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SUMMARY

A snl,ution of the two-body problem given by Herrick

for many types of orbits is modified by using a different

independent variable. The modification changes Herrick's

transcendental functions and his form of Kepler's equation.

Tha end result is a more general solution of the two-body

problem in that it applies to both attractive and repulsive

forces of any magnitude.

An outline is given for deriving the general modified

solution from the equations for an elliptic orbit. This re-

quires definition of transcendental functions which are then

used to express Kepler's equation and give closed-form ex-

pressions for the series solution to the differential equa-

tions. A method is described in detail which outlines the

computation necessary to determine coordinates at a given

time from their known values at a given . reference time.

Formulas are also given for computing the Martial der iva-

tives of each of the resulting coordinates with respect to
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LIST OF SYMBOLS

t	 time

X, Y, z o x ) Yx Z	 rectangular position and velocity co-

Ii

a

E

e

r

v

ordinates. When subscrinted they

refer to a particular point in time.

- sum of the notential and kinetic

energy

- gravitational constant

- semi-major axis

- eccentric anomaly

- eccentricity

- magnitude of nosition vector

- magnitude of change in position vector

- magnitude of velocity vector

- defined parameter used to generalize

the equations for elliptic motion

So, S
1 ,9 S 2 9 S3-9	 - defined transcendental functions

S4 S5
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" R	INTRODUCTION

A ,number of proven methods exist for obtaining a space

trajectory from given initial conditions at some reference

time (Encke's, Cowel'l's, Variation of Parameters, etc.) . Most

of these methods start with the undisturbed two-body space

trajectory and consequently the need for a logically-simple

numercali,y-accurate solution of the two-body nroblem is

apparent.

The usual approach to solving the two-body problem is

to develop a separate method of solution for handling each

of the different types of orbits encountered. The choice of

the method to be used is made by logically testing numerical

values of certain orbit-defining parameters which have been

computed from a set of initial conditions.

In practice it is sometimes difficult to determine numeri-

cally the exact values of parameters for which one methcd is

fA

s
ode..

chosen as opposed to another (e.g., the problem of choosinF,

the "best" when the energy is very small in absolute value,

or zero). Conse q uently, it is advantageous to have a single

method for solving the two-body problem which is continuous

for all values of the orbit-defining parameters thereby

eliminating the logic associated with making a choice of

methods.

A solution of the two-body problem is given by Herrick4[l

for all -cases in which the constant u in the differentia

equations
hen this work was completed, the authors were not aware

of the work done by K. Stumpff [2].

ggyym^,, f^ II
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is positive and relatively large. His solution may he modi-

fied to include all values of u by utilizing the parameter

R(F
( l^4

S

rather than 3a(E-Ea)	 to generalize the equations for ells-
X	 *o tic motion.

?or an elliptic orbit,	 F	 is the eccentric anomaly for

; R 	 M any time	 t	 at which the position coordinates are	 x,	 ,y,	 z,

and the ve locity coordinates are	 x, y, z,	 and	 Fn	 is• the

value of	 E	 for a particular reference time	 tQ	 at which
;,	 rr the position coordinates are 	 x , Y 0 9 z and the velocity

?^...., coordinates are	 x o , Y0, zo	 Also,	 a is the semi-major

axis of the orbital ellipse, and

4t

where the negative constant	 h	 is the sum of the kinetic

and potential energy.

}$	 ^	 II I	.
h	 v2/2 - u /r	 v2/	 - U^r	 (4:.	 , p p

t Here the square of the magnitude of the
i

velocity is

[. -,w.
k and	 r ,o, wn	 -are values of r, v	 at the time	 to.
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! The solution of the differential equations (1; ex

caresses the re lation be twe en the coordinates	 x, y, z, x,

Y)	 z	 at any time	 t	 and the coordinates xo, y-,, z,, x.o,

y o ,  z o	 at a reference time , 	 t o .	 In Section 1, the equations

of this solution for elliptic orbits are generalized to 	 n-

•- elude all types of orbits by using	 rather than	 E	 or

. trr cE- ,'	 as the variable in Kepler's e q uation.	 This requires
4

the expression of 'Herrick's transcendental functions in

J terms of	 In Section 2, a method is described for com-

puting the coordinates	 x l' y1	 z 1 , i l l Y 1 	.,	 ^	 at a given..a^
time	 t^	 from the known coordi nates	 x o 	 ,y 0	 7 0	 x o,

