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APPLICATION OF THE MATCHED CONIC MODEL
IN THE STUDY OF

CIRCUMLUNAR TRAJECTORIES

ABSTRACT

Matched conic and integrated circumlunar trajectories with the
tame constraints are compared at injection, pericynthion and perigee.
Results indicate that the matched conic model may be used for design
purposes and for obtaining trends of circumlunar trajectories. In
addition, an iteration scheme is presented to obtain any desired
integrated trajectory. The scheme utilizes the matched conic model
in conjunction with the integrated n-body model. Convergence is rapid.

INTROIUCTION

Two problems encountered in the study of circumlunar trajectories
are: (1) obtaining a reliable analytic model of the earth-moon system
and (2) obtaining a fast converging iteration scheme for the determi-
nation of initial conditions for precision trajectories. These problems
arise because there is no known analytical solution to the general
n-body problem where there are more than two bodies involved. It is
therafore desirable to obtain an approximate earth-moon model which
Tis an analytical solution and yields results which are good
approximations to precision (integrated) results. This model
may then be used for parametric studies, as an initial condition
generator, and to form a basis for an iteration scheme to converge
upon initial conditions for a more accurate model. The purpose of
this paper is to show that the mstched conic is a model which closely
approximates the results of precision trajectories and to show how
the matched conic model mey be linked with a precision model to give
a fast converging, reliable iteration scheme.

These applications divide the discussion into two sections,
both of which refer to the matched conic and T-body trajectory
models. A brief discussion of each is given to familiarize the
reader with the models. For more detailed information concerning
the models, see references 1 and 2.



SYMBOLS
N translunar or transearth trajectory above
the moon orbital plane, deg
R distance of closest approach (r in example)

translunar or transearth trajectory below
the moon orbital plene, deg

T time of flight, hr

\s velocity, ft/sec

h injection aititude, ft

i inclination

r radius

Q angle of ascending node, deg
flight, path angle, deg

)] lead anglc, deg

b4 argument of radius, deg

® argument of periapsis, deg

Prefixes

A correction term for matched conic initial
conditions

v error in Integrated end conditions

Subscripts

c matched conic

d desired

e earth



i integrated
n (e.c.) moon

r return

t1 translunar

Superscripts:

#* constrained element
DISCUSSION

Matched Conic

The particular matched conic model used in this discussion
was initially developed by the Martin Company for NASA in con-
nection with the Apollo study contract (ref. 1). The model
simplifies the complicated earth-moon system to just two point
masses which represent tue earth and moon. The motion of a
third body (particle) in this system is governed completely by
the gravitational force of either the earth or moon. To determine
which force is to be used, & fictitious sphere, called the moon's
sphere of influence, is constructed such that it encloses the
moon and moves with it. The radius of the sphere is constant and
was chosen empirically by comparison with integrated trajectories.
If the third body is inside the sphere of influence, the moon's
gravitational force is used; otherwise, the earth's gravity is used.
Since the force acting on the third body is always inverse square,
the orbits are always solutions to the Kepler problem or conic
sections. Thus, a lunar trajectory in this system is a series of
conics which are matched at the sphere of influence. Specifically
for circumlunar trajectories, the particle would travel out to the
sphere of influence on an earth-focused ellipse determined by the
initial conditions. At the sphere, the velocity and position vectors
are itransformed to the moving moon system which results in a hyper-
bolic orbit about the moon. When the particle again reaches the
sphere of influence its orbit is transformed back to the earth
reference. (See fig. 1.)

All the orbital parameters are computed by the usual conic
formulas with the exception of the velocity at pericynthion
which is computed by Jacobi's Integral to the Restricted Three-
Body Problem in order to give a better approximaticn to integrated
results.



Although analytic expression exists for a particle's trajectory
in this model, the expressions relating initial and final conditions
are transcendental and require iteration for solution. However,
because of the simplicity of the equations, the iteration can be
performed very quickly on a digital computer. A solution where
three end conditions are satisfied requires about 10 seconds on the
IBM T7090.

T-Body

The T7-body model used for comparison is the NASA Inter-
planetary program (ref. 2). Briefly this model computes a
particle trajectory by Encke's Method subject to the gravita-
tional forces of the following bodies: BEarth, Moon, Sun, Venus,
Mars, and Jupiter. Perturbations due to the non-spherical
gravitational fields of the earth and moon are also taken into
account. Initial conditions are given to start the program and
a trajectory results upon numerical integratiqn. The computa-
tional time for a single trajectory of 150 hours requires about
1.5 mimutes on the IEM T7090.

