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ABSTRACT 

This report presents an evaluation of the Auxiliary 

Propulsion System 90-Day Recycle Capability Test, 

Module I that was conducted at the Sacramento Test 

Center from 8 October to 19 November 1968. The test 

was conducted to verify the capability of the 

Au uliary Propulsion System to withstand simulated 

flight vibrations and shock loads while loaded with 

propellants.
 

This test program was conducted under National 

Aeronautics and Space Administration Contract
 

NAS7-101, Change Orders 1671 and 1987.
 

DES CRIPTORS 

Saturn S-IVB/V Stage Auxiliary Propulsion System Module 

Complex Gamma Test Facility % Sacramento Test Center 

Complex Alpha Test Facility 
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PREFACE 

This report documents the evaluation of the Auxiliary
 

Propulsion System 90-Day Recycle Capability Test on 

Module II as performed by MDAC-WD personnel at the
 

Sacramento Test Center. The test was initiated on
 

8 October 1968 and completed 19 November 1968. 

The purpose of the test was to demonstrate the 

capabilities of the S-IVB/V Auxiliary Propulsion
 

System to withstand simulated flight vibration and 

shock loads while loaded with propellants.
 

This report, prepared under National Aeronautics and 

Space Administration Contract NAS-101 (Change 

Orders 1671 and 1987), is issued in accordance with 

line item FQ-L-70 of report No. SM-41412, General
 

Test Plan. 
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1• INTRODUCTION 

This report presents the results and evaluation of the S-IVB/V Auxiliary 

Propulsion System vibration tests, module II, that were conducted at the 

Sacramento Test Center, Complex Gamma and Alpha test facilities. 

The test program consisted of a series of vibration tests and a partial
 

disassembly and inspection.
 

The information contained in the following sections documents and
 

evaluates the test program that was initiated on 8 October 1968 and 

completed 19 November 1968. A test schedule is presented in figure 1-1. 

1 1 Objective 

The purpose of the test was to verify the capability of the APS module
 

to withstand simulated flight vibration and shock loads while loaded with
 

propellants. 
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Figure 1-1. APS Module II Test Schedule
 



2. 	 SUM[IARY 

The APS module II was subjected to vibration tests as presented in the 

S-IVB/V Auxiliary Propulsion System 90-day Recycle Capability Test Plan, 

DAC-56590E. The tests, conducted at the Sacramento Test Center, verified
 

the 	capability of the APS module to withstand simulated flight vibration 

and 	shock loads while loaded with propellants.
 

The following paragraphs describe the failures and anomalies that were 

noted during the tests. 

A failure is defined as any discrepancy which could possibly cause loss 

of mission or delay of launch.
 

An anomaly is defined as a discrepancy which is undesirable and not 

normal but which would not cause loss of mission or delay of launch.
 

2.1 	Vibration Tests
 

The 	 loaded APS module was installed in a vertical position and subjected 

to vibration and shock tests (as outlined in the Formal Qualification
 

Test Procedure IT31583) to simulate launch vibration.
 

The 	failures which occurred during the tests were as follows,
 

a. 	The fuel low pressure helium module developed a leak and caused
 

a helium pressure decay. The failure was attributed to 

contamination and not to design deficiencies. 

This 	 type of failure would normally be found during checkout 

prior to launch and the module would be replaced. However, it
 

was classified as a failure because if it occurred during count­

down, then launch could be delayed by having to replace the 

module.
 

b. 	The high pressure helium system developed leaks that were
 

attributed to improper torque values and teflon seals. ECP 3160
 

authorizes replacement on all flight models of the teflon seals
 

in the high pressure system with rubber (MS28778) "0" rings 

seals. The ECP also authorizes an additional high pressure 

(3,000 psia pressure decay and 1,500 psia bubble soap check) 

leak test. This test will be accomplished after the "0" rang 

replacement. The erroneous torque requirement has been corrected.
 

The 	above should preclude any future leaks of this nature. 
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2.2 Disassembly and Inspection 

After completion of the vibration tests, the APS module was partially 

disassembled and inspected. The following significant anomaly was 

noted. 

a. The fuel bladder developed a pin hole in the ullage area.
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3. 	 AUXILIARY PROPULSION SYSTEM 

The auxiliary propulsion system (APS) provides attitude control of the 

stage during all operational phases of S-IVB flight. The system also 

incorporates a propellant settling capability for damping mainstage 

propellant transients at the end of the first J-2 engine burn, and for 

J-2 engine restart after coast. Figure 3-1 is a schematic of the APS 

and instrumentation. 

Subsystem components are contained in two separate modules placed 180 deg 

apart 	on the aft skirt. Each module (figure 3-2) contains hypergolic
 

liquid bi-propellant engines, a positive expulsive propellant feed sub­

system, and a helium pressurization subsystem. The fuel used by the
 

APS is monomethylhydrazine (MI5H) and the oxidizer is inhibited nitrogen
 

tetroxide (N204). Propellants are stored in two separate tanks equipped
 

with positive expulsive teflon bladders for propellant feed during zero g
 

conditions.
 

Prior to launch countdown operations, each module is loaded with pro­

pellants through connections in the aft end of the module. During
 

loading, the expulsion bladders must initially be in a fully expanded
 

position against the tank wall. A differential pressure is maintained
 

during the preparatory operations to assure that this condition is
 

satisfied.
 

Propellant loading and recirculation are accomplished simultaneously. 

Propellant flow is established through the propellant control module 

transfer valve. The flow then divides, with a portion going to the pro­

pellant tank, and a portion circulating through the engine manifolding 

to eliminate gas from the system. After a full tank is achieved, pro­

pellant flow is continued for a short time to assure complete gas
 

elimination. The propellant tank ullage is then established by off­

loading the required amount of propellant through the transfer valve.
 

Helium used for propellant expulsion is loaded into the module through 

a pneumatic service line connected to the stage through the fly-away 

stage 	umbilicals.
 

3-1 



The APS modules are enabled in flight after the second stage retrorockets 

have been ignited. The APS provides stage roll control during S-IVB J-2 

engine burn. Commands for operation of the APS engines are provided by 

the instrument unit. Output from a guidance platform indicating measured
 

vehicle attitude is received in the instrument unit (IU), and a comparison
 

is made with the desired or programmed attitude. If a deviation exists,
 

the IU gives the required commands (via a control relay package) to the
 

APS engine injector valves ror thrust duration proportional to the
 

magnitude of the deviation.
 

At J-2 engine cutoff, the APS pitch and yaw controls are activated, and
 

all controls (pitch yaw, and roll) remain active throughout the coast
 

phase. At J-2 engiae restart, the pitch and yaw modes are deactivated.
 

The pitch and yaw modes are reactivated after J-2 engine second-burn
 

cutoff to maintain 3 axes attitude control.
 

The APS ullage (propellant settling) engines (one in each module) are
 

enabled during the J-2 engine first-burn cutoff transient to prevent
 

undesirable stage propellant movement. Firing continues through the
 

engine cutoff transient decay and the activation of the LH2 tank
 

continuous propulsive vent system. The APS ullage engines are again
 

fired at the end of orbital coast to provide propellant settling during
 

J-2 engine restart.
 

