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A HYBRID METHOD FOR THE

OPTIMAL LINEAR CONTROL OF NONLINEAR SYSTEMS

By Jay M. Lewallen

SUMMARY

The relative advantages and disadvantages of indirect

and direct optimization methods have been known for some

time.	 This development illustrates 	 the compatibility between

a perturbation method (indirect)	 and a gradient
1-

method	 (direct).

Moreover, the investigation reveals exactly how estimates

of the initial Lagrange multipliers, needed	 for the indirect

.: metho-, may be obtained from the direct method. After

several	 iterations with the direct method,	 the initial value
S,

of the Lagrange multipliers may be improved to the point that
A

' convergence can be achieved with the indirect method. `1

INTRODUCTION

Iii recent years, considerable interest has been gener-

ated in methods for solving the nonlinear two-point boundary

.^'	 value problem. These methods are quite naturally categorized

as either direct or indirect. The indirect methods seek

to satisfy the conr?itini:s of mathematical optimality, that

is, the necessary conditions resulting from the first

variation of the functional to be extremized. The classical

optimality conditions are satisfied identically, and iterations

are continued until the desired terminal constraints are

satisfied. The indirect methods that have been successfully

implemented are those proposed by Breakwell et al(l),,

Jazwinski (2) , Kenneth and McGill (3} , and Lewallen(4}.

1



On the other hand, the direct methods seek to improve

an assumed control program, with the aid of influence

= function concepts ; by charging	 the control program in such

a manner that some index of performance is extremized and

the desired terminal constraints are approached.	 The

classical optimality conditions 	 are not satisfied identically,

and therefore the optimal trajectory is only approximated.

The direct methods that have been successfully implemented

are those proposed by Kelley
(5)

,	 Bryson and Denham(6),

1616y	 et	 al
(7) (8

^,	 McReynolds (9) ,	 and	 Gottlieb (10) .	 -

The major objection to	 the indirect methods	 is	 that

- the initially assumed Lagrange multipliers must be iterated

upon,	 and often the first guess for their values	 is so poor

that convergence is never achi , ved.	 However,	 if convergence

occurs,	 it does so quadratically and the optimal or Eulerian

control program may be easily evaluated. 	 The major objec-

tion to the direct methods	 is	 that	 the	 Eulerian control	 is

only approximated.	 Experience has revealed that even though

the terminal constraints are adequately satisfied and the

performance index	 is extremized,	 the approximated control

program is	 often significantly different from the Eulerian.

However,	 the convergence process will usually begin from

almost any reasonable control program assumption.

Clearly,	 a hybrid approach,	 combining the best features

of the indirect and direct methods, would be of significant

value.	 In the discussion that follows,	 the perturbation

method proposed in Reference 1 is shown to be compatible with

the gradient method proposed in Reference 6. 	 In addition,	 a

" hybrid method is proposed which illustrates how initial values

of Lagrange multipliers may be obtained for the 	 indirect

method by using the direct method.
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NECESSARY CONDITIONS FOR AN OPTIMAL PROCESS

In general, the optimal control process can be stated

as follows: Determine the m-vector of control variables

u(t) in the interval t o < t < t f such that a scalar

performance index of the form

I	 =	 ^(x f , t f )	 (1)

is minimized, while the n-vector of initial conditiors

	

x(t 0) = x0	 (2)

at a known t o	 and the q-vector of terminal conditions

M(x f , t f )	 = 0	 (3)

at an unknown t f	 and the n first-order, nonlinear,

differential equations

x =	 f(x,u,t)
	

(4)

are satisfied.