Results of Trajectory Comparisons

A comparison was made with circumlunar trajectories which were
computed on the matched conic and T-body models that satisfied the
same constraints. The trajectorlies are the figure eight type as
shown in figure 2. 'The constraints were imposed at three points
of particular interest - at the injection, at pericynthion, and
at the retuim perigee. At injection, there are three constant
constraints imposed: radius (r), flight-vath angle (y), and
translunar inclination (itl)' At pericynthion, one constraint,

a constraint, a constant pericynthion radius (;m), 1s imposed.
At perigee, two constant constraints, perigee (re) and return
inclination (ire), are imposed. The geometry and definition of

the constraints at injection, pericynthion, and perigee are given
in figures 3 to 5, respectively. Specifying the six constraints
and the initial time determines & circumlunar trajectory uniquely
on both models. A total of 18 elements are defined at the three
points, six at each point. Six of the 18 elements have the same
constant values on both models because of the constraints; however,
the remaining 12 elements will generally have different values on
the two models. The 12 unconstrained elements are called free
elements. At injection, the free elements are velocity (V), lead
angle (@), and argument of injection (¥). At pericynthion, the

five free elements are time from injection (Th , velocity (Vﬁ),



inclination (im), angle of ascending node (Qm), and argument of
pericynthion (wm). The four free elements at perigee ave time
from injection (Tm), velocity (Vé), angle of ascending node (Qe),
and argument of perigee (we). The deviations of the matched conic

elements from the T-body elements will give a good indication of
the accuracy of the matched conic model. The definition of the
free elements at the three points is defined and denoted on
figures 3 to 5. A summary of the free and constrained elements
is given in teble I.

A sample matched conic and T-body comparison is given in
table ITI. The injection time for all the trajectories presented
is Greenwich midnight January 15, 1967. The moon is near apogee
at the time of arrival at pericynthion. The two trajectories have
a pericynthion altitude of 100 nautical miles and a perigee altitude
of 20 nautical miles. The inclination at perigee is 5° south. The
differences are computed by subtracting the matched conic element
from the corresponding 7-body element. At injection, the differences
in the constrained elements are O because they are direct inputs.
Small difference in the corstraints exists at pericynthion and perigee
because of the small converg=snce tolerances in the iteration scheme.

To give further evidence that the differences are small,
trajectories were run on the two models where one of the six
constraints was varied. The return inclination (ire) was varied

between 60°S and 60°N. The trajectories were injected at an
altitude of 600,000 ft, 0° flight-path angle (y), and 1°N
translunar inclination (itl)' The pericynthion altitude was

100 nautical miles and the perigee altitude 20 nautical miles.
Plots of the free elements as functions of ire for both models

at injection, pericynthion and perigee are given in figures 6 to 8,
respectively. It is seen from the plots that the shapes of the
matched conic curves are very near the same shapes as the corre-
sponding precision curves. In addition, the matched conic curves
are displaced from the integrated curves by small increments which
are nearly constant. Hence a small constant correction term may
be added to the matched conic value to give even a better approxi-
mation. These facts are the foundation of the iteration scheme
presented in the following section.

In addition to the few comparisons presented here, the author
has made many spot checks with variations in the six constraints.
In all cases, the matched conic performed as well as presented here.



On this basis, it seems justified to infer that the differences
remain small for all figure eight circumlunar trajectories.

Iteration Scheme

The problem of calculuting s trajectory which satisfies certain
constreints along its path is cslled & boundary-velue problem. The
solution to the circumlunar boundary-value problem requires a
numerical solution because of the absence of an analytic solution
to the n-body problem. Generally, in obtaining a numerical solution,
a first guess is made to the initial conditions and a trajectory is
computed by numericsl integration. The values of the end conditions
are compared with the desired ones. If any of the end conditions
are not within the allowable error, another guess of the initial
conditions is made. The procedure of guessing (iteration) and
integrating continues until the desired end conditions sre met or
until the results indicate that the desired solution does not exist.
Obviously the rate of convergence to the proper initial conditlons
depends upon the particular iteration scheme. Since the computa-
tionsel time of a single T-body integrated trajectory is about

1%-minutes, an iteration scheme is desired so that only a few

integrated trajectories need be computed for convergence.

Ordinarily, an iterative scheme would rely on a near-linear
relationship existing between the initiasl conditions and end
conditions. However, for circumlunar trajecteries it is well known
that the relationship is very nonlinear.

The A iteration scheme presented here relies on the near
constent differences existing between matched conic and T-body
trajectories which were presented in the previous section of this
paper. This means that a set of constant correction terms may be
used to update the matched conic initial conditions. Also, changes
in the initial conditions will affect the end condition in the ssme
manner for both models.

