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LIST OF SYMBOLS

Capital letters denote matrices unless otherwise stated.

Lower case letters denote column vectors unless other-
wise stated or clear from context.

A* denotes the matrix conjugate transpose of A .
A"l denotes matrix inverse for nonsingular A .
A+ denotes the generalized inverse of A .

4 will denote a hermitian idempotent matrix (h.i.)
i.e. a matrix such that H¥* = H and HH = H .

R(A) denotes the range space of A 1.e., the collec-
tion of all images of column vectors under the trans-
formation A .

PR(A) will denote the orthogonal orojection on the

range of A 1.e. a hermitian idempotent leaving R(A)
fixed.

EM will denote m - dimensional euclidean space.

diag(ay, 82, +«+» a,) denotes a diagonal matrix.




INTRODUCTION

The primary concern of this paper is to Investigate
the problem of inversion of singular or non-square matrices.
In this connection, a new algorithm for computing the gen-
eralized inverse of an arbitrary complex matrix is gliven.
For a non-singular matrix the algorithm gives the ordinary
inverse of the matrix.

The paper is divided into several sections. The
first two sections give a definition-theorem expose” of
the known results in the literature. The following sections
give 2 new explicit form together with an algorithm for com-
puting the new explicit form. An application to least
squares approximation i1s given that can easlly be realized
in trajectory analysis problems. Finally, a compﬁter pro-
gram for ccmputirg the generalized inverse of a matrix 1is
given utilizing the algorithm mentioned in the latter para-

graph.
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DEFINITIONS AND EQUIVALENT FORMS

A. Bjerhammer [2])!, E. H. Moore [10], and R. Penrose
[11) independently generalized the concent of matrix in-
version to include arbitrary compl>x matrices. The gen-
eralized inverse of a singular or non-square matrix possesses
properties which make it a central concept in matrix theory.

We will give a definition-theorem exposé, inserting
where applicable, relferences and special problems. The
follewing fundamental theorem due to Penrose [11] will be

stated without proof.

THECREM 1. The four equations
(1) AXA = A
(2) XAX = X
(3) (AX)* = AX
(4) (XA)* = XA

have a unique solution X for each complex matrix A

Definition 1. The solution X in THEOREM 1. will be de-

noted X = AY and called the generalized inverse of A .
The following theorem gives an equivalent form of A+ .

THEOREM 2. For any mxm matrix A over the complex

field, X = A+ is the unique sclution to the equations

INumbers in brackets refer to correspondingly numbered
papers iIn the references.



B

AX = PR(A)

and
XA = Pp(x)

where R(A) 1s the range space of A in E™ and PR(A)

is the orthogonal projection on R(A) .

Froof: THEOREM 1, implies that AX 1s a herm’tian idem-
potent (see list of symbols) leaving A fixed 1.e.,
(AX)A = A . Hence AX must be a projection. We mav

conclude the same about XA .

We proceed to give properties of the generalized in-

verse and possible computing schemes.

THEOREM 3. Let A be an arbitrary complex matrix. Then,

for scalar X ¥ 0 and unitary U and V

(a) at(at)sar = at = axat)mat

(b) a*taax = ax = pxapt

(c) (ah)t =2

(@) (a9)* = (at)s

(e) At = A=l for nonsingular A .
(r) )t = Lt

(8) (a*a)t = a*(a*)s

(h) (UAV)* = v-iaty-l



]
(1) A = 21 and AiAJ = 0

v
AJA1 = 0 for 17

imply
At = E A}

(j) If A 1is normal (i.e. A¥a = AA')
thcn;. a*ta = aat ana (aM* = (ah)P

(k) A, ATA, A and a*a el have rank equal
to trace (A*A).

