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ROMBERG INTEGRATION.
Matthew J. O'Malley

- ——-/— i’ -
SUMMARY

This paper presents a theoretical development of a pro-
cedure to numericaily>integraté the definite iniegrél’
b . - -
‘L £(t) dt . Theorems and the majority of ptoofs are given,

..

justifying the procedure, and remarks are made coaceriing the

types of functions for which the;pfocedurg appears well suited.

-~ : -

INTRODUCTION *

This report presents a theoretical method to numerically
integrate the definite integral .{ f(t) dt . A special

case of the method, the Romberg Integration scheme, is also
presented. Theoreﬁé and the majority of proofs a£e given
justifying the procedure, and remarks are made toncerping
types of functions for which the procedure appears well suited.
Emphasis has been placed on the mathematical justification of
the procedure in order to provide a deeper understandlng of

-

the method, and, hopefully, to lead to further research of

the procedure and its modifications.



The chief references from which the bulk of the material
of this ﬁaper was obtained are Moler! and Bauer, Rutishauser,

and St_iefel.2

The author wishes to thank Mr. Robert Meyers for the

many helpful suggestions made during the preparation of this

paper.
SYMBOLS
PZn’“ n=1,2,+¢¢ - Bernoulli numbers
?Bm’ m=0,1,¢¢- ) real constants
fio m=0,1,.- f(a+nh)
f(n), n=1,2,.-¢ n® derivative of f
h . : integrétion step-size
M(h) - , midpoint rule sum
Nk’ k =0,1,¢0- increasing sequence of positive
integers
ng)(x) , (k-j')th degree polynomial
- interpolating the points a -
‘_(xi’ Yi)3 i=j,* -,k
ka)* value at x* of ng)(x)
: -

J



of*)

J»sS

T(0)

T (h)
1P

[

= o,l’coo

1 = 0,1’...

~

[ =13
-
")

value at 0 of ng)(x)

value at 0 of the polynomial
which interpolates the function
x> ;i (s 21, at the ﬁoints

xi y 1= j:'f’:k)

b o
L £(t) dt
trapezoidal sum

distinct real or complex numbers

real or complex numbers not
necessarily distinct

constants between 0 and 1

-~



NEVILLE'S ALGORITHM

Suppogg,that we are given (mfl) &ispinct points,

\_,‘—’/
xo’ xl’ oo-, X

S real or complex, and (m+i) corresponding

" "values (not necessarily distinct), y,, y,;, **°, Ym *

Neville's algorithm is a method of calculating the-unique
polynomial P(x) of degree m which takes on the values
Yx at the points x, . '
To describe the method, let ng)(x} denote the inter-
polating polynomial of degree (k-j) which satisfies
(k) = 3 - ] 2 0 0
Pj (xi) Yi ’ (1 = J, :k) :

(1.1) THEOREM. For j =k, let P{Y(x) =y, and

for- j <k, let ,

P

ng)(x) = [(x - x) P(k 1)(x)

- (x; - %) P(+1(x)]/(x - xs (1.2

k)

p¢

)
which interpolates the points (xj, yj), cee, (xk, yk) .

(x) is then the unique polynomial of degree (k-j),

Proof. Induction is usedon n=%k - j . If n=0,

the theorem is obvious. Suppose the theorem has been proved



for n=m . Then

I ) - [Cx,-ﬂn,l - ® PP

- (f - Xx) P§11m+1)(x)]/&xjfm+l - xj)

v

and by the induction hypothesis, P(J m)(x‘ and p§iim+1)( )

are polynomlals of degree m , and hence P§3+m+1)(x) is
a polynomial of degree m+l . Further, by direct verifi-
cation, P§j+m+1)(xi) =y; for i”= j, j+m+l . By ‘assump-
tion, for j < i < j+m+l , P§{+m)(xi) P§1;m+1)(x ) =y,
hence P§j+m+1)(xi) =Y; for j < i < jim+l ,

1 ’

Finally, the uniqueness follows from the fact that if
P(x) and Q(x) are two polynomial; of degree n interpo-
~lating the same (n+.i) distinct pbints, then P(x) - Qkx) is
a polynomial of degree n having at least (n+l) roots and

thus is the zero pblynomial. Therefore P(x) = Q(x)

