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AN INVESTIGATION OF ASYMPTOTIC
SOLUTIONS OF ORDINARY DIFFERENTIAL
EQUATIONS

By Robert M Myers

SUMMARY

This paper presents a brief study of power series, Frobenius
and Thome' solutions of ordanary differential equations In
addition, an elementary proof of the existence of actual
solutions corresponding to the formal Thome' solutions 1s
given  Moreover, a numerical method 1s developed which
enables one to continue the accurate values of the Thome!'
solutions to small values of the independent variable

INTRODUCTION

Consider the following N#k order homogenous system of

ordinary differential equations (0O D E )

]

dZCX) h - -1
dx N x ji:Anx y (X)
n=o

(1)

Lol
where E Anx"n converges for |x| 2 a >0 and h 1s an
n=o

integer



It 1s quaite natural to attempt to determine solutions of
the form

(2) yG) = Yy oy x"
n=o

If (2) zs formally substituted into the system of O D E 's
{1) one wi1ll obtain the equation

o] o0

-
(%) -:i:{n_l)xnhlx*n B xhzi: ji:An—ka X"

n=2 n=0 \k=0

Assume for now that A, 1s a nonsingular matrix and

h>0 Then, ome obtains by equating coefficients of
like powers of x

x 0 = Ay , y, = 0 since A 1s nonsingular
h-1 _ _ -
(4] x L7 MYt AY 2 AN Ty <0
X2 0 = Ay + Ay +Ay. = Ay, > = 9
Ly 275 171 ol2 oX2 T Lo 2
x° 0 = A + e+ A + A = WA > =
2 h¥o 1Xn-1 olh o: I
_l = .« + e =
X 0 = ALY * YA Y A ne1 T Yha 9
-2 = 2 w @
X PRI SNPY S F A Y e T AN

but yi = 0 -

[\



It 1s clear that substatution of a power series solution
inte the 0 D E when A_ 1s nonsingular and h > o 1leads
only to the trivial solution, 1 e , one obtains only the
solution y(x) = 0 Also 1t 1s rather exceptional to
obtain nontrivial power series solutions for the case

where AO 1s sangular

Now consider the case h = -1 and Ao does not have a
nonpositive integer eigenvalue Once again, one can attempt
to substitute formally a power series solution into the

differential equation

xdy (x) °° )
(5) —dax ZAHK " }L(X)
n=o

=]

@ n
-n -n
2 D 2

n=1 n=p \k=o

(|

One can attempt to solve for Yo by equatzng like powers

of x

x° 0 = Ay =+vy = 0 since zero is not an
h o0 o] -
eigenvalue of A \
(6) \\ ‘
-1 _ _ _ !
X DAl Alzo + onl Aozl but 1 , 15 not an

eigenvalue of A "y, = 0
] 1 -

Similarly, one can conclude Y,sY4sttt are all zero vectors
Hence, the formal procedure leads only to the traivial

solution y(x) = 0 ,
I



Now consider the case h = -2

e © /n
N ¥ @Dy, x™ = YAy oA oy x

n=2 n=2 \k=0

X Y, & ALY

e OO0
choose an arbitrary value of Y, and
this determines ¥

-3 _
(b) X 2y = A, ALY
clearly y, 1s determined from
y, and y,
- (n+l) - B - LI
X n-)in An—l-—y—o An--ZY-l "
+ Ay _, thus, y 1s determined by
An“l s LI ’ AO’ Z_O 3 T & B s .y-n—l

Notice that the determaination of Y, preceeds regardless of
the exceptional properties of the lead coefficient matrix

AO Indeed, the power series solution can be used when

h < -2 and h is an integer So far, the procedure out-
lined above has been strictly formal, 1 e , no justification
of the validity of the formal solution has been given  What
1s Tequired 1s a justaficataon of the procedure of term-by-
term differentiation and equating like powers of X It

1s somewhat surprising that this procedure 1s completely
justified provided one establishes convergence of the formal
power series (see [1] or [3]) For proof of conveilgence,
see [2] or [4]



Now, return to the case h = -1 For simplicity, consider
N=1, 1 e , the order of the system 1s one (Scalar problem)

] — -n
(8) Xy = :E:anx y

n=0

For thas problem, a slightly more general substitution turns
out to be successful  Consider

(9)

g
It

0 (=]

-ny_o _ 0-n
AN R
n=o n=o

Substitute (9) into (8) and equate like powers of x

a

x OLYO B aOyO
{Clearly this equation will be
satisfied for a = a, and
arbitrary yo) -
x** (a2 - 1y, = ay +a
o 1 o’ 1 lyc
or -y = a.y
{Thus, once a value of Y, 1S
assigned, then y, 1s determined)
o-n =
< (ao ) n}yn - %Tn * 21Yn-1

+ « s F - =
anyo nyn alyn—l
-+ v s+ +
Y0
(yn 1s determined from a., , *** ,

1
RS SO AU



The solution (9) 1s referred to as a Frobenius solution

The more general problem of an N¢Z order system also admits
solutions of this form  There are certain exceptional cases
that must be dealt with separately for N > 2 Since there
are several good references on the so-called regular
singularity [2] or singularity of the first kaind [4], the
case h = -1 will not be treated more fully here The
formal manipulations can be a posteriori justified by merely
establishing convergence of the expansion (see [4])

