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APPLICATION OF THE MATCRED CONIC MODEL 

I N  !rEE S'IrnY OF 

cIR- IRAJECTQRm 

ABSTRACT 

Matched conic and integrated circmlunar t ra jector ies  with the 
:me constraints a re  compared a t  injection, pericynthion and perigee. 
Results indicate that the matched conic model may be used for  design 
purposes and for  obtaining trends of circumlunar trajectories.  In 
addition, an i terat ion scheme i s  presented t o  obtain any desired 
integrated trajectory. The scheme utxlizes the matched conic model 
i n  conjunction with the integrated n-body model. Convergence is rapid. 

Two p r 9 b l e s  encountered i n  the study of circumlunar t ra jector ies  
are: (1) obtaining a rel iable  analytic model of the earth-moon system 
and (2) obtaining a f a s t  converging i terat ion scheme for  the determi- 
nation of i n i t i a l  conditions fo r  precision t ra jector ies .  These problems 
a r i se  because there i s  no known analytical  solution t o  the general 
n-body problem where there are more than two bodies involved. It i s  
thersfore desirable t o  obtain an approximate earth-moon model which 
k 1 s  an analytical solution and yields results  which a re  good 
approximations t o  precision (integrated) results .  This model 
may then be used for  parametric studies, as  an i n i t i a l  condition 
generator, and to  form a basis fo r  an i terat ion scheme -t;o converge 
upon i n i t i a l  conditions fo r  a more accurate model. The purpose of 
th i s  paper i s  t o  show tha t  the matched conic is a model which closely 
approximates the resul ts  of precision tragectories and t o  show how 
the matched conic model may be linked with a precision model t.9 give 
a f a s t  convergia, re l iable  i t e r a t i on  scheme. 

These applications divide the discussion in to  two sections, 
both of which refer  t o  the matched conic and 7-body trajectory 
models. A brief discussion of each i s  given t o  familiarize the 
reader with the models. For more detailed information concerning 
the models, see references 1 and 2. 



SYMBOLS 

translunar or transearth trajectory above 
the moon orbital plane, deg 

R distance of close~t;, approach (r in example) 

S translunar or transearth trajectory below 
the moon orbital plrne, deg 

T time of flight, hr 

V velocity, ft/sec 

h injection altitude, ft 

i inclination 

r radius 

fl angle of ascending node, deg 

Y argument of radius, deg 

w argument of periapsis, deg 

Prefixes 

A correction term for matched conic initial 
conditions 

V error in integrated end conditions 

Subscripts 

c matched conic 

d desired 

e earth 



i integrated 

m (e.c.) moon 

r return 

tl translunar 

Superscripts : 

Y cons trained element 

DISCUSSION 

Matched Conic 

The particular matched conic model used in this d,i.scussion 
was initially developed by the Martin Company for NASA in con- 
nection with the Apollo study contract (ref. 1). The model 
simplifies the complicated earth-moon system to just two point 
masses which represent the earth and moon. The motion of a 
third body (particle) in this system is governed completely by 
the gravitational force of either the earth or moon. To determine 
which force is to be used, a fictitious sphere, called the moon's 
sphere of influence, is constructed such that it encloses the 
moon and moves with it. The radius of the sphere is constant and 
was chosen mpiricaUy by comparison with integrated trajectories. 
If the third body is inside the sphere of influence, the moon's 
grsvitational force is used; otherwise, the earth's gravity is used. 
Since the force acting on the third body is always inverse square, 
the orbits are always solutions to the Kepler problem or conic 
sections. Thus, a lunar trajectory in this system is a series of 
conics which are matched at the sphere of influence. Specifically 
for circumlunar trajectories, the particle would travel out to the 
sphere of influence on an earth-focused ellipse determined by the 
initial conditions. At the sphere, the velocfty and positioc vectors 
are transformed to the moving moon system which results i.a a hyper- 
bolic orbit about the moon. When the particle again reaches the 
sphere of influence its orbit is transformed back to the earth 
reference. (see fig . 1. ) 

All the orbital parameters are computed by the usual conic 
formulas with the exception of the velocity at pericynthion 
which is computed by Jacobi's Integral to the Restricted Three- 
Body Problem in order to give a better approximatio? to integrated 
results. 