Neville's algorithm then can be used to evaluate the
interpolating polynomial ng)(x) at any desired point xf .
An important advantaée of Neville's algorithm over the, per-
.haps, more familiar Lagréngian representation is that thes
number of points to be interpolated may be increased without

redoing previous cémputation. For example, if we wish to



calculate Pg“)(x) » then it is only necessary to calculate
P{V(x) and PV (x) and apply (1.2) to compute P{*)(x)
Thus, the 4th.degree interpolating polynomial Pg“)tx) is
determined'ﬁfﬂusing linéar4-nterp01ation on (xo, Pgs)(x))
and (x;, Pf“)(x)) . That this is true in general is cluar.
It is also important to realize that no'assﬁmption has been
made regarding the distribution of the po’nts X - They
need peither be equally spacéd, nor in increasing or

decreasing order.

If we use the notation ng) for the computed va‘ues‘
ng)(x*) , then Neville's algorithm can be arranged in the

following table:

(0) ’

TS

D AP

pgﬁ) p£3) _ p§3) pgs) .3

:‘.'- .(k)
x  wPral P2



\ .
Using this arrangement each entry ng) is obtained directly

from the two entries P%k'l) anc ngi immediately to the

"left"'and’“ieft-above" it.

In the usual case, T(x) is a function such that
T(xi) = yi‘ for (0 £i< n . To approximate T(x*) by using
polynomial interpolation, we iteratively’compute the values

ng) until two or more successive values, ng), ng+1),

see , agree to within some preassigned degree of accuracy.

4

.PJgk) = [xk PJgk-l) - X, Pja_:g‘]/(xk - xj) (1.4)

_Finally, we note that if x* =0

J

'We shall be interested in’ this form when using the Romberg

7

" scheme.

2
- \'

&)
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ROMBERG INTEGRATION
One of the most.well-known methods of approximating
the iﬂtegral .[b f(t) dt is the trapezoid rule. Iff N is
a .
a positive integer and
h = (b- a)/N

= + ’
x, a nh

fn‘z f(_xn) » M= 0,1,2,+++,N

then the N-interval trapezoid rule determined by the
N-subintervals, (xi, xi+1), i-s 0,1,-~-,N-1 , 1is given by

T(h) = h(-lz- £o + £ 4 cee £y 04

v

fN) | (2.1)

where: h is the mesh size.

. 1)
It follows easily, then, that if f f(t) dt exists,
a

o
b

T(h) ~» 'f f(t) dt as h -+ 0 . Further, if f£"(t) 1is con-
a ' . .

tinuous on [a,b] , and hence bounded on [a,b] , then

4

b .
T(h) = J‘ £(t) at + [(b - a) h%/12] « £7() v
a .

where £ ¢ (a,b)



e

The Romberg method consists of an applicatiqn of
Neville's élgorithm to the function T(h) . In general, let

- . . e ae
No» Ny,-ov, Nk’ -+« be an increasing sequence of positive

~ integers and

hy = (b - a)/N S

o, | |

S ’ o (2.2)
’ e = T0y) . k=000

Applfing Neville's algorithm with x* = 0 and T§k) denoting
the’vaiﬁei P§k) R wé'htve from (1.4},

For j=k, T =T(hy) and for j <k,

s

k) _ 2 (k-1 _ ;2 (k) 2 _ 42
T [hk 7 2 Tj+l]/(hk ‘hj) | (2.3)

Thus, T§k) is the value at 0 of the (k-j)th degree poly-
nomial which interpolates the (k-j+1) points, (h;, T(hj)),
sees (hi, T(hk)) . Therefore, from {1.3) we have the

following table:



1"
P
T a0
Tgs); T£3) T1(32 .T‘(ga) o @2y

- (k : k k : k) ~(k
S SRR

. .,
* . .
[ 3

[ X N ]
LN N ]

Each entry in the table is_an approximation to T(0) ;

b ) .
that is, .f f(t) dt . The first column (which we shall
2 ,

th column) contains the values of the succes-

<call the zero
sive ilraperoid rules. We should note here that the process
just deséribed is often>ca11ed Romberg Integration. Howevef,
* we shall restrict ourselves to this terminology for only the
special case N = 2k . The general procedure just described
will be referred to as a modification or generalization of
the Romberg scheme. As we shall see in Section II1I, ther
basis for this procedure will be the existence of an e=..t=,ymp-~

totic expansion of T(h) in powers of h? . For this
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. _reason, the above process is often referred to as extrapo-

~—=-lation to:theAlimit or Richardson's deferred approach to

- = -———the-limit.’