Now, consiader the case h >0 and N =1

(11)] y'(x)

L]

"
M
fw

=
>
|
B
~

Attempt 1o determine a solution of the foim

(12) ye) = >y xTx%er )
n=90
where
h+1
px) = p,.qX *oere +poX



If (12) 1s formally substituted into (11), then one obtains

- 1 - h
HER D DAl (TP
n=o0

n=o

(13) toee o+ 2pox o+ pl) eP () o b zg:anx"n X

=]

a-n_p(x)
2 e
n=o0

Formally solving (13) leads to the relataons

aO
ph+1 - h+1
.4
Py i
(14) P, \= ay
P
e = Ay

Y, 1S arbaitrary

Y1 T 8407 -
- = +
2y qhe3’o T Bhaa?1
- = A
ny, fhtn+1’o T Fnen’1
+ .- #

+
ah+2yn-—l



The success of formal solutions (Thome' solutions) of the
form (12) have been known for many years Unfortunately,
these solutions seldom lead to convergent expansions when
N> 2 Thus, for this case (h > 0) one can rarely justafy
a postertori the formal manipulations Around the turn of
the century, Poincare' proved that there 1s a connection
between actual solutions of the differential equation and

these formal Thome' soclutions

The integer h + 1 1s referred to as the rank of the

singularity at X =
THEORETICAL INVESTIGATION OF THOME' SOLUTIONS

It 2s best now to consider a partacular problem If the
problem 1s carefully selected, the general theory will be
1llustrated but perhaps the involved analysis can be
simplified In any event, one would wish to develop an
intuitive understanding of the general theory and perhaps
eventually read one of the excellent references ([4], [6]
or [8]) available to more fully appreciate and utilize the
general theory

Consider the third-order system with a sangularity of rank

one

1

(15) y'x) = diagonal (0,1,-1) + Z dlagonal(—l,

7
7

o

+ lf dlagonal(2,1,10)}z(x)
X



(16) 1let A

(x)

Since the coefficient
immediately determine

matrix solution) Se

(17) Y (x)

Y, x)

Y, (x)

¥y (x)

Now, this probiem is
general pranciples

= diagonal(0,1,-1)
= d1agonal(~1 L l)

s"z_,_z'

= diagonal{2,1,10)

it

0 for n >3

- 1 1
= ALt AL T A

ol

matraix A(x) 1s diagonal, one can
a fundamental solution {(nonsingular
e [4]

v, 0 ¥, 00y, )]

17 2
—“

= 0 1 e ¥

ol X

SR | 1
= g XE e(X*E)

.0

07 % —(x+—l—9)
= 0 x© e

1]

much too simple to 1llustrate any
Theiefore, the problem 1s transformed



y(x) = P}¥(X)
: 1
F(x) = I+ =5 C
X
I = diagonal(l,1,1)
1 2 37
C = 1 4 9
31 1

It 1s easily shown that ¥(x) satisfies (19)

(19) ¥'x)
(20) 1let B(x)
then PB

(21) assume B{x)

1t

Pl AEIPE) - P ))IFX)

Pl (x) (A(x)P(x) - P'(x))

AP - P!

>
n

n=o

The relationships (22) are a result of substituting (21}

into (20)

(22)

for nz 5§

= A

o

= Al

= A + A C - CA

2 O o
= AlC - CAl + ZC
= AZC - CB2

= —CBn*2

10



{r 2y &= _)
~.(23) AJONENE N ,}:i—.} « 3B x50
1 n=Z }

(=4
-n - ~ 4 -
Since ; E x 1s small for large X . 1t seers reasonable

to compare solntions ¥(x) with solutions of (24).

(24) wi(x) = {B + 13

b

Recall that B = A and B. = A ,
o o 1 1 1
are diagonal matrices and hence one can immediztely obtain

e , Bo and B

a fundamental solution W for (24)

(25) Wix) = [w,(x),w, (x),w (x)]
1
1
w.(x) = |0y =
-1 _ 0 A
o L
N
w. (x) = 1] x%e

0] =
W, (x) OJ x‘e ©
=3
1
One might ask what connection, if any, exists between the
solutions of (23) and (24} There 15 a remarkable connec-

tion first established by Poincare' and -extended by many
other researchers (see [8))

11



THEOREM If |arg x| < = , +there exist actual soliutions

| . /1
such that 1, |[§,(x) - w ()] = e, H] - O\E)
15 i = |l olE)
21y ¥, 0x) - w, x| bt 7 0%
120, 13560 - w, Gl = [lw,ll x of2)
. v,
where = = max y |
Hyll SR 15_133”1‘
V3

-

and f(x) = 0(%) implies (in the context of this

problem) that there exists a constant M , such

that, 0 <M < = and |£(x)] < g- as X + ®

Notice that |[[¥ (x) - w,(x)[| 15 not required to tend to
zero  Since ||w,(x)|| 1s exponentially increasing the
product, ||w (x)|] x 0(%) need not tend to zero  However,

the relative difference becomes small, 1 ¢ , the number of
significant figure agreement between Ez[x) and Ez(x}
increases with increasing X The reader may be familiar
with Stirling's formula for n' Precisely, the same -
behaviour is observed, 1 e , Stairling's formula vields more

significant figure agreement with n a4s 1n  1ncreases
The difference between n' and the Stirling approximation

