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Abstract

The effect of the physical size of a specimen upon the initiation of fracture of
materials is in accordance with statistics of flaw distribution. The effect of size
upon total fracture is as above, plus the effect during ctable crack propagation.
Stability of cracking can be because of (1) energy dissipation, (2) load relaxation,
or (3) crack orientation. Only (1) reflects a material property. The energy-
dissipation stability is affected by the strain-energy content (and therefore by
size) in such a way that the higher the energy, the earlier this stability transforms
tn instability, Consequently, the larger the specimen, the lower the breaking
stress and the ductility that accompanies the cracking. A possible explanation is
presented in terms of dynamic etfects caused by an excess in the energy relcased
over the energy absorbed. These dynamic effects influence the stability of the
propagating crack in a manner in which the size of the specimen plays a domi-
nant part,

The behavior of three broad groups of materials is examined from the view-
point of crack stability. These are ductile (mainly soft metals), semiductile (mate-
rials such as concrete and gypsum), and brittle (glass). The conditions favoring
instability are listed, and the various materials are classified in accordance with
their position relative to a transition size. Examples of the effects of size in vari-
ous materials are cited, and it is shown that existing theories are unable to
explain all of the observations, either qualitatively or quantitatively, The pro-
posed theory of a strain-energy size effect seems to fill these gaps satisfactorily.

It is speculated that, in general, every material has two constants that fully
describe its resistance to fracture: y¥ and G,. These involve the critical strain-
energy release rate G,. Here, y’ is the limiting value of :_ G, when size increases
to infinity; G, is the limiting value of G, when size decreases to zero. In practice,
y’ controls the initiation of cracking and G, (not G,) controls the onset of insta-
bility. Whereas y” is independent of specimen size, a study should be made of the
size dependence of G,. Evidently 4’ is also the true design criterion for very large,
auctile members, and G, is the design critericn for very small, brittle elements.

Transition-size curves are 1’roposed (in analogy to transition-temperature curves),
and the positions of the transition for some materials are roughly indicated.

JPL TECHNICAL REPORT 32-1438 vii
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Strain-Energy Size Effect

I. Introduction

Several phenomena encountered by investigators in the
field of strength and fracture of materials cannot be ex-
plained by recognized laws. For example, the brittle
behavior of large-scale, mild-steel elements; the plasticity

scently shown to exist in glass; and the marked size
. nsitivity of fatigue specimens all are little-understood
phenomena. An attempt will be made to show that these
and other unexplained observations are uctually mani-
festations or a single law, which is now stated (in a
qualitative form at present) under the name of the strair-
energy size effect.

Size sensitivity of materials is customarily attributed
to statistical considerations, and the weakest-link theory
is the most widely recognized theory among them. How-
ever, it miist be realized that such theories are valid only
for the iritiation of fracture; as for total fracture, these
theories i re valid only in those cases where initiation and
termination coincide. Such cases are rare because, in
most instances, a siage of fracture propagation intervenes
between the two events, Tt is conceivable that, during
this intervening stage as well, size will influence strength.
The total effect will, therefore, be the sum of the two
separate effects on initiation and on propagation.

In this report, attention is focused upon the stage of
fracture propagation, which is mainly examined from the
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standpoint of stability or instability and how these are
influenced by the size of the medium. There is evidence
to the effect that fracture propagation is a process of
very unstable equilibrium so that instability (i.e., frac-
ture) can be easily induced by momentary overloads. It
is easy to see how the strain-energy conten: of the sys-
tem, and therefore the size of the specimen, may con-
tribute to such overloads. The effect may be crudely
demonstrated by a simple expariment.

A sheet of paper is torn into two pieces by first
making a short tear to serve as a tear nucleus. Then the
paper is pulled perpendicular to the tear in two ways:
(1) by pulling from positions very close to the tear
and (2) by pulling at the edges of the sheet. Method (1)
will vield a slow and stable tearing (cracking); method (2)
will at first yield a very limited, slow-growth tearing
(cracking), that will almost immediately become fast
and uncontrollable, The differerce between the two
methods lies in the boundary condition around the
crack—controlled strain rate in case (1) vs controlled
stress rate in case (2). In other words, the difference is
in the availability of strain energy, which is limited in
case (1) and unlimited in case (2). In cas« (1), the tearing
stress easily adjusts itself to resistance fluctuations of-
fered by the paper fibers; in case (2), when this resis-
tance momentarily drops, an overload develops that
leads to instability.



In practice, case (1) is almost nonexistent, as enough
strain ene-gy is always available for the creation of over-
loads The effect of these in causing instability is not
clear. However, some speculations, whose validity has not
been checked by experiment, will be made in this report.

The main object of this investigation is to reexamine
size-effect observations made of various types of mate-
rials in the light of the proposed theory. It is shown that
the recognized theories are not sufficient to explain all
observations, and that the new theory fills the gaps. The
insutficiency of existing theories is not merely a quanti-
tative one. They are qualitatively wrong as well; for ex-
ample, in their inability to account for the influence of
size on ductility,

The organization of this report is as follows: In
Sections 1-1V, the proposed theory for the causes and
mechanism of the strain-energy size effect is presented.
(Section V, dealing with the possible mechanisms by
which the dynamic effects lead to instability, is highly
speculative!) Sections VI-IX present experimental results
for three typical groups of materials. In Sections X and
XI, the theory is further expanded, and a transition size
is proposed.

To prevent ambiguity, some clarification of terminology
is necessary. In this report, crack nucleation is the forma-
tion of crack nucleus prior to the applicaticn of load.
Crack initiation is the beginning of growth of the exist-
ing nucleus as a cesult of the application of load. The
“Griffith condition” is a term used by some authors to
represent the crack-initiation condition defined above.
Others use it to describe the instability condition: i.e., the
transition from stable to unstable cracking. This incon-
sistency stems from the fact that, in Griffith’s experi-
ments with glass, initiation and instability coincided. In
the general case, however, where these are two sevarate
events, separate terms are necessary, and initiation and
instability are recommended. To prevent confusion, the
term “Griffith condition” will not be used again in this
report,

Il. Effect of Size on Fracture Initiation

If a single crack nucleus is present in the specimen, it
can be shown that the specimen size will have no effect
upon the stress at which this nucleus will start to grow.
It U is the elastic energy per unit volume, ¢ is the nomi-
nal stress field, E is Young's modulus, v is Poisson’s ratio,

L is 2 dimension of the specimen, and ¢ is the crack
half-axis, then

U= U E, velL) (1)
For his particular case, Griffith (Ref. 1) has shown

wC'o®

U
E

+ flo,E, v, L) (2)

The energy criterion of instability states that

oU ‘W
- (3)
oc oc

where W is the energy absorbed in the formation of a
unit surface. ccordingly, the crack will start to grow
wlen

2rco’ ‘W

E oc

=G (4)

that is, the specimen dimensions have disappeared in
the differentiation, and thus do not affect the occurrence
of this event.

Irwin (Ref. 2) approached the problem by considering
the stress fiela in the vicinity of the crack only; from this
he derived the energy required to close a small portion «
of the crack near its root. This energy is released when
the crack opens, and its derivative with respect to a will
be the driving force G. Irwin’s method enables the
derivation of G for various geometries of cracks in terms
of the stress-concentration parameters and the nominal
stress field. Thus, in all cases, only the conditions in the
immediate vicinity of the crack determine its stability,
and the specimen size does not enter into consideration.
If a population of crack nuclei of a certain density
exists, the specimen size will affect the stress at which
the first crack will start to grow. This occurs because the

erity of the weakest crack will depend upon the num-
bt sracks in the population; i.e., upon the specimen
s! cous statistical theories have been developed in
accordance with the various crack-size distribution func-
tions assumed by the investigators. These include the
Gaussian theory (Ref. 3), the Laplace theory (Refs. 4
and 5), and others.

In summary, size has no effect upon any single crack
nucleus, but has an effect upon a population of cracks.
This effect is, however, limited to the initiation of frac-
ture, and does not include total fracture, as erroneously
assumed by some authors.

JPL TECHNICAL REPORT 32-1438



l. Mechanisms of Stable Crack Propagation

For total fracture, the effect of specimen size during
the stage of stable crack propagation should be exam-
ined. Before attempting this, however, the causes of
stable crack propagation should be understood.

'n the Griffith case (see Ref. 1), no such stability was
possible for the following reasons: (1, Griffith assamed an
ideally brittle mat rial wich only on® energy-dissipating
mechanism—that of surface tension ;. Furthermore, he
assumed y to be constant. (2) By assuming an infinite
body, he avoided e possibility of the relaxation of the
applied stress caused by the conversion of energy. (3) He
also avoided the possibility of low encrgy release relative
to energy demand by dealing strictly with a case of pure
tension. As a result of these three provisions, the energy
absorption was, in his case, proportoonal to the crack
length (W = 4c¢y), whereas the energy release was pro-
portional to its square (U = =—noc'/E). This assured
that, beyond the point at which —=2U/¢¢ = 2W/de, the
inequality —2U/d¢ > ?W /2c persisted; that is, instability
was unavoidable.

In practice, the above conditions are not met in most
cases; therefore, stability of crack propagation is possible.
In accordance with the above thre: conditions, three
types of stability are possible, as described below.

A. Energy-Dissipation Stability

Energy-dizsipation stability is encountered when the
energy absorption is not restricted to surface tension,
and, moreover, when the energy absorbed per unit crack
length is an increasing function of the crack length;
ie, ®W/2¢* > 0. In such a case, when the condition
—=oU/ee = oW /ec is first satisfied propagation is indeed
initiated. Because W /d¢ is constantly increasing, how-
ever, it is necessary to increase U and 2U/2¢ by raising o
to maintain the above equality. As a result, the condition

oU Y% 5
oc = -P_c- (5)

is always satisfied, and stability is assured. Energy-
dissipation stability will be discussed further toward the
end of this section.

B. Load-Relaxation Stability

Load-relaxation stability is encountered when the load
relaxes through limitation of the energy supply.

JPL TECHNICAL REPORT 32-1438

Assuming the Griifith case in an energetically conser-
vative syston, where ¢, is the initial crack length (as-
sumed to be small) and A is the area of the plate, it can
be shown from U = (¢°/2E)A tha' the relaxing stress is

[ﬁ - 4y(c - m]% ) (6)

wC,

2E

-
| A

The necessary stress is

Y = ( 2Ey )'! ™

nl

Equating Eqs. (6) and (7) to determine the extent of
spontaneous propagation, a quadratic equation is ob-
tained, with solutions

C’C.

A
4‘"0 1

The crack is thus stabilized through limitation of
energy at a distance proportional to the volume of the
specimen and inversely proportional to the initial crack
length. Paradoxically, as far as spontaneousness is con-
cerned, an initial small crack is, therefore, more danger-
ous than a large one. Volume is, of course, always
conducive to spontancousness. From Eq. (8) it is clear
that, if ¢, > (A/4r)%, no amount of spontaneous growth
is possible. Actually, this expression is inaccurate because,
in evaluating Eq. (8), ¢, was assumed to be small. It is
certain, however, that a critical size ¢, exisis above which
no spontaneous growth will occur. This explains the
initial stability of cracks developing at the rocts of deep
notches of briitle materials.

Relaxation of stress through energy limitatior: can also
occur together with type (1) stability (energy-dissipation
stability). Ths, at each step of stable propagation, the
stress relaxes slightly, and must be re-elevated to allow
propagation to continue.

C. Crack-Orientation Stability

When the crack propagates parallel to the stress field
(as in uniaxial compression), the amount of energy ab-
sorbed remains proportional to its length, whereas the
energy released also becomes proportional to the length
instead of to the square of the length (as is the case in
tension).