As noted previously, the Romberg scheme ﬁses the values
",Nk = Zk, k=0,1,--- . This choice has several advantages.
for'computational purposes. For h = (b - a)/N, 1let

_— e m—— e

M(h) ©be the N-interval midpoint rule; that is
- M) = a XN, f(a + (n - %) h) .

Since

~

T(h) = h[é:ﬂ;i £(a + n h) + (i/2)(f(a) + f(b»]

it follows that T(h/2) = (T(h) + M(h))/2 . For the Romberg

. scheme, since hk+1 = hk/2 » it follows that

Tlhy,) = (Tt + k) /2 (2.5)
This relation was used by Romberg to construct the zeroth

columr of his array. Furthermore, using the fact that

hj/hk = 2k°j , (Z.Sf can bé written in the form:

- 1 . (T;Uf% . T§k_1))/(4k"' -1 (2.6)
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In this form, the algorithm was first described by Romberg

- -~-and -is called Romberg Integration."

Hp&ever, while the choice Nk = Zk has many "nice"
computétional features, it aiso has the disadvantage that the
'..number of grid peints at which £ must be gvéluatéd doub1e§
with each iteration. If f is a complicated function, this

could be a significaht disadvantage.
The natural suggestion would be to choose a sequence
Nk less rapidly increasing than the sequence {Zk] .

However, before we consider such clicices, we should concern

ourselves with the question of when does the Romberg scheme

. b .
converge to J. f(t) dt . We shall consider this problem
. a ) i .

”

-and others in the next section.
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CONVERGENCE CRITERIA

Our first aim in this section will be to justify the

Rombefg scheme. We will show that every diagonal and every

k

column of (2.4) with N = 2" (k = 0,1,+++) converges to

T(0) . Proofs are based on those in ref. 2.

It is clear that every entry of (2.4) is a linear conm-

th

bination of elements of the zero column; that is,

k+m) _ m (k+i ' :
=™ = i “n,m-i Thp o G.D

e ' icie -
where the coefficients m,m-i

From (2.6), it follows that for m £0,

~are indépendent of k.

(k) ‘(_4m r(kem) rl((k*‘“'l)) /(4“‘.- 1) (3.2)

From this observation and from (3.1), it follows easily by

induction on m that for m # 0 , the coefficients c s
. ?

obey the recursion formula

= m - . m _
‘n,m-i [4 “m-1,m-i cm—l,m—lfi]/,(4 1) (3.3)

[4

b T

for i =0,1,-+-,m , assuming c = Cp.1,-1° 0.
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If tm(x) are the polynomials defined by

) = TR G X, m= 012,00 (3.0)

—/‘/‘

then from (3.3) we have that, for m # 0 ,

z:?=0[(4m “m-1,k m-l,k-l)/("'“l il 1)] xX

tm(x) -

[“m - X/ - 1)] Zk 0 ‘m-1, K o

~ -

" -0t /@ - 1)

e

From this result it follows that, for m # 0 ,

- m iy m i
0 = [l x)]/[ni=1(4 ] (3.5
which, together with the fact that Co,0 = 1, allows us to
conclude that
tmcl) " i=0 “m,i i=0 “m,m-i 1 (3.6)

for each m .
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Further, we have the following:

. m
(3.7) LEMMA. For each m , i=0lcm,il < 2

" Proof.- Since

t (-1) = [n N 1)]/[n";f=1(4i - 1)]
< [n";:l(‘;i /@ -1 < 2

..

it suffices to show that 2:?=0 Icm,i = Fm(-l) 'f?r each.\m .
To prove this, it is sufficient to show that -nt Ch.i > 0
= - ]
for i =0,1,2,-++,m . Suppose that m = 1 . Since
0 - . - \
(-1) cm’0 = cm,0 tm(O) >0 for all m , we have that
: (-1)° Ci1,0 > 0 . Further, using {3.1) and (3.2}, it can be

-

observed that €, = -1/3 ; hence (-1)1 €1 = 1/3>0 .-

Suppose the statement has been proved for m=n - 1 . We
consider (-1t Ch i » where i ¢ {0,1,°-+,n-1} . Tom
?
(3.3),
i I A i ' i | n _
(1% eps [4 (17 epq,; - (U cn-l,i-l]/(4 1)

and by the induction hypothesis, (-»'1)".L c,. .

