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SUMMARY

A snlution of the two-body problem given by Herrick
for many types of orbits 1s modified by using a different
Independent variable. The modification changes lHerrick's
transcendental functions and his form of Kepler's equation.
The end result is a more general solution of the two-bndy
problem in that 1t anplies to both attractive and repulsive
forces of any magnitude.

An outline 1is given for deriving the general modified
solution from the equations for an elliptic orbit. This re-
quires definition of transcendental functions which are then
used to express Kepler's equation and give closed-form ex-
pressions for the series solution to the differential equa-
tions. A method 1s described in detail which outlines the
computation necessary to determine coordinates at a given
time from their known values at a given reference time.
Formulas are also given for computing the partial deriva-
tives of each of the resulting coordinates with respect to

each of the reference coordinates.



LIST OF SYMBOLS

t - time
X, ¥, 2, i, 9, z - rectangular position and velocity co-
ordinates. When subscrinted they

refer to a particular point in ¢time.

%Q h - sum of the notential and kinetic
;ﬁ | * energy
b | |
gﬁ ¥ - gravitational constant
%% a - semi-major axis
%é E - eccentric anomaly
E% e - eccentricity
g% r ~ magnitude of position vector
f% r - magnitude of change In nosition vector
| v - magnitude of velocity vector
Y - deflned narameter used to generalize

the equations for elliptic motion

Sgs Sy5 Sy S, - defined transcendental functions
Sys Ss
P - period of the orhit
£y, g - power serles in (t-t,)
» f, é -~ time derivatives of f and g .
At - residual used in solution of

- "~ Kepler's equation




Sadan e e nas iy - Aot AR

-3 -
INTRODUCTION

A number of proven methods exist for obtalning a space
trajectory from given initial conditions at some reference
time (Encke's, Cowell's, Variation of Parameters, etc.). Most
of these methods start with the undisturbed two-body space
trajectory and consequently the need for a loglcally-simnle,
numericaliy—accuréte solution of the two-body nroblem 1is
apparent.

The usual approach %o solving the two-body problem is

i

to develop a separate method of solutlion for handling each
of the different types of orbits encountered. ?he cholce of
the method o be used 1s made by loglically testing nﬁmerical
valués of certain orhit-defining parameters which have been
computed from a set of 1initial conditions.

In practice it is sometimes difficult to determine numeri-
cally the exact values of parameters for WEich one methcd is
chosen as opposed to another (e.g., the problem of choosing
the "best" when the energy 1s very small in absolute value,
or zero). Conseauently, it is advantageous to have a single
method,fof solving the two-body problem which is continuous
for all values of the orbit-defining narameters, thereby
eliminating the loglc assoclated with making a cholce of ?;
methods. '_ |

A solution of the two-body problem 1is given by Herrick'tl}
for all cases in which thevconstant y 1in the dirrerential
equations

When this work was completed, the authors were not aware ;fﬁg
of the work done by K. Stumpff [2]. |
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= —ux/r?
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= —pz/r? (1)
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i1s positive and relatively large. His solution may be modi-
f1e¢d to include all values of u by utilizing the parameter

(E-E )
|/ S |
/w/a (2)

rather than /a(E-E,) to generalize the equations for ellin-
tic motion.

For an elliptic orbit, E 4is the eccentric anomaly for
any time t at which the position coordinates are x, vy, 2,
and the velocity coordinates are x, y, z, and E, 1is the
value of E for a particular reference time t, at which
the position coordinates are x,, y,, Z, and the velocity
coordinates are Xg» Yo» Zo- Also, a 1s the semi-major

axls of the orbital ellipse, and

w/a = =2h (3)
where the negative constant h is the sum of the kinetic

and potential etiergy.

. 2 .

h = v2/2 -« uy/r = ve/2 = u/r, (4)
Here the square of the magnitude of the velocity is

v2 =;x2 + y2 4 22 (5)

and Pos vb -are values of r, v at the time ¢t,.