If a compressive stress is applied parallel to an exist-
ing hairline crack, the crack will not propagate because
no energy would be released if it did. However, if the
crack has width or, alternatively, if it is at an angle with
respect to the field, it will propagate parallel to the com-
pression because some energy will be relzased. But this
release will be small compared to that of a crack perpen-
dicular to the field. The two cases are shown diagram-
matically .n Fig. 1, where 2¢ is always the total extent
of the crack. In tension, it is known that

22

nC'o ot
AU = - _F— = —xc2c OF (9)

that is, it may be assumed that the elliptic area enclosed
by the dashed line is free of stress, and that the stress
in the surrounding area is undisturbed. By analogy, it
may be assumed (with a possible small factor of err~r)
that the area free of stress, in the case of compression, is
that hounded by an ellipse containing the original flaw
plus its extensions. In this case, therefore,

o
AU = '-'rrbC(zF) = -

rbca®
2E

(10)

where 2b is the front presented by the flaw to the com-
pressive stress.

The obvious difference between the two cases is as
follows: in tension, AU is proportional to ¢* because of a
high disterbance to the field; in compression, AU is pro-

T

|——O—

Q—Zc

\

|'
o f

Fig. 1. Energy release: (a) in tension; (b) in compression

portional to ¢ because of the low disturbance. Proceed-
ing as i tension,

(11)
SE’/ "
o= (—;g—) = const

Therefore, in contrast to tension /where o is inversely
proportional to ¢', thus causing instability), in compres-
siun, ¢ is independent of ¢, and stability can prevail. This
type of stability may be the reason for the difference
between tensile and compressive strengths of brittle ma-
terials. If compressive cracks are stable, as just explained,
premature fracture is avoided, thereby permitting the
ma’ »>rial to reach its mean strength by the gradual trans-
fer of the fracture process from weaker to stronger flaws.
In tension, by contrast, the strength is that of the weak-
est flaw. The problem may, therefore, reduce to that of
the difference in strength between the weakest and the
mean in the distribution of flaws. Scatter of results in
these two types of strength (higher in tension than
in compression) supports this view,

Examples of the three stability types are abundant.
Irwin (s2e Ref. 2) and Orowan (Ref. 6) have shown that
stable crack propagation in metals is explained by the
fact that energy is dissipated by plastic strains akead of
the crack, and that the zone of this plasticity increases
with crack length. This makes the energy demand per
unit crack area increase faster than the energy release,
thereby ensuring stability. Glucklich (Ref. 7) explained,
in an analogous manner, the stabiViy of cracking in
concrete, with microcracking ahead of the major crack tak-
ing the place of the plasticity in metals. Load-relaxation
stability is demonstrated in cases where y s measured
by such methods as the lengthwise splitting of strips
(Benbow and Roesler, Ref. 8). In such cases, the propa-
gation of the crack unloads the system, and stability is
possible. Crack-orientation stability was demonstrated
by the conical indentation cracks employed by Roesler
(Ref. 9) for measuring y values of glass. The cracks
propagated parallel to the compressive-stress trajectories;
therefore, they were stable.

In all three types of stability mentioned above, the
catastrophic process is prevented by the lagging of
the energy release behind the energy demand. However,
only the first type is of a fundamental nature, reflecting
a material property; the other two types result from

JPL TECHNICAL REPORT 32-1438



geometrica! reasons. The capacity of a material to dissi-
pate energy is an intrinsic property contributing to its
strength and toughness, whereas the geometrical causes
are not likely to affect behavior from the viewpoint of
strength and ductility. One simple reason is that if, for
example, relaxation of load occurs as described, reload-
ing will restore the original position without altering the
ultimate results. By contrast, energy-dissipation stability
permits the mobilization of further resistance present in
the matesial. This resistance would not be utilized if pre-
mature instability occurred.

It is the premise of this work that energy-dissipation
stability exists in every real material, the differences be-
tween materials being differences only of degree. Thus,
in mild steel and other soft metals—i.e., materials with
great capacity for plastic yielding—it is very pronounced.
In materials such as concrete, rock, coal, porcelain, ete.,
energy-dissipation stability is less pronounced. In an
atomic sense, no plastic yielding is possible in such
materials, but above a certain stress microcracking or
crazing takes its place to permit them to manifest macro-
scopic “plasticity.” At the end of this scale are such
materials as glass cr some glassy polymers, within which
it has always been assumed that no kind of plasticity--
and hence . energy-dissipation stability—is possible. It
is now suggested that even glass has this stability,
although it is not exhibited under normal circumstances.
As is shown below, however, it may be demonstrated
under special conditions.

The behavior of a real material (defined as one
showing energy-dissipation stability) vs that of an ideal
Griffith material (i.e., one incapable of absorbing energy
other than that of surtace tension) is shown schematically
in Fig. 2, which is taken from Ref. 10. The important
difference is the shape of the energy-absorption curve W.
This is a straight line in the Griffith material, ai:d an
upwards concave curve in the real material. The be-
havior shown is for a flexible system (or for a large-sized
specimen) where no stress relaxation occurs. In a rigid
system, at each step the stress will relax somewhat, and
will have to be re-elevated before the crack can be ex-
tended farther. This, however, will have no effect upon
the attained values of o, ¢, and G..

IV. Causes of Dynamic Effects During Stable
Propagation

The effects of specimen size during stable crack propa-
gation are connected with certain dynamic effects that
accompany this stage. It should be noted that, in spite
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of the use of the term stability, the equilibrium between
the driving force (i.e., the strain-energy release rate G) and
the restraining force (i.e., the energy-abserp®’ n rate R) is
very delicate (see Fig. 2). Propagation beg  .aly after
G had become equal to R (or 2U/2¢ = —2W/d¢), and
it was soon halted as G dropped very slightly behind the
increasing R, only to be repropagated by the further
slight increase of load. Thus, the equilibrium depends
to a vital extent upon the capability of the loading
arrangement to increase the load in unison with the
increasing resistance. Any overload may immediately
result in instability.

An overload is inherent in the process of fracture
regardless of the level upon which it is examined. On
the atomic level, it is caused by the fact that the resul-
tant interatomic force has a point of maximum attrac-
tion. When the distance between two atoms reaches this
critical value, the force required for further extension
drops rapidly. Because these two atoms are surrounded
by a field in which other atoms are positioned at less
than the critical distance apart (i.e., still in the elastic
range), this field maintains a constant force between the
two atoms in question. Beyond that point, the active
force thus exceeds the reaction, the two atoms accelerate
awuy from each other, and kinetic energy is generated.
This energy may travel in the form of a wave across the
material to add to the potential energy of the pair of
atoms next in nearness to the peak, causing the separa-
tion of the second pair of atoms. This ideal mechanism,
based upon the concept of statistical fluctuations of bond
energies, may start a chain reaction that, in most cases,
will spread through neighboring atoms. It is known as
the “single-bond catastrophe.”

On the microscopic level, overloads result when frac-
ture develops through inhomogeneities (such as grain
boundaries in polycrystals) or through voids in materials
such as concrete. When a void is ~ncountered—i.e., an
abrupt drop in energy demand—a sudden excess of
energy is available for release.

On the macroscopic level, fillers of various types and
shapes (such as stone aggregates in concrete or fibers in
polymeric composites) may cause a buildup of stress.
These immediately become sources of overload as the
fracture advances past them. Examples of such mecha-
nisms, along with the dynamic effects they cause, are
presented in Ref. 10.

Most important of the causes of dynamic effects is the
case in which the stress condition of fracture is satisfied
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before the thermodynamic condition is satisfied, It is
known that, for a crack to propagate, the stress ahead
of it must be sufficient to break the existing bonds,
while the minimum-energy principle should simulta-
neously be satisfied. Using atomistic models, Orowan
(Ref. 11) and Elliot (Ref. 12) have shown that, when the
latter condition is satisfied, the former is also fulfilled.
The opposite, however, is not always true. For example,
a short and very sharp crack in glass' may have a stress
concentration sufficient to overcome bonds, but not
enough energy release to start propagation. In such a
case, the system must be further loaded until the energy
balance is favorable. At this time, however, the stress
ahead of the crack is far in excess of that necessary for
atomic separation, and acceleration will occur.

V. Size Effects During Stabie Propagation

It has been shown that stable cracking depends upon
a delicate balance between the driving and restraining
forces. It has also been pointed out that dynamic effects
are inherent in almost all types of fracture. In fact, it
can be rationalized that dynamic effects will fail to occur
in only two cases: (1) when the forces act directly upon
the crack boundaries without the intermediacy of the
surrounding material (i.e., an ideally rigid system), so
that the driving force changes immediately with the
restraining force; or (2) when the crack starts to propa-
gate at a zero stress, so that no energy had accumulated.
An attempt will now be made to show that these dy-
namic effects influence the stability of the propagating
crack in a manner in which the size of the specimen
plays a dominant pait.

Two mechanisms may be triggered by the momentary
loss of equilibrium that constitutes the dynamic effect.
If a single isolated occurrence, it may generate a com-
pression pulse that will travel te the boundaries and
be reflected as a tension pulse. If it happens sequentially
at a certain frequency, the entire system may be excited
to vibrations. Either the tension pulse or the vibrations
may cause the crack to become unstable and the magni-
tude of both is influenced by the size of the specimen.
These two possible mechanisins will now be considered
in some detail.

Elastic stress waves have so far been considered mainly
in connection with the fast-propagation stage where, it

oy
'Griffich estimated inherent cracks in glass to be of the order of
10" in. Their radius of curvature approaches atomic dimensions.
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has been shown, their velocity controls the ultimate
crack velocity in a manner as yet not fully understood.
However, it has also been demonstrated (Refs. 13-16)
that, in the slow stage as well, the discontinuous growth
of a crack is responsible for the emission of such waves.

Because the material around the crack is in tension,
the unbalanced, sudden tearing of a bond will induce
an unloading pulse (the potential energy having been
changed to kinetic energy) to travel to and return from
a boundary as a tension pulse. If this returning pulse is
of a sufficient intensity, it may supply the next pair of
atoms in the path of the crack with the additional energy
needed to make them surmount the energy barrier and
separate. If it is of a still higher intensity, the pulse may
extend the crack to its critical size, and complete insta-
bility will then occur.

Specimen size enters into these considerations in deter-
mining the distance through which the pulse travels and,
therefore, its attenuation. Its effect is thus opposite
to that observed. Exceptions occur in cases of favorable
geometrical configurations; e.g., when returning pulses
from different boundaries converge upon the critical
zone, and reinforce one another to create a momentary
high-tension field sufficient to bring about instability.
Obviously, such an event is highly unpredictable, and
no general law of size effect can be based upon it. It is
probable that the many contradictions to the general size
rule encountered with some matcrials (see Sections VI-
IX) are partly due to this effect. Gerberich and Harthower
(see Ref. 16), who discovered a unique relationship be-
tween the sum of the stress-wave amplitudes and crack
growth, found no effect of specimen size upon these
amplitudes. The effect of size and geometry in the case
of stress waves is thus limited to attenuation and pulse
superposition, as described above.

The effect of specimen size in the case of the vibration
mechanism may be the main cause of the phenomenon.
Such forced vibrations of the entire system may be set up
by the repetition of bond rupture occurring during slow
crack propagation, Because the source of the disturbance
is a point, the vibrations (dilatational and distortional)
spread out radially into the surrounding material. Because
of its complex geometry, several degrees of freedom,
and various modes, the system has a complex dynamic-
response behavior. Generally, however, », = (K/M)%,
where o, is the natural frequency, K is the spring con-
stant in a radial direction, and M is the mass. An increase
in the size of the specimen without a change of shape will



reduce o, because K will decrease and M will increase.
The complex dynamic response (i.e., the amplitude vs
frequency curve) will simply be shifted to lower fre-
quencies. An increase in size with a change of geometry
will cause both a shift to lower frequency and a change
of the response curve.