The necessary conditions required for the accomplish-

ment of the above stated objective are discussed by Tapley

and Lewallen (11) . These conditions may be summarized as

3



follows. In the interval of interest,

x = HX(x,u,a,t)

T

_	 -HX(x,u,XIt)
	

(5)

0 = HT(x,u,X,t)

At the unknown terminal time,

M(xf, t f ) = 0

N ( xf , X f , n, t f ) =	 P x - a T) f = 0
	

(6)

R(xf, a f , n, t f) _	 (P t + H) f = 0

--	 The scalar functions P and H are defined as

P = ^ (x f , t f ) + r^ TM (x f , t f)
	

(7)

H = XTf(x,u,t)
	

(8)

where H is referred to as the generalized Hamiltonian,

and n is a q-vector of Lagrange multipliers.

With the indirect methods, it is usually assumed that

a well defined minimum of I-I(x,u,a,t) exists so that

Hu = 0 and Huu is positive definite. With these

assumptions, the condition H u = 0 yields m algebraic

equations which can be used to eliminate the m control

4



variables in Equatio:,s (5-a) and (S-b). The results can

be expressed as

	

x = HT (x,a,t)	 a	 =	 -H
T
(x,a,t)	 (9)

where H = H[x,u(x,A,t),a,t] .	 Equations (2), (6) and (9)

lead to a conventional two-point boundary-value problem.

If the 2n-vectors z and F(z,t) are defined,

i
zT = rxT	 X j	 FT = CH

	

, _H J
	

(10)I_ 	 ^	 ^	 a ^	 x

then Equations (9) can be expressed as the 2n-vector

r^

i =	 F(z,t)

Furthermore, Equations (6) define the terminal boundary

conditions for Equation (11) to be

h(z f , t f )	 = 0

(11)

(12)
If

where h is an n+q+l vector. These n+q+l conditions

may be used to determine the n values of alt o )	 the

q values of q , and the one value of t  .

INDIRECT OPTIMIZATION METHOD

The indirect optimization methods seek to satisfy the

above stated necessary cond':tions required for optimality,

that is, Equations (2), (5), and (6). In implementing the

perturbation methods, as proposed in References 1 and 2,

Equations (2) and (5) are satisfied identically, and

S
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iterations are continued until Equations (6) are satisfied.

If convergence occurs, the satisfaction of these terminal

constraints is usually approached quadratically. In

implementing the quasilinearization methods, as proposed

in References 3 and 4, Equations (2) and (6) may be satis-

fied identically, and iterations are continued on a linear-

ized version of Equations (5) until the Equations (5)

themselves are satisfied. In the following investigation,

the only indirect method considered will he the perturbation

method.

The perturbation methods require a reference solution

from which to begin. The equations that describe this

reference trajectory are given in Equation (9). Since the

initial state is given in Equation (2), a solution may be

generated by assuming n initial Lagrange multipliers, a(to)

and integrating Equations (9) forward. This integration is

continued until some assumed terminal time is reached. An

estimate of this terminal time may be made by determining the

time when one of the specified constraints is satisfied

identically. After the terminal time is reaches? and before

the correction for the next iteration is made, q values of

n must be determined.

In addition to the above assumptions, some consideration

must be given to the behavior of trajectories near the

reference path. The study of these nearby trajectories

require the perturbation of the equations that define a

6
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reference solution,	 that is,	 Equations	 (5)	 must be

perturbed.	 This operation leads	 to

8x	 =	 HXx dx + H)u du
(13)

6a	 =	 -H xx ox - Hxu 5u - Hxa da (14)

0	 =	 HUx Sx + Huu du + HUa oa (15)

where the coefficients must be evaluated on the reference

path.	 These relations are simply a set of linearized equa-

tions which. describe Possible perturbations to the reference

trajectory.