3.1 Engine Systems
 

Three 150-1bf thrust attitude control engines and one 70-lbf thrust
 

ullage engine are employed in each APS module. The 150-lbf thrust
 

engines are manufactured by TRW Systems Group. The 70-1bf thrust
 

engine was designed, developed, and manufactured under NASA contract
 

by Rocketdyne Division of North American-Rockwell for the Gemini
 

Program. The 150-lbf thrust engines employ quadruple injector valves 

for redundant valve action. The 70-lbf Gemini (ullage) engine employs 

single valves on both the fuel and oxidizer lines. 
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3.1.1 150-lbf Thrust Attitude Control Engines
 

Three 150-lbf thrust engines (figure 3-3) are employed in each APS
 

module, and have quadruple propellant injector valves for redundancy.
 

The thrust chamber is an integral part of the engine, and is composed
 

of a combustion chamber, a nozzle throat section, and a nozzle expansion
 

cone.
 

The injector consists of 12 pairs of unlike-on-unlike doublets arranged
 

to minimize hot spots in the combustion chamber. The valve side of the
 

injector is filled with a silver braze heat sink to reduce injector
 

operating temperature.
 

The engine was qualified for a total pulse operation of 300 sec. During
 

the 300-sec life requirement, the external wall temperature does not
 

exceed 1,060 deg R, and the maximum valve body external temperature does
 

not exceed 625 deg R. The maximum expected duty cycle requirements on
 

the S-IVB/V is approximately 90 sec.
 

Engine propellant flow is controlled by a valve assembly which consists
 

of eight solenoid valves atranged in two quad-redundant series-parallel
 

valve arrangement to preclude any operational failure due to a single
 

valve malfunction. A dual failure, such as two valves "failed open" in 

series or two valves "failed closed" in parallel, must occur to cause
 

a failure.
 

The injector valves provide positive on/off control of propellant flow
 

upon command from an external power source. Four valves, integral in 

an assembly, are capable of simultaneous operation and are synchronized
 

to open or close within 3 ms of each other. The opening time for each
 

valve assembly, defined as the time from initiation of open signal to
 

fully open valve package, does not exceed 23 ms.
 

3.1.2 70-lbf Thrust Ullage Engine
 

Propellant settling is accomplished by a 70-lbf thrust film-cooled ullage
 

engine (figure 3-4). Propellant flow to the engine is controlled by
 

single solenoid valves: one for fuel and one for oxidizer. Engine
 

operation has been qualified for continuous burn time of approximately
 

640 sec.
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3.2 Propellant Feed System
 

The propellant feed system (figure 3-5) consists of separate fuel
 

and oxidizer propellant tank asseblies, propellant control
 

modules, and propellant manifolds for distribution of propellants to
 

the engines. Filling of each tank assembly is accomplished through the
 

outer (perforated) tube, the inner (solid wall) tube allows entrained
 

gases in the bladder to be exhausted from the tank as the bladder is 

filled. Positive expulsion of propellants is accomplished by pres­

surizing the ullage space between the tank and the bladder.
 

3.2.1 Propellant Tanks
 

Each propellant tank (fuel and oxidizer) consists of an outer titanium
 

pressure vessel (cylindrical shell with hemispherical ends of approxi­

mately 4,100 cu. in. capacity), an internal teflon bladder, and stand­

pipe assembly (figure 3-5). 

The bladder is fabricated of fluorinated ethylene propylene teflon
 

laminated to polytetrafluoroethylene using a spray process resulting in
 

a one-piece seamless unit with a nominal wall thickness of 6 mils. The
 

bladder provides a separation membrane between the pressurization gas
 

(ullage) and the propellant, and also provides a method of transferring
 

propellant under zero g environment. The ullage space between the tank
 

and the bladder is pressurized with helium gas to provide the expulsion
 

pressure necessary for propellant flow.
 

A concentric tube standpipe assembly is located axially in the center 

of the tank assembly within the bladder. Propellant passes through
 

perforations in the standpipe during expulsion as well as during
 

filling operations. A vent tube is located within the standpipe
 

assembly to allow removal of gas from inside the bladder. 

3.2.2 Propellant Control Modules
 

The propellant control (figure 3-6) module provides for loading and
 

recirculation of propellants and purging of the propellant systems.
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The propellant transfer valve is a direct-operating, normally-closed
 

solenoid valve. The transfer valve cannot be opened by application of
 

power if the subsystem pressure exceeds external pressure by more than
 

10 psi, and the transfer valve will not close or remain closed if the
 

external pressure exceeds subsystem pressure by more than 40 psi.
 

The propellant recirculation valve is a direct-acting, normally-closed
 

solenoid valve with two independent poppets and seats. The two-poppet
 

design isolates the engine recirculation line from the tank recirculation
 

line, and all propellant flowing to the engine passes through a 10-micron
 

nominal and 25-micron absolute rated filter.
 

3.2.3 Recirculation In-Line Filter
 

The filter assembly (figure 3-7) consists of a body with two in-line
 

male tube fittings containing a filter element. The element is a welded
 

assembly of a perforated support tube covered with corrugations of dutch
 

twill weave wire cloth to provide an absolute filtering of particles
 

greater than 25 microns.
 

Two filters are used in the fuel and oxidizer propellant recirculation
 

lines to provide filtering of propellant or purge gas flowing through
 

the propellant control module recirculation valve.
 

3.3 Helium Pressurization System
 

The helium pressurization system consists of two check valves in series,
 

a helium storage tank, a helium pressure regulator assembly, two quad­

ruple chetk valves, two filters, and two low pressure helium modules.
 

The helium storage tank stores helium at an initial pressure of
 

3,000 +200 psma. This pressure is reduced to 196 +3 psia for propellant
 

tank ullage pressurization through a two-regulator module. These regula­

tors are connected in series, and function by sensing the regulator down­

stream pressure.
 

Since a common pressurization subsystem is used, quadruple check valves
 

are employed between the regulator and propellant tankage for added
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assurance that hypergolacs will not mix as the result of leaks or normal
 

permeation. The low pressure helium modules provide ground venting 

capabilities of propellant tank ullage pressure, and a means of estab­

lishing pneumatic control of the expulsion bladders during loading and 

checkout. Command venting capabilities during flight are not provided, 

although the propellant tanks are protected from overpressurization by 

relief valves in the low pressure helium modules. All helium entering 

the regulated pressure area of the subsystem is filtered upstream of the
 

regulators.
 

3.3.1 High Pressure Helium Tank
 

The helium tank is a welded titanium assembly consisting of a cylindrical
 

center section and two hemispherical end domes, each containing a female
 

tube fitting boss. The helium tank is a gas reservoir for the propellant
 

positive-expulsion system on the S-IVB/V attitude control system.
 

3.3.2 Helium Pressure Regulator Module
 

Helium stored at 3,000 +200 psia in the high pressure helium tank is fed
 

to a helium regulator module. The helium gas entering the module passes
 

through an internal filter and then through two regulators in series,
 

both of which sense downstream pressure. The first (or primary) regula­

tor regulates the gas pressure to 196 +3 psig while the redundant
 

secondary regulator regulates the gas pressure to 200 +-3psig. During
 

normal operation, regulated pressure is maintained by the primary
 

regulator. Should the primary regulator fall, the secondary regulator
 

then begins operation. Each regulator is of fail-open design. Ambient
 

pressure sensing ports, provided on both regulators, furnish the
 

necessary ambient pressure references. Regulator performance is 

evaluated by pressure transducers installed immediately before and
 

after the regulators. Regulated helum is fed through quadruple check
 

valves and filters to the ullage area of the fuel and oxidizer tanks.
 

