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IRTRODUCTION

The present strategy for the lunar landing approach cf the 1M provides for
a spacecraft attitude such that the landirng aree car be seen through t™:
window, The IEM crev will viswvally survey the intended landing area tc
determine if the terrain Is suitable for a landing, 7The irajeciory must be
shaped through the guidarce logic in order to provide spacecrafi sititudes
suitable for the viewing process and this shaping results in a greater
expenditure of descent engine fuel thar would a trajectory designed solely
t¢ a constraint of miniwmwe foel expenditurz. There is ther a tradeoff
between the descent engine fuel cost and the requirement 1o visually survey
the lunar terrain., The coust of providirg visibility during the final approach
pbase has been analyzed > Reference ¥o. 8. The advaniage gained by the
visual survey of the lunar terrain during the epproach is partially deperdent
vpon how soon in the {inal approach the pilot can begin to detect lumar sur-
frce features and, subsequenily, mcke judgment about the suitability or the
terrain for landing.

because the lunar photametric function is not dupiicated paturally at any
location on earth, the Jetermmination of capabilit;y to detect lumar surface
featur=s in a formidable task, Some success bkas been obtained by covering
scale aodels of the lunar suwrface with cupric oxide and observing the model
from various argles in the presence of 8 light source simmlating the sun.
The difficulty of properly lighting large xd=ls end the subsequent scalirg
protlems limits this approech. An agproach, dhich apmesred to have promise,
icvalved programing the photometric function togetbher with visuel detecticn
criteria in order toc hewve s flexible anslyticunl tool that could be applied
to any cambination of viewing augle, sua angie, and crater size. This
approach wvas developed and the description ¢f the analyticel method and re-
sults are discussed in this interanal note.

ABSTRA™

Visibvility curves for idealized 10:1 dept. * -~ diameter ratio craters wvere
found for sun elevations of 10°, 15°, 22°, '5.'°, k5°, and 60° at observerts
altitudes of 1,006 to 10,000 feet. A flels cf view of 140° total observer
azimuth and 8" to 60° cbserver altitude were svalusted.

mp 'JE

Tr..: study ou the visibility of lupar criters was initiated *a support of
the working group pr :sently redefining tt: IfW descent and touchdown logic.
It wes desired that the results of this study indicate what size craters the
IEM pilot will be able to detect on the lunsr surface =t any point in his
field of view at various cambinations of vehicle altitude and sun elevation
angle, and then make recomeendations witk regzrd to optimm sun angles and
glide path angles, It was aiso desired to find the maximm altitude at which
the pilsr’ can begin landing site seleciion by visual means, assuming optima
visibility around the site,
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It was decided tc present this data in the form of range plots in which the
area that the pilot can see is analyzed at each point to determine the de-
tectable size of the crater. These sizes were then to be pleotted on the
orthogonal renge plot at their respective locations. After this was done,
contour lines separating erbitrarily selectzd crater size ranges were drawn,
The resulting plo: represents the visibility conditions from a single poirt
on the trajectory wiih same sun elevation specified.

Several basic assumptions were made in this study. In summary, these are:
8. Craters are spherical depressions (10:1 dizmeter to depth ratio).
b. Craters have sharp edges.
c. Tiffany data assumed applicable.
4. Mo search time specified.
e. Ko human factors or hardware limitatioms.
f. Detecticn criterion of 7isibility is uvsed and not reccgnition.

Witk these assumptions in mind, i: should be recognized that the data gerer-
ated represents a “best cese” zituation as far as enslysis methods are cop-
cerned. There are several other variables that can be applied to the study
to make the results more realistic, but at the present time these are not
well defined, Among these are search times, berdsare constraints, and human
factors. Tt is hoped thati further studies will include these fectors &nd
that more reslistic data will result.

METHOD

Brightress Distribution on the Crater Floor - A study of avallsrble informa-
tion on luner creters indicated that craters of less than 500' dismeter
have, in genersl, the same 10:1 diameter to depth ratio (Figure 1) and are
approximately spherical in surface form. With this assumption, it is possi-
ble to calenlate the necessary parameters in nomnlized form so the data for
any one size is applicable tc any other bty use of a scaje factor. A crater
size of 10! diemeter and 1' depth was assumed for this purpose.

Figure 2 defines the prime coordinate systex in which the relative positions
of the sun and observer are shown. In this coordinate system, the sphere
describing the crater surface has the equation

XR+¥ +(2-(k-ad))2=r (1)

where



(YY)

R = radius of sphere
r = radius of crater = 5!
d = depth of crater = 1!