Equation (15) may be solved for the control variation

- 6u	 =	 -Huu	 (H
Ux 

dx + Hill	 da) (16)

provided	 HLU	 is nonsingular.	
This variation is eliminated

from Equations	 (13)	 and	 (14)	 to provide

da A3	 -Albl

where

_	 1A	 =	 tlax 	HXU Huu Hux

2 -H	
H	 1	 H

XU	
uu	 ua

A3	 -HXx + Hxu 
H-1
UU HUx

M
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These 2n first-order differential equations may be used

to describe the variations in the x and A histories

due to control variations. In order to relate 6x and

6A at t 	 to the corrections 6X  at dt o , the properties

of a linear systeff, of ordinary differential equations are

used. Let (^(r) be a 2n X Ti matrix whose columns are

solutions of Equation (17), hence

_	 r

	

b^i
x--t^-( (W _	

i 	 6A(t o

where 0T (t o ) _ [ GnXn . i nxn ]	 The matrix (^(t) simply

represents solutions that result when a unit perturbation is

made in the unknown initial conditions.

Since these perturbed trajectories are considered, allow-

ances must be made for the perturbed path to miss the desired

terminal constraints given in Equations (6). Hence, the

reference terminal constraints are perturbed to yield

d"4 = M 6x + At dt	 = 0	 (19)
x	 t

f

dN = 6X - Pxx 6x - MT do

	

Fix - Pxx f - Pxt dti
t

	= 0	 (20)
f

dR = iT6A + (Hx + Pxt ) 6x + bit dr,

	

+ (H t + P tx f + Ptt) dtI
	 = 0	 (21)

t 

8
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where the first-order approximation d( ) = S( ) + () dt

has been used to relate total changes in a quantity f )

to variatians in ( ) . During the initial iterations, the

Equations (19), (20) and (21) are not necessarily satisfied;

the associated dissatisfaction or error is denoted by

evaluating M N and R	 respectively. Before N and R

may be evaluated, however, a nominal value of n must be

determined. This is accomplished by solving the first q

of the n equations represented by N for the q values

of n .

To determine the n+q+l corrections for a(t o ), n,

and t f , Equations (18), (19), (20) and (21) may be com-

bined to yield,

dN1	 NfX (D	 ; 0 ;	 N1	 1	 6 1 o

dN	 =	 ^ - P,Y Y 	 _MT	 Px 	- HT 	dri (	 (22)

dR	 f1 A + (Hx + Pxtx	
M	 pt + H t	

d fj

	

'	 f

where dNT = [00-0 dNq+1 •••• dhn ]	 The first q elements

of this vector are set equal to zero because the first q

equations of N have been satisfied identically to determine

the nominal values of n .

In problems where the constraints are relatively simple,

the Lagrange multipliers n are eliminated from the start,

that is, the terminal constraint bt is not included in

k	 Equation (7). This requires the elimination of the

9
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dependent variations in the transversality condition

P x - a T ) dx£ + (P t + H	 dt f = 0	 (23)
f	 f

that result from the first variation. This is accomplished

by perturbing the desired terminal constraint relation,

Equation (3)_, to produce

V
 = C,txfdx 

f + r;^t t 1 dt f = 0
\ /^	 \	 f

Now, q of the dx f and dt f in Equation (24) are solved

for in terms of the remaining n-q variations. These q

variations are eliminated from the n+1 variations in

Equation. (23) leaving only n+l-q independent variations.

s	 The coefficients of the n+l-q variations are equated to

zero, and along with the q relations in Equation (3),

r	 provide n+1 conditions for the n+1 values of ao and

t f	If the above-discussed n+1 terminal conditions

become the elements of an n+1 vector h	 the equation

analogous to Equation (22) is seen to be

[dh ]	 [nxx ; h^ 4 a l	 at°-	 (25)
_	 ^	 J	 f^

The computational procedure for the indirect optimi-

zation method with the Lagrange multipliers eliminated from

the start may be summarized as follows:

(1) Integrate the 2n nonlinear differential equations

i

	

	 of motion and the Euler-Lagrange equations, Equation (11),

forward ..rem t o to an assumed t f with starting

10
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conditions consisting of the n known initial con-

ditions satisfying Equation (2) and n assumed values

for the unknown Lagrange multipliers.

(2) Simultaneousl , with the above integration, inte-

r	 grate the Ln perturbation equation, Equation (17),

with starting conditions described after Equation (18).