3.3.3 Quadruple Check Valves
 

Two sets of quadruple check valves are employed in the helium pressuriza­

tion subsystem; one set in the fuel tank pressurization line, and the
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other set in the oxidizer tank pressurization line. These check valves
 

prevent contact of fuel and oxidizer vapors in the pressurization sub­

system due to permeation through the bladders during normal operation
 

or bladder leaks.
 

Each set of check valves consist of four check valves connected in a
 

series-parallel arrangement and contained in one enclosure. Failure
 

of a check valve set requires open-failure of two check valves in
 

series or closed-failure of two check valves in parallel.
 

3.3.4 Low Pressure Helium Module
 

The low pressure helium module (figure 3-8) consists of a solenoid dump
 

valve and a relief valve Two low pressure modules are employed in the
 

pressurization subsystem, one module connected to each propellant tank
 

ullage volume. The solenoid dump valve is a normally-closed, direct­

acting valve with a dual (redundant) coil. The valve performs no
 

flight function, and is employed only to vent or pressurize the pro­

pellant tank ullage during ground servicing and checkout operations.
 

The purpose of the relief valve is to provide overpressurization
 

protection of the propellant tankage during ground or flight operations.
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Figure 	3-5. Propellant Control Module 
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4. TEST CONFIGURATION
 

4.1 APS Module II
 

The APS module 11 (P/N IA83918-535, S/N 507-2) was used in the vibration
 

tests. APS module configuration at the completion of pretest checkout is
 

shown in table 4-1. This table lists the major APS components, the
 

manufacturers, the part numbers, and serial numbers. 

4.2 Gamma Facility
 

The Gamma facility was utilized for pretest checkout, propellant loading,
 

unloading, and disassembly.
 

4.3 Alpha Facility 

The APS module I was transported to the Complex Alpha test facility for 

the vibration tests while loaded with propellants. The module was mated 

to a section of the aft skirt which was attached to a vibration fixture. 

The vibration fixture was attached to the shaker head of a C-210Y "MB" 

vibration exciter which was driven by two (2) "MB" model T999 power 

amplifiers. Because the test site is of open construction, an environ­

mental control unit was required to maintain the module and propellant 

temperatures within the desired ranges. The environmental control unit 

was connected to the APS module by a flexible duct which supplied cool 

or warm air as required through the openings provided in the module 

fairing.
 

The electrical control panels located at Alpha Test Control Center
 

provided for remote operation of the APS module and support equipment.
 

Functions such as pressurizing, venting, and the ability to off load
 

propellants in case of emergency were controlled manually. The test
 

control center in addition to the meters on the operation console, also
 

contained strip chart recorder channels for monitoring the critical
 

redline parameters while the APS module was being vibrated.
 

A small portion of the Alpha Test Control Center instrumentation was used
 

for the vibration test. The data recording equipment used included 10
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strip chart channels, 3 dc amplifier channels, 3 signal condition
 

channels, and 13 frequency modulation (FM) channels. The FM data was
 

recorded on two 14-track tape recorders; one primary and one backup 

recorder. Two 14-track tape recorders were used by Engineering
 

Laboratories and Services (EL&S) at the vibration site to record signals
 

from twenty-two accelerometers and two strain gages. In addition, a
 

time range generator, photo camera system, master calibration control
 

console, closed circuit TV, and a video tape recorder were utilized.
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TABLE 4-1 	 AUXILIARY PROPULSION SYSTEM CONFIGURATION RECORD
 

AT COMPLETION OF PRE-TEST CHECKOUT
 

Module P/N 1A83918-535 S/N 507-2
 

Coonent 


Holium Chock Vnlves 


Helium Tank 


Helium Presoure Regulator 


quad Check Volvo (Oxidizer) 
Quad Chock Valve (Fuel) 

Ull4Ge Filtal (Oxidizer) 

Ullago Filter (Fuel) 


Heliun Low Pressure nodule (Oxidizer) 

Helium Low Pressure Hodule (Fuel) 


Propellant Tank (Oxidiuer) 

Propellant Tank (Fuel) 


Propellant Control Nodule (Oxidizer) 
Propellant Control Module (Fuel) 

Engine kanifold Asoembly (Oxidizer) 

Engine flanifold Assembly (Fuel) 

Engine I 

Engine 2 

Engine 3 

Engine 4 

SUonflight 	Configuration
 
W *OCFE
 

Vendor 


J.C. Carter 


DACo 


Fairchild-Stratos 


Vinson 

Vinson 


Western Filter 

Wentern rilter 


Vinson 

Vinson 


Bell AerooyoLema 

Bell Aerooyatema 

Leonard 
Leonard 

DACo 

DACo 

Tepeo 

Tapto 

Tapes 

Rocketdyne 

DACo P/11 

IB68379-1 


1839317-501 


IB54601-505 


1A67912-503 

IA67912-505 


1355934-1 

IB55934-501 


1A49998-512 

1A49998-509 


l363924-506 

IB63924-505 

IA49422-509 
IA49422-510 
1B65684-1 
1B59670-1 

IB51482-1 
1B59679-1 


IA39597-509 

IA39597-509 

IA39597-509 

15-210001 ** 

S/N
 

Upstrea n 	 223
Downstream 	 231 

020
 

3825C740071
 

1107
 
1096
 

1036314
 
1036305
 

135G
 
117G
 

059
 
075 

0000072 
0000216 

-
-

-
-

805
 
806
 
801
 
4071851 



5. TEST PROGRAM
 

5.1 Pretest Checkout
 

Between 3 July 1968 and 8 October 1968, the APS module IT was subjected to 

checkout operations at the Gamma test facility in accordance with standard 

checkout procedures. The following anomalies were discovered during
 

this checkout: 

a. Inability to obtain a high differential pressure current signa­

ture for the oxidizer valve No 2 (downstream on engine No. 3).
 

b. Excessive pressure decay for engine No. 4 during the thrust
 

chamber leak check. 

These problems are discussed in detail in paragraphs 6.2.1 and 6.2.2. 

5 2 Propellant Loading
 

On 16 October 1968 the APS module was loaded with propellants in accordance
 

with the standard loading procedure (DAC H&CO 1B73217). Table 5-1
 

summarizes the propellant loading.
 

Shortly after loading the module with propellants, the fuel ullage pressure
 

was discovered to be decaying. Further investigation revealed that the 

fuel low pressure helium module (F/N IA49998-509, S/N 117G), was leaking 

at the vent port. The helium module was removed and replaced with module 

(P/N 1A49998-509, S/N 108G). Paragraph 6.1.1 describes this problem. 

After replacing the discrepant low pressure helium module, the APS module
 

was repressurized to blanket pressure (65 +5 psia) and maintained in a 

hold condition at the Gamma test facility until it was transported to the 

Alpha test facility on 17 October 1968 

5.3 Pressurization
 

The normal operating ranges for the specified parameters are as follows:
 

Sys tern Parameter Range (psia) 

Low Pressure Oxidizer Manifold and Ullage Pressure 203 - 222
 

Low Pressure Fuel Manifold and Ullage Pressure 203 - 222
 

Low Pressure Regulator Outlet Pressure 203 - 222
 

High Pressure Helium Bottle Pressure 305 - 3,200
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5.3.1 High Pressure System 

The high pressure system was pressurized approximately 25 times between 

20 October 1968 and 8 November 1968. Pressurization was always 

terminated below the helium bottle operating pressure limit of
 

3,200 psia.
 