('1)1-1 €h-1.i-1 >0 for ie {0,1,+++,n-1} . Therefore,
Rl
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5

n i i-1 ‘ n N

('l)n-cn,n =, 4n('1)n,cn-1,n - P cn—l,n-l]/;(4n - 1)

- e

= fo+ (- cn-l,n.-l]/(4n -1) >0

since (-l)n'1 Ch-1.n-1 > 0 by the induction hypothesis.
R :

Before the convergence of the Romberg method can be
shown, we need to observe that for each k ,
lim c_ = 0 ' (3.8)

B m,m-X

. To show this, observe that from (3.5)

~

t,(4x) = e xQA - /6" - x)
and | '
t, 1) = ()" - 1)/@" - x)
Hence
t (4x) - tm(x) = - xt 4(x)
or

m k k ’ k+1l
X k=0 Cp,x(4 -V x = Eko ni1,k X .
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/

By equating coefficients, we then have

. .
Cm,k = °m-1,k-1/(4 - 1)

Repeated application of this last relation gives
- o qam-k | m-k i
rcm,m-k (-1) Ck 0/ i=1 (4 1) (3.9)

From this last relation, (3.8) is apparent.

The convergence of the Romberg scheme may now be

proved.

(3.10)-THEOREM. The convergence of the zeroth column
of the array (2.4) implies the convergence of all further

columns of (2.4) to the same limit.

~

- b ‘
Proof. Suppose that 1lim Tﬁk) = T(0) = .[ f(t) dt .
| S a
Consider the elements T£k+m) , k=20,1,--- , of the mth
(k+m) _ «m k+i)
column, where T = i=0 cm m-i T£+i for each ¥ .,
We show that 1lim T(k+m) T(0) . Let € >0 be assigned.

k>

‘Choose N , a positive integer, such that

k) .
IT£ ) - 10)

<e/[(m'+ 1) U] for k 2N , Wwhere

\.
U = max

|cm’m_il , i=0,++-,m . By (3.6) 2:1 0 Sm,m-i = 1
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hence

00 e s T L o1co)

(k+m) _.
Tx _ T(0) m,m-i “k+i

m (k+i} mo '
230 “am-i Tkei " Zie0 pm-i-TC0)

- wm (k+i) _

= Lij=0 cm,m-i(T1<+1- T(o))
Therefore, for k >N s
T L) < M+ U-e/[mr1) U] = e

and the theorem is proved.

(3.11) THEOREM. The convergenée of the zeroth column
~of the array (2.4) implies the cbnvergence of all diagonal
sequences; that is, of all sequences T£k+m)_, k constant,

m -+ o , to the same limit.
Proof. Let k be a fixed nonnegative integer. Under

koo

b
the assumption that 1lim Tﬁk) = T(0) = ;f f(t) dt , we
a

. [ 4
show that 1im T£k+m) = T(0) . We note that a sequence-to-
m->o

sequence transformation is established by (3.1) between the
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sequences {Tifzi)}. 0 ‘and {T£k+m)} 0 Then, according
i= m=

to the Silverman?Toeplitz theorem (Theorem 4.1, II, p. 64),s
a necessary and sufficient condition that T£k+m) + T(0) ,
__/ﬂ . ’

as m+ e« , is that

m ] | s . " ‘
. . >
(a) z:1=0 Icm,m-ll < M for every positive integer m 2N, ,

r

(b) ;ig Cm,m-k =0 for each fixed k , an@
(c) z:?=0 ‘mm-i = Ap >l 3 moe d , -

.These conditions are satisfied by Theorem (3.7) and statements

-

(3.6) and (3.8).

