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T h 9 Canonization of Nice V a r i a b 1 e a

David P. Stern
Laboratory for Space Physics
Goddard Space Flight Center
Greenbelt, Maryland 20771

Abstract

In a perturbed periodic classical motion the angle variable may

be eliminated either by Kruskal's transformation to "nice variables"

or -- if the system is canonical -- by the Poincare-Von Zeipel

method. For systems that possess a Hamiltonian, the present work

(1) shows that Kruskal's transformation may be made canonical order

by order, (2) derives a practical formula for achieving this result

and (3) shows that the two methods are equivalent and may be matched
3a

order by order.
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INTRODUCTION

A basic perturbation problem in celestial mechanics and in guiding center

motion involves a set of n first-order differential equations which can b6

represented vectorially as

d;; dt	 F(x)
	

(1)

and which has the following properties:

(1) F(x) depends on a small parameter E « 1 and may be expanded

in it:

	

F(z^	 F(0)W + 6, F(1)(x) + ...	 (2)

(2) In the limit E,	 0 ("unperturbed case") the system may be

solved and its solution is then periodic in time.

The problem is then to find an approximate solution valid for small but finite £

m d useful for time intervals of the order of F -1 periods.

Kruskal(l) devised a method for achieving this, which in many ways resembles

the method of Bogoliubov and Zubarev	 and	 of Krylov and Bogoliu-

botr(2) . The calculation in this case proceeds in two steps. First, a transformation

to "intermediate variables" y(x) is performed, such that in the limit 	 0

yn is an angle variable linear in time, while the remaining (n-1) components

of y (which we shall collectively denote by y ) are constant. The equations

according to which y evolves, derived from eq. (1), then have the fora

dy/dt =	 L Ek g(k) {y)	 {3)
k4	 - -
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In these equations, yn appears in the _g(k) only as the angle argument of

periodical functions and g(0) has only one non-sero components, the last ons(3)

g(°) _	 (o, o, ... o, 1)
	

(4)

Tho second step involves a near-identity transformation to "nice variables" $

Y +	 k ^(k) (Y)	 (5)
]cwt

such that in the new equations of evolution the transformed angle variable

no longer appears on the right-hand side

d^dt	 F-	 (6)

kw0

where as before

and

b(°). g(°)	 (^)

A general recursion scheme for deriving z order by order has been described

in an artic: a by Stern (4) (henceforth referred to as I ) and we shall follow

the notation introduced there, which differs slightly from Krus]ml's (a similar

scheme for the related Kryloyr Bogoliubov expansion has been given by Musen(5)).

After equations (6) have been derived in this fashion their first (n-1) components

constitute an autonomous system for deriving the components of _ , which can then

be independently solved. The problem is thus reduced to one with (n-1) variables.
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If the system furthermore possesses a Hamilt.-nian, an additional variable

may be eliminated by deriving a constant J of the motion which Kruskal terms

the adiabatic invariant. It is defined as

1

J	 p.dq =	 S P - q/ oz.) dzn	 (8)

0

with the integration performed using an arbitrary canonical not (p, q)

over a group of points ("ring") all of which evolve according to (6) and

possess the same z but with values of % that cover the full range for

that variable (this property, if once established, is maintained throughout

the ring's evolution in time).

If z itself forms a canonical set, with sl the momentum conjugate to

zn , then one may use this set in (8), leading to

1

J - S zl dz.	 zl
	

(9)

0

which is a great simplification (if this is not the case, one is forced to

retrace the transformations x -,-y-* z until some canonical sot, with which

(8) can be evaluated, is reached). Kruskal did not derive nice canonical

variables, but he shoved them to be possible. Specifically, he proved that in

any "nice" set, the following Poisson bracket relations are always satisfied

( -0/-0zn) I Zi. sj J -	 0	 (10)

N, J 7 a s in	 (11)

Following Kordhoin and Fues(6) , Kruskal then shows that J and zn may be

augmented by (n-2) functions of the zi to fora a complete canonical set.
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In what follows we shall assume that the intermediate variables Yi form

a canonical set, in which case a near-identity transformation like (5) can,

in principle, lead to nice canonical variables. This assumption is not unreason-

able since, if a Hamiltonian for the system is known, such y i can in general be

derived by solving the unperturbed motion via the Hamilton-Jacobi method.

We then

(1) Stow that the freedom allowed by Kruskal's method in the derivation

of each order of eq. (5) is sufficient to assure the canonical

character of the "nice variables" zi .

(2) Derive a method for obtaining such z i .