By et

Ve note that (1) reduces the problem of computing at
to that of computing the generalized inverse of a hezrmitian
¥
matrix A A . Moreover, such a matrix can always be

diagonalized by a unitary transformation i.e.,
D=NNMV=M%(%,...”aQ
Now (f) and (h) imply
(a*m)* = vty = V diag (éi’ it %h)u

We tacitly assume that 1if ay = ¢ then the corresponding
term in diag (%1, S e %n) is zero. It is not usually an
easy task to determine the unitary transformations U and
V . Methods for computing the generalized inverse have
geen given by various authors (2], [3]), (7], (8], [12].

The following is a theorem of majer importance charac-

terizing all solutions of the matrix equatfons AXB = C

which have some solution X . =

— . ——— -
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THEOREM 4. For the matrix equation AXE = C to have a

solution, a necessary and sufficient condition is:
atests = ¢
in which case ?he general solution is:
x = atce* + v - ataves*,

where Y 1is arbitrary (to within the limits of being con-

sistent with dimension in the indicated multiplications) [11].

Proof: Suppose X satisfies AXB = C . Then,
¢ = aAxB = antaxes's = aatcs'B

~anversely, if ¢ = AAtcB*B then A*esY 1s a particular
so_ution. Clearly, for the gencral solution we must solve

AXB = 0 . Any expression of the form
X =Y - atayss?

is such a sqlution. Moreover, 1f AXB = 0 then,
X = x - aAtaxss’

We note that the only property required cof A+ and p* in
the theorem is AA*A = A, BB*B = B . :

COROLLARY 1. The general solution to the vector equation

Px = ¢ is

x = pres (1 - Ptp)y
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where y 1is arbitrary, provided a solution exists.

COROLLARY 2. A necessary and sufficient condition for the
equaticns
AX = C
and-

XB =D

to have a common solution is that each have a solution and

AD = CB [H4].

Proof: If AX =C and XB =D have a common solution

then clearly each has a solution and

AXB = CB
AXB = AD
so that

CB = AD
In order to obtain the sufficiency we set
x = a*c + p8* - atapp?
which is a solution if AD = CB, AA+C = C, and DB+B =D .,
THEOREM 5. We have:

(1) a*a, aat, 1-a*A, and 1 - aat are h.1.
(see 1list of symbols)
(2) H 1is h.i. implies H' = H
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Proof: The proof requires 2 straig-tforward application

of THEOREM 1.

In general, the reversal rule (i.e., (AB)+ = B+A+ as
in the cas2 of the standard inverse) does not hold. R. Cline

[5) recently obtained the following result.

THEOREM €. Let A and B be matrices with the product AB

defined. Then,

T+ + .+

(AB) BlAl
where AB = AlBl
and B, = A*taB

= +
Al ABlBl
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THE EXPLICIT FORM

'Jtilizing the properties of A* in the preceeding
sections, we develop an explicit form which gives rise to
an algorithm for computing the generalized inverse of an

arbitrary complex matrix [7].

THEOREM 8. For any matrix A, AY = WAY, where W and Y

are any solutions of

k3 *
(1) WAA = A
and
¥ *
(2) A AY = A

Proof: Equations (1) and (2) indeed have a solution
W=Y-= A+. Moreover, if W and Y are any sclutions we
have

Y % X ¥
AVAAR = AA and A AYA = A A
so that AWA = A and AYA = A
5 %
(Note: BAA = CAA implies BA = CA),
In addition,

k # % % % % ¥
WAA W =AW and Y A AY =Y A

imply (wA)* = WA anda (AY) = AY

If we let X = WAY, X satisfies the four equations of
THEOREM 1., so that AT = X = way.
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4
COROLLARY 2. For any matrix A, A% = A S AS,A" where

1
Sl and S, are, respectively, any solutions of

(AA')sl(AA') = (AA")
and

(A'A)sz(A'A) = (0%a)

| x
Proof: According to THEOREM 3. we have that W = A §,
x
and Y =SZA are solutions of eqguations (1) and (2) of

THEOREM 8. provided
¥ ¥ x
(AA )Sl(AA ) = (AA )
and
* ¥ ¥
(A A)Sz(A A) = (A A)

The corollary follows.