During the pressurizations, the expected gas heating was observed. This
 

heating usually peaked out at approximately 560 deg R. Most of the pres­

surizations were followed by a hold for temperature stabilization and a 

pressure decay check. Some pressure decay was noted indicating a 

possible helium leak (see paragraph 6.1.2).
 

During the venting of the system, after the required testing (or trouble­

shooting), the lowest temperature recorded was approximately 475 deg R. 

5.3.2 Low Pressure System
 

The low pressure system was within the prescribed operating limits, how­

ever, two anomalies occurred during testing
 

The oxidizer manifold pressure exhibited pressure oscillations (ringing) 

during the random radial and tangential vibration modes. The maximum 

oscillations occurring were from zero to 400 psi Figure 5-i is 

representative of the typical ringing phenomenon. It was concluded that 

these pressure spikes were due to the low damping efficiency of the dash­

pot fluid used ian the oxidizer manifold transducer. 

On 23 October 1968 it was discovered that the torque values on several 

helium system fittings were not as specified (see paragraph 6 1.2). The
 

high pressure system was isolated from the low pressure system for leak
 

tests. As a result the gas between the check valves and high pressure 

system vented. This accounted for the ambient pressure reading for the
 

regulator outlet during this period.
 

5.4 Propellant Temperatures
 

The propellant temperature requirements during the vibration tests were
 

as follows: 

Parameter Range (R) 

Oxidizer temperature 520 - 560 

Fuel temperature 520 - 560 
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5.4.1 Oxidizer
 

The oxidizer temperature remained in the 520 - 560 deg R range for most 

of the test. The indicated temperature dropped to 519, 518, and 517 deg R 

on three different occasions (figure 5-2). The lower APS doors were 

removed during these periods which prevented the thermal conditioned air 

from flowing over the propellant control module where the temperature 

probe is located. However, the propellant within the tank was maintained 

well within the temperature limits during these periods 

5.4.2 Fuel 

The fuel temperature remained in the allowable range of 520 - 560 deg R 

for most of the test. The indicated temperature decreased to 518 deg R
 

on two occasions (figure 5-3). The lower APS doors were removed during
 

these periods which prevented the thermal conditioned air from flowing 

over the propellant control module where the temperature probe is located 

However, the propellant within the tank was maintained well within the 

temperature limits during these periods.
 

5.5 Vibration Tests
 

5.5.1 APS Module Transportation to Alpha Complex
 

The APS module, loaded with propellants, was transported to the Alpha 

test site on 17 October. Acceleration measurements were made during 

hoisting and transportation at the input to the module in the thrust,
 

radial, and tangential directions. During transportation the allowable 

dynamic loading of 1.5 g's was not exceeded. Levels generally remained 

below 0.2 g at a predominant frequency of less than 4 Hz during road 

travel. During raising and lowering cF the module, some isolated shocks
 

reached O.o g at 8 Hz.
 

5.5.2 General
 

The APS module was subjected to vibration and shock tests in the thrust,
 

tangential, and radial axes per the levels and order presented in
 

table 5-2. The vibration and shock requirements were as specified in
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Test Control Drawing 1T10923F "Formal Qualification Test, Saturn IVB/V 

Phase V APS Vibration." The module was tested in liftoff orientation 

with the propellant tanks loaded and the helium system pressurized to 

3,000 +200 psi.
 

The test specimen consisted of an APS module installed on a portion of
 

aft skirt vehicle structure, which in turn was mounted on a rigid fixture.
 

Twenty-two accelerometers and two strain gages were used to monitor the
 

input and response of the specimen (table 5-3). Accelerometer and strain 

gage locations are shown in figure 5-4. The random vibration input was 

controlled from the average of the input acceleration levels at the lower 

right and upper right APS attach brackets, accelerometer locations 1 and 

2, respectively. Sinusoidal vibration and shock tests were controlled at 

accelerometer location 1. In shock testing the control accelerometer 

signal was filtered with a 200 Hz low pass filter Control signals in 

sinusoidal testing were filtered with a tracking filter. 

Sinusoidal and random vibration testing was within specified test 

tolerances except for minor deviations considered acceptable by MSFC and 

MDAC dynamics personnel. Shock testing was per specification except in 

the radial axis where the shock level was reduced in amplitude to compen­

sate for an uncontrollable increase in pulse duration. This change was 

considered acceptable by MSFC and MDAC dynamics personnel after reviewing 

the flight shock spectrum. 

The vibration and shock tests are described in the following paragraphs. 

Table 5-4 presents a chronological history of vibration and shock testing. 

X-Rays and full leak checks were performed before any vibration testing. 

5.5.3 Thrust Axis Test 

Figure 5-5 presents the thrust axis test setup. Photographs of the 

control and response accelerometers are shown in figure 5-6.
 

5.5.3.1 Sinusoidal Sweep Test
 

On 21 October the APS module was subjected to a logarithmic sinusoidal
 

sweep vibration test per the following specification:
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(Upsweep only)
 

3 to 4 Hz at 0.24 inch double amplitude displacement 
1 octave/in
4 to 7 Hz at 0.2 g zero to peak 

7 to 20 Hz at 0.1 g zero to peak 3 octaves/min
 

The filtered control input is presented in figure 5-7. No resonance was
 

noted at any of the response accelerometer locations. Leak checks and
 

physical inspection did not reveal any malfunctions or failures.
 

5.5.3.2 Random Vibration Test
 

The APS module was subjected to random vibration excitation for 3 min on
 

25 October per the following specification 

20 to 30 Hz at +6 db/octave
 

30 to 100 Hz at 0.01 g2 /Hz
 

100 to 200 Hz at +6 db/octave
 

200 to 1,000 Hz at 0 05 g2 /Hz
 

1,000 to 2,000 Hz at -3 db/octave
 

Leak checks and inspection did not reveal any malfunctions or failures
 

except for the stripped nut plate described in paragraph 6.2.4.
 

Accelerometer data are presented in figure 5-8. 

5.5.3.3 Shock Test 

The APS was subjected to shock testing on 25 October per the following 

specification'
 

Amplitude 15 g peak 

Duration 5 +1 millisecond
 

Shape Half sine 

Quantity 3 (in one direction)
 

The achieved input pulses are presented in figure 5-9. Representative 

shock spectrum analyses of the control and several response accelerometers
 

are shown in figure 5-10. Thorough leak checks, X-rays, and physical 

inspection of the module did not reveal any malfunctions or failures.
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5.5.4 Tangential Axis Tests
 

Figure 5-11 presents the tangential axis test setup. Photographs of the
 

control and response accelerometers are shown in figure 5-12.
 

5.5.4.1 Sinusoidal Sweep Test
 

The APS module was subjected to a logarithmic sinusoidal sweep vibration
 

test on 28 October per the following specification­

3 octaves/min. (upsweep only)
 

1.5 to 2.5 Hz at 0.04 g, zero to peak
 

2.5 to 3.5 Hz at 0.125 inch double amplitude displacement
 

3.5 to 20.0 Hz at 0.08 g, zero to peak
 

The filtered control input data are presented in figure 5-13. No
 

resonance was noted at any of the response accelerometer locations. Leak
 

checks and inspection did not reveal any malfunctions or failures except 

for the loose jam nut described in paragraph 6.2.5. 