Thus, under only the assumption that f is Riemann
integrable on [a,b] , the convergence of the Romberg scheme
has been shown. Therefore, in the usual case of interest, .

noted in Section I, the diagonal entries Tgk) converge to
. b
T(0) if only J' f(t) dt exists. However, it has not yet
a .

been shown which column or diagonal converges to T(0)
"faster.” The remainder of this section will be concerned

with this problem.



20

(3.12) Definition. A function f£(x) ‘has "order xk

as x approaches 0," and we write f(x) = Oka) , 1if con-
stants 'M and x. exist such that for all Ix] € x

0 0.?
£ | < M[xK] .

(3.13) Definition. A function £(x) has an asymptotic
series as x approaches 0, if constants a;, a;, -+- exist

such that for all m

y(x) = ag +a; x+a, x>+ e ta x4 o't (3.14)°

(3.15) THEOREM. If f(2m+?)(t) is continuous for
a £t <b , then there are numbers a,, *+, 3, depeading
on f , but not on h, 'so that

e

b
.[ £(t) dt + a, h? + «. + a_ W2+ 0™
a .

T(h)
(3.16)

In other ﬁords, T(h) as an expansion consisting of the
first (imn+l) terms of an asymptotic series.

Proofs of this result will be found in Ralston® and
Henrici (Theorem 13.6, p. 257).7 We can now prove a theorem
which is of a more g.aeral nature than the Romberg scheme“and
which will describe the "speed of convergence'" of the columns

of the array (1.3). We will consider the quantities P§k)
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as 3 and k both tend to infinity, with n =k - j held

fixe These form the nth

column of the array (1.3), con-
tinuing to designate the first column as the zgrpth column.
The theoréﬁ’;ad the ﬁroof given here are in ref. 1. It is ;
essentially the same theorem as thét given in refi 7
(Theorem 12 4 p 240), except that in the latter theorem,
it is assumed that the ratio (hk+llhk) is a f1xed constant

between 0 and 1 for all k .

(3.17) THEOREM. Assume that for m s a positive
 integer, the function y(x) has:an expansion consisting of ~

the first m+1 terms of an asymbtotic series; that is,

y{x) = a, + 3, X+ ece ¥ oay i 0( m+1) (3.18)

as x apprcaches 0. Assume further that the evaluation

pcints x_, x. ., -+ satisfy

0’ 71

0 < o < xklkk-l < p <1 (3.19)

for all k . Then, for p <m , the values Pﬁ%% defined

by PR = p{M (o) with j =k - n satisfy

pﬁfi’ = a, ¥ (DT a g X e Xt 0(x2+2) (3.20)




as k approaches = . Fhrthermore, if aﬁ # 0 , then

sin ([P - ][220 - %))

That is, the nth column converges to a,

(n-l)St _column{

22

(3.21)

faster than the

) Moler! proves the theorem.by first proving tﬁe following

lemma.

(3.22) LEMMA. Assume X X;, *s°

02 “1°
for any positive integer s dqfiné Q§kg
(k) _ s
U,s = *k
and for j <k, . S

k k-1 Ak '
of) - [ o5 - 28 ][

Then
, 1f s

NN

n cp
k-n,s - § 01 Xpoq 0o Xy, if s

0(xi)ask+w , if s

by

v

satisfy (3.19) and



|
3
!

Proof. By Theorem (1.1) Q£§; s is the value at 0 of.
) N ) - 4

‘the polynomial of degree n which interpolates the #ulction”

s . . .
x” —at—-thé€ points x, ., *°°, Xy -

ase . sgn . X -x 1s a po.ynomiai ©
cuse 09,400 - 55 53+ poymanie o

‘degree n , which has n+l zeros. Hence, it is identically

zero and therefore Qé?% s =0 . (In fact, s;E‘n .)
» - - ) ‘ .

Case 2. s =n+1. Q(k) x) - xn*l

k-n,s is. a polynomial

of degree n+l , which has the n+l roots, xk_h, --;, Xy .