.	 The perturbation coefficients are formed from the

variables that describe the reference trajectory.

(3) Solve the n+1 linear algebraic equations,

Equation (25), for a linear approximation of the

corrections that must be applied to the assumed

initial values of the Lagrange multipliers and the

terminal time.

(4) Apply these corrections and repeat the process

until the corrections on the terminal norm become

smaller than some preselected value.

DIRECT OPTIMIZATION METHOD

The objectives of the optimization problem are the

same regardless of the method of solution. Hence, the

direct optimization formulation involves the previously

described equations, Equations (1)(2)(3) and (4).	 It

is found convenient to partition the q-vector of terminal

c:itraints M(x f , t f) = 0 to

Fu 	 t )
M(x f , t f )	 _-- 	 tf -	 (l6)

LQ-(Xf,(xf' tf)

11
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where W is a q-1 vector and 0 is a scalar stopping

condition to be satisfied identically. Although use of this

stopping condition is a convenient way to determine an approx-

imate terminal time, one must use judgment to insure the

selected terminal constraint will in fact be satisfied during

initial iterations.

If the differential equation, Equation (4), is linear-

.	 ized about some nominal path, the resulting equation becomes

8x = f  Sx * fu du	 (27)

where the partial derivatives f 	 and fu are evaluated

on the nominal path. The equation adjoint to Equation (27)

is

_ - fT a
x

where 1 is an n-vector of the adjoint variables. It

should be noted that Equation (28) and Equation (5-b) are

identical. Equation (28) may be combined with Equation (27)

to yield

d(XTSx) _ A. T fu 5u	 (29)

Integrating this equation and considering Equation (2) yields

t

(X Tdx) f =	 f 
XT 

fu Su dt	 (30)
t
0

which is designated the fundamental guidance equation. The

object now is to determine how initial state variations and

integrated control variations influence the performance

index, stopping condition, and the terminal constraints.

(28)

12



If, on separate trials, the terminal values of the

adjoint variables are set equal to

^^ (tf) _
 

NI f

a^(t f) 
= IaXJf

'r P^

	

a^(t f ) =	 J
	 )

where ^¢ is an a vector, X^ is a n x q - 1 matrix and

X  is an n vector. The desired relations are seen to be

d	 tf X  f 6u dt + $ dtJ	 u	 f
t
0

d	 J tf 
X  

fLi Su dt + ^ d-c
t
0

dQ = f
t f X  fu ou dt + S dt f

t
0

where(^) =	
ax) x + 

3t f
ll	

and d ()	 _	 [ b () + () dt] f

This formulation allows the specification of an allow-

able step size to be taken in control space defined by

dS = , t  
1 

SuT W du dt	 (35)
t 0

13
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where the step is a weighted quadratic function of the control

deviation. The weighting matrix W is included to improve

the convergence characteristics by giving more weight to

regions of low sensitivity. However, unity is often chosen

because of the lack of knowledge concerning this region,

The criteria used for determining the hest elements for

this weighting matrix are not easy to determine and are

usually found through trial and error procedures.

The stopping condition, Q = 0 in Equation (26), is

to be identically satisfied so dsZ in Equation (34) is

equated to zero. The terminal time variation dt f is
eliminated from Equations (32) and (33) to yield

dq _ f tf a^^ fu du dt	 (36)
t
0

4

d^ _

	

	
t f 

X1 fu du dt	 (37)
t

0

T
where XQS2 = a^ -	 a2	 X^5Z = a^ - a^ ^'

The total variation of the performance index may be

represented by

d^ = f t f X T 0 fu du dt + V  d	
ft f

 A T 0 f  du dtt 0	 t0
	 ]

+ u dS - 
j tf 1 6U  W 6u dt	 (38)
t
0

14
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where the terminal constraints and the control step are

adjoined by the use of the v 	 and u Lagrange multipliers,

respectively. Zt should be noted that the terminal constraints

are adioined in th-- same manner as in Equation (7) for the

indirect method, and that the elements of v are just the

first q-1 elements of the n vector of Equation (7).

