed form. 

Thus we se t  

so  that ,  since 5 = x -%we have t o  solve the d i f fe rent ia l  equation 

with the  i n i t i a l  conditions 

. 
and ( to)  = "to) - b ( to)  = b - % = O .  

In  the  region where (1) is  d i f f i c u l t  t o  solve, tha t  is, near 
1x1 = 0, equation (4) is  much easier  t o  integrate, no that, i n  general, 
the same accuracy can be obtained with l e s s  c q u t i n g  time. 



2. Change of Independent Variable 

In  t h e  construction of t h e  closed-f o m  so lu t ion  fo r  (2), a para- 
meter B arises, r e l a t e d  t o  t by t h e  equation 

I n  terns of' B, Kepler's equation t akes  t h e  f o m  

where f is a transcendental  funct ion  of p, and is  obtained by summing 
severa l  power series. 

If t is taken as t h e  independent var iable ,  eauation (6) has t o  be 
solved f o r  B by an  i t e r a t i v e  method, requi r ing  numerous t i m e  consuming 
evaluation of t h e  funct ion  f f o r  each in teg ra t ion  s tep .  Using B as t h e  
independent variable,  however, only requires  a single evaluation. 

It remains, of course, t o  see  what becames of' equations (2) and (4) 
if B is is t h e  independent var iable .  We have frm (5) t h a t  

a t  any point along t h e  so lu t ion  of (2) .JIP prime ( ' ) dencrtes P d i f feren-  
t i a t i o n  with respect  t o  p .  Thus 6 = P' - and p '  = b J- a t  arc? 
point along t h e  so lu t ion  of (2) .  Thus t g e  i n i t i a l  conditions becme 

- X0 lX0I  when Po = p(t,) = 0 .  P(BO) = Xo and P '  (PO) - 
J-IJ 

NOW t h e  so lu t ion  of (2), p and P ' , can be w r i t t e n  i n  c lcssd  form f o r  
any p.  As aux i l i a ry  quan t i t i e s  i n  t h i s  so lu t ion  we have up( and 

They a r e  computed as funct ions of P before p and known, t h a t  
is, with accuracy a t  least as good as t h a t  of p and pt. Nut only a r e  
they  needed and easy t o  compute, but a l s o  they have t h e  in te res t ing  
property t h a t  

d t  P - = - , as we saw above, 
dp fi 



and d2t - =  D 
a s 2  Jr 

Thus equation (2) is solved more econcrmically i n  terms of g than i n  
terms of t. 

Now we turn  t o  eqmtion (4) .  To t r e a t  it, w e  want t o  express " i n  
terms of t . Fran (7) we have that  

Differentiating with respect t o  6, 

P 
2 D F + [ l -  

CL IPI ( 8 )  

Thus (8) is the equation t o  be integrated numerical!--, instead of (4). 

The coef f icient  s and - can be calculated with much more 
IJ JPI 

accuracy than the factors  involving t, since they depend only on the 
two-body soiution. 

For analysitj of error  propagation, we write (8) ae 

The mechanics of the  procedure, then, are  easy t o  enumerate. The 
i n i t i a l  conditions are  xo and so. Let 



lp12 D I Using these  i n i t i a l  conditions, evaluate  t, .-J- , m, , P, fJ f o r  each 
value of 0 t o  be considered. 

Let t o  = 4  I = 0. Using these i n i t i a l  conditions, in t eg ra te  equation 
0 

(8) t o  ge t  t ( 8 )  and 4 '  (b )  . Note t h a t  t h e  f i r s t  two terms on t h e  
right-hand s ide  of equation (7) are funct ions of x and possibly x '  . 
These are obtained by 

If, a t  any point 2 is required, it can be found from 

Depending on t h e  r e c t i f i c a t i o n  cont ro l  logic ,  t h e r e  w i l l  be places 
where t h e  so lu t ion  t o  equation (2) must be s t a r t e d  over. 

A t  t h i s  point,  8 ,  4, and l a r e  r e s e t  t o  zero, while t h e  value 
t, x, 5 became t h e  new to, r,, do. I n  pa r t i cu la r ,  then, 