.' z^	 at a given reference time	 to.	 In Section 3	 formu las

4 are given for computing; the thir ty -six nartial derivatives

of each of the coordinates	 x l , Yl	 Z 1' x1' y^, ?i	 with

respect to each of the coordinates	 x o , y 0 !0 z 0	 x o , y ^, ,	 z Q .
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1.	 DERIVATION OF GENERAL SOLUTION FROM ELLIPTIC CASE

1.1. Definition of the Transcendental Functions

The six transcendental functions S o v S 1 , S 2 .1 S 3

S4 , S 5 are defined below in terms of parameters for
elliptic motion, but are expressed in terms of 2h

and ^ for the general solution

S o 	 cos ( E-Ea)	 ( 6a)
1 - (E-E0 2 /21 + (F-Eo ) 4 / 4 1	 (E_Fo)6/61 +

1 + (-a*2 )/21 + (—a 2 ) 2 /41 +	 2)3/61 +

1 + (2h) 4 2 /21 + (2h) 2 0 4 /4 1 + (2h) 3 0 6 /61 + ...

S	 s in(E-Ee) = CE-Eo) s in (E-E 1)	 (6b)
1

	

/p /a	 30 a 	 (E -E, o )

0(1 - (E-Fo) 2/3 ! + (E--EO) `'/51 - (E-EO)6/71 + 	 7

_gl + (—a 2)/3! +. ( _a2)2/51 +
a 	+ ...^

0/;11 + (2h) 1 * 3 /31 + (2h) 2 * 5/51 + (2h) 3* 7 /71 + ..

$2
	 1	 cos (E —E1 0 ) : S	 1	 (6c)( 3 1i)2 h

*2 /21 + ( :2;h ) 1 q+ 4 /41 + ;(2h) 2 * 6 /6i + (2h)3*8/8 1 + ...

S 3 (E-E 0 ) 	 Sl -*_	 _(5d)
h

_ 0 3/3! + (2h) 1 01 /5! + ( 2 h) 2 07 /7 1 + (2h)'^9/91
(E-E ) 2 / 2 1 - [ 1 -co s (E -E  	 S ^ 2 /21S 4	 ^^

	 0)]
 _ 2
	

(6e)

( 3 / ) 4 	 2h

c,

0 4 /41 + (2h) 1 * 6/61 + (2h) 2 * 8/81 + (2h) 3 jp1 0 /10! + ,..



a f

A -
;ar^,.

( E -E0) 313 ! - [ (E-E^) - Sin(E-F ) 	 S -!3/31

( 3a) '	 2h

5(2h)W/712 9	 3 11

These transcendental functions of y and h for

the general solution replace the trigonometric func,.

" .,...°	 bons of	 or (E-Fo) that apnly only to elliptic

motion.

1.2.	 Properties of the Transcendental Functions

The transcendental functions 	 S, , . S 2 , S 3	 of h	 and

^► 	 have the following; important pron-erties:

--	 _	 as 	 _ ^S2	 -	 I.S 3
a V^	 ah
as2,. s1	 (7a)	 a,S.Z,=	 *S 3 	- 2.5 4 (?b)
a	 ah

a s S 2	 a$	 _ *S 4 	3.S5

The use of these relations is the reason for defining;

the functions	 So.  S 1	 and	 S4, S 5	 since the genera

solution of the differential equations (1) may be ex-

pressed in terms of 	 S 2	 and	 S 3	 alone.

In the case of an elliptic orbit (for which h	 is

negative) let

(t--to)	 _	 (t-to)	 - MP (p)

where

P	 - 27r /► 70 = 2wµ 1( 3 -2h) 3 (9)



r

4

•F

IY,

arc.

°a

is the period of ttie orbit, and m is a negative,

zero, or Positive integer which is chosen to mini-

	

mize j (t-t O ) !	 Then

( E -Fp) s (F—Eo)	 2wm	 (10)

rather than (E-'Eo) will he related t o (t^to),

rather than, (t-to), by the elli ptic form (13) of

Kepler's equation. However, the coordinates x, y,

Z 3, x, ,y z are the same for (E-Fo) and (E-E O ) be-

cause of the neriodicity of the orbit.