Since it is desired to determine the control variation

which corresponds to the maximum change in the performance

index, the first variation of Equation (38) must vanish;

therefore

8 dp = J t  
(XTJ 

fu - 
VT 

X " 
fu - u 

6U  
W 6 2 u dt = 0

t 0
(J9)

This implies that the desired control variation is

6u - I W - 1 f
u (X^^ - X 52 v)	 (40)

and when this equation is substituted back into Equations

(35) and (37), the values of v and u are seen to be

V	 =	
-u1V^V^ d^ + 1

-	 1 	 (41)

and	
1/2

_	 T	 -1

u = + I SO	
1lp^ 1^^ 

I^^	 (42)
dS - d^ I- 1 d^

15



I OW = f tf XT fu W -1 fua 	 dt	 (43)
IPQt

0

I 	 j tf X T fu W -1 fua 	 dt	 (44)
t
G

1 tf X f,11 
fu W	 fu X

^p 
dt	 (45)

t0

and I 	 a q-1 x q-1 matrix, I ¢ is a q-1 vector,

and I 	 a scalar.

Now combining Equations (40) through (45) yields the

desired control program

T1
dS - da,T I -1 di,	 ''1Z

-1
6u = +W	 fu (X^^2

 - a
^Y^ I^^ I^,^) I^^	 I^^ I^^ I'^^

+ W -1 f  a
^V^ I- I d^

	
(46)

where the positive (negative) sign is used if 	 is to be

maximized (minimized). The previous control program is now

modified by

anew = U 01 u
	 (47) i

16



The computational procedure for the direct optimization

method may be summarized as f.-'lows:

(1) Integrate the n differential equations of motion,

•	 Equation (1) forward, using an assumed control

program and the desired initial conditions, Equa-

tion (2). This integration is continued until the

stopping condition, Q = 0 in Equation (26), is

satisfied. The state variable values are stored

at each integration step.

Equation (28), back

ing conditions,

matrix -fT is
X

stored during

(2) Integrate the adjoint equation,

ward q+1 times with the start
Equation (31). The coefficient

formed from the state variables

the forward integration.

(3) Integrate the I equations, Equations (43) through

(45) backward simultaneously with the adjoint

equations using initial conditions of zero to

yield values at t o for I 	 Ida , and I^^ .

(4) Select a desired improvement in the terminal

dissatisfaction d^ = -^ for the next iteration.

(5) Select a reasonable value for the mean square

allowable control deviation, and from

dS - 7 duave (t f - to)

determine an initial value of dS .

17
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(6) Use the selected value or dq) and dS to calcu-

late the numerator un?er the radical in Equation

(46). If this quantit y is n-;, ative, determine

the d^ that makes the quantity vanish. If it

is positive, use the quantity as it is.

(7) Calculate the du as given by Equation (46) and

alter the assumed control program. The quantity

dS must be decr.ased according to some selected

criteria to prevent stepping across the optimal

point into a nonoptimal region.

(8) The procedure is continued until the control varia-

tions are less than some preselected value.

HYBRID OPTIMIZATION METHOD

One objective of developing a hybrid method is to com-

bine the best characteristics of the two existing methods. The

two methods in this case have been developed above. The

indirect method shown has excellent convergence character-

istics, but determination of initial Lagrange multipliers

is so critical that often the convergence process is never

started. On the other hand, the direct method discussed

will begin to converge from almost any initial guess on

the control program. However, inherent with this method,

convergence is never achieved and the classical optimality

condition Hu = 0 is never satisfied. The proposed hybrid

method will show how good initial estimates of the Lagrange

multipliers may be obtained for the indirect method from

several iterations cf the direct method.