On the other hand, the frequency of excitation o, is
proportional to the velocity of crack progress. Schardin
(Ref. 17) and others have shown experimentally that,
during the stage in question, this velocity (starting from
«ero) always increases, as it depends upon the increasing
load, until instability sets in when the velocity of crack
progress approaches half the speed of the transverse
wave. It thus seems plausible to assume that the larger
the specimen, the earlier will », be equal to «, (or to a
multiple of w, for higher modes), at which time the
forced vibrations will be resonated and cause instability.
The analytical determination of the dynamic response
(i.e., amplitude vs frequency) of a real system is an
almost impossible task; therefore, it should be deter-
mined experimentally. The excitation frequency o, can
be measured by means of instruments such as piezoelec-
tric transducers or accelerometers (see Ref. 16), using
varying sensitivities to register cither coarse growth in-
crements (as in concrete) or very fine growth increments
(as in glass). At the onset of instability, v, should then
be compared with , of the system to check the theory.

The above line of reasoning may serve to explain the
continuous increase of crack velocity in all of the propa-
gation stages. At a certain initial velocity, v, matches with
some peak (at low frequency) of the system-response
curve. This causes partial resonance, and hence some
acceleration of the crack. This acceleration, in turn,
increases ., which causes a resonance with a second
peak at a higher frequency, further accelerating the
crack. Thus, a progressive process develops during which
the crack velocity continuously increases and the entire
spectrum of natural frequencies is scanned. According to
this line of reasoning, the onset of instability occurs
when the amplitude gain is sufficient to overcome all
remaining resistance; a drastic change in velocity then
takes place, but the velocity changes both before and
after this event.

The behavior of three broad groups of materials will
now be examined from the viewpoint of crack stability.
For the present purpose, these are defined as ductile,
semiductile, and brittle (ductility meaning here the ca-
pacity to dissipate potential energy during cracking). For

convenience, the conditions that favor instability are
listed as follows:

(1) Capacity to dissipate potential energy as small as
possible.

(2) Inclusions and voids present at all levels of aggre-
gation and coarseness of grains, all of these being
conducive to dynamic effects,

(3) Extremely thin and short cracks preexistent, so
that the stress condition favorable to growth is
satisfied before the energetic condition.

(4) Small capacity for damping vibrations (i.e., kinetic
energy).

(5) Large size (relative to other conditions).

A good representative of the ductile group is mild
steel, which does not satisfy condition (1), satisfies con-
dition (2) only partly and only on the microscopic level
(grain boundaries), and does not satisfy conditions (3)
and (4). Therefore, mild steel is highly stable; only very
large specimens or structure members may cause early
instability (i.e., may induce brittleness). The addition of
alloying elements to steel affects conditions (1) and (2)—
the capacity for plastic strains is reduced, and the pres-
ence of impurities enhances dynamic effects. Therefore,
smaller specimens of these alloys are needed to cause a
lahoratory-size specimens.

Concrete will serve as an example of the semiductile
group. Condition (1) is partly satisfied because concrete—
although it has some energy-dissipating capacity (in the
form of microcracks, but not real plasticity)—is far behind
the real plastic materials in this respect. Condition (2) is
completely satisfiec on all levels of aggregation. Condi-
tions (3) and (4) are not satisfied. The size necessary to
cause transitions from ductility to briv! :ness is, therefore,
medium; in fact, as shown in Section VIII, it occurs with
laboratory-size specimens.

Glass is, of course, the prototype of the brittle group.
Conditions (1) and (3) are completely satisfied. Although
conditions (2) and (4) are not satisfied, the tremendous
effect of the almost complete lack of energy-dissipation
capacity and the dynamic effects produced by condi-
tion (3) predominate. As a result, the stability of glass is
very poor; for almost any size of specimen, instability
is assured. To be able to detect some stability, the speci-
men must be reduced to a very small size (on the order
of 1 mm, as is shown in Section IX), which will thus
become the glass transition size (defined in Section XI).
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It is known that other factors—e.g., temperature, strain
rate, and triaxiality of stress—also affect the brittle-
ductile transition. The triaxiality factor has a direct bear-
ing upon the present discussion because, in most cases,
fracture begins at a notch (natural or artificial, on the
surface or internal) that creates triaxiality, and hence
adds brittleness to the material. It must be recognized,
therefore, that the true transition sizes are somewhat
higher than the observed ones in all such cases.

Instead of considering the transition sizes of different
types of materials, as was done here, materials may be
classified according to their properties for the same size
of a specimen (say, laboratory size) in the following
manner: Mild steel is ductile because it is on the small
side of the transition, and the instability condition is
satisfied after the initiation condition has been satisfied.”
In other words, a crack will be initiated, but it will re-
main stable. Concrete is semiductile because it is within
the transition—in certain cases (depending upon the
mode of loading), the initiation condition is satisfied first,
whereas in other cases, the instability condition occurs
first. Glass is brittle because it is on the large side of the
transition; therefore, the instability condition is always
the first to be satisfied. When a crack initiates in glass,
it is immediately unstable.

Examples of the strain-energy size effect in specific
materials within the three broad groups described above
are presented in Sections VI-IX,

VI. Size Effects in Metals

That specimen size influences the strength and duc-
tility of metals (the more brittle metals in particular) has
long been recognized. Several explanations have been
proposed to account for this phenomenon. These may be
categorized into three main groups: (1) flaw statistics,
(2) technological causes, and (3) stress multiaxiality.

Group (1), which includes the several variations of the
flaw-distribution function, suffers maiuly from an inabil-
ity to account for the observable effect after crack initia-
tion; i.e., during the propagation stage.

Group (2) includes all of the variations in the material
properties that result from the manufacture of specimens
of different sizes. The main deficiency of this explana-
tion is that, in most cases, the same size effect is ob-

*The definitions of the various conditions related to the process of
fracture are presented in Section X.
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served when the specimens are machined from the same
stock.

Group (3) includes all cases in which size variations
alter the load condition from plane stress to that of plane
strain, thereby affecting the axiality of stress, which is
known to affect the capacity to shear. 'he most familiar
example is the thickness effect, the main weakness of
which is that it exists only for changes from very thin
to somewhat thicker plates, but not beyond this range.
Also, the thickness effect is nonexistent in cylindrical
specimens, where the situation is one of plane strain
regardless of size.

Several examples of size effects in metals, in which
the effect cannot be explained solely by any of the rec-
ognized theories, will now be considered.

As early as 1932, Docherty (Ref. 18) reported results
of static bending tests on geometrically similar, notched,
cantilever beams. Their sizes varied from 4 to 12 mm
square (corresponding spans: 30 to 90 mm); three types
of steel were used: 025 C as-rolled, 0.25 C normalized,
and 3% Ni normalized. His criterion of ductility was the
absorbed energy as determined from the area under the
load-deflection curve to failure. In 1935 (Ref. 19), he
also made similar tests on centrally loaded beams of
mild steel (as-rolled and forged), with sizes varying from
10 to 100 mm square and from 25 X 10 mm to
25 X 100 mm. In all of these cases, there was a strong
size effect, with absorbed unit energy decreasing with in-
creasing specimen size. This decrease of energy extended
beyond the specimen size of 100 mm cross section; thus it
cannot be attributed to the change from plane-stress to
plane-strain conditions (except for the zone of small
widths, where the observed effect was indeed stronger).

The flaw-statistics factor could also be only a secon-
dary cause in this case, because all beams were notched.
In a notched beam, the fracture cross section is pre-
determined; therefore, one dimension (the length) is
eliminated from the volume effect upon the flaw popu-
lation. Another dimension (the depth) is eliminated by
the very nature of a bending test, which requires that the
fracture initiate at the tension surface. Thus, only the ef-
fect of the width remains. However, as is shown below,
the results of other investigators indicate that varying the
width alone causes a much lesser size effect than does
varying all three dimensions. That flaw statistics could
not be a dominating factor in this case is also evident
from the shape of the load-deflection curves, which
clearly indicate the development of stable cracking under



the notch. Flaw statistics can influence only the initia-
tion of a crack, and not the events that follow.

In 1947, Davidenkov, Shevandin, and Wittman
(Ref. 20) reported results of static bending and tensile
tests on unnotched, high-phosphorous (0.52 P) steel. The
cylindrical specimens varied from 1 to 16 mm in diame-
ter, and breaking strengths were determined at a tempera-
ture of —190°C. Within the range of sizes tested, the
decrease of bending strength with increasing size was
23%%; the corresponding decrease in tensile strength
was 267,

Because these specimens were unnotched and the
metal, in contrast to the metal in the preceding example,
was very brittle (temperature was also very low), so that
stable cracking could only have been limited, it may be
assumed that both the flaw-statistics and the strain-
energy factors played equal parts in the effect. Tle
stress-multiaxiality effect is ruled out completely v ith
such a brittle material and specimens of such a shape.

Also in 1947, Brown, Lubahn, and Ebert (Ref. 21)
studied what they considered to be a section-size effect
upon the static, notched-bar, tensile strength of Si killed,
0.25 C steel. In actual fact, they varied the size of geo-
metrically similar cylindrical specimens so that length,
as well as cross section, was varied. As noted above, the
flaw-statistics factor in a notched specimen will affect
only the cross section; however, other factors (that of
strain energy in particular) are strongly influential be-
cause of the change in length. The diameters of the
specimens ranged from 0.25 to 4 in. The notches were
60-deg, V-shaped, and covered 507 of the cross section.
The results revealed a considerable decrease in notch
strength—from 110,000 psi for the smallest specimen to
88,000 psi for the largest specimen. The corresponding
decicase in notch ductility (defined as the contraction
in area at the root of the notch) was from 20 to 29%.

These authors (see Ref. 21) presented a list of seven
possible causes for the observed effect, the majority of
which would qualify under category (2), above; namely,
technological causes. In discussing these possibilities,
they discarded them one after another, ultimately arriv-
ing at the conclusion that flaw statistics were the likely
cause. The authors ov-~looked the possibility of the
strain-energy effect. Indeed, this possibility hecomes
almost a certainty in view of their observation: “Exami-
nation of the fractured surface revealed two distinct
regions. A central area of approximately circular outline
had the appearance of a brittle (or cleavage type) fra,-
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ture. Surrounding this area was a darker region in the
form of a ring with its periphery at the root of the notch.
This ring exhibited the characteristics of ductile (or
shear) fracture. The ratio of the brittle to the ductile
area was found to increase with increasing section size.”™
In the terminology employed herein, this last statement
would be expressed in the following manner: The transi-
tion from stable to unstable propagation is advanced with
the increase of the strain energy content of the system.

In 1956, Schabtach and associates {Ref. 22) reported the
failure of two generator rotors manufactured of nickel-
molybdenum-vanadium steel. This steel showed some
tendency to be brittle, but laboratory-size specimens
indicated it to be sufficiently ductile for the intended
purpose, and no significant loss of strength was expected,
even in the presence of notches. Because the rotors con-
stituted very large pieces of metal, however, it was
considered necessary to study the effect of size upon
this material.

Lubahn and Yukawa (Ref. 23) made the investigation
in 1958 by performing notch-bend tests upon specimens
of various sizes and notch radii. Their most important
result is shown in Fig. 3. With increasing speciinen size,
the strength is always reduced. This effect increases
with the sharpness of the notch, reaching the level of
one-fifth of the strength of the small specimens for the
worst combination of size and notch sharpness. Also
observed was a2 tremendous decrease of notch ductility
with increasing specimen size. The ductility apparently
approached zero asymptotically for the larger specimens.
These results were astounding, but the explanation of-
fered by the authors, which has to do with flaw statistics,
is totally inadequate for two reasons: (1) The beams
were notched; therefore, the failure cross section was
predetermined. (2) The notch ductility could not have
had any connection with the statistics of flaw distribu-
tion, it being clearly the result of slow crack propagation.
Other possible causes, such as hydrogen embrittlement,
were considered by the authors, but were discarded as
not likely to have been prime factors.