1s unbounded as n <tends-to infinity

12



Now, return to the problem of establishing the existence of

actual solutions ¥ (x) , such that [[zl(x) - El(x)ll =

1w, G011 % o)
(26) 1let E(x) = zg:an"n
n=2

then (Z3) becomes

(27) 7 = (B

W=

Bl + B(x)} ¥(x)

One can also introduce a norm for a matrix A possible
compatible norm 1s given in (28)

(28) HEN = [lle™1]] = Wae e

N [
L]
M-
E—l

It 1s easily shown that for this choice of the norm of a

matrix, the usual norm properties (29) are satisfied
HExI < TIEI < [zl

1B E, 11 < 1B, 1] * [1B,]]

(29) lE, + E,1T < LB L] + |1E,]]
[|[E][l = 0 IFF E = 0
[eE[] = o] x {IE[]

13



Since E(x) (26) 1s small (|]E(x)|| = o(-l—é-)) one might
X

expect E(x)y(x) to be small in comparison with

1 ~
(Bo + E—Bl)zﬁx) In fact in comparison with

(Bo * % Bl)i(XJ , the term E(x)¥(x) 1s approximately

known, 1 e , this term 1s approximately zero Thus, (27}
takes the form of an inhomogenous equation where Ex)¥ (x)

1s treated like an inhomogenous term

One can attempt to use the method of variation of parameters
to obtain the general solution of (27) If E)¥(x) 1s
precisely known, then one can obtain the generaf solution

of (27) in the form of an 1ndef1n1te integral Since ¥ (x)
1s not known, one arrives at an indefinite integral equation
for the general sclution of (27)

The homogenous portion of (27) 1s merely (24) Recall that
a fundamental solution of (24) 1s given by (25)

Assume a solution ¥(x) of the form

(30) yx) = Wxle(x)

where c(x) 1s to be determined Substzitute (iO) imto (27)
then one obtains

i

X
(31) F (%) W(x) ﬁr“l(s)E(s)y_(s) ds

14



It 1s easily shown that any continuous solution of the
integral equation (31) 1s a differentiable solution of (27}
This 1s one big bonus that integral equations possess and
1t can be expected that the analysis can proceed more
eas1ly 1f one considers the integral equation (31) rather
than the differential equation (27)

OBSERVATIONS (See (25))

1 Ei(x) dominates Eg(XJ for x 1increasing to infinity
El(x) dominates Ez(x) for x starting at large values

and decreasing to small values of x . (Recall

jarg x| < T

2 EB(X] dominates El(x) and yg(x) for x decreasing
from a large x value to a small x value

3 EQ(XJ dominates El(x) and ga(x) for x aincreasing

to infinaty

Intuatively, what 1s meant by the dominance of one solution
over another 1s the relative growth of one solution compared
to another For example, El(x) domainates EZ(X) for x
decreasing For decreasing x , gi(x) 1S an 1ncreasing
function and Hzcx) decreases exponentially fast Hence,
El(x] dominates EQ(X) for decreasing X

One can use the above observations to construct integral
equations which force the dominance of a solution which
behaves like El(x) Three different integral equations
will result, each corresponding to the three distinct
solutions Eltx](l = 1,2,3)

15



1
dlagonal(%,xzex,x e—x)

o

Recall W(x)

(32)  (a) W (s)

2

,S 2e®
S)
9

dlagonal( s

(b) let Wl(s)

21
2. -5
s,s “e
x
diagonal\0,0,s 2e
Y
s,s Ze”°

(c) 1let Wz(s) dlagonal(

-1

clearly Wl(s) + Wz(s) = W “(s)

(33) (a) 1let Kl(x,s) W(x)wl(s)E(s)

(b) 1let Kz(x,s) W(X)WZ(S)E(SX

One should note that W(X)Wl(s) includes the effects of

only K3(X] which 1s the solutlon of (24) wﬂich 1s dominated
by El[x) for increasing X W(x)w2(s) includes the
effects of El(x) and Ez(x) Recall that EQ(X) 1s
domainated by El(x) for decreasing valuves of x

Consider the following integral equation

¥

X
(34) ) = w (%) +J K, (x,5)7,(s) ds
a

X
+.[ K,(x,s}¥,(s) ds

16



For simplicity, restrict the remaining portion of the
discussion to the case arg x =0, 1 e , x 1s rveal and

positive

If a < x < « , then the integral from a to x 1n (34)
proceeds with ds > 0 and the integral from <« to X
proceeds with ds < 0 Due to the above split that has
been performed (see (32) and (33)), one has forced the
dominance of a solution of (27) which behaves 1like El(x)
which 1s a solution of (24) It 1s relatively simple to
differentiate formally the integral equation (34) to
demonstrate that continuous, absolutely integrable solutions

of the integral equation are i1ndeed dafferentiable solutions
of (27)

The proof of the theorem now proceeds in two stages First,
1t 1s necessary to establish the existence of a solution

2l(x) to {34) Secondly, 1t 1s demonstrated that

17,09 -l = [eoll x of})