5.5.4.2 Random Vibration Test 

The test described in paragraph 5.5.3.2 was repeated on 29 October, in 

the tangential axis. No malfunctions or failures were noted during or 

after the test. Accelerometer data for this test are presented in 

figure 5-14. Leak checks and inspection did not reveal any malfunctions
 

or failures.
 

5.5.4.3 Shock Test 

The test described in paragraph 5.5.3.3 was repeated on 29 October in the 

tangential axis. The achieved shock inputs for this test are presented
 

in figure 5-15. Shock spectrum analyses of the control and several 

representative response accelerometers are shown in figure 5-16. 

Thorough leak checks, X-rays, and physical inspection of the module did 

not reveal any malfunctions or failures except for the stripped nut 

plate described in paragraph 6.2.6. 

5.5.5 Radial Axis Tests
 

Photographs of the control and response accelerometers are shown in
 

figure 5-17.
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5.5.5.1 Sinusoidal Sweep Test
 

The test described in paragraph 5.5.4.1 was repeated on I November in the
 

radial axis. No resonance conditions were noted at any of the response
 

accelerometer locations.
 

The filtered control input data for this test are presented in figure 5-18.
 

Leak checks and inspection did not reveal any malfunctions or failures.
 

5.5.5.2 Shock Test
 

The test described in paragraph 5 5.3.3 was repeated on 2 November in the
 

radial axis. Leak checks and inspection revealed no malfunctions or
 

failures after the test. The achieved shock inputs are shown in figure
 

5-19. Shock spectrum analyses of the control and several representative
 

response accelerometers are shown in figure 5-20.
 

5.5.5.3 Random Vibration Test
 

The APS module was subjected to 2 minutes of low level random vibration 

excitation on 4 November per the following specification: 

20 to 85 Hz at 0.025 g2 /Hz 

85 to 280 Hz at +6.5 db/octave
 

280 to 1,000 Hz at 0.31 g2 /Hz
 

1,000 to 2,000 Hz at -12 db/octave
 

Accelerometer data are presented in figure 5-21. After this test, a post
 

vibration leak test and inspection (bladder leak tests were not included) 

were performed on the APS module. This leak test did not reveal any mal­

functions or failures. 

On 5 November the APS module was subjected to high level random vibration 

excitation for 30 sec per the following specification:
 

20 to 170 Hz at 0.1 g2 /Hz
 

170 to 280 Hz at +6.5 db/octave
 

280 to 1,000 Hz at 0.31 g2 /Hz
 

1,000 to 2,000 Hz at -12 db/octave
 

Accelerometer data are presented in figure 5-22, After this test, a leak
 

test which included bladder leak tests and X-rays was conducted on the APS 

module. A fuel bladder leak of 750 scm gaseous nitrogen was discovered. 

After numerous tests as described in paragraph 6.2.9, the size of the hole 

was determined and the vibration test was continued. 

5-7 



The APS module was then subjected to an additional 55 seconds of random
 

vibration excitation on 7 November per the above high level specification: 

Accelerometer data for this test are presented in figure 5-23. After this 

test, a leak check which included bladder leak tests, inspection, and
 

X-ray was conducted on the APS module. This leak check revealed that the 

fuel bladder still leaked approximately the same as after the 30 see test, 

however, no other malfunctions or failures were present. 

5.5.6 Transportation of the APS Module to Gamma
 

On the return trip from Alpha to Gamma on 8 November, load levels were
 

similar to those measured on the trip to Alpha (paragraph 5.5.2). The 

shock loads were very similar to those in paragraph 5.5.2 with one excep­

tion. A shock load of 1.1 g was recorded when the crane cable slipped and 

dropped the module approximately 12 feet while suspended above the Gamma 

Test Cell. The module did not hit the ground when dropped, and was not 

damaged. 

5.6 Propellant Unloading and System Purge
 

Propellant unloading was performed in accordance with standard operating
 

procedures (MDAC H&CO 1373218, Task Number 10) but just prior to unloading,
 

1,000 cc of oxidizer and fuel were removed from each system for sampling.
 

(The fuel and oxidizer samples were within specifications except for 

inconsequential discrepancies.) The remaining propellant was unloaded
 

from the APS module and transferred to the mobile servicer storage tanks. 

A summary of propellant unloading is presented in table 5-5. 

5.7 Post Unloading Checkout 

After propellant unloading, the APS module was subjected to a.limited leak 

check and functional checkout in accordance with Task No. 11 of NDAC H&C0 

No. 1373218. The only problem encountered during this checkout other than 

the fuel bladder leak, was a blowing leak on the upstream high pressure 

helium check valve. This problem is discussed in detail in paragraph 

6.2.8.
 

5.8 Instrumentation System
 

The instrumentation system performed satisfactorily throughout pretest 

checkout, propellant loading, vibration testing, propellant unloading and 

post test checkout except as noted in the following paragraphs.
 

Two strain gages were attached to the oxidizer tank pressurization line at
 

the outlet of the quad check valve. These were added to this APS module
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for failure analysis in the event this line failed in a manner similar to 

that experienced during the vibration testing of APS module I.
 

An instrumentation phenomenon which was experienced on APS modules during 

previous burp firings and vibration testing was again observed during the 

random shock tests in all three axes. A high frequency ringing occurred 

on measurement D0073, Oxidizer Supply Manifold Pressure, during the random
 

vibration tests and during the shock tests. Table 5-6 shows the system 

pressure, average fluctuations and the mmn/max spike values that were 

recorded on the FT data.
 

It was noted that the oxidizer system transducer was damped with a Halo­

carbon 208 oil which has about the same viscosity as water. The fuel 

system transducer was damped with Dow Corning 510 lubricant which has a
 

much higher viscosity. This may account for the ringing effect within the
 

oxidizer supply manifold pressure transducer during the vibration tests.
 

Fluctuations were also noted on measurement D0036, Helium Tank Pressure, 

during random vibration in the tangential axis. Peak values of 3,500 psia 

were recorded on the FM data when the helium tank was pressurized to 

3,200 psia. 

All flight instrumentation was recorded. A list of the analog flight 

measurements is shown in table 5-7.
 

5.9 Electrical Control System
 

The electrical control system performed properly throughout the pretest 

checkout, propellant loading, and vibration testing. No problems or
 

discrepancies were noted at any time.
 

5.10 Disassembly and Inspection
 

The results of the post test APS module inspection indicated one signifi­

cant failure resulting from the vibration test program. A small hole was 

found in the fuel tank bladder (see paragraph 6.2.7). The hole was located 

near the upper end of the bladder and was approximately 0.01 inch wide and
 

0.04 inch long. Defects were found on the upper weld on the fuel tank 

diffuser stand pipe that are believed to have caused this damage to the 

bladder when it was in the collapsed position for vibration testing. 