Among other observations made at that investigation
(see Ref. 23), it was noted that all bars above a certain
size broke suddenly, without warning, in the manner of
crack propagation; in smaller specimens, short, discon-
tinuous cracks could be observed prior to fracture. Be-
cause of these observations, coupled with the fact of the
great effect of size upon both strength and ductility, it

"Ttalics added by the present author.
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Fig. 3. Slow notch-bend strength vs size and notch sharpness for 20% notch depth
(after Lubahn and Yukawa, Ref. 23)

is argued that the strain-energy mechanism could have
been the main cause of this behavior. The contribution
of the notch was to form a crack-type failure in the
otherwise quite ductile metal by creating triaxiality of
stress, Once cracking existed, the size of the specimen
became a factor in determining the availability of
strain energy, thus affecting the transition of cracking
from stable to unstable. The combined effect of notch
sharpness and specimen size, as shown in Fig. 3, is ade-
quately explained by this new theory, as is the effect of
size upon ductility when measured across the notch
(actually recording the extent of cracking), and upon the
other observations reported by Lubahn and Yukawa in
Ref. 23.

The size effect was again observed by Lubahn (Ref. 24)
in mild steel, a metal normally considered highly ductile
as compared with the steel described above. When this
metal was tested statically by means of notch-bend
specimens, the notches induced sufficient brittleness at
their roots for failure to take place by crack propagation.
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Changing the size of the geometrically similar specimens
did not affect their ductility prior to crack initiation;
however, it drastically affected the mode of crack propa-
gation—particularly as regards the transition from stable
to unstable cracking. This, in turn, was reflected in the
ultimate strength, the cracking ductility (as opposed to
precracking ductility), and generally in the load-deflection
characteristics. Two typical curves are shown in Fig, 4,
where the difference is evident both before and after
the ultimate point. In the case of the small specimen, the
stability depicted in the downgoing portion of the cuive is
the result of stress relaxation (as described in Section III).

Examination of the fracture surfaces corroborated the
conclusions derived from the load-deflection measure-
ments; namely, that for small specimens the extent of
slow propagation (which appears fibrous in texture) had
reached 50% of the section as against only 2% for the
large specimens. The remaining cross section (i.e., where
fast propagation occurred) showed typical cleavage
texture.
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Lubahn also tried to separate the effects of width,
depth, and length by isolating them in turn. His results
indicate that both width and depth must be large to
cause the full size effect; apparently, a greater length
is also necessary to obtein the full effect when a greater
width is used. Increasing only the width apparently has
only a small effect (see Refs. 18 and 19). It also appears
that the effect of length is mainly upon the extent of
spontaneous growth, according to the “load-relaxation
stability” mechanism described in Section III. The effect
of width is, to a great extent, through control of the
degree of biaxiality of stress (i.e., the extent of “shear
lips”). Without doubt, below a certain width, the appear-
ance of shear lips is of major importance in preventing
brittleness; however, the fact that size controls behavior
well above this width points to the existence of another
factor. Lubahn mentions stored energy in this context,
but for some reason connects it only with the 'ength of
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the specimens. Apparently he did not suspect that addi-
tion of energy in the other two dimensions might also
have an effect.

A 4- X 4- X 22-in. specimen of mild steel still displayed
some stable cracking, although mainly it underwent fast
cleavage, whereas the nickel-molybdenum-vanadium
steel described earlier had no stability above a section
size of 0.4 X 04 X 2.2 in.

An extensive study of the effect of specimen size upon
the static and fatigue strengths of various metals was
conducted by Chechulin (Ref. 25). His study covered
varions types of steel, copper, and aluminum alloys.
Generally, he found the following relationship: the higher
the coarseness of the structural grain, the greater the size
effect. A similar effect was produced by increasing inho-
mogeneities in the structure. Chechulin was mainly
interested in fatigue, and the Russian practice is to
notch specimens in fatigue studies; therefore, he intro-
duced similar notches in his static-tensile specimens of
various types of brittle steel alloys. The notch diameter
was varied, and it was first discovered that these notches
increased the strength. Then, by varying the specimens
diameter from 6.5 to 12 mm, he found a reduction of the
ultimate tensile strength of up to 13 kg/mm?* for both
notched and unnotched specimens. Corresponding to this
loss of strength was an appreciable reduction in cross-
sectional area and percentage elongation,

For notched copper and aluminum specimens, he found
that increasing the diameter from 5 to 40 mm reduced
the proportional limit by 60 and 13%, respectively. The
ultimate strength was almost unaffected. For MA-5 alu-
minum alloy, the difference in proportional limit between
specimens of 10- and 40-mm diam was 45%. In V-95
and D-16 aluminum alloys, the effect was smaller;
ramely, 10 to 20%.

The fact that the same quantitative size effect was
observed for both notched and unnotched specimens
tends to eliminate the flaw-statistics factor as the main
cause. In the notched specimens, because the cross sec-
tion of failure is fixed (probability of failure being unity),
only the area is changed with diameter; in the unnotched
specimens, the entire volume is changed. The observa-
tions connecting the size effect with the coarseness and
heterogeneity of the structure support the strain-energy
theory suggested in this report. Both of these properties
tend to promcte larger dynamic effects, and thus would
enhance sensitivity to size.
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Very convincing evidence of the existence of the
strain-energy size effect in metals (three different types
of mild steel) was reported by Fearnehough (Ref. 26) in
1963. He employed the drop-weight test on V-notched
beams to determine their brittle-ductile transition tem-
perature. To make this temperature independent of
specimen size, he used a normalization procedure
whereby the beams were allowed to bend to varying
angles so that the notcn strain was the same for each
specimen size. Despite this precaution, the results indi-
cated a strong dependence of transition temperature
upon specimen size, large specimens having a higher
transition temjerature than small specimens.

This, of course, indicated that increasing size was
accompanied by an increase in brittleness. The effect
was demonstrated for each dimension—length, width,
and depth—of the beams. Further to support his idea
that this was a st.ain-energy effect, Fearnchough super-
posed a longitudinal tensile stress on one of the smali
beams (7 X 05 X 0.5 in.) while executing the drop-
weight test. The transition temperature for this sample
was increased; in fact, it was found to be equal to that
of a larger sample (14 X 2 X 1 in.). Without this super-
posed tension, the difference between the transition tem-
peratures of these two specimen sizes was about 30°C,
This observation clearly supports the theory presented
herein because the addition of a tensile stress, although
it increases the strain-energy content, does not change
the distribution of flaws or alter the metallurgical con-
stitution of the material.

In summary, the following can be said for the size
effect in metals:

(1) It can be observed in a great number of metals from
the viewpoint of ductility and brittleness.

(2) In the more brittle metals, it is immediately observ-
able; in the more ductile metals, a condition must
first be fulfilled to convert the otherwise ductile
failure to one of crack propagation, e.g., a notch
(i.e., triaxiality of stress), high strain rate, or low
temperature.

(3) It is more pronounced in metals with coarse grain
structure or a high degree of heterogeneity.

(4) It is manifested in breaking strength, in ductility
accompanying fracture (i.e., “semiductility,” as de-
fined in Section V; in Ref. 10, it is called “second
type ductility”), in the area under the load-
deformation curve, in the brittle-ductile transition
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teraperature, and (in certain cases) by the propor-
tional lirait.

(5) The three dimensions of the specimen contribute to
the effect, but the relative importance of these con-
tributions hus not yet been determined.

(6) Althongh flaw statistics may be a fuctor in the size
effect (particularly in the very brittle metals), its
influence is limited to initiation only. Therefore,
in all cases where there is evidence of slow crack
growth or 0" accompanying ductility, statistical ef-
fects are negligible, The fact that the size effect in
notched specimens of brittle metals is almost the
same as it is in unnotched specimens suggests that,
whatever effect flaw statistics has upon initiation, it
is small in magnitude.,

(7) Multiaxiality of stress is a factor in thickness effect,
but only within the limited range where the con-
ditions change from plane stress to plane strain,

(8) Evidence in favor of the strain-energy factor is as
follows:

(a) The fracture surface clearly shows the transi-
tion from stability to instability; morcover, it
shows the dependence upon size of the location
of this transition.

(b) Visual evidence of stable cracks exists in small
specimens, but is absent in large specimens.

(¢) Slow cracking in small specimens is evidenced
by the increased curvature of the stress-strain
curves before these curves reach their summits.

(d) Fracture in large specimens is explosive and
unannounced; in small specimens, fracture is
accompanied by a low, tearing sound.

(e) The size effect is dependent upon the coarse-
ness and the heterogeneity of the structure.

(f) Superposed tensile stress affects the transition

temperature of V-notched bend specimens, as
described above.

(9) The level at which size ceases to affect strength (or
“semiductility”) varies with different materials.
Broadly, this level increases with the ductility of
the material, but interfering factors—e.g., triaxial-
ity (notches), temperature, and strain rate—may
obscure this tendency.

(10) The worst combination of notch sharpness and size
reduces the strength of a certain steel from 220,000
to 40,000 psi (see Fig. 3). According to the theory



proposed herein, the strength of an unnotched
beam will also be reduced to the above level if the
beam is sufficiently large. This should scare bridge
designers. in reality, the danger is not so acute
because of two factors: (a) Real structures are
always highly redundant; therefore, as soon as a
fracture initiates, the material surrounding the
crack is unloaded because the load is transferred to
alternate members. (b) In real structures, large,
monolithic elements are very seldom used. The
various types of joints make the structure safer by
acting as drains for elastic energy.

VII. Fatigue-Size Effects in Metals

It has been known for nearly half a century that the
fatigue strength of metals increases appreciably with de-
crease of test-specimen size, but no satisfactory explana-
tion has yet been offered. As reported by Grover (Ref. 27),
a few examples (Refs. 28-30) are listed in Table 1. It is
clear that the effect of size upon these unnotched speci-
mens is very pronounced, and that it increases with
increase of impurities content. Moore (Ref. 31) report:d an
effect upon two types of steel-SAE 4340 and SAY. 1035
(Fig. 5). The first steel (SAE 4340) showed a rotating-
bending fatigue limit decreasing from 75 klb/in.* for
a Y-in.-diam specimen to 65 klb/in.’ for a l-in.-diam
specimen, and not decreasing for diameters above this
size. The second steel (SAE 1035) decreased from 40 klb/
in.? for a ¥-in.-diam specimen to 35 klb/in.? for a l-in.-
diam specimen without further change. On the basis of
the above and other results that he cited, Grover reaced
ilie following conclusions:

(1) There is little size effect in axial fatigue loac ing.

(2) There is a considerable size effect (varying with the
material) in bending and torsion.

(3) Large notches in large specimens cauvse more ie-
duction in fatigue strength than do geometrically
similar notches in smailer specimens.

In addition to the above-mentioned data, Moore and
Morkovin (Ref. 32) reported fatigue-size effects in
carbon-steel cantilevers a; follows: fatigue strength is
reduced by 15 to 20% wita increase of specimen diameter
from 3 to 30 mm. Draigor and Val'chuk (Ref. 33) prese ited
many data (mainly obtained in the U.S.S.R.) concern-
ing size effects in fatigue. They attributed the phe-
nomenon to three possible mechanisms—flaw statistics,
strain energy, and technological factors.
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Table 1. Rotating—bending fatigua strengths of
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large-diameter steel shafts
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Fig. 5. Size effect in unnotched steel specimens in rotating—
bending fatigue (after Moore, Ref. 31)

Fatigue can serve as an excellent example of the hy-
pothesis offered in this report to explain size effects be-
cause slow crack propagation is the main characteristic of
fatigue behavior. Some mechanism, as yet not fully under-
stood, causes a crack to propagate slowly with the number
of load cycles until it reaches a critical size, at which point
the crack suddenly runs and causes complete fracture.
The present theory contends that, to a great extent, the
strain-energy content of the system controls the onset of
this critical event in a way very similar to that described
earlier for static loading. This size effect is always present
in fatigue loading because slow cracking is always part
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of fatigue, whereas this is not so in static loading. The
following observations support this view:

1) A fatigue fracture surface .lways reveals the transi-
tion from slow to catastrophic growth. The pro-
portion of the slow-growth area increases with
decrease in specimen size,

(2) The effect increases with increase of impurities
content,

(3) The effect is much more pronounced in bending
and torsion than in axial fatigue.