In order to establish the exaistence of a solution to the

integral equation (34), consider the Picard iteration

-

5360 = 0

X
(35) T = w0 +f K, (x,s)¥](s) ds
~ a

X
+‘[ Kz(x,s)in(s) ds

00

17



Since |[E(s)]|| = 0(15) let M be chosen so that
S

(36) HEG) ] <X
s

LEMMA I£f a > max(4,6M) and a £ x < e then

67 N0 - 2ol < (3) gl - (3)7« ()
PROOF 2‘;(2{) = 0
1) = ¥ (x)
lgteo - 5ol = eyl = (3) w1l

“for n = 0 the lemma 1s true Assume true for
some n - 1 and attempt to show true for =n

1
X =
2
HS’_;‘-FI(X) - f;[x)” _<_f (é) g~ (X-5) 1241__2_ Hir;(s]
s
a
X
~n-1 M o
- sy || as] L )L s
- N ] las]

18



From the ainductive hypothesis one concludes

]
ﬁ“““ﬁ
>
T ——
w |
\-__../
R o
4}
|
"
]
n
v =
N
—
D] b=t
[
=3
)=
fal
th

19



8 Y
4
—
»iw
R
=
[x]
—
o b=
e S
]
i
=
| =
[T
wn
}]
=
T
Yo n
B e
=]
!
[
| A
A

Thus {for case 1 (a

v
eof &4
e VN

~n+l ~n
77 &) - 3700

|A
p———
ST

4+

W
e S

s
p——
0] et
e
=}

X

=

I,_J

~

b

pS—

A
—_——
™ =
e
u

CASE 2 a <

X X/Z X
a .

1
% % 2 n-1
Hf ||sj (ﬁ) om) M (1)« Las
a a s

For a > 4 , 1t 1s easily shown that (%) e” (x7s) g

»o] 4

o] P4

monotonically increasing with s for fixed x on the

20



interval a £ s < X

It 1s also easily shown that

The results of case 1 can be applied to obtain estimates

fox ||f | ana Hf I
%‘ =21

——

)1 (&)

=
-%
™o =

X/z X X
1 1
Hf ||+||f ||+||f IFREEE
a X o
Z

x | w, [

oI5 - Bl s (3) < el e

!
21



It 1s readily verified that
an+ 1 _ [~k+1 o~k i
(38) e = ) e - o)

Therefore, the above lemma establishes the uniform conver-
gence of the above sum as n + « and hence i?+l(x)
converges uniformly  Denote this limit vector by il(x)
il(x] 1s clearly a continuous solution of the integral
equation In addition, the above telescoping sum coupled
with the triangle inequality yields an estamate of the

growth of ||2;(X)[|

n
k
@ HFETe < 3 (F) el
k=0
(39)
® syl 2 ||| - 2

This estimate of the rate of growth of 2l(x) 1s sufficient

to establish that [|¥, (x) - El(xji| < Ilﬂl(x)ll X-O(%)

22



(7A)
b4
(%)
——

Proof Ilzi(x) - El(x)|l

12
. (_) 0 M (2)
5 S2 S

(40) |13, - w (]| sf

s
a b X

-
Clearly e 2 15 an exponentially decreasing function and

hence, the first term on the raght-hand sade of (40} s

0(15) The entsre expression 1s 0(15) or
X x

||EI(X)II X O(%) This establishes the existence of an

actual sclution of (27) whaich behaves like El(x) as

X > »
One could construct other integral equations to prove that
there exists an actual solution zQ(X) of (27) which behaves
like w,(x) as x + =, and simalarly one could demonstrate
a connection beti'een a ga(x) solvtion of (27) and 33(x)

23



fhis method of proof 1is not going to be repeated for 22(x)
and 23(x) Only the integral equations will be determined

Recall that w,(») dominates w,{x) and w,(x) for

increasing x

L
Thus, let Wl(k) = dlagonal(s,ﬂ,s 2es)
I —1/2 =S
Wz(s) = dlagonal(o,s e ,0
Kl(x,s) = W(X)Wl(s)E(s)
K2[x,s) = W(XJW2(S)E(S)
X
(41) 7,00 = w,(x) f K (x,5)3,(s) ds
a

x
+ J. Kz(x,s)iz(s) ds

Since Es(x) doss not dominate any solution for increasing
X , the corresponding 23(x) integral eguation 1s

—_—

X
(42) 23(x) = E3(XJ + Jﬁ W(X)Wﬁl(S)E(S)EB(S) ds

o0

So far i1t has been possible to avoid using Thome' solutions

1in an attempt to establish a connection between (27) and
(24)

24



It turns out that for the pairticular problem under investi-
gation, one 1s able to determine (guess) Ly inspection the

farst few terms in the Thome' expansion

Now, consider a different method of attack which more closely
parallels the approach developed earlier in this paper That
15, attempt to deteimine solutions via formal substitutions
Since, the rank of the singularity of (23) or (27) 1s one,
the formal solution takes the form

4

(43) F(x) = E y Xt
n=0
If one formally substitutes (43) into (23), then one obtains

(44) Ay, = By

One clearly obtains the values 0, 1 and -1 for X and

AR

0} for the corresponding Y, Vvectors
Actually any multiple of these vectors 1s satisfactory

R

Corresponding to any of the three possibilities for A ,
one can formally determine a,xl,zz,XB,--- For example,
consider X = 0 The corresponding formzl solution is

of the form

(45) Fi) = pop X

n=o

25



o = -1
(46) "Ry = BoRy * BBy * By
"R, = Bopy * Bip, * Bypy * Bypg
“4py = B,p, * Bypy * B,ps + Bypy * Byp.