Similarly, in the sp ecial case of an ellintic orbit,

	

3U	 V2-2h

rather than	 will be related to	 (t-t o) , rather

x than	 (t ^t o) , by the general form (16) of Kepler '-s

equation.	 Also, the coordinates	 x,	 ,y,	 z, x, ,y,	 z

; are the same for	 and 	 because of the periodicity

of an elliptic orbit.	 The definitions (Fa) ^ (6f),

(10), and (11)	 can then be used to show that s

So	 So

.e.	
l

_

S1	 S1

L	 Z	 I
nYY

S3	 E3 + m[2n/( 3-2h)3]	 (12)f

S 4 a S 4 + m[2n1( 372h)3J(*+^) 12
.a

*	 ; S	 _	 + m[2n/( 3h-) 3a[,^2 + +^ +^2 )/6 + 1/2h],
5	 5^ ^	 .
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where S O , S 1 , a Z , S 3 , " 4 , S 5 are respectively

the transcendental functions (6a) through (6f) of

0 and h rather than 0 and h

1.	 Ke=r's Eq'i:zation and Itsn, 	erivatives

Kepler's equation for an elliptic orbit may be ex-

pressed in the form

Af
u _ (E-es inE ) - (Eo - esinEO)

_	 (a•3)^uT3
Its
'` { a( -ecosEo) (E-Eo) # 3

N sn0 1-cos (E-F p

., 3 jj7a 	 ( 3 ) 2
a^

EE —(-sin(E-E p)
+ uecosEQ

`•° In these equations,	 a	 is the eccentricity of the
{

orbital ellipse.	 One expression for	 (M-Mo)/3^3

t is in terms of	 E	 and the other expression is in
ti

terms of (E-E O ).	 These two exnressions are trigo-

nometric identities, but the second is more general

in that it is valid for circular and near-circular

orbits.

The paramet ers 	r, (rr)	 and (rv 2 - u)	 for an ellio-

p
+„ f

tic orbit may be expressed in the forms

a
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= a(l - ecosEp) + 3ua esinEpsin (E-Fp )

+ ue cosE. 1-cos(E-F^)
(V-U7a)2

(14b)
(rr) xi + yy +z

3ua esinE

_ 3 ua a sinEo cos (E-Ep) + ue cosEp
sin(F-Eo)

(rv2 — u) _ 
+

3X + y + p ( x2 +y 2 +z 2 ) — u	 (luc)

= Pe cosEp

VC	 ) + (^-P' ) 3 Na esinE 
sin(F

-Epli p c osE p cos (E-Ep	 a

Equation (14a) is r times the time derivative of

Kepler's equation (13) . Similarly, (14b) is r times

the time derivative of (14a), and (14c) is r times

the time derivative of (14b). For the particular

case where t is t o and F is thus E p , equations

(14a) - (14c) become

rp ;= a (l-e cos Eo)	 ( 15a)
k..	 ( r©ro) = 3 ua e sin F 	 (15r)

•

(rpv 2p - u)	 ue cos E p 	(15c)

The general form of Kepler's equation and the general

expressions for r (rr) and (rv2-u) are obtained. by
r-- r

,s 	
substituting:

"	 a	 rp,,(r.prp), (rpv 2 -u) given by (15a)	 (1,3c),

^,	 defined by (2)9



ir!4	 11 _
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S	 S	 S2 S3 Riven by (6a) - (6d) ando^	 1^	 a

(2h) defined by (3), into equations (13)

and (14a) - (14c) .

Kepler's equation for the general case is thus

{ t^to) '^ ro* + ( roro) S2 + (rovo — u ) S 3 	 (16)

In terms of	 and its transcendental functions S2

and 53	 Also, r, (rr), and (rv 2 - u) are

r _ ro	 +	 (r o ro)	 1	 +	 (rovi	 r. u ) S 2 (17a)

rr	 _r r	 S	 +	 r v2	 S (17b)

` (rv2 - u)	 (roro) (2h)S 1 	+	 (rovo	 - v )So (17c)