The third observation deserves consideration. Bending
and torsion modes differ from the axial mode in the man-
ner of stress distribution, there being a gradient in the
bending and toision modes and uniformity in the axial
mode. Cracks caused by bending and torsion initiate on
the outer fibers of the material, where stress is maximal;
consequently, these require a higher number of load
cycles to penetrate the bulk of the material and reach
instability than do their uniaxia! counterparts, Therefore,
changing the specimen volume—and thus advancing or
retarding the transition from stable to unstable cracking—
has less effect in an axially loaded specimen, where the
number of cycles from nucleation to instability is smaller.

In any case, the flaw-statistics theory cannot account
for this effect for the following two reasons:

(1) The logic of this theory would require the size
effect to be less pronounced in bending and torsion
than in an axial test because the location of crack-
ing is to a great degree predetermined (especially
in bending), whereas no such bias exists in the
axial specimen.,

(2) From the appearance of the fracture surface, it is
obvious that the effect of size is manifested mainly
during the slow-propagation stage, and not in that
of initiation.

In fatigue tests, as in static loading, the size effect is
limited in the sense that every material has a limited
range of sizes that affect its fatigue life. However, it
should be noted that, in fatigue tests, this transiticn size
is much smaller than it would be in static loading of the
same material. For example, Fig, 5 shows this size to be
between approximately Y% to %2 in. for unnotched speci-
mens. In + atic loading of similar material, the transition
will be observed at this size range only if notches .re
introduced (i.e., if the brittleness is increased). This fact
is consistent with theories that attribute embrittling
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effect to cyclic loading. In other words, cyelic loading
nucleates a crack that is the equivalent of a notch in a
static test,

VIIl. Size Effects in Concrete-Type Materials

Concrete is a material used almost exclusively to sustain
compressive loads. Consequently, most of the in‘ormation
concerning its strength refers to compressive strength,
It has long been a matter of common knowledge that the
size of the test cylinder' exerts a marked influence upon
the indicated strength. An early investigation into this
problem was made in 1925 by Gonnerman (Ret. 34), who
varied the diameters of the eylinders from 1.5 to 10 in. For
such an increase of size, he obtaired a reduction of com-
pressive strength of up to 207,

Another early investigation was conducted by Blanks
and McNamara (Ref, 35) in 1935. They varied the size of
the cylinders from 2 X 4 to 36 X 72 in., ensuring a mini-
mum diameter to maximum aggregate size ratio of four;
they also measured both elastic constants E and v, as well
as the ultimate compressive strength. No efiect of size
upon elastic constants was observed, but there was a
marked effect upon strength, as shown in Fig. 6 (strength
of 6- X 12-in. eylinders was taken as 1009 ). The effect of
size upon strength was found to he independent of the size
of aggregates and age; therefore, the results of various
mixes were averaged and included in the curve. Their
report includes neither stress-strain characteristics nor
statistical scatter of results, and the .uthors found no
satisfuctory cxplanation of the size etfect.

No doubt the flaw-statistics factor played a role in the
initiation of fracture, However, in a compressive test of
a material such as concrete, cracking commences when
the load is as low as 30°¢ of the ultimate load; during the
upper 70% of the loading, therefore, the pro_ess is ¢ ae of
crack propagation. The weakest-link theory has very little
bearing in such a case. By contrast, the strain-energy
effect must be strong during the very pronounced stage
of crack propagation.

In 1941, Tucker (Ref. 36) applied statistical theories to
beam-test results reported earlier by several experi-
menters with concrete: Abrams (Ref. 37), Reage! and
Wiilis (Ref. 38), Gonnerman and Shuman (Ref. 39), and
liellerman (Ref. 40). Tucker divided his study into the

‘U. S. standard test specimens are cylindrical, with a diameter-to-
height ratio of 1:2. European specimens are cubic.
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separate effects of length, depth, and width. For the
length of a constant-bending-moment beam, ke cites
Reagel and Willis (see Ref. 38), who found a 1.4% reduc-
tion in strength upon doubling the specimen length.
Tuckeir’s prediction, based upon the weakest-link theory,
was 27%. The data of Gonnerman and Shuman (see
Ref. 39) concerned cantilever, center, and third-point
loaded beams varying in length up fo five times the
shortest length. The modulus of rupture of the beams
loaded at third points was unaffected by length changes,
but that of the beams centrally loaded and loaded as
cantilevers showed a definite reduction with length. Al-
though Tucker does not attempt to explain this point, the
ceperiments seem to contradict the theory. Where the
zone of fracture is more or less predetermined (as in a
center-point load or a cantilever), the size effect was
definite; where the site of fracture was subject to chance
(as in third-point loading or a constant-bending-moment
beam), the size effect was smaller than predicted or even
nonexistent.

These observations are, however, in accord with the
rroposed theory. When the strain energy is concentrated
in a small volumc of the material, the specimen can be
regarded as “small” in the sense of the present hypothesis.
Strain-energy concentration occurs in cases of center or
cantilever loading becau. of the gradient of the bending
moment. The concentration is even greater in the case of a
notch, bu? only for materials such as concrete or glass; in
mild steel, a notch will introduc> brittleness, which has
an opposite effect (equivalent to an increase in volume).
A “small” specimer. thus favors the stable propagation of
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a crack, and enables the development of a size effect
during this propagation. This hypothesis is borne out by
the familiar observation of a sudden and explosive frac-
ture in a third-point-loaded beam vs a more controlled,
slow fracture under a center-point load.

For depth effect, Tucker (see Ref. 36) also used the
weakest-link theory, with some modifications, to allow
fracture to initiate a¢ an inner fiber (otherwise, based upon
probabilities, there would have been no size effect).
Despite this modification, his prediction was much lower
than the experiments showed. Reagel (see Ref. 38)
demonstrated a reduction in strength of 11.5% for an
increase in depth from 4 to 10 in.; Tucker’s prediction was
4% . It seems reasonable to assume that at least the
75% difference is due to the strain-energy effect.
Abrams (see Ref. 37) presented data showing a 6.5%
reduction in the modulus of rupture, with an increase in
depth from 4 to 10 in. for third-point-loaded concrete
beams.

For width effect, Tucker (see Ref. 36) suggested a
statistical theory that he termed the “summation” theory.
According to this theory, the strength of a specimen is
equal to the sum of the strengths contributed by the com-
ponent elements (i.e., a parallel arrangement of elements).
This was necessary to account for the lack of a width
effect (regarding strength, but not regarding dispersion)
in the data presented by Reagel and Willis (see Ref. 38).
Their results showed that beams with widths of 4, 6, 8,
and 10 in. failed at mean strengths of 801, 813, 816, and
817 psi, respectively. The standard deviation values were
6.3, 4.5, 4.5, and 3.8%, respectively. Gonnerman and
Shuman (see Ref. 39) also tested width effect, but their
results were very erratic. Again, there was no indication
that width affected strength. Once more, therefore, as in
the case of length effect one is faced with the phenom-
enon of no sensitivity to size—a behavior totally unaccept-
able to supporters of any of the statistical theories. No
modifications of these theories, such as Tucker’s “summa-
tion” theory, will reconcile this basic contradiction.

On the other hand, judging this phenomenon from the
standpoint of the strain-energy theory, it does not present
a contradiction because this theory does not require size
effect to manifest itself in all cases. It was noted pre-
viously that mild stezl does not show size effect unless
a notch (or perhaps low temperature or high strain rate)
is introduced to impart some brittleness so that the failure
will become one of crack propagation. Only with fulfill-
ment of this prerequisite (which can also be regarded as
the shifting of the material to “I~ger” volume or toward
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its transition size) will mild steel exhibit a size effect (see
Ref. 23). In the present case, concrete will similarly show
no size effect if it is far from its transition size. In the
two cases where no width effect was observed, the speci-
mens were too “large”; their size should have been re-
duced to permit slow crack development so that size
could have had an effect. One way of doing this is
to introduce a notch,® which will concentrate most of
the strain energy in a small volume near its root.
Cohen (Ref. 41) did exactly that, and obtained a very pro-
nounced width effect, using center-loaded beams with
notches at the center of their tension faces. Decreasing the
width of the specimen from 7 to 1 in. increased the rup-
ture modulus by 50 to 1007, depending upon the span.
However, the number of beams tested vias not sufficient
to deter- .ine the dispersion of results.

In 1952, Wright (Ref. 42) conducted a series of tests
with concrete beams and varied all three dimensions
(without, however, isolating the effect of each). Increasing
the beam size from 3 X 3 X 9in. to8 X 8 X 24 in.
caused a 28% strength reduction for a case of third-point
loading and 33% for a case of center loading. However,
these values also included differences caused by the dif-
ferent loading rates (about 9% ) and what Wright believed
to be a difference in quality between the material of
beams 3 in.? in section and that of beams 8 in.* in section
(11%). The latter idea is totally unacceptable; the error
probably stemmed from his resorting to sawing large
beams into small ones for the purpose of proving the dif-
ference in quality—an act that must have affected the
surface of the tension face. It is much more likely that
the 11% difference (perhaps even more) was caused by the
strain-energy effect. (The balance of about 8% was, ac-
cording to Wright, a statistical effect.) The scatter of
results was qualitatively as anticipated on statistical
grounds; i.e., decreased for larger specimens, but to a
smaller degree. It should be ncted that, according to the
strain-energy theory, scatter should increase somewhat
with the increase of specimen size because the increase of
strain energy advances the fracture towards its initiation,
and initiation is subject to a less favorable distribution
function (namely, one of extreme values). Wright’s obser-
vation (see Ref. 42) may, therefore, be an indication that
the two opposing effects—£flaw statisucs decreasing scat-
ter and strain energy increasing it—were operative con-
currently.

*This may seem to be a contradiction. In mild steel, a notch brings
the material nearer to instability, whereas in concrete (and more
so in glass) it brings the material aearer to stability. However, this
is no contradiction, as will be shown in Section IX.
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Considerable support of the strain-energy theory and
detraction from the flaw-statistics theories were provided
by Glucklich (Ref. 43) in 1957. He showed that the inclu-
sion of a steel spring in series with the specimen has an
effect similar to an increase in the specimen size--ie., a
pronounced effect upon strength, shape of the load-
deflection curve, and dispersion of results. The addition
of the spring simulates an increase in specimen size in
that it increases the strain-energy content of the specimen,
but does not enlarge it from the viewpoint of statistics
(i.e., the flaw population is unaltered).

Hardened, cement-paste cylinders, when compressed in
an ordinary hydraulic press in series with a steel spring,
failed at levels as low as 35% of the failure ioad with-
out a spring. The load-deformation curves were almost
straight lines up to failure, as compared with marked
nonlinearities above a certain level when no spring was
used. The mode of fracture was a single, clear-cut sepa-
ration, as compared with total disintegration in the case
of no spring, and the coefficient of variation of strength
values was increased threefold. Researchers in concrete
know well that, at about 35% of the compressive strength,
internal cracking commences; Glucklich’s observation,
therefore, suggests that the added strain energy simply
advanced fracture to coincide with the onset of internal
cracking. This made an early crack (perhaps the first)
become unstable, whereas otherwise it would have be-
come stabilized, This unstable crack then led to total
fracture. The truncated load-deformation curve, the
single-crack mode of fracture, and the increased scatter
all point to the validity of this assumption. It is not con-
tended, of course, that the added spring is quantitatively
equivalent to any particular known size increase of the
specimen. This problem is complex. As should be clear
from Section V, the addition of a spring not only shifts
the dynamic-response curve of the system, but also alters
this curve completely. In fact, with a concrete-type speci-
men, it is quite likely that the response of the spring com-
pletely dominates that of the system. A strong case has,
however, been made for the strain-energy theory.