THEOREM 9. If B 1is a matrix and there exist nonsingular
matrices P and O such that PBQ = E 1s an idempotent

then B = QFP is a solution of BXB = B

Proof: If P, Q, and E satisfy the hypothesis of the

theorem then B = P'IEQ'l and
BBE = (P”1EQ“1)QEP(P“1EQ’1) - p-l 1

FQ"" = B

COROLLARY 2. and THEOREM ©. suggest an algorithm for
computing the generalized inverse of a complex matrix F.
Consider the equation Ft o= (F*P)+F* [6], which reduces
the problem of finding F+ to that oI/finding the general-

* -
ized inverse of the hermitian matrix F P = C., Since



¥
(02) = 02, there exist nonsingular matrices P and @

(products of elementary matrices obtzined by simpnle

elimination) such that

IrZ
2 Z

= I

pc’q = :

where Ir is a rank r 1identity matrix and the 2Z are
zero matrices. We set C = A in COROLLARY 2., so that
A‘A = AA* = C'C = CC* = Cz. According to THEOREM 9.
choose solutions S; =S, = QI P so that C' = (csl)zc,

+

7*m)t = ¢t, and rinally,

pt = oty

Computing programs for calculating Sl and 82 are
now in existence (e.z., STORM, Statistically Oriented
Matrix Program, IEM). In general, these programs only
compute some solution of the equation AXA = A, usually
different from A+ . These results allow one to construct
a solution to all four Penrose equations (THEOREM 1.),

given only a solution of the first, namely, AXA = A .
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APPLICATION TO LEAST SQUARES APPROXIMATION

We will now state an application that can be realized
in trajectory anglysis problems. For the sake of simplicity
we will not consider welighting and only mention that weight-
ing introduces no difficulty.

The vector equation Ax = b does not, in general,
have a solution x . However, all candldates for a least
squares solution (i.e., a solution vector x mininmizing

(Ax - b)*(Ax - b) must be solutions of the normal equations
2 ¥ax = a%p 8]

THEOREM 7. Let A be any matrix (mxn) and b be any

vector (mxl) . The equation
%
A¥Ax = A b
always has a solution and hence a2 general solution given by:

x = (A% + (1 - (") *aa)y
e« A% + (1 - 2*h)y

Moreover, if A*A is non-singular'then the solution is
X = A+b

and is unique.

Proof: We will first show that

(1) .A*Ax ATh
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has a solution. Consider the vector:
X = A+b

- ¥ + ¥
Lince THEOREM 3.(b) implies A A(A"b) = A b we have that
x = A¥b 1s indeed a solution of (1). The existence of
this solution together with COROLLARY 1. implies that the

general solution to (1) is:
(2) B Lt s I
Using THEOREM 3.(l) we see that

x = atp + (1 - g*A)y.
Finally 1f A*A is non-singular then

3
x = (A A)*ate + (1 - D)y
= A%y
and (1) has a unique solution.
In summary, we know that if x 1s a least squares solution

of Ax = b, then x must satisfy

¥ %
A Ax = A D

A1l solutions of this equation are given by x = A'b + (I - a*a)y.

Any vector of the form

L

s s b iz ay
is a "candidate" for a2 least squares solution znd this form

describes the "class of 2l candidates.”
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COROLLARY 3. Every solution of A Ax = A b minimizes

7
Q = (Ax - b) (Ax - b) provided Q has a minimun,

Proof: Ve know that any vector at which Q is minimum is

of the form
i +

x=Ab+ (I -a*a)y
If Q has & minimum let

x, = A'p + (1 - A*2)

1 Y2
be any other solution. We will show that
¥ ¥
(Axl - b) (Axl - b) = (Ax2 - b) (Ax2 - b)

<:) To do this we examine Ax; and sz using THEOREM 1.

ax; = A(a*o + (1 - ata)y))
= an"b + (4 - anta)y,
= AA+b + (I-I)y,
= a'p

Similarly Ax, = AATDb

2
so that

¥ 3
(Ax; - b) (Ax; - b) = (Ax, - b) (Ax, - b)
that is, every vector of the form
x = Atb + (1 - ata)y

5
yields the same minimum value of Q@ . ~
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SUBROUTINE GEMNINV

GENINV is a FORTRAN IV subroutline, written by L.F.
Guseman, Jr., Theory and Analysis Office, which is used to
compute the generalized inverse of an mxn matrix A .