Although analytic expression exists for a particle's trajectory 
in this nodel, the eqressions relating initial and final conditions 
are transcendental and require iteration for solution. However, 
because of the simplicity of the equations, the iteration can be 
performed very quickly on a digital computer. A solution where 
three end conditions are satisfied requires about 10 seconds on the 
IBM 7090. 

The 7-body model used for comparison is the NASA Inter- 
planetary program (ref. 2). Briefly this model computes a 
particle trajectory by Encke's Method subject to the gravita- 
tional forces of the following bodies: Earth, Xoon, Sun, Venus, 
Mars, and Jupiter. Perturbations due to the non-spherical 
qavitational fields of the earth and moon are also taken ini;o 
account. Initial conditions are given to start the program and 
a trajectory results upon numerical integratiqn. The ccnnputa- 
tior!al time for a single trajectory of 150 hours requires about 
1.5 ~inutes on the IBM 7090. 

Results of Trajectory Comparisons 

A c~mparison was made with circumlunar trajectories which were 
computed on the matched conic and 7-body models that satisfied the 
same constxaints. The trajectories are the figure eight type as 
shown in fig;urc 2. '!he constraints were imposed at three points 
of particuln~ interest - at the injection, at pericynthion, and 
at the retuxa perigee. At injection, there are three constant 
constraints imposed: radius (r), flight-path angle (y), and 
translunar inclination (itl) . At pericynthion, one constnint, 
a constraint, a constant pericynthion radius ( r ,  is imposed. 

At perigee, two constant constraints, perigee (re) and return 

inclination (ire), are imposed. The geometry and definition of 

the constraints at injection, pericynthion, and perigee are given 
in figurss 3 to 5, respectively. Specifying the six constraints 
and the initial time determines a circumlunar trajectory uniquely 
on both models. A total of 18 elements are defined at the three 
points, six at each point,. Six of the 18 elements have the same 
constant va'lues on both models because of the constraints; however, 
the remaining 12 elements will generally have different values on 
the two models. The 12 unconstrained elements are called fYee 
elements. At lnJection, the free elements are velocity (v), lead 
angle ($), and argument of injection (Y) .  At ricynthion, the 
five free elements are time f'rm injection (Tmr ve1ocity (v~), 



inc l inat ion (i ), angle of ascending node (n  ), and argument of m m 
pericynthion (urn). The four f r e e  elements a t  perigee a r e  t h e  

from injec t ion (T,), velocity (v,), angle of ascending node (a), 
and argment  of perigee (we). The deviations of the matched conic 

elements from t h ~  7-body elements w i l l  give a good indicat ion of 
the accuracy of the matched conic model. The def in i t ion  of the 
f r e e  elements a t  the three points  i s  defined and denoted on 
f igures 3 t o  5. A surnmary of the free and constmined elements 
i s  given i n  t ab le  I. 

A sample matched conic and 7-body comparison i s  given i n  
t ab le  11. The in jec t ion time f o r  a l l  the t r a jec to r ies  presented 
is  Greenwich midnight tTanuary 15, 1967. The moon i s  near apogee 
a t  the t i m e  of a r r i v a l  a t  pericynthion. The two t r a j e c t ~ r i e s  have 
a pericynthion a l t i t u d e  of 100 naut ica l  miles and a perigee a l t i t u d e  
of 20 naut ica l  miles. ?he inc l i r~a t ion  a t  perigee i s  5 O  south. The 
differences e r e  computed by subtracting the  matched conic element 
from the corresponding 7-body element. A t  inject ion,  the  differences 
i n  the  constrained elements a r e  0 because they a r e  d i rec t  inputs. 
Small difference i n  the cors t ra in t s  ex i s t s  a t  pericynthion and ~ e r i g e e  
because of the small conergznce tolerances i n  the  i t e r a t i o n  scheme. 

