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ROMBERG INTEGRATION_

Matthew J. O'Malley

SUMMARY

This paper presents a theoretical development of a pro-

cedure to numerically integrate the definite integral

b	 -

f(t) dt	 Theorems and the majority of proofs are given,

justifying the procedure, and remarks are made conce "ing the

types of functions for which the procedure appears well suited.

INTRODUCTION	 =

This report presents a theoretical method to numerically

b
integrate the definite integral 	 f(t) dt	 A special

•a

case of the method, the Romberg Integration scheme, is also

presented. Theorems and the majority- of proofs are given

justifying the procedure, and remarks are made concerning

types of functions for which the procedure appears well suited.

Emphasis has been placed on the mathematical justification of

the procedure in order to provide a deeper understanding of

the method, and, hopefully, to lead to further research of

the procedure and its modifications.
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the chief references from which the bulk of the material

of this paper was obtained are Moler i and Bauer, Rutishauser,
i

and Stiefel.2
_

The author wishes to thank Mr. Robert Meyers for the
- i

many helpful suggestions made during the preparation of this
- i

paper.
-

SYMBOLS

p2n'	 n 1,2,••• - Bernoulli numbers {

Em ,	 m = 0,1, ••• real constants. i

fn ,	 n 0,1,... f(a + n h)

f (n) ,	 n 1, 2 , • • • nti1	 derivative of	 f

h integration step-size

h • (b - a) /Nk
3

M(h) midpoint rule sum

Nk ,	 k = 0,1,••• increasing sequence of positive

integers

P3k) (x) P (k-j)th	 degree polynomial

interpolating the points

• (xi ,	 y i) ,	 i	 =	 j , ... ,k
k`v	 value at x* of P3 k) (x)

3	 -



e

1

f

f

3

3

(k)Q.	 value at 0 of the polynomiali's
which-interpolates the function 	 i

xs 	(s >_ 1	 at the points

Xi
-	 b

T(0)	 f(t) dt

T(h)	 trapezoidal sum

T^ k)	 vague at 0 of P^ k) (x)

xi , i = 0,1,•••	 distinct real or complex numbers

yi , i	 0,1,•••	 real or complex numbers not
3

necessarily distinct

a p	 constants between 0 and 1
3

I



NEVILLE'S ALGORITHM

Suppose that we are given (m+l) distinct points,

xo , x^, •••, xm	real or complex, and (m+l) corresponding

values (not necessarily distinct), Yo , Yi, •••, Ym

Neville's algorithm is a method of calculating the unique

polynomial P(x) of degree m which takes on the values

yk at the points x  .

To describe the method, let P^k) (x) denote the inter-

polating polynomial of degree (k-j) which satisfies

P^k) (x i) = Yi	 (i = j,...,k)

(1.1) THEOREM. For j = k , let P (
kk) (x) = yk and

for . j < k , let

p,k) (x) _	
(xk 

_ x) P; k-1) (x)
C

(xj - x) Pik) (x)^ (xk - xj )	 (1.2)

P^k) (x) is then the unique polynomial of degree (k-j),

•	 which interpolates the points (x., y.), •••, (xk' Yk)

Proof. Induction is used on n = k - j 	 If n	 0

the theorem is obvious. Suppose the theorem has been proved
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for n m	 Then

Pp+m+l) W _ ^(xj+m , l X) P^wm) (x)

- (xj - x) P'j+m+l)(x) (xj+m+l - xj)

and by the induction hypothesis, P^p+m) W and P(j+m+1)(x)

are polynomials of degree m , and hence P^P+m+l)(x) is

a polynomial of degree m+l 	 Further, by direct verifi-

cation, P^j+m+l)(xi)	 yi for i = j, j+m+l	 By assump-

tion, for j < i < j+m+l	 P^j+m) (xi)
	P^+lm+l)(xi)	 yi

hence P^j+m+l)(xi) = yi for j < i < j+m+1 .

Finally, the uniqueness follows from the fact that if

P(x) and Q(x) are two polynomials of degree n interpo-

lating the same (n41) distinct points, then P(x) - Q(x) is

a polynomial of degree n having at least (n+l) roots and

thus is the zero polynomial. Therefore P(x) = Q(x) .

Neville's algorithm then can be used to evaluate th-,

interpolating polynomial P^ k) (x) at any desired point x* .

An important advantage of Neville's algorithm over the, per-

haps, more familiar Lagrangian representation is that the

number of points to be interpolated may be increased without

redoing previous computation. For example, if we wish to
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calculate	 Po4) (x)	 ,	 then it is only necessary to calculate

Po 
3) 

(x)	 and	 Pl4) (x)	 and apply ( 1.2)	 to compute	 Fo 4) (x)

Thus, the 4th degree interpolating polynomial	 Po 4) ix)	 is

determined-by using linear _nterpolation on	 (X 0 , P(,)(x)^

E and	 (x 4 , Pi 4) (x)^	 That this is true in general is cl^a:-.

It is also important to realize that no ' assumption has been

made regarding the distribution of the po'-itsxk 	They

-	 need neither be equally spaced, nor in increasing or

decreasing order.