A in terms o£ , the transcendental functions	 So,, S 1 ,1	 S

f  tS .	 Use of	 he nronerties of3	 (7a) shows that `r, rr,

and	 (rv 2 - v)	 are the successive derivatives of

(t -to)	 with respect to	 This fact facilitates

the graphical interpretation of Kenler's equation

k.' (16) in which	 (t-to)	 is plotted as a function of

ter	 for all the various types of orbits.	 These include

the circular, elliptic, parabolic, hyperbolic, and

rectilinear cases for an attractive force, as well
as the hyperbolic and rectilinear cases for -a repulsive

force.

r	 r.^F

{

r
:o

t

7

	

is	 1

^' E

	f' r 	ff

5
t.. i



F

'	 1'A.
1.4. Closed Form Expressions for the Series Solution

The series solution to the dif ferential equations (1)

is usually expressed In the form

I x , Y, Z] a far x0 o Yo, 7.01 + g• C xo l YOP 2 0 3	 ( lAa)

[x, Y^ Z] _ '' fxp Yp, Zo] +	 • r,Xo, Yo, zo]	 (18b)

where f, g., and their time derivatives f Q are

infinite power series in (t--to) whose successive

coefficients are increasingly complicated functions
.	 •

Of xo, ,yp, Z p, Xo) Y p , Zo. However, the functi ons

f, E, f, ^ can be expressed in closed form,in terms

of the parameter (E-Eo), for an elliptic orbit.

1-cos(E-Eo	 (11)
ro/a

_ (t_to) _ (E-Eo) - sin (E-EO ) 919b)

3-117—a3

f	 -_ 3sin(E-E,)
V

	

	
(l,c)

(ra/a)(r/a)

.	 1 - cos (E-^Eo )
_ 

1 -	 —	 (lid)
r/a

These formulas are easily expressed in terms of S 1 ,	
J.

S 2 , S 3 by use of the definitions (hb_), (6c), (Fd).

The closed-form expressions for f, g,	 in the

general case are thus

f	 1 - US2/ra
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f	 -uSi/^rro)

1 - uS2/r

in terms of the transcendental functions S 1 , S29 S 3 and

the parameters r, r o , u and (t-to).

.	 I
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2, A METHOD FOR COMPUTATION OF COORDINATES

2.1. Initial Comnutations and Start of Iterations

The first step in computing the numerical values of

the coordinates xl, y l, z l, X i, yl, z l at a given

time t l from the given coordinates x 0 , ,yq, z0

x ot Yoe z 	 at the given time to is to calculate

the parameters

'	 '• rd _ + 3x 0 + 3► 0 + X0 2 (21a)

Al
(r0r0)	 _ xpxp + YDYO	 z00 (21h)

(vj)	 xj + y2 + z2 (21c)

(2h)	 _ vp - 2u/r 0 (21d)
'v

( rvo- u) 	 _ r(vo'
0

)	 - u (21e)0	 4	 A 

•

(t 1 -t 0 )	 tl	 -	 t 0 (21f)

from the coordinates	 xo, y o,	zo , xo,	 V 0 .9	 z 0 ,	 the

{ constant	 u	 , and the times	 t 0 	 and	 t 1	 .

sf When (2h) obtained in ( 21d) is negative and the orbit
ti4 w* n

a is thus periodic, the ner.iod

P _ 2:ap1( 3-?h)3 (22)

of the orbit is calculated and

# N ; m _ INTEGER portion of C(t1-t0)/n +_l./2]	 (?3)

is determined.	 This minimizes the absolute value of

' ( t 1-t 0) 	 _	 (t 1 --to)	 -mn (24)

cif

..3d

......	 e_
_	

- M..	 rw	 sue^	 ="µr.='.1+^f--^-'..` ^ °-•+er•+.e^ea:'
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which is calculated and used in the n1ace of 	 (t1-te)

to determine	 x j j	 y l ,	 z j , X 1 ,	 V 1 .9	 z,	 in all the com-

putations that follow.	 Because of this, no distin.c-

tion is made between	 (ti -t o )	 and (ti-td or quan-

tities computed from either in formulas given below

to determine	 x 1 l 	 Y,,	 Z I S 	 x12	

V

Kepler's equation (16) must be solved by an iterative

scheme to determine the value	 * 1 	for	 0	 which cor-

responds to	 (t,-t,).	 That is,	 that value	 IP
I

of	 must be found which makes the right hand side

of Kep ler's equation (16) equal to	 (t	 In

describing these comnutations below, 	 will be used
4

to represent a current approximation for	 and

will be used to represent a further arnroximation
1.0

calculated from the apDroximation 	 The initial

value for ► 	 is

(29)

which is computed and then used to evaluate the trans-

cendental functions as described in 2.2.