The simple theory of the A iteration scheme can be.t be shown
by figure 9 which exhibits a single varlable iteration. The figure
shows two curves of injection velocity as a function of return
inclination. The correction term AV is assumed to be known from
a previous trajectory comparison and is used throughout the iter-
ation. For the first guess, the matched conic velocity is computed.
This matched conic velocity corresponds to point lc on the matched

conic curve. The term AV is added to the maicched conie velocity,
and this new veloeity is used in the integrating program. Upon

integration, the trajectory arrives at the point l1 on the



integrated curve. An error Vi now exists in the return inclination.

Since trends are nearly the same, e change of Vi in the return

ianclination of the matched conic will produce nearly the same
change in the return inclination of the integrated. Therefore,

the ineclination is noved to the right by Vi on the matched conic

curve, which gives point 2c' Again vV is added and this gives
point 2l on the integrated curve. A much smaller error Vé now
exists. The matched conic is changed by V% and the procedure
continues as before until V is within the allowable tolerance.
(Note that the error in the integrated end condition is always
added algebraically to the matched conic end condition.) If the
AV used was the exact one for the desired inclination, no iteration
would be necessary. But, in general, the AV used will not be the
exact one., It is immedistely evident that the function of AV is

to make the iteration occur between closer curves. For multiple
convergence, the procedure is the same; correction terms are added
to the free initial conditions, and the errors are added to the

end conditions of the matched conic. In general, the correction
terms are necessary because uncorrected initiasl conditions give
rise to integraied trajectories which are usually grossly in error.

A step-by-step procedure for a multiple convergence fullows.
For clarity, the method will obtain initial conditions for a
circumlunar trajectory which has desired value of pericynthion,
perigee, and return inclination (see fig. 2). Injection is from
a fixed transluner inclination, altitude, and flight-path angle.
The injection geometry is shown in figure 3. A set of correction
A's is known from a previous trajectory comparison and is used
throughout the iteration. In case a set of A's is nct availlsble
or & closer set is desired, they may be obtained by the following
steps:

Step 1: Run a matched conic trajectory with the desired
constraints.

Step 2: Run integrated trajectory using mstched conic
inivial conditions.

oLep <

Step 3: Vary one of the integrated free initial conditions
(V, ¥, or @) until a trajectory has the proper
return perigee (no more than five integreted
trajectories are required in using linear scheme).



Step 4: Run a matcned conic which has the same pericynthion
and return inclination as the integrated trajectory
with the proper verigee.

Step 5: Compute the difference in the free initial conditions:

AV =V, -V
i~ ¢
fa\

of

I
&

-y A's
c

-¢c

1]
S

The same set of A's has been adequate for all the free return
trajectories computed by the author to date. However, for faster
convergence, the A's shown in figure 10 should be used. With a
set ¢f 4's available, the steps in the A iteration scheme are
outlined below and summarized in block diagram form in figure 11.

Step 1: Run matched conic with desired end conditions. The
output is a set of initial conditions.

Step 2: Correct initial conditions by A's.

Step 3: Campute integrated trajectory by using corrected
initial conditions.

Step 4: Compute the error differences (A's) in the end
conditions (desired value minus integrated value).

Step 5: If errors are small enough, iteration is terminated.
If not, errors are added to previous matched conic
end conditions.

Step 6: Repeat the process, but in Step 1 use new matched
conic end conditions.

In general, the number of iterations necessary depends upon the al-
lowable end condition tolerances and accuracy of the A's. Ordinari-
ly 6 or T iterations are required (10 minutes cciputer time).

To illustrate, a sample iteration is shown in figure 12. The
constraints are at the top of the figure together with the cor-
rection A's. The diagram is largely self-explanstory, however,
the following explanation is given for the convergence to return
periree radius. The other parameters, pericynthion radius and
return inclination, are iterated simultaneously with the perigee
radius and in the same fashion. For the first iteration, the



desired value of 3,464 nautical miles was used in the m .tched conic.
The resulting integrated value was 3,16l nautical miles or 300
nautical miles too low. Hence, for the next iteration, perigee on
the matched conic was increased by 300 nautical miles to equal
3,764 pautical miles. Instead of increasing by 300 nautical miies,
the integrated value only increased 274 nautical miles or, still an
error of 26 nautical miles. On the next iteration the matched ccuic
was further increased by 26 nautical miles to a perigee of

3,790 nautical miles. The use of a corrected matched conic initial
condition for this trajectory resulted in an integrated trajectory
with an error in perigee of only 1.1 pautical miles. In each
successive iteration the errors were reduced. The magnivude of

the errors shows that perigee radius is the most sensitive. The
exact A's for the trajectory are obtained by subtracting the first
matched conic from the last corrected matched conic. These A's

are shown at the bottam of the figure.