‘Thus, by the fundamental theorem of algebra,

(k) | n+1 - - - i a o.. - Y
Qk “n, s(x) - x = 1(x - xp_ ) (x - %)
. Therefore,
(k) = .— n+1 L 3 ) = - n LR N 2
Qk-n,s 1(-1)° Xk-n Xx T ( ;) Xk-n X

-Case 3. s 2n + 2, We use (3.19) and induction on
n. Let n=0. Then Q(k) i = O(Xi) .- Assume the

statement has been proved for n =m - 1 . Then

K) (k-1
Ql((_%’s - [xk ng-m,l Xk-m Qk m+1 s /(xk * Xpom) N,
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By the induction hypothesis, we have -

Qﬁfi,s_ = i*k O(X;-l) " Xkenm o(xi)]/&xk " Xgem)

—

= _(xkixk-m) O(xijl) - O(%i)]/k(xk/kk_m)A- 1)

Since 0 <agg< xk’xk_1 . O(Xi_l) = O(xi) . Fﬁrther, since

xk’xk 1 € p<l, we havg that xklxk-m s»pm

Q;E’f,i,s ‘g [(1 + p'“)./_'(l - o'f"J] . 0(";) i} °("i)

Therefore, the proof of Lemma (3.22) is coamplete.

and hence

Proof of Theorenm (3.17). We first establish the
following proposition which is stronger than (3.20). Under

the hypothesis of Theorem (3.17) .

Pl((]-?l o= (k) 4+ ces + a Q(k) + p(xm+1)

2y * qn+1 Qk-n,n+1 k-n,m k

(3.26)

Proof is again by induction on n . For n=0 , the
statement follows from (3.18) and the fact that Q(k) = i .

Assume statement (3.26) is true for the case n-1 . Then.

K E-1 k
£ ) - [xk £ -n ) - Xg-n Pﬁ-%+1]/(xk © Xgon)
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and by the induction hypéthesis, we have -

2 - o e e o)

k-n,n m “k-n,m
- (k) Aj e ® e
Xk- n[ * Qk n+l,n *

vy Qlcckznl m* o(xlllrl)]}/(xk " Xg-n)

k k k
= 8 *a,; Q£ ; n ¥ %ns1 Q£ % n+l oees t a Q£ % ,m

-

+ [.(xk/xk‘_n) o(x?i) - o(x§+1)]/((xk/xk_n) - 1)

Since Qﬁk% =0 by (3.23), and by the proof of (3. 25),

statement (3. 26) is true. Flnally, since

(n) = - n e
Qk -n,n+l - (-1) Xk-n " Xk
and ‘ ; 4
(k) _ of.ned
Qk-n,n+i o(xk ),

. [ 4
for i = 2,--¢,m-n , {3.20) is true.



-

Finally, if a, F 0, then

k . k
[P - o] [p8r - o]

[ n ) | n;Z .
o [0 5y e my o o]

n+l ' N {0+l =
('1) . an xk-n+1 ees xk + O(Xk )]\ .

~

i (én+1/an) Xk-n f~0(x;)]/(1 * O(xkj)
= Otxk) » Wwhich iﬁplies (3.21).

-

Therefore, if a, # 0, the» nth column converges faster

than the (nr-l)St column.

This theorem is now épplied to the general scheme
developed in the Romberé Integration Sectionl Using the
fact that the coefficients a, occurring in the expansion
of T(h) in (3.16) have the form

(o7t ][ Dy - 00D o]
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where the BZn are the Bernoulli rumbers, we have

(3.27) COROLLARY. If f(2m+2)(t) exists a.d is con-

tinuous for a <t <b , and if 0 <o shk[hk_l €p<?
th

for all'"E/: then for n <m , the entries in the n

column of (2.4) satisfy

b
k) - £(t) dt
a
n 2 2n+4
+ (D)™ a, (hy e )P s o(hk ) as k + «
' (3.28)
/Furthermoré,.if f.
g(2n-1) iy ¢ g2n-1) 5y | ©(3.29)

- b
the entries in the nth column converge to .f f(t) dt
) a

faster than those in the (n-1)5% column.

If'we'further assume that f is analytic on [a,b] ,
then it follows from results of G_ragg8 and Bulirsch and

Stoer9 that

(3.30) THEOREM. If T(h) has an asymptotic expansion
in powers of h? (guaranteed if f is analytic on [a,b]),

and if 0 <o < hklhk_1 < p<1 for all k , then for . -

each m >0 , constants E, exist such that

|7(x) ' - 2 |
- ITO -3y S Epg(hy e by (3.31)



.Hencé, if (3.28) and (3.31) are true, and if a 41 #0 ;

then the principal diagonal convergés to a, faster than

the mth

0
__column of the array (2.4). -Therefore, if a, # 0

for all m 21 , then the principal diagonal converges to

.“:ao faster than any column of the array (2.4).