In 1962, ]J. P. Romualdi® conducted tests with variable-
span concrete beams reinforced with closely spaced, short
steel wires. For halved spans, he obtained fracture stresses

exceeding those of full beams by 35 to 100%.

In 1966 and 1967, Glucklich and Cohen (Ref. 44) ex-
tended Glucklich’s earlier <vork to cover other states of

‘In an unpublished report (1963).
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stress and used a different material. The following tests
were conducted using plaster of paris:

(1) Unnotched plates, with and without a spring in
series with the specimen, were loaded in tension.
The spring caused a mean reduction of 29% in the
fracture stress and a 507 increase in its coefficient
of variation.

(2) Compression cylinders, made of a different type of
plaster of paris, were loaded—again, with and with-
out a spring. The corresponding figures attributable
to the spring were 30 and 4277, respectively.

(3) A large number of beams, in which challow notches
in the center of the tension face were made during
casting, were center-loaded and tested for length
effect. The notch was used to predetermine the
cross section of failure, thus completely eliminating
the statistical effect. Doubling of the span caused a
mean strength reduction of 19%, but dispersion
values were inconsistent, sometimes increasing and
sometimes decreasing for the double-span beams.

(4) Notched beams, as described above, were tested
for length effect over a much wider range of spans.
Quadrupling of the span resulted in reduction of
the fracture stress by approximately 30%, as shown
in Fig. 7. Again, no correlation was observed be-
tween length of specimen and dispersion of strength
results.

(5) Other similarly notched beams were tested for the
effect of a spring mounted in series with the certer-
point load. In addition, the deformation across the
notch was measured on the tension face. The spring
reduced the breaking load by 11.5%, and the load-
deformation behavior deviated very little from the
linear. Without a spring, the deviation was much
more pronounced. The coefficient of variation of
the breaking loads was 1.35% with a spring and
1.12% without.

The above observations seem to show conclusively
that a strain-energy size effect exists over and above the
statistical effect. This is indicated by tests (3) and (4),
above, where the statistical effect was eliminated by the
introduction of notches. In fact, the very strong observed
effect suggests that the statistical effect, when it exists,
is very small in relation to the strain-energy effect.

The above observations also support the hypothesis
concerning the advancement of instability caused by
strain energy. This is manifested by the disappearance
of most of the nonlinearity in the load-deflectio.u curve,
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Fig. 7. Span dependence of the rupture modulus of a
notched plaster of paris beam (after Glucklich and Cohen,
Ref. 44)

and by the increase of dispersion with increasing strain
energy or size. In tests (3) and (4), the apparent lack of
effect upon dispersion in the two cases of span variation,
as compared with the positive effect in the case of a
spring, is not understood. It may, however, indicate that
some statistical effect occurred even in the notched
beams because (as has been explained) the statistical
dispersions and strain-energy dispersions are opposite.
Where a spring was used, of course, only the strain-
energy effect was operative.

IX. Size Effects in Glass and Glassy Polymers

Glass is the classic material in which size effect was
predicted on the basis of statistical considerations. Griffith
(see Ref. 1) was the first to use this method of predic-
tion, and several investigators—Fisher and Holloman
(Ref. 45), Gibbs and Cutler (Ref. 46), and others—offered
various flaw-distribution functions to account for the dif-
ferent observations. All of the theories predict that larger
specimens will be weaker; quantitatively, however, ther~
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were and still are unexpla.ued discrepancies. In the
discussion that follows, observations will be cited and
reviewed in the light of the theories offered by the inves-
tigators, along with the theory presented in this report.

As long ago as 1891, Auerbach (Ref. 47) discovered
the law, now known as Auerbach’s law, which states
that the ring cracks produced in glass under the pressure
of spherical indeuters are the result of stresses that de-
pend vpon the size of the indenters. A size effect exists
in the sense that the smaller the indenter, the higher the
critical stress, as computed on the basis of the Hertz
equations (see Timoshenko, Ref. 48).

In the years that followed, several investigators—
Androws (Ref 49), Longchambon (Ref. 50), Tolansky
and Howes (Ref. 51), and Tillet (Ref. 52)—repeated and
extended Auerbach’s work. All of them observed the fol-
lowing: Under the pressure of a steel indenter (applied
statically or by impact), glass breaks by a ring crack
encircling the arez of contact, usually at a short distance
from its boundary. The fractures caused by indenters of
varying radius were geometrically similar and, in all
cases, Auerbach’s size effect was observed. The various
empirical relat.onships between the indenter radius and
quantities that measure the critical stress were reviewed
by Roesler (Ref. 53), who also proved their equivalence.

Thus, in works of different investigators, the validity
of Auerbach’s law has been established for about 15 dif-
ferent types of silicate glass. Mathematically, this law
states that P/r = constant, where P is the force between
the indenter and the glass and r is the indenter ra-
dius; a constant breaking-stress criterion would require
P/r* = A¢® = constant (A being a constant) in accor-
dance with the Hertz equations. The range of indenter
radii for which this law was confirmed was 0.5 to 15 mm.
Tillet (see Ref. 52) was the first to extend the range
to 125 mm. She, too, confirmed that P/r = constant
for spheres from 1.5 to 35 mm, but she found the law
P/r* = constant for spheres above 35 mm; i.e., the end-
ing of the size effect. Tillet’s results are shown in Fig. 8.
She also noted the following additional observations:

(1) The critical tensile stress varied by a factor of two
with the variation of indenter size from 1.5 to
35 mm.

(2) The suddenness of the appearance of the cracks
increased with the radius of the indenter. For
small indenters, the crack could be seen to propa-
gate in a circle, with a speed on tie order of

JPL TECHNICAL REPORT 32-1438

1 mm/s. Furthermore, when pressure was applied
more slowly, the crack velocity became slower.

(3) The scatter of force observations was the same for
both small and large indenters.

(4) When the glass surface was scratched with a dia-
mond, for indenters below 1 in. radius (i.e., in the
range of size effect), no diiference was found in
breaking force between scratched and unscratched
glass; for larger indenters (i.e., in the range of no
size effect), the breaking force was much less (309
with an indenter of 4 in. radius) in the scratched
glass.

(5) For small indenters, the size effect in glycerol
sextol phthalate (organic glass) was similar to that
in silicate glass.
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Fig. 8. Effect of indenter size upon force required to pro-
duce a ring crack in silicate glass (after Tillet, Ref. 52)
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The flaw-statistics theory, which has traditionally been
applied to the strength of glass, is invalidated here for
the following reasons: (1) Scatter was not higher for the
smaller indenters, as it should have been according to all
statistical theories. (2) The degree of smoothness of the
glass surface (whether scratched or not) made no differ-
ence in the effect of size on strength, Where it did make
a difference, there was no size effect. (3) The effect
was the same for silicate glass and for organic glass,
although the states of the flaws were completely different.
(4) The sudden ending of the size effect above a certain
size (see Fig. 8) is inconsistent with any cf the statistical
theories. In addition, Roesler (see Ref. 53) advanced the
following objections: (1) The flaw-statistics theory does
not readily lead to the special power laws, which are
true empirically. These laws would have to be attributed
to a peculic- special flaw distribution; it seems improb-
able that this distribution should have accidentally existed
in all of the samples of different types of glass that have
been tested. (2) Reviewing the works of five investi-
gators, Roesler did not find the scatter effect in any of
their reports.

By contrast, the observations of Tillet and the other
investigators are highly consistent with the theory pro-
posed herein, as demonstrated in the paragraphs that
follow.

For small indenters (equivalent to small specimens
because of their geometrical similarity), the slow crack
velocities indicate a stage of stable crack propagation.
This is further supported by the fact that this velocity
depended upon the rate of load application. With large
specimens, the almost instantaneous growth suggests
that the strain-energy instability condition was satisfied
before the initiation of the crack; therefore, when initia-
tion occurred, the crack immediately became unstable.

The last statement is supported by the observation
that, in large specimens, the breaking force was much
reduced by scratching the glass. This does not occur in
small specimens. The instability condition having been
assured by the size of the specimen, its failure condition
then became that of initiation, and this is known to
depend upon the surface condition. In small specimens,
the initiation stress doubtless also depended upon the
surface condition, whereas the ultimate stress did not
because a stage of stability intervened.

The almost abrupt change from size dependence to
independence is consistent with the assumption of a
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transition size above which the strain-energy instability
is presatisfied. In such large specimens, therefore, the
failure condition becomes that of initiation, as indicated
above; actually, some size effect due to flaw distribution
should be anticipated. Indeed, careful examination of
Fig. 8 will show that the slope of the upper curve is not 2,
as drawn by Tillet, but more nearly 1.8. Some statistical
effect exists, therefore, but it is small in magnitude.

The flaw-statistics theories require higher scatter for
smaller samples. The strain-energy theory requires just
the opposite, as explained in Section VIII. The fact that no
difference was observed in the scatter suggests that both
flaw statistics (for initiation) and strain energy (during
propagation) were operative concurrently,

A great number >f investigations of size effects in glass
fibers have been carried out since Griffith first conducted
his classical experiments (see Ref. 1). Griffith showed
that, for a few seconc's, freshly drawn fibers are of high
strength independent of their size—up to 0.02 in. diam
and ranging from 220,000 to 900,000 psi for different
types of glass. The size effect existed for aged glass,
and Griffith suggested an empirical function for the
size dependency that yielded a maximum strength of
1.6 X 10" psi by extrapolation to zero size. His work,
therefore, clearly indicated size effect to be the result of
flaws that develop in the glass during its aging. Conse-
quently, most of the investigations following those of
Griffith were aimed at determination of the flaw-
distribution functions to fit the observations. A fit was
sought in both the median-sirength and the scatter-of-
strength results, To this day, unfortunately, no agree-
ment has been reached on either of these points because
of the totally contradictory results reached by different
investigators.

As far as length is concerned—e.g., in the work of
Anderegg (Ref. 54)—good agreement was reached be-
tween length effect of 13, fibers (over a factor of 300)
and a scatistical function suggested by Fisher and
Holloman (see Ref. 45). Reinkober (Ref. 55) also ob-
served similar behavior.

For a diameter effect, however, the position is not
clear. Mould (Ref. 56) reported data that were grouped
around two distinct strength levels, with high scatter of
the low-strength distribution and low scatter of the high-
strength distribution. This was in obvious contradiction
to any statistical theory, but is in agreement with the
strain-energy size effect proposed herein. Anderson
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(Ref. 57), in an excellent discussion of this problem, in
this connection mentions Mould, and also the work of
Thomas (Ref. 58). For very small fibers (2 X 10* in.),
Thomas found a coefficient of variation of only 1% for
a median strength of 550,000 psi. Such low scatter
for such high strength is inconsistent with any statistical
theory. On these and similar observations, Anderson
comments that the only way to reconcile them with the
flaw-statistics theory would be to assume either a com-
plete absence of flaws at 2 X 10* in. diam or a flaw
population of uniform size—both unlikely assumptions.

Observations also do not agree with theory insofar as
the strength of a material is concerned. Extrapolations
of the various formulas to zero size result in strengths
far in excess of any theoretically conceivable strengths.

Because of the contradictory observations, several
theories of the size effect in glass fibers have been pro-
posed. Anderson (see Ref. 57) reviews these theories, and
discredits most of them, including the following: oriented
structure, oriented flaws, “frozen-in” strains, high surface
strength, and flaw statistics. His rejection of the latter is
mainly because of the low scatter of strength data ob-
served in most of the investigations. Anderson’s inclina-
tion is to support a flaw-statistics theory modified to
account for different quenching times for fibers of dif-
ferent diameters (the latter factor affecting the flaw
density of the fiber). He concludes, however, by stating
that he regards the problem as unsolved.