2 + a2
R="—pF—=13 (12)
R-d4=12

The crater —~im presents an ellipse to the ohserver heving the equation

2 2
Yl = Zl =3 (2)
T2 T{r sinA )2

in the coordinate system of the observer as shown in Figure 3 wkere Xj, 1),
and Z; have gone through the successive rotations () and (A ) sbout the
prime coordinate system X, Y, and Z. -
The transforms

X = (% cosA +2 sinX ) cosf + ¥, sin ¢

Y =1 cos§ - (X; crsA + 2 sind) sinf (3)

Z=E’.1cosA-Xlsin)s

X, = (X cosf -Y sinf) cosA - Z sinA
Y =Y cosf +X sty (3a)
%, =2 cosA + (X cbsf— Ysin#f) sin A

are used between Xl, Yy, and Z’l and X, Y, and Z.

Similarly, the crater rim presents the ellipee
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Y2 2
2+ Z =1 (k)
}TZ ( r sin 3)2

t6 the Sun Line of Sight {S10S) in the sun coordinate system Ke, Y, end ?.2
as shown in Figure k.

The sun coordinate system X,, Y,, and Z, is rotated ($) sbeut Y in the X, Y,
and Z system

The transforms

X2=Xcosﬁ—Zsin¢
L, =1 (55

Zz=Zcos¢+Xsin¢
and

X=X, cos § +Z, sin
=Y, (52)

Z=22cos¢—xlsin¢

are used between X, Y, and Z and Xp, Yp, and Z,.

The procedure used was to choose a point 0= c, Yl » 270 within the ellipse
(2) in the observer coordinate system snd transform it inco the prime coordi-
nate system using equation (3) obtaining X;, Yg, aud 2g in X, Y, and 2. It
was then necessary .o find the intersection point (Xa, Yy, and Za) on the
sphere surface (see Figure 5).

This was done by solving the equation of the line normal to the (Yl end Zl)
plane at (X309, Yy0, and Zjg) with tke sphere ecmation (1) and discarding that
solution having Z positive. (All points c¢n tne crater floor have negative
Z, values between O and -1.) A reverse G?mcedure was used to project this

point into the Y, Z, plane (see Figure

Having obteined the intersect point (Y, &nd Z,5) in the sun plane (Y, and
Z~), it remains only to determine whetﬁer (ipp ana Zo0) lies irside or out-
sije t' -~ sun ellipse (4). If it lies inside, we can conclude thet the point
(X,, Y, and ;) on the crater floor is sunlit, If it lies outside the
e1tipse (%), that point lies within the geomeiric shadow cast by the crater
rim.
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If it has been found that the point (Xa, Y,; and Za) is sunlit, a local view-

ing geameiry is found relative to the local normal to the sphere at that

point by determining the direction cosines of the three lines 0IOS, SINS, and

local normal. The brightness slong OLOS can ther be found fram the iurar

1 otometric function. This brightness is then assigned to the originel point

T30 and Z;o selected on the observer's eliipse, By ar. {terative process, the

brightness distribution as seen by the observer on the fiocor of the crater can
be fourd (Figures T and 8).

In the present configuration, the computer program selects (Y o and Zlo) In
intervals of .25, so each point represents a precjected area of .0625." It
sums all the gecmetric shadow pointe and multiplies the sum by .0625 to rfind
e total projectied area. Thics area is then normalized by dividing by 254
(the projected normal area of the crater). An average brightness of zero is
assigned to this area. A separate normalized area is obtained by suming
those points which have a brightness less than that of the background. An
average brightness is found for these points. Similarly, those points having
a brightness greater than the background are summed snd a third area and
average brightness are obtained.

Crater Visibility - A preliminary method of evaluating the visibility of lunar
craters gave results that were too conservative when compered tc experimental

visibility tests conducted at a lster time. A discussion of this preliminary

method is included since some of the techniques are applicable to tke final

experimentally verified method.

Using the method ocutlined under "Brightness Distribution on the Crater Floor",
three sets of deta were obtained for the assumed crater configuration. These
consisted of three normalized areas and three average brightnesses. A separate
visibility calculation was done for each.

a. Geometric Shadow Visibility - An average brightness of zerc was
assumed for this area of the craters which immediately fixes the contract at
-1, using the contrast equation

By - B
- (6)
>

Bp = brightness of target
By = brightness of background
Cp = target contrast
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To this, contract Cp vas applied a f1eld factor to give 99% p-obability of
detection. Using the Tiffany daia {Reference no. 3), a threshnld 1e (0)
was found for each vackground brightness at a set of angles (ff). (;fn% , ond
(A). From this angle, we can find the diameter (d) of a circular spot
necessary for detection st any range R. By converting the normalized area
found earlier into en equal area circular spot with tnis dismeter (d), we
can find the range at which this equivalent spot can te seen,

d
0] )
Or conversely, the diameter from a given range can be obtained
d = R tan (0) (Ta)