In ref. 1 it is noted that Corollary (3.27) suggests
which functions may not work well with the schéﬁgl For
example, furctions whose low-order derivatives do not
exist at the end points of infegration,_would make the '
expression (3.29) for the correspbnding low-order coefficients
meaningless. Also, periodic fuﬁctigns whose odd-order
derivatives are equal at a and b we might expect not to
7be adaptable to the schemé. On the other hand, functions
' wﬁlch are analytic or have highjordér derivatives on [a,p] ,
and are not éeriodic, we would expecf to be, in many cases, ’

particularly adaptable to this scheme.

Bauer, Rutishauser, and Stiefel? remark that the argu-
ments used fo prove Theorems (3.10) and (3.11) can be
applied to the more general case if only hk/hk_1 S p <l
for all’ k . Further, it is noted in ref. 2 that J.emma
(3.7) guarantees the numerical stability éf the Romberg

scheme, but for more slowly increasing sequences Nk , the

susceptibility to round-off error is increased.
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v

~—~=CONCLUDING -REMARKS

. As noted previously at the end of the Rbmberg Integra-
tion Section, it would seem practical to choose a sequence
o Nk less rapidly increasing than the seqhenge 2k . One
choice that would certainly minimize the number of calcu-
lations at each step would be Nk =k ; 1, k=20,1,¢¢ .~
However, this choice obviousiy does not sétisfy the require-
ment hk/hk_1 € p <1 for all k and, as noted in ref. 2,
can cause severe numerical instabilify if many columns of

the table (2.4) are computed.

-

Another choice, suggested by Bulirsch!? is

1 » k=0
N = q2(D/Z g oaa
3 . 2k/2-1 » k even

That is, N, = 1,2,3,4,6,8,12,16,--- . In this case
p = 3/4

Another choice suggested in ref. 2z is the sequence
N =1,2,3,6,9,18,27,54,--+ (all powers of 3 and their =~ °
doubles). For this choice hk/hk-l <p <1 for all k ,

1



-

but the modification is more susceptible to round-off errors

than the Romberg scheme, since the sum 2:1 OI — 1| is

higher than that for the Romberg method (up to 3.5).

The best choice of sequences appears to depend on the -

function, or at least class of functions, being integrated.

In ref. 2 the function 1/x is integréted between 1 and 2.
using the 1,2,3,6,9,--- modification. It is noted that

even if no improvement on the Romberg scheme can be made, it

.

does appear that computing time will be reduced to some

degree in the long run.

~

There is a very exfengivé derivation and discuséion of
the Romberg algorithm and its generalizations in ref. 2.
Bulirsch!? has extended the method of Romberg to any
sequence'of numbers hi with %32 hi = 0 , by considering
a linear matrix transformation of the sequence T(hi) .

n give an improvement of the result of

Meir and Sharma
Bulirsch. Stroud!” has considered error estimates for the
Romberg procedure, and comparea them with error estimates of
the Gaussian formulai. In a recent papér by Bulirsch and
Sfoer,13 it is proposed to use a Romberg-like scheme baseé
on rational function extrapolation. The authors give

applications of their meth.d in refs. 13 and 14, and compare
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it with the Romberg scheme using polynomial interpolation in

refs. 13 and 15.

\_;Ihe—Réaberg algorithm‘and its generalizations used for
. the numerical integration of definite iﬁtegrals are based

" -on the assumption that the tr#pezoidal'approximation with
step- h has an asympfotic expansion in powers of h? .

It is proposed in refs. 2 and 9 to apply similg;"ideas to.
the solution of first-order ofdinary initial-value problems
using Euler's method as the Basic discrgtizatioﬁ. The
corresponding asymptotic expansioh then also contains odd
powers of h . Gragg16 has estpbli;hed the existence of
simple discretizations of both first and special second-order
systems which have asympfotic expansions in powers of h? .
Hé then proposes to apply the quif{cation of Bulirsch and
Stoer to obtain the solgtion for this type of ordinary
initial-value problem, Refs. 2 and 1 give examples wﬁere

the basic assumption of the existence of ~n asymptotic

expansion of T(h) in powers of h? is not valid.