To give f'urther evidence t h a t  the differences a r e  small, 
t r a jec to r ies  were run on the two models where one of the s i x  
constraints  was varied. The re turn  incl inat ion ( ire)  was varied 

between 60's and 60°N. The t r a jec to r ies  were in jec ted  a t  an 
a l t i t u d e  of 600,000 f t ,  0' f l ight-path angle (y), and 1°N 
translunar inc l inat ion (itl) .  The pericynthion a l t i t u d e  was 

100 naut ica l  miles and the perigee a l t i t u d e  20 naut ica l  miles. 
Plots  of the f r e e  elements e.s f'unctions of ire f o r  both models 

a t  injection, pericynthion and perigee a r e  given i n  f igures 6 t o  8, 
respectively. It i s  seen from the p lo t s  t h a t  the shapes of the 
matched conic curves a re  very near the same shapes as the  corre- 
sponding precision curves. I n  addition, the  matched conic curves 
a r e  displaced from the integrated curves by small increments which 
a r e  nearly constant. Hence a small constant correction term may 
be added t o  the matched conic value t o  g5ve even a b e t t e r  approxi- 
mation. These fac t s  a r e  the  foundation ~f the i t e r a t i o n  scheme 
presented i n  the following section. 

I n  addit ion t o  the f e w  comparisons presented here, the author 
has made many spot checks with variat ions i n  the s i x  constraints .  
I n  a l l  cases, the matched conic performed as w e l l  as  presented here. 



On t h i s  basis, it seems jus t i f i ed  t o  in fe r  tha t  the differences 
remain small f o r  a l l  figure eight  circumlunar t ra jector ies .  

I terat ioil  Scheme 

The problem of ca lcub t ing  a t ra jectory which s a t i s f i e s  cer ta in  
con:,train'bs along i t s  path i s  cs l l ed  a boundary-vdue problem. The 
solution t o  the circumlunar bmaary-value problem requires a 
numerical solution because of the  absence of an analyt ic  solution 
t o  the n-body problem. Generally, i n  obtaining a numerical solution, 
a f i r s t  guess is made t o  the i n i t i a l  conditions and a t ra jectory i s  
computed by numerical integration. The values of the end conditions 
a re  compared with the  desired ones. If ~ n y  of the  end conditions 
a re  not within the allowable error,  another guess of the  i n i t i a l  
conditions i s  made. The procedure of guessing ( i t e ra t ion)  and 
integrating continues u n t i l  the desired end conditions s r e  met o r  
u n t i l  the resu l t s  indicate t ha t  the  desired solution does not ex i s t .  
Obviously the r a t e  of convergence t o  the proper i n i t i a l  c o n ~ t i o n s  
depends upon the par t icular  i t e r a t i on  scheme. Since the computa- 
t iona l  time of a single 7-body integrated t ra jectory is  about 
-, 
l$ minutes, an i t e x t i o n  scheme is  desired so  t h a t  only a few 

integrated t ra jector iee  need be computed fo r  convergence. 

Ordinarily, an i t e r a t i ve  scheme would rely on a near-linear 
relationship exist ing between the i n i t i a l  conditions and end 
conditions. However, f o r  circ~llmlunar t r a j e c t w i e s  it i s  wel l  knm 
tha t  the  relat ionship i s  very nonlinear. 

The A i t e ra t ion  scheme presented here r e l i e s  on the near 
constant differences exist ing between matched conic and 7-body 
t ra jecfor ies  which were presented i n  the  previous section of t h i s  
paper. This means t h a t  a, s e t  of constant correction t e r n  may be 
used t o  update the matched conic i n i t i a l  conditions. Also, changes 
i n  the i n i t i a l  conditions w i l l  a f f ec t  the end condition i n  the  same 
manner fo r  both models. 

The simple theory of the  A i t e ra t ion  scheme can b t , t  be shown 
by figure 9 which exhibits  a single variable i t e ra t ion .  The f igure  
shows two curves of injection velocity as a function of return 
inclination.  The correction term AV i s  assumed t o  be known from 
a pre12ous t ra jectory comparison and i s  used throughout the  iter- 
ation. For the first guess, the matched conic velocity is  computed. 
This matched conic velocity corresponds t o  point lc on the matched 

conic curve. The term AV is  added t o  the macched conic veiocity, 
and t h i s  new velocity i s  used i n  the integrating program. Upon 
integration, the t ra jectory arr ives  a t  the point li on the  



integrated curve. An e r ror  Vl now ex is t s  i n  the return inclination. 