Figure 10 shows the equivelent view geametry fram the LEM from which we find
the slant range R to be

h
R=m () (8)

The diameter d' of the crater producing (at (ff), (fr), and (X)) this equiv-
alent area is given by

a* = _ad

YR

wuere A is the normalized decimal fraction area of the spot. By iterating
throvgh the values of h, (f#), (¢), and (A), & crater size visible due to
geametric shadows at any point on the surface cen be fovnd.

b. Photametric Shadow Visibility - The photametric shadow was defired
as that area of the crater rloor having a brightness less than that of the
background but greater than zero. The calculation or visible size, due to
these shadows, is similar to that used in the geometric shadow case 7ith the
exception that the contrast is also & variasble, This posed no problems in
estimating the visible crater size since a () can be found for each contrast
and background brightness in the Tiffeny data.

c. Bright Side Visibility - The bright side of the crater floor was
defined as that areas having a brightness greater than that of the background,
Contrasta and crater sizes were found as in (b.) above.




ta obtained from nos. 1, 2, and 3 above was plotted separately in range
form and can be seen in Figures 36-41. The same data was again plotted by
cambining the three scts of data at eaca altitude &nd sun angle and then
selecting at each point the smallest crater visible due to either no. 1, 2,
or 3. These can be seen in Figures 42-4k,

A series of observational tests on a lunar surface model were made to test
the validity of the method described ahove. The results indir-ted that the
method of treating each type of conirist, exhibited by the cru <r sepmxately
and then choosing the one giving the best visibility is too pe..imistic
particularly at high sun angles and low obh-erver elevation angles. It wes
felt that an elongat target (such as a _.ater foreshortened by the viewing
geometry) is more detectable than a circular spot having the same area and
contrast,

A second test was made to confirm this hypothesis and the results confirmed
that this wes the case. Lt now remained to fird a better technique of treat-
ing the craters as single contrast targets. The assumption was made that any
given crater, at its detection raize, presents to the observer only a smell
blurred disk having a diameter equal to that of the crater and s contract
equivalent to that obtalned by distributing the crater contrasts evenly over
this disk. Figure 9 illustrates this method and the formula usea fo calculate
the equivalent contrast.

Using this formuia, a series of computer runs were mede and the results
plotted as described earlier. A much better fit to the observed data was
obtained.

The method used to obtein the observational data is describel in Appendix B
of this intermal not-.

In the process of generating equivalent targets, much labor was saved by
‘heving the computer print out the results automatically in orthogonal range
coordinates. Tkis enabled quick evaluation of the merits of any given scheme
without naving to hand plot the results. Deta was also generated fcr sun
angles of 10°, 20°, and 60° in addition to 15%, 30°, ana 45° sun angles alresdy
analyzed.

CONCLUSIONS

Figures 10-35 represent the visibility conditions existing on tne lunar sur-
face for various cambinations of sun elevation angle and spacecraft altitude.
The retro-reflective rature of the surface produces a "washout" condition
(indicated by regions on the range visitility plots in which craters must be
500t or greater in diameter to be detected) which gets worse with increasing
sun elevations, For sun angles less than 23°, there is »ne such region on
each plot. In this case, geametric (black) shalows are present at all times
and aid in visibility, For sun elevations above 23°, the shadows disappear
and the visibility gets poorer as indicated by the presence of two “"washout"



regions. One of these is located at the point on the surface where the
vehicle shadow is case and the other is further down range. The firct is
caused by the retro-reflective property of the surfece and the second by
the low vision sngle relative to the surface (i.e., only the sunlit rear
walis of the crater are seen,)

The data in Figures 10-34k is considered to be fairly reliabie since some
experir :ntal verification has been obtairned (Appendix B). It should be
remembered that the data assumes detection criteria only with no indication
of whether the pilot can identify the detected feature as a crater,

ANALYSIS OF RESULTS

The effect of (&M altitude and sun angle on visibility is summarized in
Table I. An evaluation of Figures 12-35 resulted in a set of acceptable
glide path sngles for each cambination of altitude ard sun angle, These
represent glide paths on which the pilot can detect 10, 15, 20, and 30-foot
diameter craters in the vicinity of the nominal landing site that corresponds
to the glide path in question. Setting en upper 1limit on the glide path of
20° eliminates most of the altitude-sun angle catbinations leaving those
underlined in Table I. For example at ar altitude of 5,000', the sun angles
at which site selection can be made from a glide path of less than 20° lie
between 10° and 15° with a lower limit on glide path of 13°.