2.2.	 Evaluation of the Transcendental Functions

V,4 The transcendental functions	 S 4	 and	 S,	 are first

computed from the current approximation	 for

by using equations (6e) and (6f) in the forms

r.



F,

-. 1

S 4 x * 4 [1/41+(2h* 2 )/61 +	 (2h* 2 ) 2 /01 +	 (2h* 2 ) 3 /101	 +	 ...]

S s = o 5 [1/51+(2 h*2 )/71 +	 (2h* 2 ) 2 /91 +	 ... ]	 (26)

The accurate computation of each of the series in

brackets in these two equations is an important nu--

" merical problem.	 A simile solution is to forward sum

each of the series term by term until the addition of

another term does not change either sum.	 Then the

'	 a accuracy of the summations may he improved if desired

by backward nesting the same number of terms used in

the forward summations. 	 Multiplication of the two sums

by	 ''	 and	 s	 resnectively then gives	 :S k	 s,nd	 S5.
b

The functionsS3 2 S 22 S 12 So	 are then computed by

x using the relations

,f
y	 .,

S3	 =	
q,316 +	 (2h)S5,.

t,L S2 = X 2 /2 + (2h)S4

S 1	 +	 (2h)S3

S o	 1 +	 (2n)s2

which are obtained from equations (6f) back through

(`6c)	 The functions	 S 2	 and	 _S 3 could be computed

directly by two equations similar to (26) above, and

r	{ could then be used to comnute	 xl, y 1 ,	 z 1'	 X I ,	 7 1 ,	zl•

However, S 4	 and	S 5	cannot in general be accurately

y
4	 . computed from	 Sz	 and	 S 3	 , and S,	 and	 S 3	 are

required if partial derivatives are desired.	 The

I	 x
i xt

rG 	 F .z,	 at1
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functions S'o and $1 are defined and comouted

merely for convenience of notation.

2.3. The Solution of Kepler's Equati on

The value (t—to), corresponding to the value

and its functions S 2 , S' 3 , is first comnuted by

(t-to) _ rod► + (roro )S 2 + (r Q VO ., OS 3 	(28)

which is Kepler's equation ( 16). That is, if (t-.t o )

were the time interval at which a solution were de-

sired, ► would be the solution of Kepler's equation.

However, the iterative procedure must find that par-

ticular * for which the residual

nt W (t=to)	 (t^=to)	 (2^e

is zero. This particular value of 	 will then he

the correct value for	 t	 The residual (29) for

the current value of	 is computed along with the

current value of r which corres ponds to	 and

its functions S1,, S2•

r	 r o + ( r o r o) S i + (rov 2 °- u) S 2	 ( 3 0)

t
.	 This r. is also the derivative d (At) /day and is

therefore the slope of the curve of (t-to) as a
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Newton's method is now applied to determine a new

approximation V for ^ j .

Then the transcendental functions 	 S'41S	 and	 S'

;..: S z, S 1 1 S'	 of	 ►Y' are comnut ed by applying the

formulas in. Section 2.2. but usinFr,	 0 1 	rather than
^e

  k

^a	 Also, the results are used in enuat .ons (29),

t	 ,< (30).	 and	 (31) above to obtain -values	 (t' -t o) ,	 At',

and	 r'	 which correspond to	 4,	 ` and its functions
g S1 	 S 2 S'	 If the residual	 At'	 is then less in7	 w•, j

k

absolute magnitude than	 At, then	 * 1 , the transcendental

functions	 S 1 . S i,	 S t .	 S 3, S i g	 S 
I	 and the functions

r

(t'-t o), AV, r' are all accepted a	 new values for

and	 S,09 S 1 , S2	 SP S O S 5 and (t-t,) , At, r

Then Newton's method (31) is u sed to comnute a new

and repeat the ent ire computation.