CONCLUDING REMARKS

The matched conic 2lements approximate precision elements
adequately for mrny types of parametric studies. An even better
approximation may be obtained by adding constant correction terms
to tke conic element. The A iteration scheme has been tested and
*r &l11 cases proved to be superior to linear perturbation type
iteration schemes in both dependability and computational time.
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TABL™ I.. HIBITAL ELEMENTS

o1

Elementn
Point _——
Fixed constrained Free
Injection vy, Ty iy v, ¥, 9
Pericynthion T 'I‘m, im’ Vm’ nm, o,
Return perigee Ty ire Te’ Ve’ Qe’ W,




TABLE iI.~ TRAJECTORY COMPARISON

Point Element Matched conic T-Body Difference
V, ft/sec 35,956.901 35,959.242 2.341
¥, deg 7. 75578 7.330060 - 42572
8 g, deg 38,1446z 38, 97043 .82581
E 1,4% deg 30 N 30 N 0
? T*, deg 0 0 0
T, £t 21,525,244 21,525,244 0




TABLE II.- TRAJECTORY COMPARISON - Continued

Point Element Matched conic 7-Body Difference
r ¥, £t 6,288,518 6,288,626 108
v ft/sec . 8,193.7 8,200. 4 -6.7
g T, br 75.0U45 75,339 .29k
% 0, deg 34,586 35.293 707
a 1, deg 4,599 4,638 .039
@ s deg =1Lk ,502 -143,798 .TO4




TABLE II.- TRAJECTORY COMPARISON - Concluded

Point Element Matched conic T-Body Difference
r ¥, ft 21,133,527 21,133,948 421
1re*, deg 5.186 s. 5.184 s, .003
%’6 T s hr 148.83 147.98 -.85
E 0, deg 177.38 176.87 -.51
@, deg -11.78 -10.98 -.79
Vs ft/sec 36,626 36,631 5

¢t
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Figure 1. — Matched conic model
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perigee
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iyy = Translunar inclination

4// MOP ire — Return earth inclination
_____ "E/ oo
‘ Pericynthion

Figure 2.— Free return circumlunar trajectory



X - Y Plane is moon orbit plane
Origin is earth center

Figure 3.— Initial condition geometry
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Note: XYZ axes same as XYZ for injection

Figure 5. — Return parameters at perigee
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Figure 7. ~Free orbital elements at pericynthion as functions of return inclination
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Figure 8.~ Free orbital elements at perigee as functions of return inclination
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Figure 9. — Single variable A iteration



AV, ft/sec

[

AP AY deg

e A
Pericynthion = 1,038.5 nautical miles
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Figure 10. — Correction A’s
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conditions
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Rmd. Rod: ird

Set desired end
condition equal
to matched conic
input Ry.c=Rpmd

ROJ’ROC ire= ird

EM
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Figure 11.- Fiow diagram of A interation scheme
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Injection time, Jan. 15, 1967
h = Injection altitude = 600,000 ft

Translunar inclination 20° N

r=0

AV = 2.30 ft/sec
Ay = - (.38°
Aé-0.78°

Desired pericynthion (ry,) = 1,038.5 nautical miles (100 nautical miles altitude)

Desired perigee

Desired return inclination = 5° S

First iteration

Second iteration

(rg) =3,464.0 nautical miles (20 nautical miles altitude)

Third iteration

Figure 12.— Sample iteration

Matcl'.lod lmegrated Mo'ched Integrated Mu?c','ed |niegraied )
conic l'ClOl‘llC conic
fm| 1,038.5 v [35,960.56 fm| 1,022.5 V 135,960.53 ol 1,024.5 v[35,960.52
‘:;r, 3,464 ‘:;w 7.434 ‘gr, 3,764 ‘g Y| 7.42 ‘gr, 3,790 ‘g;w 7.421
“lir] 5°s Sl 1o 38800 | |7[i,] 6.20 s | (EA|” [ [ 38799 =[i] s8°s | [=A|"[o]38.806
S — X . g = £
V[35,958.26 '3 ro| 1,054.5 v [35,958.23 [rm [ 1,036.5 Vi3s,958.22 % tm| 1,038.9
::;W 7.814° ::;r, 3164.0' |2y [7.808 8{re|3:438.5 ‘é.‘, 7.801 ére 3.462.9
Slo  38.020° Sli,| 3.78s| |°|a@|38.019 li l4.378° s| |°]|o] 38.026 ol | 5.06
Errors Errors Errors
T 'm =10 mi V 'm 2mi v 'm —0.4
V te 300 mi V te 26mi V fe Llmi
vi, 12° \v/ i, 0.6° v iy -.06°
Nt
Actual A's: AV =2.257 4¥=0.3925 A¢ =0.7859