Two minor abnormalities, a rust-like deposit on the fuel tank outlet line
 

and a chip missing from the oxidizer low pressure helium mount bracket,
 

were found during the overall APS visual inspection.
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TABLE 5-1 
PROPELLANT LOADING 

PARAMETER 

Mobile Servicer Storage Tank Pressure 

APS Tank Outlet Pressure 

APS Ullage Pressure 

Mobile Servicer Collection Tank Pressure 

Quantity Loaded 

Loading Time 

Loading Rate 


Tank Temperature at Fully Loaded 

Condition
 

Quantity Recirculated 


Recirculation Time 


Quantity 0ff-Loaded 


SUMMARY 

OXIDIZER FUEL 

45-50 psia 45-48 psia 

36-42 psia 35-42 psia 

34 psia 32 psia 

35 psia 36 psia 

17.74 gal 17.74 gal 

20 mLn 12 mnn 

0.89 gpm 1.48 gpm 

82 deg F 92 deg F 

10 gal 6 gal 

3 mLn 4 man 

1.8 gal 0.3 gal 
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TABLE 5-2 (Sheet 1 of 2)
 
VIBRATION REQUIREMENTS
 

AXIS IODE OF VIBRATION FREQUENCY (Hz) LEVEL DURATION 

Thrust Sinusoidal 3 to 4 0.24 in. double ampl 1 oct/nin 
(Upsweep Only) 4 to 7 0.2 g eto to peak 1 oct/min 

7 to 20 0.1 g zero to peak 3 oct/min 

Ranaom 20 to 30 +6 db/octave 

30 to 100 0.01 g2/Hz 

100 to 200 +6 db/octave 3 min 

200 to 1,000 0.05 g2/Hz 

1,000 to 2,000 -3 db/octave 

3 Shocks half sine 15 g zero to peak 5 +1 ms 

Tangential Sinusoidal 1.5 to 2.5 0.04 g zero to peak 
(Upsweep Only) 2.5 to 3.5 0.125 in. double ampl 3 oct/hin 

3.5 to 20 0.08 g zero to peak 

Random 20 to 30 +6 cb/octave 

30 to 100 0.01 g2/Hz 

100 to 200 +6 db/octave 3 min 

200 to 1,000 0 05 g2/Hz 

1,000 to 2,000 -3 db/octave 

3 Shocks half sine 15 g zero to peak 5 +1 ms 

Radial Sinusoidal 1 5 to 2.5 0.04 g zero to peak 
(Upsweep Only) 2.5 to 3.5 0.125 in. double ampl 3 oct/min 

3.5 to 20 0.08 g zero to peak 

3 Shocks half sine 15 g zero to peak 5 +1 ms 
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TABLE 5-2 (Sheet 2 of 2) 
VIBRATION REQUIREMENTS
 

AXIS MODE OF VIBRATION FREQUENCY (Hz) LEVEL DURATION 

Radial Random 20 to 85 0.025 g2/Hz 

85 to 280 +6.5 db/octave 

280 to 1,000 0.31 g2/Hz 2 min 

1,000 to 2,000 -12 db/octave 

20 to 170 0.1 g2 /Hz 

170 to 280 +6.5 db/octave 

280 to 1,000 0.31 g2 /Hz 

1,000 to 2,000 -12 db/octave 

30 sec 
and 

55 sec 
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TABLE 5-3 (Sheet I of 
ACCELEROMETER AND STRAIN GAGE 

AND ORIENTATIONS 

2) 
LOCATIONS 

L0CNOC LOCATION THRUST TANGENTIAL RADIAL 

1 Control-Lower Right APS Attach 
Bracket 

Thrust Tangential Radial 

2 Alt Control-Upper Right APS 
Attach Bracket 

Thrust Tangential Radial 

3 Quad Check Valve and He Press 
Regulator-Input 

Thrust Tangential Radial 

4 Shaker Head Thrust Tangential Radial 

5 Quad Check Valve-Response Thrust Tangential Radial 

6 Fuel Tank-Aft-Response Thrust Tangential Radial 

7 Oxidizer Tank Aft Response Thrust Tangential Radial 

8 Oxid Prop Control Mod L-5 Input Radial Radial Radial 

9 Fuel Low Press He Mod (Ullage 
Vent Valve L04) Response 

Thrust Tangential Radial 

10 Engine No. 4 (Ullage) Input Thrust Tangential Radial 

11 Oxidizer Tank Press Line* 
Quad Check Valve End-Strain 
Gauge 

-­

12 Oxidizer Tank Press Line* 
Quad Check Valve End-Strain 
Gauge 

-­

13 Lower Left APS Attach Bracket Thrust Tangential Radial 

14 Upper Left APS Attach Bracket Thrust Tangential Radial 

15 APS Module-Center Response Thrust Tangential Radial 

16 Fuel Tank-Forward Response Thrust Thrust Thrust 

17 APS Module-Forward Response Thrust Tangential Radial 

18 Oxid Prop Control Mod L-5 Input Tangential Tangential Tangential 

Left and right are as viewed from outside vehicle 

*Strain Gage
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TABLE 5-3 (Sheet 2 of 2) 
ACCELEROMETER AND STRAIN GAGE LOCATIONS 

AND ORIENTATIONS 

LOC 
NO. 

LOCATION THRUST TANGENTIAL I RADIAL 

19 Oxidizer Tank-Forward Response Thrust Thrust Thrust 

20 Oxidizer Tank-Forward Response Radial Radial Radial 

21 Oxidizer Tank-Forward Response Tangential Tangential Tangential 

22 Oxidizer Tank-Aft Input Thrust Tangential Radial 

23 Fuel Tank-Forward Response Radial Tangential Radial 

24 Amplifier-Engine Press Trans-
ducer-Response 

Thrust Tangential Radial 

Left and right are as viewed from outside vehicle 
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TABLE 5-4
 

CHRONOLOGICAL HISTORY
 

DATE COMPLETED EVENT 

Thrust Axis 

10-17-68 APS moved from Gamma to Alpha site. 

10-18-68 Fixture and shaker alignment. 

10-19-68 System checkout. 

10-21-68 APS hookup. Sine sweep test. 

10-22-68 Random vibration equalization. Shutdown due to leaks. 

10-23-68 Helium tank leak checks performed. 

10-24-68 Leaks fixed Random vibration equalization continued. 

10-25-68 Random vibration test. Shock test. 

Tangential Axis 

10-26-68 Rotated fixture to tangential axis. 

10-27-68 System checkout. 

10-28-68 APS hookup. Sine sweep test. 

10-29-68 Random vibration test. Shock test. 

Radial Axis 

10-30-68 Rotated fixture to radial axis. 

10-31-68 System checkout. 

11-1-68 APS hookup. Sine sweep. 

11-2-68 Shock test. 

11-4-68 Random vibration 2 minute test. 

11-5-68 Random vibration 30 second test. 

11-6-68 Leak checks 

11-7-68 Random vibration 55 second test. 