. When	 At'	 is not less in absolute magnitude than

At, the current	 ,'	 is not accented as a new value

for	 Rather, a different value for 	 is com-

puted by setting	 n	 equal to unity in the equation'

z

'hen the s lope	 r	 has been replaced by unit slope

to determine the new a pnroximation	 ip' for V,, .
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This *' is then used to compute its fu nctions

So, S1.0 S 1 9 S3, S'	 and (t'-to) , A t'	 r' .	 If At'

is then. less in absolute magnitude than At, *1
and its functions are accepted as new values for 41

and Its functions, and Newton's method (31) is again

applied as described above.
It

If At' is not less in absolute magnitude than At,

n in equation, (32) is doubled to compute a different

The slope n is repeatedly, doubled until a At'

is obtained which is less than At in absolute mag-

nitude, or until	 and * 1 are numerically identi -

cal. When the latter is true, the resulting	 is

accepted as the value of	 for computing the coor -

dinates x l , Y l, z l, xl, Yli zl•

11

2. 4 . Computation of Coordinates;

Since	 is now the correct"value for ^1, the func-
tions f, g, f, R in equations (20) are the functions
for the coordinates x l, ,y l , z110 i l , v* 1 , z l . There-
fore, these functions are computed from (tl-to) and

the functions S l , .S2, S3 and rl of 01

f = 1 - uS, /ro
g	 (tl-to) - US3	 (33)

_f o — µSl /(rlr 0 }
B	 1 	 US2 /rl

}

{
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These functions are then used to compute x i , Y t , ZIP

x l , y l , z1 by using equation s (18a) and (18b).

x 1 a fxo + 
Jr.x p

Y 1 ' fY o + 60

z I w fro + qzp	 (34)

X^
	 fx o + jzp

yl= fyo +6*0
Z j = izp + jZp

Thus the coordinates x l , .y l , z l , x,, y l , .z i at

time t i have been computed From the constant u ,

the time to and the coordinates x,, vp, z o s Xol

Yo) zo at time t o



21

3.	 A METHOD POR COMPUTING PARTIAL DERIVATIVES

3.1. Outline of Derivation of Partial Derivatives

Let the times to and t, as well as u	 be treated

as fixed constants and let the coordinates x1. y l' 71a'

X 1 , y* l , z l ' be treated as dependent variables of xo,

Y O N zoo io' y o , z o which are treated as independent

variables. The thirty-six partial derivatives of each

of the coordinates x i , y i , z i , x i , ,y i , zl with respect

to each of the coordinates x o , YON z o' x o' y o n zo

have many important practical applications. These

derivatives are obtained by chain differentiation of

the relations in Section 2 that are used to compute,

X1, Y19 Z 1 1 3t19 Yls Z 1	 from xo, YO) z os xos yog Z00

The chain differentiations must then be combined to

obtain tractable formulas for computing the partial

derivatives.

The chain differentiations are rather tedious and

lengthy and will therefore not be given here. The

whole procedure is facil.ted by the use of matrix

natatior. The basic idea is to obtain matrix rela-

tionships between all the differentials of quantities

which are direct or indirect functions of xo, ,yo, zn,

xo, yo,' zo. These results are then combined to

eliminate all di.f re.r.entials other than dx, , dy, , dz, ,
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the coefficient matrix relating these differentials

is the desired matrix of the thirty-six partial de-

rivatives.

3.2. Eyaluati on.of Parameters and Periodicity Computations

The parameter r l and the transcendental functions

S 0 ; S 1 , S 2 1 S3) S4 , Ss of 	i have been determined

in the computations described in Section 2 to obtain

the coordinates x i , Y ,, z l , x i , V'jP z l . The para-

meter rl must also be computed from

r l	 C(r0-r 0 )S D + (r 0 V0 —u )s 1 J /r i 	 (35)

as	 aS 2 	 _aS3
and a- h -, a ti , a h must be computed from (7b)

ah

aS? s ^► 1 S 3 — 2 (3E)^. a h	
4

S4	 3S5tWay
8

In addition, the true values of *Is S 3,,	 S4 ,	 SS

must be determined from 	 11 S 3 , S 4 , S 5	 by using; the

equations of (12) if the orbitis elliptic and	 m

is not zero.	 In the computations of .Section 2,	 e

no distinction was mare between ^, 1 ,
r
S3 , . S4 ,	 S5

Y,_

computed from (tI-t 0 )	 and the true

.

values	 ^ 1 ,	 S 3 ,	 •

S4$ S 5	 which are the same .functions of	 (ti -to )
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However, this distinction must be made in order to

obtain the correct partial derivatives from the

formulas in Sections 3.3. and 3.4.