All computations are.done in double-precision floating point
arithmetic. The subroutine 1is based on the algorithm sug-

gested by the explicit form.

CALLING SEQUENCE

CALL GENINV (A, AP, M, N, L. E),

where,

A is a double-dimensioned, double-precision array
containing the original matrix. A 1is dimensioned
A(25, 25).

AP is a double-dimensioned, double-precision array
where the generalized inverse of A will be
computed. AP 1s dimensioned AP(25, 25).

M is the number of rows in the original matrix.

N is the number of columns in the original matrix.

L is twice N.

E is some small number for near-zero divisor test.

METHOD

Given A 3 (PRINT A)

Compute: x '

C=AA - (PRINT C)
c? = cc (PRINT 2)
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Find non-singular matrices F and P such that
gc?p = *r? )=

PRINT E, P, I,

(A form of Gaussian elimination with pivoting employed)

Compute:

R = PIOE (PRINT R)
then

+ i+

C = CRCRC (PRINT C')
also

x
(i) At = cta (PrINT 2%)

Remarks

The program uses two double-precision arrays
csSQ(50, 50) and B(25, 25) for internal manipulation. The
subroutine leaves the original matrix A 1intact.

Results are printed after each step as indicated.
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T SUSRCUTINE GENINVIAAP MyNsLsE)
DIMENS IUN atzs.zs).npt?s 25) 4,CSO(50,50),8(25,25)

DOUBLE PRECISIUN C392,8,816GA,X,0ACS A AP
Ce

_Ceses ALGORITHM BY He Fo DECELL,

“Cee THIS SLOROUTINE CUOMPUTES THE GENERALIZED INVERSE OF A MATRIX

“Cee  CALLING SECUENCE %
Cesx
Cex CALL GENINVIAJAP M yNyLyE)
Ces
e - AINR) ~-CUCATIDN W URIBINAL BAIRYY S 0 .
Cue AP(N,M) - LOCATION OF COMPUTED GENERALIZED INVERSE =
“Cer  F - NUFCER OF RO4S IN URIGINAL MATRIX
Cus N = NUMBER OF COLUMNS IN ORIGINAL MATRIX
Cee L ~ 2%\
_Cee £ - SHMALL POSITIVE NUMBER FUR NEAR-ZERO DIVISOR TEST
Ce :
£ MOTHEEANEN - - - - ... :
NPL=i+]
WRITE(6H,100) =
100 FORMAT(LIRL, 134 THE MATRIX A/Z/7)
PO SC f=1.M = = e s S0 0
WRITE(6,200) (AT d) s d=1,N)
TSN RANEIE- - - - e e =
C z
c COMPUTATIUN OF C=A A
DO 1 I=1yN
= ———SEn il R e e e s mn et s S
T CO 1 J=1,N
__J1=J4N SSir e ey R
CSQ(Il,J1)=0.000
DO 1 K=1,M

CSQUIL,JI1)=CSOCTLsI1)+ALKy[)®A(K,J)
1 CONTINUE
WRITE(6,101)
101 FORMAT(1HO,13H THE MATRIX C//) Fae

DO 51 I=NP1,L
WQ[TE(6vZCC)(CSQ([lJ))J=Nple)

__ 200 FORMAT(1H ,6021.12)

51 CONTIHUL

2
€ COMPUTATIUN OF C =CC__ £ el S
DU 2 I=1,4N
I1=1+0
DO 2 J=1,4N
S RN = = i ] = -,
CSQ(I, )= O 0co
DO 2 K=1,

— - —— ——




a1V -

Kl=K+y

CSQUIJ)I=CSQUTsJ)4CSNITLK1)*CSQIKLI,U1)