32

-

REFERENCES

1. Moler, Cleve B.: Extrapolation to the Limit. Numerical
"
TTAnalysis Seminar, University of Michigan Engineering
Summer Conferences, June 19-30, 1967.

2. Bauer, F. L.; Rutishauser, H.; and'Stiefel, E.: New
Aspects in Numerical Quadrature. Proceedings of
Symposia in Applied Mathematics, vol. 15, -American
Mathematical Society, 1963, pp. 199-218.

3. Richardson, L. F.: The Deferred Approaéh to the Limit,
I-Single Lattice. Philos. Trans. Roy. Soc. Londou.
-Ser. A, vol. 226, 1927, pp. 299-349.

4. Romberg, W.: Vereinfachte Numerische Integration.
Norske Vid. Selsk. Foria. (Trondheim), vol. 28, 1955,
ppP. 30-36. ‘

5. Cooke, Richard G.: Infinite Matrices and Sequence
Spaces. Dover Publications, inc., 1955.

6. Ralston, A.: A First Course in Numerical Analysis.
McGraw-Hill, 1965. '

7. Henrici, P.: Elements of Numerical Analysis. John Wiley
and Sons, Inc., 1964,

8. Gragg, W. B.: Repcated Extrapolation to the Limit in
the Numerical Sciution of Ordinary Differential
Equations. Doctoral dissertation, University of
California, Los Angeles, 1964.

9. Bulirsch, R.; and Stoer, J.: Fehlerabschatzungen und
. Extrapolation mit Rationalen Funktionen bei Verfahren
vom Richardson-Typus. Numer. Math., vol. 6, 1964,
pp. 413-427. '



\

10.

11.
'12.
15.
14.
15.

16.

Bulirsch, R.: Bemerkungen zur Romberg-Integration.:
Numer. Math., vol. 6, 1964, pp. 6-16.

__Meir, A.; and Sharma, A.: On the Method of Romberg
Quadrature. J. Siam Numer. Anal. Ser. B, vol. 2,
no. 2 1965, pp. 250-258. '

Stroud, A. H.: Error Estimates for Romberg Quadrature

J. Siam Numer. Anal. Ser. B, vol. 2, no. 3, 1965,

pp. 480-48%. ~

Bulirsch, R.; and Stoer, J.: Numefical,Treatment of
Ordinary Differential Equations by Extrapolation

Metbods.- Numer. Math., vol. 8, 1965, pp. 1-13.

Bulirsch, R.; and Stoer, J.: Asymptotic Upper and
Lower Bounds for Results of Extrapolation Methods.
Numerische Mathematik, vol. 8, 1366, pp. 93-104.

Bulifsch, R.; and Steer, J.: Numerical Quadrature by
Extrapclation. Numerische Mathematik, vol. 9, 1967,
pp. 271-278.

Gragg, W.: On Extrapolation Algorithms for Ordinary
Initial-Value Fioblems. J. Sizm Numer. Anal. Ser. B,
vol. 2, no. 3, 1965, pp. 384-403.




	GeneralDisclaimer.pdf
	0006B02.pdf
	0006B03.pdf
	0006B04.pdf
	0006B05.pdf
	0006B06.pdf
	0006B07.pdf
	0006B08.pdf
	0006B09.pdf
	0006B10.pdf
	0006B11.pdf
	0006B12.pdf
	0006C01.pdf
	0006C02.pdf
	0006C03.pdf
	0006C04.pdf
	0006C05.pdf
	0006C06.pdf
	0006C07.pdf
	0006C08.pdf
	0006C09.pdf
	0006C10.pdf
	0006C11.pdf
	0006C12.pdf
	0006D01.pdf
	0006D02.pdf
	0006D03.pdf
	0006D04.pdf
	0006D05.pdf
	0006D06.pdf
	0006D07.pdf
	0006D08.pdf
	0006D09.pdf
	0006D10.pdf
	0006D11.pdf
	0006D12.pdf
	0006E01.pdf