o
¢
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The solution of the differential equations (1) ex-
nresses the relation between the coordinates x, y, 2, i,
¥, £ at any time t and the coordinates X, ¥,, Zg, X4,
Yo» Zo at a reference time t,. In Section 1, the equations
of this solution for elliptic orbits are generalized to in-
clude all types of orbits by using ¢ rather than E or
(E-Eo) as the variable in Kepler's eguation. This requires
the expression of Herrick's transcendental functions in

terms of ¢ . In Section 2, a method 1s described for com-

"

puting the coordinates x,, y,, z,, il, ¥, él at a given

time t, Tfrom the known coordinates Xos Yo Zgo io’ Yoo
z, at a given reference time t,. In Section 3, formulas
are given for computing the thirty-six nartial derivatives

of each of the coordinates x,, Yis 2 il, §1’ él with

respect to each of the coordinates X,, Y,v Zps Xg» Yg» Zg-
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DERIVATION OF GFENERAL SQLUTION IROM ELLIPTIC CASE

Definition of the Transcendental Functions

The six transcendental functions S , S , S, S

0o’ 1’ T2’ T3’
S“, S5 are defined below in terms of narameters for
elliptic motion, but are expressed in terms of 2h

and ¢ for the general solution

S = cos(E-E,) (6a)
= 1 - (BE-Eq)2/21 + (E=Eg)"/U1 - (E-FEg)5/61 + ...
=14 (-52)/20 & (-WP)2/41 + (B2)3/61 4 L.,

= 1 + (2h)'w2/21 + (2h)29*/h1 + (2n)%8/61 + ...

s =z 8in(E-Ep) . (E-Ep) sin (E-Eq) - (6b)
1 /u/a YW/a (E-E,)

= y[1 - (E-E,)2/31 + (E-Eg)"/5! - (E-Ep)8/7! + ...]
= yf1 + (-§¢2)/3! + (-By2)2/51 + (-§w2)3/7: + 0]
= pl/11 + (2n)'w3/31 + (2n)295/51 + (2n)37/71 + ...

1921
N
tit

= 1 = cos (E"’En) - S -1 (60)
(Yu/a)? h |
= y2 /21 + (2n)ly4/81 4+ (2n)246/61 + (2n)3y8/81 + ...

5,5 (E-Eg) = SIn(E-E ) _ 81—y (6d)
(/i7a)3 2h
= p3/31 + (2h)1y5/5! + (2n)2¢7/7! + (2h)3y9/91 + ...
S“ ] (5530)2/2! - [l—cps(E-Eo)] o S,-v2/2l (6e)
(Yu/a)" 2h

= y4/41 + (2n)1y6/61 + (2h)2¢48/81 + (2n)3¢ll/10! + ...
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(E-Eg)3/31 - [(E-Ep) - Sin(E-E))] _ s3-43%/31 (67)
(Yu/a)s 2h

= y5/51 + (2n)1y7/7) + (2h)2y9/91 + (2h)3ypll/11! + ...

Sg

These transcendental functions of v and h for
the general solution replace the trigonometric func-
tions of E or (E-E,) that apnly only to ellintic

motion.

ié ‘ 1.2. Properties of the Transcendental Functions
The transcendental functions S,, S,, S; of h and

vy have the following important properties:

2 38, = S 35) = yS; - 1.5,
% X7 h ’
i 2522 5, (72) 25,= ¥s, - .54 (7b)
. Y ?
W S
A3 = S a8 ¥Sy - 3.8
2 —3 ;1 = Y «95
: A,;‘ é ] \p 2 ' d
é@ The use of these relations 1s the reason for defining
i
o the functions Sy, S; and 8y, Ss since the general
v, 1 b VS
Bﬁ: solution of the differential eauations (1) may he ex-

pressed in terms of S5, and S, alone.

In the case of an elliptic orbit (for which h 1s

negative) let

(E-to) = (tetg) - mP (2)

where

P = 2n/Vu/a® = 2np/(/-21h)3 | (9)
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is the period of the orbit, and m 1s a negative,
zero, or positive integer which is chosen to mini-

mize |(E-ty)| . Then ;
(E-Ey) = (E-Ey) - 2mm (10)

rather than (E-Eg) will be related to (E-tg),
rather than (t-t,), by the elliwtic form (13) of
Kepler's equation. However, the coordinates x, vy,

Z, i, v, z are the same for (E-Fy) and (E-Eq) be-

cause of the neriodicity of the orbit.