(3) Show that the result is equivalent to what is obtained by conventional

perturbation methods based on the Hamilton-Jacobi equation.

W POSSIBILITY OF STEP-BY-STEP DEMATION

If y is canonical

y	 (p, q)

then from (10)

^Ezi' zi l - Eyi, Yj	 "	 0	 (12)

If (5) is substituted here, the zero-order part cancels identically and the

expression remaining inside the curly brackets separates into orders of E- and
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gives

r	
m-1

Qn)	
Em	

m) . 	 [^;M), YJ + zcq(9). (M-s)] 	 = 0

m=1	 5=1	
(13)

This condition is satisfied for any "nice" set z . If z is not merely rice

but also canonical, then the expressions in the curly brackets of both (12) and

(13) are not only independent of z  but actually vanish.

Let us now assume that the expansion ( 5) has already been derived and brought

to canonical form, up to and including order (k-1). Then the first (k-1) orders

of (13) do, in fact, vanish, leaving (after division by L k )

k-1

P1-b zn) C.^ ik) ' yJ^ - k ik) ' yi^ + ^C^is). ^(k-s)l + 0( ^ ) = 0

s=1	 J

(14)

As the next step, one may derive ^ (k) and thus extend the calculation of z

one more order. The equation satisfied 15y 	 (k) is ( I , eq. 15 )

(k)/
,^

 Yn	 -	 h(k) (Y)	 (k)
	

(15)

where )^ (k) depends only on lower orders of	 (m) and h (m) , assumed to

be known at this stage. If	 11(k)> denotes the result of averaging over the

angle variable y.
	 l

^kk) > 	 .^ ^k) (Y) dYn	 (16)

0

one gets (see I, eq. 19)
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Yn

( A (k) - < ^ (k)^ ) d
Y' + /1_1

(k)(Y)	n 	 3

0

	

^ (k) +	 //A (Y)	 (17)

Here	
1/_1(k) 

is an arbitrary additive vector independent of yn , allowed

by the fact that the derivative of	 (k) which enters (15) is unaffected by

such an addition. The question now arises whether ti (k) may be selected so

as to make the expansion (5) canonical to order k .

If this occurs, then the 0 ( 1) part of ( 14) must vanish. It helps here

to introduce the concept of the conjugate vectors y ( I, eq. 4)

	

Y	 =	 ( q , -p )
	

(18)

Then

Lim) , Y .] - LJ (M), YiJ = ^^ (M)I Yj - ^t^m)/a Yi

(19)

This has the form of a component of a curl dyadic in y apace, which one

may call the conjugate curl, with componer +° —oted by

( 
Q x ^(m))ij	

(20)

in an article

Now it has been shown by Stern (7) (henceforth referred to as II ) that the

general condition for an expansion (5) to be canonical is

^ (m) 	 (m)(^ ) +	 ^ -K(m)	 (21)

( m = 1, 2, ... )
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where D is a gradient operator in y space, ')( ,(m) is an arbitrary scalar

and f(m) (^ ) are vectors of a certain form, depending on orders of ^ lower

than the m-th and on their derivatives. Various choices of f (m) are derived

in II , all of which satisfy the identity (for canonical ^(s))

M-1

01 x f(m))1^ 	 i ( ^ is) r
 ^(M-s)^	

(22)` 

s=1

Because the	 ( a ) in this case are known to be canonical up to and including

order (k-1), eq. (22) will hold for the lowest (k-1) values of m ; however,

it will also hold for m = k , for even then the orders of ^ appearing in

the equation are all lower than the k-th. Substitution in (14) then yields

(-^ /-6 zn) I 
Q x N (k) - f(k) ( ^ ),	 + 0(6 )	 0	 (23)

Now let the transformation inverse to (5) be

Y+ +	 ^s ^'l(s)(z)	 (24)

S=1

Given the expansion (5), the I(k) may easily be derived (see appendix).

Alternatively, they may be directly obtained from expanding the relation

between (3) and (6), in a manner similar to what has been done for the

expansion (5) in I . This is essentially the method of Krylov and Bogoliubov(2),

as expanded by Musen(5) . Indeed, the elimination of the angle variable by

Kruskal's method so resembles the Krylov-Bogoliubov approach that the two

ought perhaps to be regarded as one method (which could be called the Krylov-

Bogoliubov-Kruskal method; however, Kruskal'a work proceeds past the elimination

to the derivation of adiabatic invariants).
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Since the inner part of (23) is s function of y , one must transform

	

/ 'Z zn 	 Z, P Yi/ D zn) 'D/*^ yi

_ 'E f3in + L 6e('^ q i8) /c? zn)}/Z Yi

or

	

7c /c zn	 =	 -D/-^yn	 +	 0(E)

Eq-ztion (23) thus becomes

[ (k)	 f(k)(^	
+ O(E)	 0Yn t 

;^ A	
_ 

I	 —

One may now assume that all variables in (27) are expressed in terms of y

in that case, each urder in F, vanishes separately, including the zeroth.