In a similar review of the problem, Hillig (Ref. 59)
considers the most serious objection to the flaw-statistics
theories to be the various studies that show no diameter
effect at all. He cites a number of investigators who had
removed all flaws from the surface of the fibers by etch-
ing, lacquering, or liquefying, and consequently had ob-
tained strengths independent of diameters up to % in.
In a similar manner, Hillig had obtained a strength of
2,000,000 psi in 0.5- to 1-mm-diam fibers. His objection
is, therefore, to an intrinsic statistical flaw concept, but
not to treatment surface damage. The high strengths
observed with very thin fibers would then simply be
attributed to their pliability, which prevented the occur-
rence of damage when rubbing one against another
during handling. Similar observations were made by
Bartenev and Izmailova (Ref. 60), who, by a special
technique, managed to obtain flawless fibers. They report
no dependence of strength on either length or diameter,
and an extremely small scatter of strength data.
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If an attempt should be made to draw conclusions
from all of the investigations that have been made of
glass fibers, the following points might be noted:

(1) Although they are certainly the cause of a size
effect, flaws are more the result of damage (me-
chanical, hygrometric, or chemical) during aging
than of an intrinsic flaw population. As a result,
flaws are subject to arbitrary distribution functions.

(2) With the removal of surface flaws (by etching,
etc.), near-theoretical strengths are approached.
Also, size dependence and high scatter are almost
eliminated. This suggests that, if the strain-energy
size effect is operative (which is doubtful in view
of the remoteness of fiber size from the transition
size of 1 mm observed by use of tae indenter
technique), it is very limited in magnitude. This,
however, does not contradict the proposed theory
because the strain-energy size effect ‘akes place
only during the stable-propagation st:ge, which
does not exist in the absence of notches. Generally,
the two effects coexist: flaw statistics affecis initia-
tion and strain energy affects propagation. Neither
exists in the absence of flaws. In the presence ¢
a single flaw (or a dominating notch), only the
strain-energy effect exists.

(3) The fact that extrapolations of test strengths to
zero specimen size yield excessive theoretical
strengths suggests either that the functions are too
steep or that perhaps another mechanism is opera-
tive to add size sensitivity. Such a mechanism
could be the strain-energy size effect.

(4) The common observation that scatter of strength
data is too small, even where no surface improve-
ment is made, may also point to the coexistence of
the strain-energy mechanism, which favors the de-
crease of scatter data with size.

(5) There seems to be no doubt that other causes
(probably the result of different properties reached
during the manufacture of different si-es of fibers)
contribute to the inconsistency of observations.

According to the proposed theory, a glass specimen is
as brittle as it seems because, in most cases, it is too
large to permit the development of stable cracking. It is
theorized, however, that glass has in common with most
other materials an energy-dissipating mechanism that is
manifested only in very small specimens (this would
make the energy-absorption curve concave upward).
Marsh (Refs. 61 and 62) presents convincing arguments



to the effect that glass has a capacity for plastic defor-
mation at stresses appreciably below the theoretical co-
hesive strength. His evidence includes the following:

(1) Plastic furrows produced by a hard point on a
glass surface.

(2) Diamond hardness impressions.

(3) Residual stresses observed at the root of cracks
after removal of load (Dalladay and Twyman,
Ref. 63).

(4) Gross plastic flow found under high isotropic pres-
sures (Bridgman and Simon, Ref. 64).

It is perhaps significant that, in all cases where plas-
ticity was observed in glass, it was either in very small
bodies or the observations were made when the stress
was concentrated in very small volumes. An exception
is the case of Bridgman and Simon; there the plasticity
could have been gross because premature cracking was
prevented by the confining pressure. In all other in-
stances, the smallness of the stressed material apparently
prevented the catastrophic generation of cracks, and this
is in accord with the proposed theory. With the prema-
ture, catastrophic cracking arrested, the stresses could be
raisud sufficiently to accomplish the very striking plastic
furrovrs and indentations demonstrated by Marsh (see
Refs. 61 and 62). It is highly unlikely that similar plastic
strains can be obtained if a large body of glass is sub-
jected to stress. Brittle fracture would quickly put an
end to such an attempt. It is also possible that a very
careful microscopic examination would reveal the open-
ing of stable cracks in the deformed zones of the fur-
rows and indentations reported by Marsh.

It is instructive to note that Roesler (see Ref. 53), in
extrapolating his equation for the stability condition
under an indenter to very small contact areas, found
critical stresses of 10° kg cm. He concluded: “Appar-
ently under tools fine enough to produce such extremely
small dents, the fracture might cease to be brittle, since
the stresses demanded by the energy balance condition
of a brittle crack would suffice to destroy the cohesion of
the material. It is perhaps possible that this speculation
gives the explanation of the phenomenon of superhard-
ness and micro-piasticity discovered by Smekal and co-
workers” (Refs. 65 and 66). Although this observation is
very true, it is incomplete in that it does not provide for
the arrest of the propagating crack. It is the smallness
of the stressed body that provides for this arrest, and thus
permits the mauifestation of Smekal’s “micro-plasticity.”
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Table 2. Fracture surface energies at 25°C

- , Yente X 107° Yone X 107
storle ergs/em’ ergs/em’ Reforence

Steel 1.0 1000 68
Glass .7 0.55 69
PMMA" 0.5 200 67
Concrete 0.8" 10 70, 71
"Polymethyimethacrylate.
b"Based on a 1:3 volume ratio of cement to quartzite aggregates.

Classy polymers behave macroscopically in a manner
very similar to glass; i.e., in an apparently brittle man-
ner. However, it has long been known that these
polymers have much more highly developed energy-
dissipating mechanisms than glass. Berry (Ref. 67) pre-
sents the information shown in Table 2 for discrepancies
in surface energies between calculated and observed
values (the author has included the corresponding values
for concrete). The discrepancy in polymethylmethacrylate
(PMMA) is almost the same as that of steel, and the
cause is similar. In both steel and PMMA, a great
amount of energy is dissipated ahead of the advancing
crack. In fact, Table 2 shows that the pure surface ten-
sion of PMMA is only 0.25% of the energy spent irre-
versibly. Independent studies of the fractured surfaces
of PMMA, using such techniques as interference micros-
copy, reveal that the surface was affected to a depth
of approximately the wavelength of visible light. The
mechanism is complex; for the present purpose, it suf-
fices to state that crazes are formed to that depth, dissi-
pating a large amount of energy in the process.

Therefore, it is to be anticipated that PMMA will have
a much more pronounced stage of stable crack prcpaga-
tion than does glass. Indeed, such were the conclusions
reported by Berry (Ref. 72) based upon both velocity
measurements (0.1 cm s~ for the slow stage vs 10* cm s
for the catastrophic stage) and fracture-surface examina-
tion. The latter is very re.ealing in that it enables the
accurate determination of the location of the velocity
transition. The slow region has a very rough and irregu-
lar surface that is delineated by a sharp boundary;
beyond this boundary, in the fast region, the surface is
initially smooth and highly reflective, and then becornes
duller, losing reflectivity. Thus, the fast region actually
represents subregions of moderate and high velocities.

Berry (Ref. 73) has shown that the size of the initial
crack affects the relative portions of the various types of
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surface in such a way that, as the size of the initial crack
decreases, the portions of the lower velocities decrease
and the initial acceleration of the crack increases. This
is in complete agreement with the theory presented
herein because a specimen witi, a small initial crack is
equivalent to a “large” specimen (see Sections I1I-B
and XI).

The surface appearance also helps to differentiate
PMMA behavior from that of glass. Smekal (Ref. 74),
Shand (Ref. 75), and others have shown a similar appear-
ance in glass except for the absence of the rough initial
portion, which should not exist in a material that is
“large” in the sense of the proposed theory. In his inves-
tigation, Shand calls the stage of smooth surface “slow
propagation,” but it can row be appreciated that it was
actually a case of “load-relaxation stability” and not of
“energy-dissipation stability” (see Section III). This must
have been the result of his loading arrangement, which
entailed load relaxation with the growth of the crack.
No “energy-dissipation stability” could be expected in
glass specimens of 0.2 in. diam, as were those reported
by Shand.

Berry (Refs. 76 and 77) reported two experiments in
which he determined y for PMMA and for polystyrene
by tensioning specimens in which natural cracks of
varying depth had been previously made. He used
specimens varying in cross section from 0.42 X 0.063
to 098 X 0.19 in. for PMMA, and from 042 X 02 to
142 X 02 in. for polystyrene; in neither case did he
observe any size effect, In view of the high capacity of
these materials to dissipate energy, these results are not
surprising, the specimens Berry used being definitely too
small and too far from their transition size.

It is known that some glassy polymers that are brittle
in tension are quite ductile in compression. This is an
indication that these materials actually have some ca-
pacity to yield; in the case of tensile loading, however,
this stabilizing factor is not enough to control the very
unstable crack growth. In compression, as has been
shown, the growth is much more stable; therefore, this
yielding is sufficient to voutrol the cracks. The prevention
of premature cracking thus permits the manifestation of
plasticity in compression.

The present author is unaware of other works demon-
strating size effects in glassy polymers. In view of the
pronounced capacity of these materials to dissipate
energy, however, they undoubtedly have a transition size
much larger than that of inorganic glass.
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X. The Three Conditions of Fracture

Because Griffith used glass for his classical experi-
ments, his specimens were “large” in the sense of the
present theory, The instability condition was assured in
advance, and he met instability together with initiation.
Consequently, he did not have an opportunity to learn
of the more general case in which stability follows the
initiation of a crack. Also, he did not realize that y
(the surface tension that he obtained for glass) was only
one of two material constants required for the complete
description of the material resistance to fracture. As a
result of the work of Marsh (see Refs. 61 and 62), how-
ever, investigators are now in a position to realize that
glass should also have a second, higher constant, which
represents its ultimate resistance to fracture. This con-
stant is usually denoted G, for the less brittle materials.

Because Irwin and Orowan developed their theories
from tests ¢ iducted with metals (“small” in the sense
of the present theory), the instability condition was not
satisfied @ priori. When a crack initiated, therefore, it
was stable, and they had no means of knowing of its
existence. They continued to load until instability was
reached, at which point they measured G.. They did not
consider the initiation of cracking to be significant, nor
were they aware that the material had gone through two
critical phases. The first phase is the initiation of the
first crack, and is governed by a constant with dimen-
sions equal to (but value much lower than) G.. In glass,
this initiation constant is y. In metals, no experimental
evidence exists to indicate what value this constant has
in relation to y. Therefore, a new value y’ is here defined
as the limiting value that (%) G. (as is known, under
these conditions, G = 2y) will app-oach as the specimen
size increases to infinity. Future studies will reveal how
close y" is to y, but at present it will suffice to state that
y" is the lower fracture constant.

Thus, in the general case, every material has two con-
stants that fully describe its resistance to fracture. The
lower constant y” has already been defined, and it is also
known that, for glass, y* = y. For consistency, the upper
constant is here defined as the limiting value that G, will
approach with the decrease of the specimen size to zero;
this constant is denoted by G,. Strictly speaking, reduc-
ing the size to zero seems an absurdity because the
whole concept of the energy balance is based upon
the concentration of energy ahead of the crack—and
without material there is no crack and no concentration.
Consequently, with the size approaching zero, the failure
criterion must change from one of energy to one of

:
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stress, with the limiting value being the vield stress o,.
For practical purposes, however, there is no need to
approach zero because G, attains a more or less constant
value at finite sizes. The criterion still being energetic at
these sizes, G, will be used as defined above, with the
realization that

wC 0"
L

G"‘*'
E

(12)

Because both G, and o, are material constants, ¢, must
also be a constant—one whose value is hard to estimate
at this stage, but which may actually be the entire
critical size of the specimen.