Effect of 3-Day launch Window on Vieibility Conditions - Assuming the first
day to be the optimm launck time, one can select & sun angle (local to the

nominal landing site) whica will given optimm visibility, say 10°. If the

launch slips 24 hours and no change in the nominal landing site is made,

the sun elevation will have changed by 13° to 23°. Referring to Tsble I,

it will be found thet visitility is marginal. For descent glide path angles
of less than 20° if the launch slips another 2% hours, the sun elevatioa et

the site will be 36° at which a site could be visually selected from a 500!

altitude and 20° glide path.

It wes found that there is no combination of three consecutive sun ary
differing by 13® each that will give even marginal visibility on all -
launch days, This is, of course, for the same landing site on all thr
days.

It is therefore recommended that tihe landing site be reselected as the
launch elips fram day-to-day to preserve optimum visibility during the des-
cent phase. Ideally, these would lie 13° apart on the moon's surface in
the orbit plane so 2u~hour slips would simply mgen reselection to the next
adjacent site to preserve an optimum sun elevation, Practically, this is
not possible =0 there will be same variation in the sun elevation at dif-
ferent lsunch window days. Hopefully, these will be no more than 35°,

Dog Leg Trajectcry Advantages - Table I also includes the results of analyz-
ing Figures 12-35 to determine if a dog leg (out of plane) descent gives any
advartage in gofar as visibility is concerned. Ageln, this includes the
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constraints of 20° maximumm glide path angle and 10!, 15', 20!, and 30' diemeter
observable craters. For example at i,000' altitude with a sun angle of 30°,

an in-plane descent would not be possible with the 20° maximum 1lide path angle
constraint. 3ut if a 15° dog leg is made ir azimuth, the pilot can select a
site with a 17° flight path angle (see Figure 2i). This example is for 10!
diameter craters visible in the landing site vieinity.

In summary, visibility is acceptable for those sun angles and altitudes for
which a "yes"™ answer exists under dog leg feasibility or for which the in-
plane glide path can be less tban 20° (underlined items).

The question of windc« interference can be raised at this point. It is under-
stood at the present time that for glide path angles of 10° to 20°, the
noninal landing site is always visible to the pilot from 10,{CO' on down to
hover altitude.
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RECOMMENDATTONRS FOR FURTAZR STUDY INTC THE VISIBIT.ITY PROBIEM

a. Target recogni:iion data is currently beirg generated. A study
sizilar tc the one here discussed will be dore cn lunar terrain recognitions
and its effects on visual site selectiom.

b. DBetter simulations are needed to veriiy the coaclusions reached in
these studies which are hased oz anaiytic data only.

c. Data is needed on desired landing site characteristics and hardware
coastraints.
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APPFNTIX A

A parailel study was done on craters in sand in order to campere the lu-ar
visibility curves with those we might expect on similar earth terrain,

Since a photometric function was nct available for sand, & set of laveratory
expe: Iments was done to determine ore, It was found that send closely
approximates a Lambertian diffuse reflector with the brightness along &
010S being

B' = B, (f) (a) ces (90 - £) (10)

where

Bp = normal sun brightness, ft-Lemberts
(p)=mm.1a1bedcofsand,=o.3

8 = atmospheric absorption,= O.T

ﬁ = sun elevation above local horizontal plane

A set of curves, similar in form to those of the lunar case, vere plotted
and can be seen in Figures Al - A5,
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APPENUIX 2

Simulated Crater Visibility Tests - A ].,/250 scale model was constructed con-
taining eight spherical depressions (10:1 diameter-to-depth ratio) of various
sizes as iIllustrated in Figure Bl. This model was dusited with copper oxide
and the test was arranged as shown in Figure B2. The observer was asked to
count the number of craters he could detect at any given range. The test

was done for ten observers, sun angles of 10° and 30°, ranges of A' to 28!

in 4-foot steps and cbserver azimuths relative to the sun plane of 0°, 10°,
and 20°, A weighted average was taken of the observations and the final
number of craters detectwcle . each point inerpreted as & minimum detectsble
size. The results were plotted and campared tc the computer generated re-
sults as shown in Figure B3.

The resuits of the comparison indicate that the revised methcd discussed
earlier is the most accurate approach to evaluating crater visibility. The
fact that the observed data differs by about 50$ fram the calculat-d cata
in some instences can be attributed to the use of untrained observers in
the experiment and also to the inaccuracies inherent in this type of simula-
tion. It should also be noted that the observers were limited to 30 seconds
search time and the computer Gats was calculated with the assumption of —o

. 1imit on search time,
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