Similarly, in the snecial case of an ellintic orbit,

E‘ = E"E - ‘J’ - mzﬂ (11) |
/iTE /=2n .

rather than ¢ will be related to (g-to), rather
than (t-t,), by the general form (16) of Kepler's
equation. Also, the coordinates x, vy, z,'i, ﬁ, z
are the same for ¢ and v because of the periodicity
of an elliptic orbit. The definitions (6a) - (6f),

(10), and (11) can then be used to show that

So = So

S, = S)

S, = S,

S, = 84 + m[21/(/2R) 3] (12)

Sy = Sy + m[2n/(YZ2N) 3] (y+y)/2 |

Sg = Sg +‘m[2u/(/:§E)3][52+5w¥¢2)/6 + 1/2n], | §?“\ 
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where 8,, 8,, S,, S,;, 5,, 55 are respectively

the transcendental functions (6a) through (6f) of

7 and h vrather than y and h .

Kepler's Equnation and Its Derivatives

Kepler's equation for an ellintic orbit may be ex-

pressed in the form

(t-ty)

. M-Mg

" /yu/a’d

= (E-esinE) - (Eg - esinE,)

/i7as

= a(l—ecosEo)(Eﬂ) + Yuae sinEg

u/a
- -sin(E-E
+ uecosEo(E E°)~? (E-Eg)

(VYu7a)3

(13)

-cos(E-Eq)

(Vu/a)?2

In these equations, e 1s the eccentricity of the

orbital ellipse. One expression for (M-Mgy)//u/a3

Al

is in terms of E and the other expression is in

terms of (E-Ez). These two exnressions are trigo-

nometric identities, but the second 1s more general

in that it 1s valid for circular and near-circular

orbits.

The parameters r, (rr) and (rvZ - y)

tic orbit may be expressed in the forms
+

r = J/xZ+yl+z?

a(l-ecosE)

for an ellip-

(14a)
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= a(l - ecosEg) + /ja esinEqSil (E-Fo)
/u/a
+ pe cosE, 1-cos(E-Fy)
(Yu/a)?
r Y y . (14b)
(rr) = xx + yy + zz
= /ua esinE
= /ua e sinEqcos(E-Ey) + we cosE°51"(E'Eo)
| * Ve
(rv2 - u) = TVXTF ST T BT (R2+92422) -y (1bc)
= ye cosEy
' —— . E-., 1
= pe cosE cos(E-E ) + (-K)ua esinE sin( F:)
’ ° a /u7a

Equation (l4a) is r times the time derivative of
Kepler's equation (13). Similarly, (lib) is r times
the time derivative of (1la), and (lle) is 1r times
the time derivative of (14b). For the particular
case where t 1s ty, and F 1s thus £FEp, equations

(14a) - (lle) become

ro = al(l-e cos Ej) {15a)
(roﬁo) = /ua e sin E, (15h)
(rovd - u) = ue cos E, (15¢)

The general form of Kepler's equation and the general
expressions for r, (rr) and (rv2-y) are obtained by
substituting: | |

g (roig), (rovi-u) given by (15a) -,(i50),

¢ defined by (2),
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-1 =
Ses Sy» Sz, S3 given by (6a) - (6d) and
(2h) defined by (3), into equaticns (13)
and (lla) - (lie).

Kepler's equation for the general case 1is thus
(t=tg) = rg¥ + (rerg) S, + (rgv3 - u)S, (16)

in terms of ¢ and its transcendental functions S,

and S; . Also, r, (rr), and (rv2 - u) are

r = ry + (I‘of‘o)sl + (I‘()VG - p)Sz . : (17&)
(rr) = (rgPy)Sy + (ryvd - u)S, (17b)
(rv2 - u) = (rerg)(2h)S; + (rovs - u)S, (17¢)

in terms of the transcendental functions S;, S;, S,,
S3. Use of the pronerties of (7a) shows that f, rr,
and (rv? - u) are the successive derivatives of
(t-t,) with respect to ¢ . This fact facilitates

the graphical 1nterpfetation ;f Kenler's enquation

(16) in which (t-t,) 1s plotted as a function of

y for all the various types of orhlts. These include
the circular, elliptic, parabolic, hyperkolic, and
rectilinear cases for an attractive force, as well

as the hyperbolic and rectilinear cases for a repulsive

force.
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1.4. Closed Form Expressions for the Series Solution

The series solution to the differential equations (1)

is usually expressed in the form

[x, ¥y, z] = f'Exor Yoos zo] + B'[iO’ &oa éo] ﬁlaa)
;% ti, 9, Z] = éo[Xo, yO’ ZO] + é'[*o, §0, éoj (lab)

where f, g and theilr time derivatives f, g are

infinite power series 1in (t—tos whose successive

coefficients are increasingly complicated functlons

4,

of Xgs Yg» Zgs Xos Yos Zg- However, the functions

d ~
P bl P S R e

£, g, f, é can be expressed in closed form in terms

of the parameter (E-E;), for an elliptic orbit.