18



It	 is helpful at	 this point	 to review the necessary

conditions for mathematical optimality and see how these

conditions relate to the methods discussed. In summary,

the necessary conditions are:

I.	 x	 =	 HT Equation (5-a)

II.	 a	 =	 -HT Equation (5-b)

III.	 0	 =	 H u Equation (5-c)

IV,	 x(t o )	 =	 x 
Equation (?)

V.	 IMx	 t	 =	 0(	 f ^ 	f ) Equationq 6-a(	 )

e

a.^^(x f ,t f )	 =	 0

Equation (26)
c

b.	 Q(x f' t f )	
=	 0

F

VI.	 xT t f )	 _	 ^x + vTx +
	

x 
it

Equation (6 - b)

f

VII.	 a Tf + ¢t + j ^t + ^Q t j =	 0 Equation (6-c)
tf

where	 n	 =	 [v 

The following table will show which necessary conditions

are forced to satisfaction and which conditions are used

to iterate upon until adequate results are obtained for

several different optimization methods.

10



Indirect Methods Direct Ntethods

1	 '	
MFF	 taF GNR	 MQAi MSD	 hiHS

F orced to I,II,III,IV III,IV,V,VI, I,?I,IV,Vb
sat i sfaction VII

lItcrate  on
until adequate V,VI,VII I,II III,Va
esults are f

I

btained.

i
i

i

.

where

MPF - Ntetl- A of Perturbation Functions (see Reference 1

and section titled Indirect Optimization Method)

MAF - Method of Adjoint Functions (see Reference 2)

GNR - Generalized Newton-Ra phson (see Reference 3)

9QM - Modified Quasilinearizatio n Method (see Reference a)-

NISD - Method of Steepest Descent (see References S and 6

and section titled Direct Optimization Method)

biHS - Min- 1-1 Strategy (see Reference 10) .

Now, the two transversality conditions VI and VII may
h

be combined to yield

+ \) TIP + CQ	 f +	 + vT	 + ^^_ I	 =	 0	 (^.gl
x	 x	 x	 t	 t

I

20
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which may be rearranged to become

	

^ xf + 
¢t 

+ VT 0 
x 
f + VT I't + CUxf 

+ ^S`t I
	 = 0	 (49)
tf

Recalling that Q = ^ xf + ^tly	 ^xf + 'P t It
tf

and :1 = S2 x f + 
Qt i t
 , Equation (49) may be written

f

+ vT t^ + ^S2 = 0	 (SO)

Solving for the Lagrange multiplier associated with the

stopping condition yields

-I L^ + TvWJ	 (51)
0 LLL

This relation may be substituted back into VI. to provide

4	 J1T(t f )	 -	 ^x -	 ^x	 + vT ^tix --;' S2 	 (52)

ittf	
Q	

t 

9	 or by using the relations following Equation (37)

a(t f ;	 = A^(t f ) T a^n (t f )v	 (53)

;here v may be calculated from Equation (41).
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The computational procedure for the hybrid optimization

method may be summarized as follows:

(1) The direct method is applied for an iteration.

(2) The valu-_ of v is determined from Equation (41)

and Equation (53) if used to evaluate a(t f) .

(3) Equation (28) is integrated backward from t f to

t o providing X(to ) .

(4) The iterations of the direct method are continued

for some specified length of time.
i

-_	 (5) The alto ) obtained from the c.irect method is

used as a starting condition in the indirect method.

(6) If, after two iterations of the indirect method,

the terminal norm is increased, continue iterations

with the direct method to improve the estimates

of a (to)

(i) If, after two iterations of the indirect method,

the terminal norm is decreased, continue iterations

with the indirect method.

.
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CONCLUSIONS

This investigation has revealed how the Method of

Perturbation Functions and the Method of Steepest Descent

may be combined into a hybrid method. The resulting method

has the advantage of having the best merits of both methods

while some of the undesirable characteristics of both have

been eliminated. Moreover, the hybrid is such that either

method may be used individually, if desired.
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