T 2 CONTINVE
 WRITE(G6,107) sEsteSEn et Qe = - e us cug
107 FORMATUIMO,19H THE MATRIX QUAREZYZ)
DO 510 [=1,N s
WRITE(LH,200)(CS0(T4Jd)ed=1,N)
— . ...510 CONTINUE SIS S T s G e e e b i
C
€ BUILC AUGHENTED MATRICES S S .ok

PO S5 I=1,N
D0 5 J=NP1,L

IFCEJ=N)=1)3+4,3

_3 C5G(1,J)=0.0C0

GO TC 5
4 CS0(1,J)=1,000 e e
5 CONT INUC
0O 8 J=1,M
D0 8 I=nPI,L
. TToTTIIR e e
"6 CSQ(1,41=0.0C0
. 2 Y TR L e e e
7 CsGlI,J)=1.000
8 CONT INUE
___COMPUTATION OF 1 o e

" A FOR#4 OF GAUSSTAN ELTMINATION IS EMPLOYED

00 27 K‘-'-l’:\i

KPl=K+1

IR=K

JC=K
BIGA=DADS(CSO(K,K))

iie 00 10 I=K,N
D0 1C J=K,N
IF(BIGA-CACS(CSA(T,J7)19,10,10
= -y - - = >
o JC=J
i BIGA=DABS(CSA(I,J)) g sendaTw s T
10 CONTINUE
IF(BIGA-E)23,23,11
C
o - - BECHENGE SUNE - .t o0 i
Il IF(TR-K)12,14,12
= - EE NN SR AR - e i
X=CSC(IR,J)
CSQUIR,J)=CST(K,J)
CSO(K,J) =X
= = SN SERSINE =
C
€ EXCHANGE CCLUMNS = ==
14 IFLJC-K)15,17,15
15 CO 16 I=1,L
X=CS¢(T1,JC) 7
EERLEIICIsERCET R - . .o e
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CONTINVE

CSQUI,K)=X

DIVICE ROW K BY CSQ(K,K)

X=CSGQIK,K)

DO 18 J=K,L

TFK=N)19,22,22

CSOUR, D) =COCIKy I/ XK
CONT 1MIUE

T 2ERO CCLUMK K BELOW THE DIAGONAL

00 2C [=KPI1,N

X=CSC([yK)
D0 2C J=K,L

TCSOUI,U)=CSO(T, ) =XeCO0(K,J)
CONTINUE

ZERD RCw K TO THE RIGHY (OF THE DIAGONAL

oo 21

| CONT INUE

O 21 J=KPIl,N

X=CSC(K,J)

l=|'\pL

CSQO(1,J)=C5 n(le)-x'CSQ(ltV)

CONT INUE

CCNTINUE

ERIsEtR)IDEY - - e

FORMAT(IHO,17H THE MATRIX T2CRG/YZ)

- DO 52 I=1,N
WRITLI6,200)(CS% (1,Jd), =1,

52 CONYINLE

WRITE(E,109)

FOGRMAT(LHO, 131 THE VuTRlK E/7)

CO 5C2 [=1,N

HRITE‘COZQO)(CSQ(L,J’.J NPI,L,__-W

CONTINLE

WRITE(6,106)

FORMAT(1HO,13H

CO S5C3 I=NRP]1,L =

TWRITE(69200)1CSALT, J).J I,N)

503 CONTIWUE

102

WIN)