. . . - . [ . . - . - . . . . - . . - . -

-2 1 2/3
o [ [n -

—_ - T e e e e e e CFMe e e e m W RRARL L - e W REREEE i A emem b e e e A - - -

1
Note that El(x) = P, X (E) which 1s merely the result

of truncating the formal sum (45) after the first term

One could proceed to recursively determine p, ,p.,*** .
It turns out that 1f one considers the truncated formal

L}

-
solution E Ekxa"k , then there exists an actual solution
k=0

L
~ = - 1
§,(x) of (24) such that llzi(x) —:i:pkxc o= x® X‘O(x2+l)
k=0
This result was established in the previous theorem for

L =0 This more general result will not be established
here (see [4], [8])

26



Poincare’ 1ntroduced the following definition A function

o

£{x) 1s said to be asymptotic to E anx_n as X » % 1n

n=o
N
-k 1
the sector [ if [f(x) - jg:akx [ = 0( N+l) This
k=0 X

property 1s denoted by
(48) £(x) -~ Zanx"n , xS

n=o

3
If one evaluates ZE:pnx"(n+l) at x = 100 one obtains
n=o0

009801007
(49) - 00000098

- 00000294

Since one can obtain exact solutions via the transformation,

(18) one can easily show that

3
(50) ||y EXACT - Zp_nx“nu ~ 3 % 107°
n=o

|
Since I[zl(100)|| ~ 01 , one thus concludes that the formal
s with a

t
maximum erior of three units in the seventh place Notice

truncated solution yselds six significant faigure

that in the above discussion, some of the zeros in the second
i
and third components are counted as significant figures
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One can similarly compute approximate values of zz(lOQ)
and ¥,(100)

-
(51) ¥, ) =~ ji:gnxz e

K}
4]
]
[ R
OO
!
K]
l.._l
]
]

O - O
| I
el
8]
1]

] 1 ]
aamdl W ]
L
| S

2
a, = |3 8333¢-}
1

- 532247 x 104!
(52) 7,(100) = 2660306 x 10%°
- 266124 x 10%!

Comparing this value with the exact value, one can determine
the accuracy to be seven significant figures with a three-
unit error in the eighth place The actual error 1s roughly
3 x 1037 which 1s a very large number This 1llustrates

the situation where two large numbers can have several

significant figures of agreement and still differ by a very
large number.

Similarly

r X X
—I

n=o

F e
wu
ot

L —

<t

w

F o
b

p—
2

1

=1

SR

]

1

»
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[ 30
T = 90
|-156%3

- 100442 x 10743
(54) 7,(200) ~ |- 301326 x 107%°
3365713 x 10 %2

The exact solution yields the following information The
approxaimate value (54) 1s accurate to five significant figuzres
with an error less than two units in the sixth place

For most problems there 1s of course no known exact (closed-
form) solution Thus, one must attempl to delermine the
possible error involved by a more detarled investigation of
the asymptotic expansions One technique 1s to merely
truncate the expension at the smallest teim (see [6]) Olver
has recently investigated the problem of cetermining error

estimates [9] anc 1t appears ;hgiimfpr certain qgsggzﬂﬁp%s
procedure 1s quite bad, 1 ;’,‘the errors“;;e“ﬁazh larger
than one would expect This behaviour 1s most pronounced
when one attempts to use the asymptotic expansions near a
Stokes' lane For the problem considered in this paper,
the Stokes' lines correspond to the rays arg x = = %
Since the relative dominance of one scolution over another
changes when these lines are crossed, one mightl expect the
inaccuracies that arise when one attempts to use the

truncated foimal expansicns
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Note that the discussion so fdr depends on the relative
dominance of one solution over another In fact, 1t 1s
clearly possible to add any multaiple of il(x) and 23(x)
to zz(x) without changing the asymptotic properties of
zz[x) One could also add any multiple of zS(XJ to
zl(x} without changing the asymptotic properties of zl(x)

.
Of course one must ampose the 1estriction |arg x| < %

If one 1s interested in determining zl(x) and one only
demands

= 1
- -{n+1) =
{55) Xl(x) E p X where p, = [0]

n=o )
then the possible zl(x) form a one-parameter family of
solutions {21} Similarly, 22(xj form a two-parameter
{fam1ly {22} Since no multiple of ¥ (x) and ¥,(x) can
be added to ﬁa(x) and leave 1ts asymptotic properties
unchanged, one can conclude that this solution 1s uniquely

0
defined (Eo = [0]) , 1l.e , there corresponds precisely

1

one actual solution of (23) asymptotic to the formal solu-
tion

NUMERICAL INVESTIGATION OF THOME' SOLUTIONS

The following 1s a numerical procedure which, to the author's

knowledge, has never been published

The only accurate 1information obtained concerning the solu-

tions ¥, (x) , §,(x) and ¥, (x) 1s for large values of
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X For many practical problems one 1s interested 1in these
solutions for fairly small valuecs of x In principle, one
can use the values zl(a) , 22(a) and 23(a) to continue
these solutions back to small values of x Because of the
different exponential rates of growth, this corresponds to
an unstable numerical problenm Indeed, 1f one starts at

x = 100 and attempts to use 21(100) to determine 21(20) ,
one wi1ll faind that 23(x) grows so rapidly (for numerical
integration with a negative step the 23(x) solution of (23)
dominates) that one soon obtains only a multiple of is(x)