Because differential operators coesaute, this means

X( c7 / c7 Yn) C (k) - f(k) (^ ),
I	=
	 0	 (28)

This integrates to

	

(a /^ yn) C (k) - fW (^ ),	 = 0	 (29)

where Z is the indefinite integral of	 and u is an additive function

independent of zn , allowed by the integration.

	

The above condition is satisfied by any	 (k) belonging to a nice set

of variables which is canonical to order (k-1). For instance, 
A(k) 

defined

in (17) will correspond to a certain Z and to a certain additive function,

which may be denoted by u

J(k)	 =	 f (^) +	 t + u(Z)	 (31)

(25)

(26)

(27)
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If one now chooses in (17)

µ(k)

then

i(k) ( 9) + v Z
	

(32)

and by (21), tt (k) satisfies the condition for canonical variables, making z

canonical to order k . Thus the requirement can be met.

PRACTICAL CANONIZATION

In order to actually derive the "canonizing" J11-A(k) , one crust first

investigate the amount of arbitrariness inherent in that vector. Let

(33)

extend the canonical properties to 
0(E k), 

i.e. 
let 

it satisfy

(k) +	 (k)(y)	 f (^)( ) +	 0 X(k)
	

(34)

Then if one replaces ,u (k) with
i

(k)	 1-1(k)(Y) + '^ $ (y)
	

(35)

with j an arbitrary function independent of yn , one nds

i



11

^(k) + /^' (k) (Y)	 =	 f^k)(j) + Q ( X (k) +	 )	 (36)

which still has the required form (21). The canonizing choice of M (k) is

thus arbitrary within the addition of a conjugate gradient of some scalar c^

which does not contain Y. .

In order to isolate /M-(k) one operates on (34) with the averAging

operator of (16); since ^M (k) is independent of the angle variable, it

equals its own average, giving

(k N	 < I(k)	 (k)	 <;^ X(k)

f(k)(s) - S (k)>	 Q x(k)^	 (37)

The last term on the right is a conjugate gradient of some function of 'y"

and it has already been established that such Vwtors, when added to rc(k),

do not affect canonization. One may thus drop this part r d obtadn

M (k) _	 ffk)() _(k) \	
(3a)

To evaluate this,	 (k) must be derived frog (17) while f(k) may be

obtained by methods given in II . The most general canonizing additive function

is then

/111

(k) 	 (L(k)
  
	 (k)	 +	 (Y)	 (39)(^ )

with ^ arbitrary,
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EWIVAIMCR TO CANONICAL PHRTURBpTIOT THBORY

A widely used method for solving perturbed periodic canonical systems is

due to Poincare and Von Zeipel (5) ' (8)—(11) and operates in the following

manner. First, one expresses the Hamiltonian in term of the solution

Y	 ( p, q )

of the unperturbed Hamilton-Jacobi equation, with yn an angle variable and

yl the conjugate action variable. In the absents of "slowly varying" quantities

the Hamiltonian then assumes the fors

	

H ^	
k

Yl +	 2 1C 
(k)
H (Y)	 (40)

k=l

Next a near-identity transformation to new variables

z = (p,&)

is sought, produced by the generating function

a- LP, q) _	 Pi qi +	
F  T

(k)LP, q)	 (41)
k-1

and having the property that the new Hamiltonian H *(L) is independent of the

transformed angle variable zn , meld ng its conjugate z  a constant of the

notion. Since the transformation is a near-identity  ona l, the lowest order of

H" has the same form as that of H , giving

	

H#(z)	 zl + 21 6 k H (k)()	 (42)

10.1
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Methods then exist for deriving r(k) and H*(k) order by order

Suppose now that two near-identity canonical transformations are given

z	 Y + s (s)(Y)

s=1

(43)

w	 Y + 	 ^8 (8)(Y)
s,l	

_

either of which eliminates the angle variable from the Hamiltonian. Let

furthermore

SJs) (Y) _	 (s)(Y)	 (44)

for

s	 It 2 9 ... (k-1)

Then it will be show o at 5 (k) differs from l' (k) at meat by a conjugate

gradient of a function	 (y) independent of yn .