That o, approaches o, with decreasing specimen size
is shown for steel by Lubahn’s curves (see Fig. 3); for
glass, this relationship is demonstrated by the fact that
theoretical strengths are approached with decreasing
fiber diameters. In view of Marsh’s results (see Refs. 61
and 62), it is to be anticipated that yield will take place
before these theoretical strengihs are reached,

The two new material constants y* and G; control the
two critical events of fracture, crack initiation and ideal
instability, respectively. The relevant conditions, there-
fore, are as follows:

(1) Crack-initiation condition:

2Ey’
o'c = (13)
™
(2) Ideal-instability condition:
EG;
oic = —— (14)
™
or
g = Uy (15)

where both y" and G; are, by definition, independent
of size. Whereas y’ always determines the initiation of
cracking, and instability only rarely (for very large ele-
ments), G; rarely determines instability (for very small
elements only). In all practical cases, G, (the size-
dependent value) controls instability. Thus, it is very
important to make a study of the size dependency of G..
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The instability condition in the general case, therefore, is
not (2), above, but the following:

(3) Instability condition:
ECc

”

(16)

o'c =

Wherever it is stated in this report that the instability
condition had been assured, the meaning is that the
specimen was of a sufficient size for G, to be reduced
to 2y". In such cases, initiation and instability coincided.’

For practical purposes, it is most important to know
G. and how it varies with size (its size dependence is of
a higher degree than that of ¢ or ¢ because it is propor-
tional to ¢%c), It is also important to knew y” and G, for
the following reasons:

(1) So far in use only with glass (in the form of y),
y” should be the true design criterion for very large-
scale steel members. For ordinary-sized members, it
is also important because it determines the event of
crack initiation.

(2) So far not in use at all, G; should be the true design
criterion for small elements of glasslike materials. It
alsc determines the extent of plastic strains that can
be obtained with such materials.

For some values of the above constants, Table 2 should
again be consulted. It may now be realized that the
values appearing in the column vy, are actually (2) G
as such, they have meaning only in relation to specific
sizes. The only absolute value in Table 2 is y... for glass.
Because it is obvious that the glass specimens were
“large,” y., is actually y*. For G; of glass, Marsh’s esti-
mate is that what he termed the “fracture energy” is 50
times greater than the surface energy. However, it is
certain that Marsh did not go to the limit because his
results were obtained from finite-size elements. The true
value (theoretically pertaining to zero size) should, there-
fore, be more than 50 times greater than the surface
energy, and G; should be more than 100 times greater.
More explicitly, G, > 55,000 ergs cm*. (Table 2 shows
vons 10 be somewhat smaller than y..; this, in principle,
is impossible.) For the remaining three materials listed in
the table, no conclusion can be drawn with regard to

"In Griffith’s experiments, because initiation and instability coin-
cided, the term “GCriffith’s condition” is used rather loosely
for both events. To avoid ambiguity, this term is not used in this
report, and each event is given its own descriptive name (see
Section I).
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either 4" or G, values except to state that the former are
less and the latter more than the y,,, values.

One may argue that, for metals whose transition size is
very large (see Section XI,) the elements on which
fracture-toughness tests are conducted are “small” by
comparison, and that, as a result, the observed G, is ap-
proximately equal to G,. Un'ortunately, however, all G,
determinations start from a notch. The notch imparts
brittleness because of its triaxiality of stress, and this is
equivalent to an increase in size, Thus, although the speci-
men may be of small dimensions, it is “large” in the sense
of the present theory, the observed G, being well below
G.. A check as to how close one approaches G, is the
value of o, at instability, as, according to Eq. (12), ¢, = o,
when G, = G,. Lubahn has approached this state (see
Fig. 3).

Carman, Armiento, and Markus (Ref. 78) measured
fracture toughness for a larg: variety of aluminum alloys.
In all cases, o, was less than o,; in cases of purer material,
however, the ratio ¢./0, was appreciably higher than in
cases of commercial alloys. This indicates that the speci-
mens, which were 20 in. wide, were not “small,” and that
the G. values observed were well below G;. For the purer
aluminum—i.e., the more ductile, and thus the equivalent
of “smaller” specimens—the results were nearer to G,.

The drawback of the fracture-toughness test is that it
stems from the brittleness imparted by the notch; yet it
is safe because it results in an underestimate of G.. How-
ever, strictly speaking, the G. value thus determined
should be related to a much larger specimen when the
study of the size dependence of G, is made.

XI. The Transition Size

All curves representing the size dependence of strength
and semiductility (i.e., ductility accompanying cracking)
have the characteristic shape of a reversed sigmoid, as
shown schematically in Fig. 9. In most cases, only a por-
tion of the curve has been explored (see Figs. 3, 6, and 7),
but it is obvious that the curve flattens out on both sides
of its steep portion. The upper limit of the strength curve
is necessary to represent the theoretical strength or, what
is more likely, the yield strength. Its lower limit is neces-
sary to represent the initiation stress to which the strength
is reduced with very large elements. This reasoning would
require the left-hand segment of both the strength and
ductility curves to be horizontal. It would also require the
right-hand segment of the strength curve 0 be slightly
decreasing, and that of the ductility curve to be slightly
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Fig. 9. Size dependence of strength, ductility, and strain-
energy release rate of a material (schematic)

increasing, to represent the size effect upon initiation
according to the flaw-statistics theory. At least with regard
to strength, experiments confirm this prediction.

Figure 9 also shows the effect on G, with (he limiting
values of G, and y’. The difference between the two
plateaus in each of the three curves is equal to the
strength, the ductility, and the G, value that would be
gained during the stable propagation of a crack in aa
extremely small specimen of the material. If Fig. 2 repre-
sents such a small specimen, so that ¢, ¢., and G, become
oi(=a,), ¢;, and G, respectively (the suffix i symbolizing
ideal instability), then the differences o; = a,, f(¢;) = f(¢,),
and G; — G, are, respectively, these gains in strength,
ductility, and G..

In priuciple, all materials exhibit the above behavior.
They vary, however, in both the magnitude of the transi-
tion and in its position. Hardly any data are available on
transition magnitude, and very little on position. How-
ever, the data presented in this report can serve as a
guideline for determining the position of the transition
size of various materials along 2 certain size scale (Fig. 10).
It must be realized, however, that a more accurate deter-
mination of these transitions is impossible because size
is not the only factor affecting the transition (in none of
the referenced works is the size effect isolated).

Thus, it is known that the brittleness-ductility transi-
tion is affected, perhaps more than by size, by tempera-
ture, strain rate, and triaxiality of stress. In all of the
examples cited in this report, all four factors acted simul-
taneously. In particular, the effect of stress triaxiality is
confusing in the case of ductile :netals because such ma-
terials are highly sensitive to this factor. In the work of
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Fig. 10. Transition size for some typical materials

Lubalm (see Rel 24) with mild steel, for example, the
transition was made with specimens 22 in long; however,
these specimens were very sharply notched—a provision
that enormously decreased the ductility of the steel. It is
certain that no size effect would have been encountered
with specimens of this size had it not been for the notches.

This is further exemplified by the other work of
Lubahn (see Ref. 23) with a less ductile metal (nickel-
molybdenum-vanadium steel), as shown in Fig. 3. Un-
notched beams showed no size sensitivity; with increasing
notch sharpness, the size sensitivity became more and
more pronounced. It thus seems as if the notches shifted
the curves to the left by amounts that increased with the
sharpness of the notch. Therefore, if one attempts to
climinate the triaxiality effect, these curves must be
shifted back to the right by equal amounts; i.e., the
0.001-in.-radius curve will be shifted the most, and the
others will be shifted by smaller amounts, depending
upon their sharpness. It is easy to see that the resulting
curve will rcsemble those shown in Figs. 9 and 10. The
amount of the shift depends on the sensitivity of the
material to triaxiality—a problem that is still to be studied.
The position of the mild-steel curve in Fig. 10 is, at this
stage, no more than a guess. To determine its true posi-
tion, tests will have to be conducted with very large and
unnotched specimens.

A distinction should be made between triaxiality
created by the stress concentration in front of the crack,
which is present in all cases, and that which is imposed
upon the specimen by its shape, its dimensions, and by
the state of the applied stress. The effect of triaxiality
upon the transition, discussed in the preceding paragraph,
concerned the geometry of the specimen; e.g., that of a
notch or the thickness of a plate. As far as the latter is
concerned, it is customary to denote the G, value for a
plane-strain case by G, and to regard it as a different
quantity; actually, however, the two are one quantity,
which is sensitive to the triaxiality of the stress.
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if a study is made of the separate effects of size, tri-
axiality, temperature, and strain rate on strength, duc-
tility, and G, value, the combined effect of all these
factors on any of the properties is obtained by super-
position. Alternatively, in any one study, if morc than
one factor is involved (as were size and triaxiality in
Lubahn’s study), then factors can be climinated by
proper shifting of the curves, leaving the transition curve
for any des'cod single factor,

It should be noted that a notch actually has a dual
function. It causes stress triaz.aiity, as explained, but it
also concentrates the energy in a small volume of the test
speciraen so that the specimen is made “smaller.” An alter-
native explanation of this second function follows, With
a notch, as opposed to a nearly smooth surface, the
growth begins under a lower overall stress (since
o o 1/¢"%). Thus, the entire specimen is almost load-free,
and only the region ahead of the notch is highly loaded,;
therefore, the effective specimen is made “smaller.” With
very shallow notches (simulating the state of a smooth
surface), the specimen is “large” because o is high and
more evenly distributed within the material (see also
Section I11-B).

The two effects of a notch are thus contradictory—tri-
axiality enhances instability, and strain energy prevents it.
However, the triaxiality effect is of little importance in
the case of materials that are already brittle, sach as glass
and concrete, whereas the strain-energy eftect is of little
importance in “small” materials, such as mild steel. There-
fore, for all practical purposes, a notch is an embrittling
factor for mild steel and a ductilizing factor for glass.
Notches thus tend to converge the transition curves of the
various materials toward the center of the size scale. Be-
cause some notches always exist in all practical cases, the
true spectrum of transition sizes is generally wider than
might be judged from experiments.

XIl. Strain-Energy Effects During Various Stages
of Fracture

It may be useful to summarize the effects of the strain-
energy content and size at the various stages of fracture.
These are as follows:

(1) The effects on the initiation of cracking are mainly
a result of the statistically distributed flaws,

(2) The effect vpon total fracture includes item (1),
above, plus the effects during stable crack propa-
gation.
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(3) During

stable propagation (“energy-dissipation
stability”), the effects are as follows:

(a) The energy content determines the amount of
stress relaxation with every increment of growth
of the crack. A rigid system (small size) con-
tributes to stress-relaxation stability; because
the system is stable anyway, however, this has
no effect upon the critical values of stress and
strain,

(b) The energy content determines whether dy-
namic effects will develop with fluctuations of
the restraining force *W/ce. High energy con-
tent is conducive to such effects. With low
energy content, the driving force does not ex-
ceed the restraining force, and the dynamic
situation does not develop.
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(4)

(5)

During stable propagation, the size (but not the
energy content) determines the dynamic response
of the system if a dynamic situation had developed
according to case (3b), above. The larger the body,
the lower its natural frequencies, and hence the
earlier will be the onset of instability. This affects
the critical values of stress, strain, crack length,
dissipated energy, and G..

During unstable propagation, the strain-energy con-
tert determines the amount of stress relaxation
caused by exhaustion of energy, as described for
the stable stage—case (3a), above. However, be-
cause it occurs in this case during instability (i.e.,
beyond the critical point or maximum stress), the
stress relaxation causes either a pseudostability (see
Fig. 4b) or an arrest in accordance with Eq. (8).
This, of course, does not affect any of the critical
values.
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