In order to obtain a vector zl(x) at x = 20 which 15 a
member of the one-parameter family {il} , one must either
increase the precision of the numerical calculations or
develop some other numerical technique

From the asymptotic relations one might expect
(56) ||5“_rl(x)|| ~ 05 at x = 20

The growth of is(x) 1s expected to be e x 1034 where ¢
1s a sum of the errors in the znitial condition (21[100)) s
the roundoff error, and truncation error Hence, one would
expect to require about 40 places of accuracy to obtain four
significant figures an the determination of 21(20) . Omne
would also require an extremely small step size in the
calculations to maintain this precision

Fortunately one can avoad this high-precision arithmet:c

One need only exploirt the property that il(x) can be

considered a member of the one-parameter family {21}
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Recall that any multaple of i3(x) added to zl(x) ﬂylelds
e sclution of {23} or {(27) which 15 asymptot:c to ¥.(x) ,
1 ¢ , the asymptotic propcrties are unchanged If one pro-
ceeds to integrate from "x = 100 with a fegative step, one
wi1ll soon observe very rapid growih of the third component

of the vector solution

The rapid growtq of the third component occurs since- 23(x)
grows most rapidly in the third component If one CORRECTS
zl(x) by adding a multiple of i3(x) so as to force the
third component to be zero at say x = 99 , then one kas
not changed the asymptotic propertaes of ¥, (x] One is
merely calculating a different member (afte; the correction)
of .the one-parameter family {zl} . If one repeats this
procedure at x = 98 , x = 97 , «+« , x = 20 one arrives

at a solution of the form

]

(57) 7,0

o
-
n
o ™ R
E—I

Since there 1s also an exacl solution for this particular

problem one can determine the accuracy of this procedure
(See Tables I and III )
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TABLE I

x 7, (EXACT) 7, (NT) =
9801007 7] ~ 9810070
100 00009771 1072 - 00009800} % 1072
00029399 - 00029400
10865581 - 108655607
90 00001336 107+ - 00001334} x 107%
00004024 - 00005884
12189473 - 12207266
80 00001896 1071 00051641 x 1071
00005713 - 38101953
13880500] 48525]
70 00002815 1071 1 41486
00008496 -770 99997
16115805] - 00012768
60 00004438 1071 00038333| x 10°
.00013425] -.15351575]
19208139 "~ 00035723
50 00007588 107> 00107282 x 1012
00023038, -.729852279]
23765984 - 00104414
40 .00014569 1071 .00313765] x 10%°
00044524] -.55931436,
31149376] - 00324519
30 00033425 1071t 00976449 x 1029
00104679 - 98114926
45132097] " 0010994
20 00104197| x 107% 0033204 | x 102°
00337387 - 14917207
(NT) — numerically integrated
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For more practical problems there is no known closed-form
solutaon Indeed, there would be no need to integrate
numerically in such a problenm One can attempt to calculate
a solution asymptotic to iz(x) at x = 20 by numeracally
integrating from x = 100 to x = Z0 For this problem,
one adds multiples of zl[x) and 23(x) to correct zg(x)

at x =99 , x =98 , -+« , x = 20 At each of these
values of x , one corrects zz(x) so that 1t 1s of the
form
' 0
(58) 7,00 = |8,
0

The value of 82 so obtained at x = 20 can then be used
to numerically integrate (23) with a positive step One can
expect to maintain good accuracy on zz(x) for integration
with a positive step since 22(x) dominates the other solu-
tions of (23) i1n this direction  When one reaches the value

x = 100 , one can compare the value of zz(x) calculated

0

using 82(20) A4s an initial condition at x = 20 with
0 N

the value one started the calculation at x = 100 These

two values will not compare well unless one corrects the
values of both to the same form (58) There 1s no reason to
0
expect the 1nitial condition 82(20) to be of the form
0
(58) at x = 100 since there wexre 80 separate corrections
and hence 80 different members of the two-parameter family
{y,} whach have been used in the calculations The agree-

ment (o1 lack of 1t) at x = 100 1s some andacatzon of the
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accuracy of all the numerical solutions obtained a2t x = 20
This follows since all the solutions are used 1in the calcula-
tion of ¥ (20) One may find that more precision 1s
required, but it appears that one will require less precision
than a numerical integration without utalizing corrections
(see Tables II, III and IV}

All numerical integrations were carried out using the UNIVAC
1108, single piecision (eight significant fagures) with a
fifth-order Runge-Kutta method [7] and a fixed step size H

(|u] = 1/32)



TABLE II

x ¥, (BXACT) g (N

- 00010090 . 0001004
100 - 00030278 10742 - 0003013 10722

| 33657280 | 3365713
- 000257387 . 00025738

90 - 00077239 10"38 - 00077238 10718
| 69551972 | 69551542
- 000066707) "~ 00006670

30 - 00020017 10733 - 00020017 10713
| 14244000 | 14243887
"~ 000176247 - 000175247