Since trenils a r e  nearly the same, e change of Vl i n  the return 

of the matched conic w i l l  produce nearly the same 
change i n  the return inclination of the integrated. Therefore, 
the inclination i s  noved t o  the r igh t  by Vl on the  matched conic 

curve, which g i e s  point 2 . Again 7 V  i s  added and t h i s  gives 
C 

point 2 on the integrated curve. A much smaller e r ro r  V now 
1 2 

exis ts .  The matched conic i~ changed by V2 and the  proceaure 

continues a s  before untLl V is within the allowable tolerance. 
( ~ o t e  tha t  the e r ror  i n  the integrated end condition i s  always 
added algebraically t o  the mtched conic end condition. ) If the  
AV used was the exact one fo r  the desired inclination, no i t e r a t i on  
would be necessary. But, i n  general, the AV used w i l l  not be the 
exact one. It is  immediately evident t ha t  the  function of AV i s  
t o  make the i t e ra t ion  occur between closer curves. For multiple 
convergence, the  procedure i s  the same; correction terms a r e  ad&ed 
t o  the f ree  i n i t i a l  conditions, and the  errors  a re  added t o  the 
end conditions of the matched conic. I n  general, the correction 
terms a re  necessary because uncorrected i n i t i a l  conditions give 
r i s e  t o  integrated t ra jec tor ies  which a re  usually grossly i n  error.  

A step-by-step procedure f o r  a multiple convergence fbllws. 
For clari ty,  the  method w i l l  obtain i n i t i a l  conditions fo r  a 
circumlunar t ra jectory which has desired value of pericynthion, 
perigee, and return irlclination (see f i g .  2). Injection is from 
a fixed transkmar inclination, a l t i tude,  and flight-path angle. 
m e  indection gemetry  is shown i n  f igure 3. A s e t  of correction 
A's is  know= from a previous t ra jectory comparison and is  used 
throughout the i t e ra t ion ,  I n  case a s e t  of A's i s  no% available 
o r  6 closer s e t  i s  desired, they may be obtained by the  following 
steps : 

Step 1: Run a matched conic t ra jectory with the desired 
constraints. 

Step 2: Run integrated t ra jec tory  using wtched conic 
i n i s i a l  conditions. 

Step 3: Vary one of the  integrated f ree  i n i t i a l  conditions 
(v, 'Y, or  8 )  u n t i l  a t ra jectory has the proper 
return perigee (no more than f ive  integrated 
t ra jec tor ies  a r e  required In using l inear  scheme). 



Step 4: Run a matched conic which has the same pericynthion 
arid return inclination as the integrated trajectory 
wi+& the proper ~ r i g e e .  

Step 5: Compute the difference i n  the f ree  i n i t i a l  conditions: 

'Be same s e t  of A's has been adequate fo r  dl the free return 
trajectories computed by the author t o  date. However, f o r  faster 
convergence, the A's shown in figure 10 should be used. With a 
se t  ~f C's available, the steps i n  the A i t e ra t ion  scheme are 
o u t l i ~ e d  below and summarized in block diagram form i n  figure ll. 

Step - 1: Fbm matched conic wZth desired en& conditions. 'Ibe 
output is a set of i n i t i a l  conetions.  

Step 2: Correct i n i t i a l  conditions by A's. 

Step 3: Coiupute integrated trajectory by using corrected 
i n i t i a l  conditions. 

Step 4: Compute the error  differences (A's) 2n the exid 
ccnditions (desired value minus integrated vtrlue) . 

Step 5: If errors are small enough, i t en i t ion  is  tzrminated. 
If not, errors are added to  previous matched conic 
end conditions. 

Step 6: Repeat the process, but in  Step 1 use new matched 
conic eni! conditions. 

In general, the number of i terat ions  necessary depenjs upon the al- 
lowable end condition tolerances and accumcy of the A's. Ordinari- 
ly 6 or  7 i terations are required (10 minutes c q u t e r  time). 

To i l l u s tmte ,  a sample i terat ion i s  shown in figure 12. !The 
constraints sre a t  the top of the figure together with the cor- 
rection A's. The diagram is  largely self-explane tory, however, 
the following explanation is  given fo r  the convergence t o  return 
p e r i ~ e e  radius. The other parameters, pericynthion radius and 
return inclination, are i terated simultaneously with the perigee 
radius and i n  the same fashion. For the f2 r s t  i teration,  the 