Clearly such a property would allow the two methods discussed in this

work to be matched order by order. If w , for instance, represents a solution

of a given problem by the Poincare -Yon Zeipel method and z represents a solution

by the Kruskal method, then z can be made equal to w to any desired order.

To achieve this one must first choose 1 (k) so as to make z canonical and

then	 add to each order the appropriate 	 J,(y) which makes the

corresponding 	 (k) and	 (k) equal to each other. Actually, one could

also work in the opposite direction, since the Poinosre-Von Zeipel method also

contains a certain amount of arbitrariness in each order, but we shall not

consider this possibility here.



Let

H * ( DZ 	 s

and

F-8 *(s) N

s^0

14

s=0

be the two alternative forms of the Hamiltonian. Sim* the transformation

is time-independent

	

H*(i)	 H** w	 H(y)	 (45)

Also, since it is a near-identity transformation, the 0(1) parts of the above

equations must be equal, which leads to

	

H 
(0)(f)	 sl

(46)

	

H**(o) w) =	 wl

We shall furthermore assume (and later Justify)

	

H*(s) = 
H**(8)	

(47)

(e = 1, 2, ... k-1 )

Substituting the expansions in (45)

Aic

Ji

^a 
H*(a) ( Y +^^ m ^ (m) )
	 Y +	 a (m))

	
(48)

By means of expansion operators 	 T(m) and S(m) (see I ) tbis way be

broken up into a series of equations, one for each order in F . The equation



15

for 0(E k ) then is

k	 k

^> T(m)* H*(k-^m)(Y)	 _	 S(m)* H 
(k-m)

U)	 (49)
mMO	 M=O

where * marks "operates on" and where

T(0) = S(0) = 1

T(1) _ ^(1)• 7J

S(1)

and in general

T(m) _ ^(m) 0 + N (m) (^ )

-	 (50)

S 	 d (a)p + N(m)(tY)

with N (m) an operator depending only on orders of its argument that are lower

than the m-th. Substitution and use of (46) give

k-1

H*(k) + ^(k) V yl +	 N(k) (^ )* y1 + "IT. T(m) ^r H*(k^)

k-1

=	 H (k) + 
`.^(k)oyl 

+	 N (k) (`i') * 
y1 

+ 	 ' S(M) H**(k-m)

m-1
(51)

The two expressions in curly brackets depend only on lower orders; they are

therefore equal to each other and may be dropped, leaving

H*(k) (Y) 	 N(k)(y) a (V (k) -	 (k)),vyl	 (52)



16

Now by (24), scalars X(k) and T (") must exist such that

J(k) = f(k) (^ )
 .+ ^X(k)

(53)

two

Since lower orders of the^expausions are equal, the two f (k) vectors are equal

too, leaving

	

(k) - 
?

 (k)	 = ;9 	 X(k) - -C (k) ) = ;^ ^	 (54Y

To prove our assertion we must show that j is independent of yn . Substituting

in (52)

	

H*(k) (Y) - H**(k)(y)_ 'ĉ	 ^c? yl = 1	 Yn	 (55)

Now j is allowel to depend on yn only in a periodic manner, from which it

follows that '^ T2 /Z Y. also depends periodically on yn . However, the

left-hand side is independent of that variable , so that I must be independent
of yn . This proves the main assertion. Incidentally, one also finds.

	

H*(k) = H**(k)

	

(56)

which justifies equation (47).

ti
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APPENDIX : THE INVERSE TRANSFORI+IATION

Adding ( 5) and (24) and cancelling zeroth order terms gives

k	 (k)	 k	 (k)

I ' E k (k)(z +	 m '11(m) ($) )	 (A-1)
L-j -

If 0 is in a-apace and * defttes operation

^ (k) (z +	 m (m) L))	 exp	 m -I(mj W. nl * ^(k)(z)
-	 /	 m=1	 -	 -

m S(m)* 5(k) (z)	 (A-2)
M=O

where

3(0) = 1

(A-3)

S(2) _	 ^(2 ) G + ^£
l) (̂l) : V V

and so forth. If this is substituted in (A-1), orders of F_ may be individually

equated since everything is now expressed in I . Separating the m = 0 term

from the rest then brings the 0 ( E k) relation to the form

k-1
^ l (k) 	 (k) -	 3(m)* ^(k-m)	

(A-4)
m=1

If all lower orders of S (m) are known, those of I L (m) may be derived and

used for constructing the 3 (m) .
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