70 - 00052901 1072° - 00052901 10”°
| 28827363 | 28827086
M- 000477407 - 000477397

60 - 00143325 10723 - 00143323 1073
| 57398904 | 57398345
- 000133577 - 000133567

50 - 00040113 10720 - 00040112
| 11161680 | 11161535
- 000390407 =~ 000390407

40 - 00117316 10716 - 00117314 104
| 20012637 | 20912327
r- 091213377 - 001213357

30 - 00365093 10712 - 00365087 10°
| 36685010 | 36684401
[- 004110797 = 00411072

20 - 07241501 1078 - 01241479 1012
| 55775284 | 55774266

*
(NI) — numerically antegrated

Notice the numerically 1ﬁfegrated (NI) solution has

scaled

been

No corrections are required to maintain good
¥, ()
tion with a negative step completely explains ihis accuracy

accuracy on The dominance of zB(XJ for integra-

36



TABLE III

x ¥, (EXACT) ¥, (N1iic) @ ¥, (IW/0C) b

' 980100687 [ 98010070] ~ 08010070
100 - 00009771 1072 - 00009800 1072 - oooo9soo| x 1072

| 00029399 - 00029400 - 00029400]
" 108655807 [ 10865559] ( 10865558)

90 - 00001341 1071 - 00001341 167+ - 00001341] x 1071
| 00000000 | 00000000] | 00000000]
M 121894707 [ 121894267 " 12189426

80 - 00001903 1071 - 00001903 107t - 00002903} x 1071
| 00000000, | 000000004 [ 00000000
[ 13880495] [~ 13880425 13880435

70 - 00002830 107t - 00002830 1077 - 00002786] x 10771
L 000000004 | 00000000 00000000,
[ 161157947 16115688 162353527

50 - 00004472 1071 - 00004472 107t - 00488281} = 1071
L 00000000] | 00000000 .L 000000601
" 192081127 192079447 4

50 - 00007671 1071 - 00007671 107t 8
| 00000000} | 00000000 0
[ 237659007 [ 23765649] 131072007

40 - 00014817 10~* - 00014816 107t 26214400 x 10°
| 00000000 L 00000000, 00000000
C 311490337 [ 31148659) 42949673

30 - 00034457 107> - 00034456 1071 85899346 x 10%°
L 00000000 | 00000000 00000000}
© 45129605] [ 451289717 042221257

20 - 00111707 107t - 00111705 107t 112589981 x 106
| 00000000 I 00000000 00000000

#(NIWC) — numeracally integrated wath corrections

b(NIP{/OC) — numerically integrated without corrections
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Notice for x = 90 , x = 80 , - s X = 20 all soclutions
are reduced to the same form
oy (x)
(59 §,0) = |8 (x)
0

In order to facilitate a comparison one must examine the
same member of the one-parameter family {zl} Thus, all
vectors are reduced to the form (59) For the numeraical
integration with corrections (NIWC), one uses this corrected
value in the numerical integration, but the corrected value
1s 1gnored in the numerical integration without corrections
(NIW/0C) Table ITI clearly indicates the value of the
correction procedure

One may wonder why the comparison of 21(EXACT) and zl(NIJ
in Table I seems to be much worse than il(EXACT) and
zl(NIW/OC) The reason for this as simply that one s
obtaining a member of {il} when one computes zl(NI)

One would need much more precision to more accurately
specily a particular member of this familv at x = 100 an

order to achieve agreement between Xi(EXACT) and Xl(NI)

This emphasizes the numerzcal anstability of integration

without corrections. .

It appears that numerical integration without correction
(NIW/0C) yields a member of the one-parameter f%mlly {zl}

to two significant fagures at x = 60 This exceeds our
expectations  The reason 1s rather simple Itils expected
that the first component of y {(x) should be of the order
1072 Since the inaccutacies in the numerical calculatlons_
are going to be a result of rapid growth in the.thlrd com-
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ponent, one may determine how laige the third component will
have to be in order to affect the first significant figure
of za(x) From Table I1 one observes that 23(x) 1s
approaimately of the foim

-10%

(60) 7, (x) =~ -10%
10a+3

Now, one expects to lose all significant figures in the
determination of ¥,(x) when a =6 (|[zl(x)|| ~ 1072
since one maintains only eight significant figures in the
calculations Since the error in the 1nitial condition 1s
of the order 107° and the third component will have to
attain the approximate value 10° , this zmplies that a
growth of 1018 times the 1nitial error 1s necessary to
lose all saignaficant figures The 23(x] solution of (23)
attains a growth of 10®  times 1ts original value for a
decrease of x between 40 and 50 units Thus, at x = 60
il(NIW/OC) 1s a two significant figure member of {21}
and at x = 50 has no significant figures of agreement
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TABLE IV