desired value of 3,464 mut ica l  miles was used in the IE .tched conic. 
Ihe resulting in%egrated value was 3,164 nautical miles or 300 
nautical miles too low. Hence, for  the next iteration, perigee on 
the matched conic was increased by 300 nautical miles t o  equal 
3,764 nautical miles. Instead of increasing by 300 nautical miies, 
the integxated value only increased 27k nautical miles or, st i l l  an 
error of 26 nautical miles. On the next i teration the matched ccnic 
was further increased by 26 nautical miles to a perigee of 
3,790 nautical miles. Ihe use of a corrected matched conic initial 
condition for  this trajectory resulted in an integmted trajectory 
w i t h  an error in perigee of only 1.1 mut ica l  miles. In each 
successive iteration the errors were reduced. !Be nmgaimde of 
the errors shows that perigee radius is the I K I S ~  sensitive- 'Ihe 
exact A's for  the trajectory are abtained by subtracting the first 
matched conic f -rm the Last corrected matched conic. These A's 
are shown at  the both of the figure. 

'Be matched conic zlements approximate precision elements 
adequately for  mny types of parametric studies. An even bet ter  
appraximation may be obtain& by adding constant correction terms 
t o  tke conic element. !Be A iteretion scheme has been tested and 
?E dl cases proved to be superior to linear perturbstion type 
i teration schemes in both dependability and caqwtational time. 

1. Anon: Apollo Final Report - Tra jecmry Analysis. Martin Rep. 
EO. Et 12003, June 1N1. 

2. -Pines, Samuel, anp Wolf, Henry: Interplanetary Trajectory 
by the Ehcke Mt h d  Programrmed for  the IBM 7dt and 7090. . .- 
Republic Aviation Corporation Rep. Ha. ~ ~ ~ 6 5 6 4 5 1 ,  
Dec. 1960. 
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TABU 11.- TRAJECTORY COMPARISON 

Point 

8 
.rl :: 
Q) z 

Element 

V, ft/eec 

fr dog 

6, b g  

it*, b 8  

P, deg 

I+, ft 

Matched conic 

35,956 901 

7 * 75578 

38.14462 

30 N 

0 

21,525,244 

7-Bow 

55,959 242 

7 330060 

38*97&3 

30 N 

0 

21,525,244 

Difference 

2.341 

- ,42572 

.82581 

0 

0 

0 



TABU 11.- TRAjECTORY COMPARISON - Continued 

Point 

$ 
R 
2 
81 

Element 

rm*, f t  

vm, f t /sec  

Tm, hr 

%, aes 

imr b g  

b g  m' 

Matched conic 

6,288,518 

, 8,193 .7 

75 045 

34,586 

4,599 

-144.502 

7-Bow 

6,288,626 

8,200.4 

75,339 

35 293 

4.638 

-143 798 

Difference 

108 

-6.7 

294 

707 

039 

704 



W L E  11.- TRAJECTORY COMPARISON - Concluded 

PoLnt 

P) 

! 
& 

E'latched conic 

21,133,527 

5.186 S. 

148.83 

177.38 

-11.78 

36,626 

Element 

r *, ft e 

ire9, deg 

Te, h r  

%, deg 

cu deg e ' 
ve, ft /sec 

'I-BodY 

21,133,948 

5.184 S. 

147 98 

176.87 

-lo. 98 

36,631 

Difference 

421 

003 

-.85 

- -51 

-.79 

5 



To moon 
at injection 

Figure 1. - Motched conic model 



MOP - Moon orbit plane 

GI - Translunar inclination 

i,, - Return earth inclination 

Figure 2.- Free return circumlunar traiectory 
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Figure 4. - Pericynthion parameters 



Moon at 

z 

Transearth (from north) 

b Y  

X-Y plane is moon orbital plane 

Note: XYZ axes same as XYZ for injection 

Figure 5. - Return parameten at perigee 
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Figure 6.- Free orbital elements at injection a t  functions of the return inclination 
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Figure 6.- Continued 
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Figure 6.- Continued 
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Figure 7. -Free orbital elements at pericynthion as functions of return inclination 
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F igun  X - Continued 
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Figure I.  - Continued 
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Figure 7. - Continued 
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Figure 8.- Free orbital elements at perigee as functions of return inclination 
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Figure 8. - Continued 
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Figure 8.- Continued 
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Figure 9. - Single variable A iteration 



Pericynthion = 1,038.5 nautical miles 

Perigee = 3,464 nautical miles 

Return inclination = 5 O  S. 
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Figure 11. - Flow diagram of h interation scheme 