105

502

106 THE MATRIX P//)

C  COMPUTATION OF R=Pl E

o

o
| o
" C_'--
L

nlo un

o
(=)
No
~
-
-
-
e

J1=J+N

BlIyd)=a(1, J)*uSQ(ch)'CSQ(K J1)
24 CONTInUE

O 25 l l'\

Il=14+N

CSC{iyJ)= C%O(I'J)+CS)((1*§ AL T L
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<:) 25 CONTINLE
 WRITE(6,108) == 1= & =
108 FORMAT(1HL,13H THE MATRIX R/Z)
B0 520 [=1,N
CWRITELE2200)(C5Q11,3)3Jd=1,N)
$30 CONT VUL

e - . —— —

C 4
C ___COMPUTATION OF C =CRCRC___ _ =
CO 26 [=]1,N
8 s o e B dalal : e
’ g Jl:JQN

et1,J)=0,000
LU 26 Kgle
_K1=KeN TV TEe A =
BIO1oJ)=0(1J)+CSQULK)=CSC(KL,J1)
26 CONT [NUE
CO 27 I=1,N
PO 27 J=],N = =%
CSA(1,J1=0,000
Semaeaete . iF i PR S e Bl e
CCSUUL ) =CSOUT, I +0(1,K)1=0(K,J)
27 CONTINUE
: 00 228 I=1,N
z Il=1:N
{ DU 28 J=] 0

- = - F TR e o ke
| O D0 28 K=1,N

K1=K+y =
BUI,J)=3(1,J)+CSQUIL,K1)«C3Q(KyJ)
28 CONTINUE
WRITc(6»103)
103 FORMAT(1HO,17H THE MATRIX CPLUS//)
00 53 [= 1|‘¢
WRITE(5,200)(8(1yJ)sJ=1sN)

53 CONT UL

B it L

- WP -

ey 4
b g ¥

Nt

C e =
& COMPUTATIUN UF A =C A
, o = sl SRR S . o S e o -
! B0 29 J=1l,¥M
_____ et ARSI TERENEN. - -, oo oo o
DO 26 K=],N

AP(1,J)=AP(],J)+0(],K)eA(J,K)
29 CONTIWLc
WRITE(6,104) e s
“ 104 FORMAT(LHO,17H THE MATRIX APLUS/ZZ)
ST . . LS oS R Bl e
WRITE(S,200) (AP ([ yJ) ed=1,H)
$4 CONTINLE
RETURN
END

- — ——— - ———— ————— > — - e — . e &
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____THE MATRIX A

‘,u-.?

i e AR L

Pdaa S ot 2 ol e e i L e o a

(:> .

0.4C000C0OCCCOOLC 01

-0.10CC00C00000D0 01

-0.3000000000000 01

0.2000000000002 Ol

-0.20000CCCCGCLL w1

THE MATRIX C

0.24003CCCCCCOD 02

0.2c0ccceccooceD oL

0.5000000000000 01

-0,80CC0OCO00000D 01!

_ 0.20000000CCCOD 01

-0.100000000C000 01
-0.9000000000000 01

-0.280000000000D 02

-C«30000C00000CD 01

___=0.5000000000000 O

0.400N000000000n 01

=N.8C0CCCCCC000D 01
____=0.28000C00L0C0D 02 -
0.4CCCCCOCCUOCD 01

TTTHE MATRIX CSCUARE

0.35000002CCC0D 02
-0.29000C0CC000CD 02
" -0.320000CC00000 02

-0.290000000200D 02
0.91C00200C000D C2

T 0.4200000000000 02

-0.3200000000000 02
0.4200000000000 02
0.380000000000D 02

0.144CCCOCCCOOD 04
0.2120000C00C00 03

-0.28200COCCO0CD 04

 =0.67200CCCCCOOD 03 -

THE MATRIX [Z2ERU

0.21200000C00C00D
0.315400CCCC00D

03

 =0.477400000000D 04

-0.358600000007D 04

-0.2%2000000000D 04
=0.47740000G000D 04
0.1167000000000 05

0.6224000000000 04

-0.672000000000D 903
_=0.3526000000000 04
0.62340000C0000 04

0.424800000000D 04

1.00060C0C0000D 00 -

=0.2775557561560-156

0.555111512313p-16 =0.1387778780780-16

N 0. 1.000000UC00CCD 00 =0.5551115123130-16 =0.55111512313D-16
. =0 o Ge_ . 1.0000000000000 00 0.5551115123130-16
0. 0. -0. 0.420996570928D=-12
THE MATRIX ©
Y ""'""“""”‘""“'oi’""”"“’““"'""_““ 0.8568980291350-04 0. e -
i .832613684944D-03  0.3406082032500-03 0.
0. o 3505148325360=-01 =0.737268957518D0-02 0.406440597361D-01