f =1 - 1‘°°;(’E"Eo>‘ (19a)
ro/a

g o= (t-to)‘— (E—Eo) -~ 8in (E*EO) glgb)

/u7a3 |
P o= -t sin(E-E,) . | (1fe)
Jg3(m/a)(r/a)

g=1- 27 cjs(E'E") (194)

Ir/a

These formulas are easily expressed in terms of S,,

S,s S; by use of the definitions (6b), (6c), (€4).

The closed-form expressions for f, g, f, é in the
general case are thus
f l - USZ/rO

(t-to) - wuSj | (20)

&




- 13 -

i’ = -USI/(I‘I‘O)

.

8’1"”82/!’

in terms of the transcendental functions S,, S,, S, and

the parameters r, r,, u and (t—to).
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A METHOD FOR COMPUTATION OF COORDINATES

Initial Computations and Start of Iterations

The first step in computing the numerical values of
the coordinates X,, ¥, Z;» X;» V1, 2; at a given
time t; from the given coordinates x4, ¥y, Zy,
Xo» Yo» Zo &t the given time t, 1s to calculate

thé'parameters

ry = +/x02+ Vot 7,2 (21a)
(roPg) = XoXo + Yo¥o + Zo%o (21b)
(v§) = x3 + y2 + z3 | (21c)
(2h) = v§ - 2u/r, (21d)
(rovg-u) = g (v) - v (21e)
(t1-tg) =t, - tg | (21f)

from the coordinates Xg, Yo, Zgs Xg» Vgs Zg, the

constant u , and the times ¢t, and tl .

When (2h) obtained in (21d) is negative and the orbit

is thus perilodic, the neriod

P = 27p/(/=2h)3 (22)
of the orbit 1s calculated and

m = INTEGER portion of [(t,~ty)/p + 1/71 (23)
is determined. This minimizes the absolute value of

(ty-tg) = (t,~t,) -mp (2M)
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which is caleulated and used ir the place of (t;-t,)
to determine X,;, ¥y, Z;, il, &1, él in all the com~
putations that follow. Because of this, no distinc-
tion 1s made between (El-to) and (t,-t,) or quan-
tities computed from either in formulas given below

to determine x,, ¥;, 2,5 X3y V35 Zy.

Kepler's equation (16) must be solved by an iterative
scheme to determine the value v; for ¢ which cor-
responds to (t,-t,). That is, that value v,
of ¢ must be found which makes the right hand side
of Kepler's equation.(lﬁ) equal to (t,-t,). In
describing these comnutations below, § will be used
to represent a current approximation for wl , and

' will be used to represent a further anoroximation

calculated from the aporoximation v . The initial

value for ¢ 1s
b= (t1-ty)/r, (25)

which 1s computed and then used to evaluate the trans-

cendental functions as described in 2.2.

Evaluation of thq‘Transcendental Functions

The transcendental functions S, and Ss are first
computed from the current approximation ¢ for by

by using equations (6e) and (6f) in the forms
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S, ™ v4[1/41+(2ny2)/61 + (2hy2)2/81 + (2hy2)3/101 + ...]
Sg = ¥S[1/51+(2hy2)/71 + (2hy?)2/9! + ...] (26)

The accurate computation of each of the series in
brackets in these two equations 1s an important nu-
merical problem. A simnle solution is to forward sum
each of the series term by term until the addition of
another term does not change either sum. Then the
accuracy of the summations may bhe improved if desired
by backward nesting the same numher of terms used in
the forward summations. Multiplication of the two sums

by v* and ¢5 respectively then gives S, and S.

The functions 8,;, S,, S;, S, are then computed by

using the relations

Sy = w3/6 + (2h)Sg
S, = ¥2/2 + (2n)S,
Sy = ¢ + (2h)S,
(27)
%f which are obtained from equations (6f) back through

(6c). The functions S, and S, could be computed
directly by two equations similar to (26) ahove, and
could then be used to compute X,, ¥;s Z;, Xys Fys 2qo
However, S, and S5 cannot in general he accurately
computed from S, and S, , and S, and Sy are

required if partial derivativés are desired. The
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functions S, and S, are defined and comnuted

merely for convenience of notation.