,:	 } m ('2,r//-2h)

S 4 	94 + m[7tr/( 3-2h)3](^Y + *)/2	 (37)
S 5	 S $ + m[2,r/(/-2h)3][(^2 +^^+ *2 )/ 6 + 1/2h]

The functions So, S 19 S2 need not be recomputed

since they are equal to Sp , 9 19 S2 by (12)

3.3. Evaluation of the Four by r'our Matrix

The four by four matrix below is first calculated ` as

an intermediate step for the computat ion of the par-

tial derivatives. The letter T is used to indicate

the matrix transpose of the two column matrices.
T

2 aS2	
3a ll a '12 a 13 a1^4	 S1	 1+VOS3 + 2 (r0 r 0 ) aah2+(rQvO -u)a .

Q

a2 1 a22 a2 3 a24 u S2	 s2

a81 a32 a33 a34 r1 (S o-r 1,9 1 )/rl	 r0S2

a 	 a 42 -a43 a 44	 1(S -^ S )/r	 2r 0 S 3+ (r 4
r )aS2+(r 

0 0
V0_u)8S3

43  	 1 2	 1	 0 ah 

as
Q	 1 +V S,+ ^. (r r )-1. + (rp vo _u)aS2

r	 0 0 ah	 ah
0

n	
S1

+u

1	 Si/r,
	 r,S1

S 2 /r'2	 2roSz +	 (roro) as1 
+ (rQV 2	 u) -8
	 :

	

ah	 a h



u	 Irp	 r p aaSI - Sah	 Z

U . 2	 aS3
rp	 ah

( p o!a h-L
S1r i r

r0)2aS2

S
C	 0	 v

0	 0 u a"h
a

o	 ^	 u aSi

u a,.ZQ	 0 1 ah

£.. 3.4 Computation of the Partial Derivatives

t	 ^ The two by two sub -matrices of the four by four matrix

above are then used to calculate the partial deriva-

tives by the formulas given. below.	 The letter T

indicates the matrix transpose of the three by two 

matrices.
T

f z a x, ax a x o o x°x-•x
xp y 0 0

rp

0 rp

a.
a...z...

• 0	 f 0 + y a a y
p Y p p r p i i 12 ...,Q. y

0
0

0
.

az
a xo

az az
a o 0	 o f -z

..^.
r0

•z
tl a2 i- a2 2

z toayo ro

s

;f
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0 0	 x0
ro x 0

0	 9	 0 +	 vo

z

0	 0	 g	 r	 00
i L

•

f	 0	 0

0
0	 f	 0

o	 o	 i

xi 
i .

ro 0

+ Y	 YO

	

0

a 
y0	 a3, a 32
	 F-

0 y 0r 

"0

	

0	
a4l a42	

r o
 

z0

X

F, 
0

x
—L X
ro

a, 3 a,4

g23 a24

L

r 
a. YO

0

z

F. 0

x ax--r— ax-"T^V--

axo ayo azo

av
16 a y a y

axo ayo azo

a 3Z az
3i o ayo 0 azo.

ax aX ax
TX —o -F—Y-0 TZ 0

x .v 0	
a a0z 0

rx—o TS —r o T —zo

T

x 0	 0
x

0

YX0 Yo0 azo
ro r 0

g yo a 3a 3 3 0'
„a,

y
a x

0 ayo azo
r o r 0

a z a z a
0	 0	 9

a	 a43	 44
Lo z

0
ay 0 azo

r	 0
0	

J L	 J

ro

L

Ott .f



CONCLUDING REMARKS

The authors have written a FORTRAN IV program (available

upon ,request) for computing coordinates and partial deri-

vatives of the two-body problem. Cases run to test the

program included: (for u>0) elliptic circular, parabolic,

hyperbolic, rectilinear; and (for u<0) hyperbolic, recti-

linear.

Computationally, the program is superior to available

programs in that it produces solutions and nartial de-

rivatives for all cases of the two-body Problem without

exception. It also has no disadvantage in the accuracy

and speed of computation.
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