11-8-68 Leak checks. APS moved to Gamma. 
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TABLE 5-5
 

PROPELLANT UNLOADING SUMMARY
 

PARAMETER OXIDIZER FUEL 

APS Ullage Pressure 36 psia 33.5 psia 

APS System Pressure 44 psia 39.8 psia 

Mobile Servicer Storage Tank 40 psia 37.5 psia 
Pressure 

Quantity Unloaded 14 gal 15 gal 

Unloading Time 18 min 45 min* 

*The greater time required to unload the fuel tank was due to a problem
 
encountered while readjusting a Mobile Servicer pressure regulator to
 
meet flow conditions.
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AXIS 

OXIDIZER 

MODE OF 
VIBRATION 

TABLE 5-6 
SUPPLY MANIFOLD PRESSURE (D0073) 

AVERAGE AVERAGE 

SYSTEM PRESS FLUCTUATIONS 
(psia) (psia) 

SPIKE VALUES 
(psia) 

MIN MAX 

Thrust Random 215 200-225 - 260 

Shock 215 200-225 - -

Tangential Random 

Shock 

215 

210 

200-240 

198-230 

190 

-

400 

-

Radial Shock 210 205-215 - -

Random 

Phase I 

Phase II 

Phase III 

210 

210 

210 

200-220 

200-260 

200-260 

-

120 

0 

-

400 

400 
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TABLE 5-7 

ANALOG FLIGHT INSTRUMENTATION 

ITEM TITLE 

C0187 Helium Tank Temperature 

C0032 Oxidizer Tank Outlet Temperature 

00021 Fuel Tank Outlet Temperature 

D0030 Engine 1 Chamber Pressure 

D0031 Engine 2 Chamber Pressure 

D0032 Engine 3 Chamber Pressure 

D0036 Helium Tank Pressure 

D0038 Helium Regulator Outlet Pressure 

D0072 Fuel Manifold Pressure 

D0100 Fuel Tank Ullage Pressure 

D0099 Oxidizer Tank Ullage Pressure 

D0221 Engine 4 Chamber Pressure 

D0073 Oxidizer Manifold Pressure 

RANGE
 

360-1,060 deg R
 

460-660 deg R
 

460-660 deg R
 

0-200 psxa
 

0-200 psia
 

0-200 psia
 

0-3,500 psia
 

0-400 psia
 

0-400 psia
 

0-400 psia
 

0-400 psia
 

0-400 psia
 

0-400 psia
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6. FAILURES AND ANOMALIES
 

This section describes the failures and anomalies which occurred on APS 

module II from the time of pretest checkout through the partial dis­

assembly after all testing was complete. Also described are the results
 

of investigations conducted and steps that were taken so that testing
 

could be continued. Table 6-1 lists the failures and anomalies chrono­

logically which occurred during these tests
 

6.1 Failures
 

A failure is defined as any discrepancy which could possibly cause loss
 

of mission or delay of launch.
 

6.1.1 Fuel Low Pressure Helium Module
 

On 16 October 1968, after the APS module had been loaded with propellants, 

the fuel low pressure helium module (P/N IA49998-509, S/N 117G) developed
 

a leak causing the APS helium system pressure to decay. At the time the
 

leakage occurred, the APS helium system was pressurized to blanket pres­

sure (65 +5 psia). Further investigation revealed that the vent valve 

of the helium module was leaking 100 sccm (maximum leakage allowable is
 

5 sccm). Cycling the vent valve open and closed several times did not 

change the leak rate. The failed unit was removed from the APS module 

and replaced with PIN IA49998-509, S/N 108G.
 

The helium module was sent to the M&A Building where a failure analysis 

was made on the failed part. Conclusions were that the leakage was 

caused by minute particles or contamination on the valve seat and that 

the module would have sealed within specifications at flight operating
 

pressures (200 psia). 

This type of failure would normally be found during checkout prior to
 

launch and the module would be replaced. However, it was classified as
 

a failure because if it occurred during countdown, then launch could be 

delayed by having to replace the module.
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6.1.2 High Pressure Helium Leak 

On 21 October 1968, the high pressure system was pressurized to 

3,150 psia in preparation for the first vibration test (thrust
 

sinusoidal). The temperature of the helium bottle at that time was
 

115 deg F. After a hold of approximately 30 min the helium pressure had
 

decayed to 2,900 psia and the temperature had decreased to 95 deg F.
 

This pressure decay was assumed to be caused by the temperature decrease
 

and the helium bottle was repressurized to 3,150 psia. Sinusoidal
 

vibration in the thrust axis was then completed and the post vibration 

leak checks (at 165 psia) were completed
 

On 22 October 1968 the high pressure system was pressurized to 3,150 in 

preparation for thrust random vibration. During a hold period, the
 

helium system had to be repressurized several times because of pressure
 

decay, which definitely indicated a leak. After numerous attempts to
 

find the leak at low pressure, the tanks were disconnected from the
 

system and the leak was then audible at 3,000 psia. (This was heard from 

a distance, since safety precautions prevent approaching the helium system
 

when it is pressurized at 3,000 psia.) After reducing pressure to
 

1,500 psia, the leak was found at the bulkhead nut of a transducer elbow
 

fitting on the aft end of the helium tank. The fitting was removed and 

found damaged. The damage consisted of two circumferential grooves 

around the portion of the fitting on which the teflon "0" ring seats and 

on which the backup washer must slide. It was observed that the washer 

could not move without excessive pressure. It was also noted that the
 

jam nut torque seemed low when the fitting was removed The fitting and
 

it's associated seal were replaced and the leak check repeated. This
 

time two additional leaks were found; one at the temperature transducer
 

adapter to APS helium tank interface and the other at a tee in the helium
 

tank pressure sense line. The repair of these leaks necessitated the 

removing of the helium tank from the APS. After replacing the seals at
 

these two points, the APS was repressurized and leak checked once again,
 

no additional leaks were found. Figure 6-1 shows the location of two 

helium tank leaks. The helium tank was reinstalled in the APS module and 

the vibration tests were continued.
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After the random vibration and shock tests were completed, it was deter­

mined that the torque specified in the MDAC process specification for
 

bulkhead type elbows was in error (approximately 50 percent low). As a 

result, a DPS correction was initiated and all of the affected fittings
 

on the module were retorqued to the proper values. All modules in the
 

field were also retorqued.
 

6 2 Anomalies 

An anomaly is defined as a discrepancy which is undesirable and not normal 

but which would not cause loss of mission or delay of launch. 

6.2.1 Engine No. 3 Current Signature 

During pretest checkout conducted between 3 July 1968 and 8 October 1968, 

the high differential pressure current signature for oxidizer valve No 2 

(downstream) on engine No. 3 could not be obtained. Further investiga­

tion revealed that valve No. 2 was closing 2 to 3 ms slower than valve 

No. 1 (upstream), making it impossible to achieve the high differential 

pressure condition for valve No. 2. By making a minor change in the 

procedural technique (cycling the upstream valves open and closed before
 

cycling all valves open) satisfactory valve signatures were obtained for
 

valve No. 2.
 

6.2.2 Engine No. 4 Chamber Leakage 

During pretest checkout conducted between 3 July 1968 and 8 October 1968, 

engine No. 4 chamber pressure indicated a pressure decay of 45 psid/min 

(1 psid/min is allowed). Further investigation revealed a leak at the 

throat insert to the ablative chamber interface and also that this 

particular engine had been test fired during the 1005-1 APS confidence
 

firing. The engine was subsequently removed from the 1005-1 APS. This 

type of leakage for a fired engine is considered normal and this 

discrepancy was accepted. 

6.2.3 Missing Transducer Lockwashers 

On 23 September 1968, during pretest inspection, the engine chamber pres­

sure transducers were found to have no lock washers under the heads of 
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the retaining screws. Lock washers were added by loosening one screw at
 
a time, installing a lock washer, and then retightening the screw.
 

6.2.4 Stripped Nutplate
 

On 27 October 1968, after random vibiation in the thrust axis, the doors 

on the APS module had to be removed to check some of the accelerometers.
 