The Solution of Kepler's Equation

The value (t-t,), corresponding to the value

and its funetions §,, Sa’ is first computed by

(t—tq) = Pov + (rof'o)s2 + (rovg - u)S, (28)

which is Kepler's equation (16). That is, if (t-t,)
were the time interval at which a solution were de-

sired, y would be the solution of Kepler's equation.
However, the ilterative procedure must find that par-

ticular ¢ for which the residual

is zero. This particular value of ¢y will then be
the correct value for v, The residual (2¢) for
the current value of ¢ 1s computed along with the
current value of r which corresnonds to ¢ and

its functions Sl, S, .
n = ro + (I‘of‘o)sl + (I‘OV% ad u)SZ (30)

This r, is also the derivative d(At)/dy and is
therefore the slope of the curve of (t-to) as a

function of v o



P dad
D e

LR L B A

R oSN, X N o 4. S0

R

v

R SR I A n'ﬁ‘;“
-t ~ . " K

- 18 -~
Newton's method 1s now applied to determine a new

approximation ¢' for ¢y .
y! =y - At/r (31)

Then the transcendental functions S§, S} and S§§,

Sy, S}, S; of V' are computed by anplying the

formulas in Section 2.2. but using ' rather than

% . Also, the results are used in enuations (29),

(30), and (31) above to ohtain values (t'-t,), At',

and r' which correspond to ' "and its functions

S, S} S84 . If the residual A4t' 4s then less in
abegolute magnitude than At, then ', the transcendental
functions Sa, S;, Sé. Sg,
(t'-t,), 4t', r' are all accepted as new values for

SL, S; and the functions

¥ and S,, 8,, S,, S, S,, Sg and (t-ty),pt, r .
Then Newton's method (31) is used to compute a new

' and reveat the entire computation.

When At' 1s not less in absolute magnitude than
at, the current ' 1s not accented as a new value
for ¢ . Rather, a different value for o' 1s com-

puted by setting n equal to unity in the equation
y' =y - At/n (32)

Then thevslope r has heen replaced by unit slope

to determine the new approximation ' for y,.

L
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This ¢' is theA used to compute its functions
S¢g» Sy, 8}, 83, S, and (t'-tg), 4t', r'. If At
1s thgn.less in absolute magnitude than At, ¢!
and its functions are accepted as new values for
and its functions, and Newton's method (31) 1s again

applied as described above,

If At! 18 not less in absolute magnitude than At,
n 1in equation (32) is doubled to compute a different
y' . The slope n 1s repeatedly doubled until a At'
is obtained which 1s less than At in absolute mag-
nitude, or until ¢ and ¢' are numerically identi-
cal. When the latter 1s true, the resulting ¢ 1is
aécepted as the value of ¥, for cpmputing the coor-

Computation of Coordinates

Since ¢ 1s now the correct 'value for V;, the func-
tions f, g, f, é in equations (20) are the functions
for the coordinates xX;, ¥,, Z,, X;, ¥,, 2z,. There-
fore, these functions are comﬁhted from (t;-ty) and
the functions S,, S,, S; and r; of ¥y .

f =1 - uS,/ry
= (t,~ty) - uS, (33)

—usl/(rlro)

= ]
L

1l - u32/1'1

1,0 K
n
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These functions are then used to compute x,, ¥,, 2z,,

X1» Y1, 21 by using equations (18a) and (18b).

xl = fxo + gxo

Yy, = fyo + 8Yy

Zl = fZO + géo (3“)
, *1 = i‘xo + é*o

z, = £z, + g2,

Thus the coordinates x,, y,, 2, i,, &1,.51 at
time t, have been computed from the constant u ,
the time t, and the coordinates x,, V,, Zg, X s

&o, éo at time ¢t4 .

S
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A METHOD FOR COMPUTING PARTIAL DERIVATIVES

Outline of Derivation of Partial Derivatives

Let the times t, and t;, as well as u Dbe treated
as fiied constants and let the coordinates x,, Yis %y
i,, Yi» 2, be treated as dependent variables of x,,
Yos» Zgs X, Y41 %, Which are treated as independent
vafiables._ The thirty-six partial derivatives of each
of the coordinates X, ¥,, 2,, il, 91, éi with respect
to each of the coordinates X,, ¥,» Z4» Xgs ¥o» Z,
have many important practical applications. These
derivatives are obtained by chain differentiation of
the relations in Section 2 that are used to compute

Xys ¥ys 2y Xys Yy 2y from x4, Vo, Zgs Xg5 Vgs Zg-

| The chain differentiations must then he combined to

obtain tractable formulas for computing the partial

derivatives.