x ¥, (EXACT) ¥, (NIKC)® £, (NIW/QC) b ¥, (13
000053197 [ 00005322 000053272} [ 000053227
100 26605058] < 1097 26603060] x 1023 26603060] x 1023 26603000) x 1023
00002658 - 00002661 00002661 |- 00002061
00000000 © 00000000] 00000000] [ 06017569]
90 11444181} x 1091 11444123 x 103! 11444162] = 103t 01208596 x 10%2
00000000 L 00000000 00000000 |- 57702246
000060007 [ 000000090] 000000006] [ 000055427
80 45910659 = 10%¢ 48910335 x 1018 11197288 * 107 000166331 x 107
00000000 | 50006900 00000000 - 11835600]
000000007 00000000 00000000] C 00014044]
70 20730232| x 1032 20730060| = 1012 18447855) = 1023 00045957] x 1031
00000000 | 00000000 00000000] - 23853141
[ 00000000) r 00000000] 00006060 0] [ 00039668]
60 86900848 1027 86809977 107 90896676 » 1022 00119091] x 10635
| 00000000 | 00600000 00000000 - 47693709
[ 00000000 ' 00000000] NUMBERS T0O
50 35878055 » 1023 35877634) » 10° LARGE  EXGEED
| 00060000] . 00000000 16%8
[ 00000000) - 000000007
40 14483300[ » 1027 14485106] = 1071
| nooonoooj | 00000000
[ 00000000 [ 00000000]
30 56362818 x 10%% 56361958| x 1076
| ooooenoo) | so000000]
[ 00000000) " 0000060
20 20434713] = 10%° 20434361 = 10710
| 00000000 | 00000000

(NINC) ~ numerically integrat d with corrections

1h(NIW/OC) — numerically integrated without corrections

c(NIJ — numeracally integrated
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From Table IV one concludes that zg(NIW/OC) 1s much more
accurate than zz(NI) Since ¥ £NI] 1s used to compute
zz(NIW/OC) one may wonder why there 1s such a dascrepancy
Before performing the comparison, one must put the solutions
in the corrected form (58) If this 1s not done, one will
be comparing different members of the two-parameter family
{¥,) ‘

One can predict the inaccuracies of EQ(NIW/OC) Since
zz(x) 1s decreasing exponentaally fast for integration with
a negative step, one expects a breakdown in the numerical
solution, 1 ¢ , no significant figure agreement with a

member of {¥,} for x mear the value x = 80

It 1s easily seen from the tables that for numerical integra-
tion with corrections one obtains 2l(x] to five sagnificant
figures waith a seven unit error in the sixth significant
figure, zz(x) to fave significant fagures waith a four unit
error 1n the sixth significant fagure and zB(X) to four
significant figures with a one unit error in the fifth

significant figure

If one uses the value of ¥ (NIWC) at x = 20 as an imitial
condition and integrates with a posilive step to x = 100
a2(100) .
then one obtains 62(100) If this value 1s:reduced to
v, (100)
the form (58) and 1f the initial vector 1s also reduced to
this form one can compare these values The results of
such a comparison yield four 51gn1f1éant flgureiagleement
with a one unit difference in the fifth svgnificant faigure

This difference 3s seen to be of the same order'as the error

4]



in Xz(x) at x = 20 Since Xl(x) and ZB[X) are used
in determining this value of zz(xj , one might expect this
dif{ference to also be an indication of the errors present in

these solutions

It 15 1ather surprasing to obtain a better value of zz(x)
at x = 20 than was obtained for i3(h) Apparently thas
1s due to the relative winaccuracy of is(lOO) as compared
to 22(100) The 1naccuracies inh 23(x) and gl(x)
slightly change the multiples of these solutions required
for the correction process but do not seem to affect greatly
the accuracy of EQ(X) This 1s a very useful property
since for larger systems, 1 e , for higher order systems

one can hope to handle all the solutions in the above

manner If the accuracy decreased, one would require

increased precision for higher order systems
OBSERVATIONS AND FURTHER RESEARCII

It 1s antlerestinzg to note that 1f one introduces the inner

product

(61) (7)) = ¥yivy T YV, tYVgVs
Y1 Vi

where y = j{y,} and v = |v | then one can introduce
Y3 V3

the angle & ,

(¥,¥)
(62) & = arc cos )
( (y,y) x (v,v)
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The corrected solutions zl(x) R zz(x) , iB(X) axe practi-
cally mutually orthogonal The winimum angle occurring for
any pair of solutaions (100 < x < 20) 1s nearly 89° The
correction process 1s roughly equaivalent to a Gram-Schmidt
process Since a method of this type has already been
investigated by Conte [5] 1t would be interesting to see

the method 1n this paper and Conte's method compared In
this connection, 1t 1s even more interesting to note that
this author has more nearly satisfied the conditions that
Conte wanted to satisfy, 1 e , Conte was willing to tolerate

1° values of 8

One should exploit, af possible, any freedom that a problem
allows For exarple, one can define an inner product so
that an arbitrary set of n 1linearly independent vectors
in an n-dimensioral space form an orthonormal basis One
should choose this basis after one has simplified the first

few coefficient matrices [8],

Since Conte's method and the method in this paper in their
present forms seem to be intended for use in different
problems one would first need to extend both methods before
atfempting a4 comparison

If one attempts to utilize the correction procedure
descraibed in this paper one must be careful to integrate in
a directaion so that the correction procedure 1s justified
For example 1f one attempted to integrate wilh a positive
step and obtain zl(x) one would anticipate the need to
correct with a multiple of zg(x) Since 22(x) dominates
il(x) asymptotically there i1s no justifaication {or adding
multaiples of zz(xj to zlﬁx) , 1 e , one does not main-
tain the same asymptotic properties
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