During the door removal, a nut plate was stripped. Since this occurred
 

as a result of removing the door and not as a result of vibration, the 
nut plate was replaced and the test continued.
 

6.2.5 Loose Jan Nut 

On 29 October 1968, during post inspection after the tangential sinusoidal 

vibration test, the jam nut on the oxidizer relief port was found loose. 
This was thought to be caused by movement of the ground support flex lines 

which are connected to the port during this test only and not used at 

launch time. The nut was retorqued and the test continued.
 

6.2.6 Stripped Nut Plate 

On 30 October 1968, after the tangential shock test was completed, the APS 
doors were removed to inspect the interior of the APS module. During the 

removal, one bolt galled in a nut plate and the bolt head had to be sawed 
off. This nut plate was located in such a position that it could not be 

replaced due to interference with other equipment in the APS module The
 

remainder of the tests were conducted without the use of this nut plate.
 

6 2.7 Fuel Bladder Leak
 

On 5 November 1968, during the post axis leak check conducted after the
 

30-sec radial random vibration test, the fuel bladder was found leaking
 

excessively. Further investigation revealed that the bladder was leaking 

750 sccm of gaseous nitrogen. Calculations indicated that this leakage
 

was approximately equal to the leakage through a .007 in. diameter sharp
 

edge orifice. At this point, to further investigate the bladder leak,
 

the gas was removed from the fuel bladder and X-ray photographs were
 

taken of the ullage area. The first X-ray was taken 10 min after gas
 

bleed. The X-ray showed that the liquid level in the standpipe had 
dropped to within 0.25 in. of the mean liquid level by the time the 
second X-ray was taken one hour later. This indicated that the hole in 
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the fuel bladder was in the ullage area and allowed gas to enter the
 

inside of the bladder very quickly. 

The 55-sec radial random vibration test was then completed and leakage
 

tests on the fuel bladder during post axis checkout indicated a leakage
 

of 800 scan of helium (which was approximately the same value it was 

before). This test indicated that the additional vibration did not 

increase the size of the hole 

After all tests and operations were complete, the fuel tank was removed
 

from the APS and the fuel bladder removed from the fuel tank. At this
 

time it was noted that the fuel bladder had been exposed to propellant
 

for 27 days and had accumulated a total of 4.5 cycles during the test.
 

The fuel bladder was inflated and a small hole, in addition to several
 

scratch-like defects, was found in the ullage end of the bladder. 

Figure 6-2 shows the expanded bladder and figure 6-3 shows the location 

of the defects. The hole is also shown in figures 6-4 and 6-5. The 

scratches are shown in figure 6-6 and again under approximately 50X 

magnification in figure 6-7. 

The interior surface of the fuel tank was inspected for contamination,
 

corrosion, or any defect that could have cut the bladder The tank 

interior was clean and free of any defects; however, there was some 

Staining in the leak area and along the vent string paths. These stains, 

which are shown in figure 6-8, were apparently caused by fuel that
 

leaked inside the ullage area.
 

The fuel bladder was then removed from it's standpipe assembly and the
 

assembly inspected for any defect which could have cut the bladder.
 

Three defects were found on the upper standpipe weld and one small defect
 

was found on the lower standpipe weld. The largest of the upper weld 

defects is shown in the plan view in figure 6-9 and in profile in 

figure 6-10 This defect was approximately .015 in. high and had a 

sharp feel. The second defect was smaller in height (figure 6-11) 

and larger in diameter (figure 6-12) than the first defect while the
 

third defect shown in figures 6-13 and 6-14, was a well rounded 

bump. A small, rather sharp imound was noticed on the lower weld and is 

shown in figure 6-15. Neither the upper nor the lower weld showed any 

cracks during a dye penetrant inspection.
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The proximity of both the scratches and the hole in the bladder to the 

sharp defect on the upper weld indicates that these areas could have been 

in contact during the random folding of the bladder during the gas extrac­

tion exercise. If this did occur and these areas were in contact during 

vibration, then the cut in the bladder could result. The strong possi­

bility exists that the large weld defect did, in fact, cut the bladder. 

This problem was considered an anomaly rather than a failure because the 

bladder was still functional and the hole would not have affected flight
 

or launch. As a result of this anomaly the tank vendor (Bell) is now
 

inspecting all diffuser drawings for inadequate welding. Vendor drawings
 

have been revised to require improved weld finish controls on the diffuser
 

tube welds.
 

6.2.8 Check Valve Leakage
 

On 21 November 1968, during post unloading checkout, the upstream high
 

pressure check valve (P/N IB68379-1, S/N 223) was discovered to have a
 

blowing leak. The check valve was removed for disassembly.
 

Since this check valve is redundant, the leak was not found until it was 

individually checked, however, it did not affect the vibration test. 

This check valve is no longer flight configuration since the check valves 

on S-IVB-503N and subs (except for the S-IVB-507 APS modules 1 and 2) are 

being changed. 

Disassembly of the check valve revealed that a piece of wire 0.012 in. in 

diameter and 0.75 in. long had lodged between the poppet and the seat and 

it's position indicated that it might have come from the pressurizing
 

port. The piece of wire was removed and the valve reassembled. A 3-min 

leakage test on the reassembled valve, with 1,500 psia of helium, 

indicated no leakage. 

6.3 Conclusion
 

The disassembly and inspection did not reveal any failures which reflected 

on the integrity of the APS unit. The failure in the low pressure helium 

module was attributed to contamination and not to design deficiencies 

The high pressure helium leaks resulted from improper torque specifica­

tions and defective seals at the temperature transducer adaptor to helium 

tank interface, and at a tee in the helium tank pressure sense line 
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TABLE 6-1 

FAILURES AND ANOMALIES 

SEQUNCE DATE 
SEQUENCE (1968) PROBLEM WHEN OBSERVED CLASS DISPOSITION 

1 Engine No. 3, oxd valve 
No. 2 current signature 

Pretest checkout Anomaly Procedure change corrected 
problem prior to vibration. 

2 Engine No. 4 chamber Pretest checkout Anomaly Acceptable (engine No 4 
leakage fired before). 

3 9-23 Missing washers on engine Pretest inspection Anomaly FARR 500-607-050, washers 
chamber transducers installed per tag 

disposition. 

4 10-16 Fuel low pressure module Propellant loading Failure FARR 500-607-068, replaced 
vent leakage with S/N 108G. 

5 10-22 High pressure helium leak Thrust sinusoidal post Failure Corrected - continued test 
mode test 

6 10-27 Door nutplate stripped Thrust random post mode Anomaly Nutplate replaced - test 
during door removal inspection continued. 

7 10-29 Oxidizer relief bulkhead Tangential sinusoidal Anomaly Retorqued nut - continued 
nut loose post mode inspection test. 

8 10-30 Stripped nutplate and bolt Tangential shock post Anomaly Could not replace nutplate 
mode inspection due to limited clearance -

continued test without bolt 
and nutplate. 

9 11-5 Fuel bladder leak Radial post 30 sec Anomaly Calculated to be 007 in. 
random check dia hole - not considered 

failure - test continued 

10 11-14 Upstream high pressure Post unloading checkout Anomaly Redundant check valve - not 
- check valve leakage failure - checkout 

continued. 
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Figure 6-5. Hole in Fuel Bladder Magnified 
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Figure 6-15. Small Weld Defect - Lower Standpipe
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