The chaln differentiations are rather tedious and
lengthy and will therefore not be‘given’here. The
whole procedure is facllited by thé use of matrix
notatior. The basic idea 1s to obtain matrix rela-
tionships between all the differentials of quantities
which are direct or indirect functions of X4, Yo Zop>»
Xgs &0, éoa These resultshare then comhined to
eliminate all differentiais other than ax,, dy,, dz,,

dx,, dy,, dz, and dxo, dye, dz,, dXg, dye, dZo. Then
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the coefficient matrix relating these differentials
is the desired matrix of the thirtv-six partial de-

rivatives.

Evaluation,of Parameters and Periodicity Computations

The parameter r, and the transcendental functlons
Sgs5 Sy» Sy S3, Sy » SS of Wy have been determined
in the combutations described in Section 2 to obtain
the coordinates X,, ¥,, Z;, X;, ¥;» %,. The para-

meter r, must also be computed from

ry= [(ryry)Sy + (rgve -u)S,1/r, (35)
38 35, 38,
and EHL’ TF ° 5h must be computed from (7h)

§_§_J_ = ‘4’152 °S3 /

%2 = uy5, - 28, (36)

ok - Y15 - 3

S S

In addition, the true values of ¥y S y° s

3.’
85 by using the

must be determined from ;1’ S S

32 Py
equations of (12) 1f the orbit is elliptic and m
is not zero. 1In the computations of Section 2,

no distinetion was made between ¥ys S35.5,, S
compgted from (El-to) and the true values @1, S35

Sy s Sg¢ which are the same functions of (t,-t,).

'Aﬁ
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However, this distinction must be made in order to
obtain the correct nartial derivatives from the

formulas in Sections 3.3. and 3.4,

v =y +m (2n//=2h)
S; = 85 + m[2n/(/=2R)?] |

Sy = S, + m{2n/(/Z2M)31(y + ¥)/2 (37)
Sg » S¢ + m[2n/(YZ2R) 310 (P2+9yp+92) /6 + 1/2h)

The functions S,, 35,, S, need not be recomputed

since they are equal to Sg, §1, 52 by (12).

3.3. Evaluation of the Four by Tour Matrix

The four by four matrix below 1s first calculated as
an intermediate step for the computation of the par-
tial derivatives. The letter T 1s used to 1lndicate

the matrix transpose of the two column matrices.

™
B - T .
2 ¥ : asz,, 2 3s
211 8y, 213 3y S p1+voss*;z[froro)ah (rovo-u)epd
2 )
821 Ra2 323 3g4 Lﬁ S2 S2
r .
83, 83, 235 84, |1 (89-r,S,)/ry ryS,
' ; . 3S 2 3S
| . 2
Byy 242 By3 By (8y-ry8,)/r, 2r053+[kro’o)gg—*(rovo'")SEi]
2 . 98 ) s
0
0 S,
tu
Ty | S/ - oS,
. 35S 2 95
Sz/rz J LZI'OSZ + [(Poro)a—}l-L + (roVo - u)#]_]
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9X 90X

Computation of the Partial Derivatives

.“_{59.(.".331_-51)
ry \Pgpdh _
(u/Po)zas%

r, 3h

e
]

=
Wl e
=]

Ly
n
[

s
7

3
Pilw
=

The two by two sub-matrices of the four by four matrix

above are then used to calculate the partial deriva-

tives by the formulas given below.

The letter T

indicates the matrix transpose of the three by two

matrices.
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CONCLUDING REMARKS

The authors have written a FORTRAN IV program (available
upon request) for computing coordinates and partial deri-
vatives of fhe two-body problem. Cases run to test the
program included: (for u>0) elliptic circular, parabolic,
hyperbolic, rectilinear; and (for u<0) hyperbolic, recti-

linear.

Computationally, the program 1s superior to available

programs in that it produces solutions and nartial de-
rivatives for all cases of the two-body prohlem without
exception. It also has no disadvantage in the accuracy

and speed of computation.

i
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