1.0000CCCCCO00D QO

«3774753283730~-14

0.727272727273D 00

-0.92090909090%1D 00

YTHE BATRIX P

TR, SIS 0. ~_ 1.0000000C0000D 00
0, 1.0000000000000 00  0.8624011351510 00 ~0.649480469406D=14
1.0000CCCCO000D0 00  £.4090831191090-00 -0.181396485072D-00  0.7272727272731) 00
0. U, [.000C0000UC000 00 =0.9090907090910 00

!
N
e

!



-

|

___THE MATRIX A*APLUS

1.C000CcCLCCOCO0OL €O

-0459253570969550-14

=-0.2745026428390-13

0.5828670875280-14

___THE MATRIX A=APLUS=A

0.4C00C0CCCCCOCD O!

=0.1265054248C70-13

1.00000C000C00D 0O

-1.C0000CCC0D00D 0O

0.9159339953160-14 _ 1.0000000000000 00

0.0238893903910-14

-0.30000000000CD 01

0.200000000000D0 O1

-0.20000CGCCCCOD 01

____0.20000c0ocCcuec0o00 01

0.1922807C17540-00

THE MATRIX APLUS*A®=APLUS .

0.500C000000000 0!

_0.30000000CCCOD 01

0.603508/719300-01

-1.00000000000CD CO

=0.9000000000000 01

-0.3649122807020-01

-0.300000000000D 01

_=0.5000000000000 01

-

0.2C0COCOCO0LOODL-CO
L =0.5614035087720D-02
0.207017%43860L-C0

T THE MATRIX APLUS+®A

0.3000CC000CCOD=-0D

. 0.5298245614040-01

T 0.108771929825p-00

-0.100C000000000-00

 =0.9017543859650-01
-0.1122807017540-00

0.57543859¢491D €O
___ 0.6439293542830-14
=0.308771929925D=-C0

_ 0.3859649122810-00

—0.2534084053710-13
1.000000CC00OCOD 00
—0.752176097184p-14

=0.2869926518660-13

-0.308771929£250-00

0.3207299342604D-13
T0.7754385964910 00
0.2807017543860-00

____0.0649122807018D0 CO

0.3859649122810-00
__0.328070903777D-13

 0.2807017543560-00




 — e e e . e e e e . o e

THE MATRIX R

0.4209965709380-12

0.158916G2913570p-26

0.3061797243180-12

-0.5827241553980-12

=0.76382171398550-17
0.3001326683280-12

~0.38256686442470-12

T THE MATRIX CPLUS

0.3106105263160-01
0.60176C7655500-02
0.3505148325360-01

~0.6017607655500-02
 0.156240684378D-02
-0.7372689575460-02

0.350514%325360-01 ©

=0.7372689571546D-02

 0.4064405973650-01

0.419457G637120-01

0.6021052631580-01
0.5408679593720-02
0.5046722068330-01

THE MATRIX APLUS

Ce6021052631580-01
0.14000000G00000-CO
0.2378947363420-01

_ 0.85263157869470-01

0.5408679593720~-02
1 0.2378947362420-01
1 0.1097026777470-01

0.1472576177290-01_

0.504672206633D-01
 0.£52631576947D-01
T 0.1472576177290-01"

_0.6729455216990-01

__ 0.192280701754D0-C0
0.20000CCCCOCCD-00
-0.5614035C87720-02
T0.20701.75436600-00

0.6035087719300-01
0.30000C0000000-00
0.5298245614040-01
0.1087719298250-00

-0.3649122807020-01

-0.1000C00000000-00
_ =0.901754385965D-01
T =0.1122807017540-00
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