If we use the notation	 P^k) 	for the computed vG ues

P (k) (x*)	 then Neville's algorithm can be arranged in the
f

following table:

Poi)

P (1)	 P(l)

P(2)	
p(2)

2	 1

p(2)

0

p(3)	 P2 3) P13 ) Po i) 	(1.3)

p(k)' p(k)
p(k)

p(k)k k-2 k-3.,



Using this arrangement each entry p(k) is obtained directly

from the two entries P;k-1) anL' P^+1 immediately to the

"left-"and-" eft-above" it.

In the usual case, T(x) is a function such that

T(xi) = yi for C 5 i < n	 To approximate r(x*) by using

polynomial interpolation, we iteratively compute the values

Pik) until two or more successive values, p(k)
0,

 po(k¢1)^

••• 	 agree to within some preassigned degree of accuracy.

Finally, we note that if x* - = 0

k )P,(	 1xk p,k-1) _ X, p,ki (xk 	 x^)	 (1.4)

We shall be interested in'this form when using the Romberg

scheme.

ti
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ROMBERG INTEGRATION

3

One of the most well-known methods of approximating

b
f	 the integral 1 f(t) dt is the trapezoid rule. If N is

a
:	 a positive integer and

h	 (b - a) IN

xn = a + nh

fn = f (Xn) , n , = 0,1,2, ... jN

then the N-interval trapezoid rule determined by the

N-subintervals, (x i , x i+1 ), i - 0,1,•••,N-1	 is given by

T(h) _ h 	 + fl + ...•+ fN-1 + Z fN
)	

(2.l)

wher6 h is . the mesh size.

It follows easily, then, that if^1 i7(t) dt exists,

b	
.a

T (h) i f f (t) dt as h -► 0	 Further, if P (t) is Ion-
a

tinuous on [a,b]	 and hence bounded on [a,b]	 then

b
T(h) = J f(t) ut + [(b - a) h 2/12) . fifM

a

where C e (a,b) .



The Romberg method consists of an application of

Neville°s algorithm to the function T(h)	 In general,-let

••• be an increasing sequence of positiveNo , N} ,_ •^r ; Nk,

integers and

hk	 (b - a) IN

= h22.2xk 	 k	 ( )

yk = T (hk)	 k = 0,1,---

Applying Neville's algorithm with x* = Q and T3 k) denoting

the value P k)	 we hive from (1.4),
3

For j = k	 Tkk) =.T(hk} and for j < k

i	 a

(k)(k-1)_ ( 2	 _ 2 (k)	 2 _ 2

	

Tj	 1 hk Tj	 hj Tj fl ^hk h j l	 (2.3}

	

(k)	 thThus, T j 	is the value at 0 of the (k-j) 	 degree poly-

nomial which interpolates the (k-j+l) points, 	 0, T(hj)),

• • •; ^h2 , T(hk)).
	

Therefore,-from (1.3) we have the

following table:
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i0

T(0)

T ( 1 ) T(1)
1^

T(2)
2

0

T i-
(2) T(2)

o

1

T(3)
3

T(3)
2

T ( 3)	 T (3)
1	 C

(2.4)

T(k ) T (k ) T (k^	 T (k3	 Tok)
k k-1 k	 k

Each entry in the table is_an approximation to T(0)

b
that is,	 f(t) dt The first column (which we shall

a

call the zeroth column) contains the values of the succes-

sive :.rape7oid rules, We should note here that the process

just described is often called Romberg Integration. However,

we shall restrict ourselves to. this terminology for only the

special case	 N 	 = 2k The general procedure just described

will be referred to as a modification or generalization of

the Romberg scheme. As we shall see in Section III, the

basis for this procedure will be the existence of an asymp-

totic expansion of T(h) 2in powers of	 h 	 For this



11

reason, the above _process _is often referred to as extrapo-

. - ------2ation to -.the - ,limit or Richardson ' s deferred approach to

l

As noted previously, the Romberg scheme uses the valuds'

•	 Mk = 2
k , k = 0,1, • ••	 This choice has several advantages

for -computational purposes. For h _ (b_- a) /N , let_

-	 --` M(h) be the N-interval midpoint rule; that is

M(h) = h  n=1 f a + (n 	 h

Since

T(h) = hIEN- I f (a + n h) + (1/ 2) (€ ( a) + f (b))

it follows that T(h/2) _ (T(h) + M(h))/2	 For the Romberg

scheme, since hk+l = hk/2 , it follows that_

T(hk+l ) _ (T(h k) + M(hk))/2	 (2.5)

This relation was used by Romberg to construct the zeroth

•	 columr of his array. Furthermore, using the fact that

hj/hk = 2k-j	 (2.3) can be written in the form:

T^k)	 T^k) + (T^k) - T,k-1)1^(4k-j - 1) 	(2.6)

s
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;n this form,_the algorithm wa, first described_by Romberg

--is called -Romberg Integration.4
- t

.	 However, while the choice 	 Nk = 2k	has many "nice"

computational features, it also has the disadvantage that the

.	 number of grid points at which 	 f	 must be evaluated doubles

with each iteration. 	 If	 f	 is a complicated function, this

could be a significant disadvantage.

The natural suggestion would be to choose a-sequence -

k l°°Nk	less rapidly increasing than the sequence 	 2
,k=0

However, before we consider such chcices, we should concern -

ourselves with the question of when does the Romberg scheme

b

jbconverge tof(t) dt	 We shall consider this problem
a

-and others in the next section. -

r

a
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CONVERGENCE CRITERIA

Our first aim in this section will be to justify the

Romberg scheme. We will show that every diagonal and•every

column of (2.4) with N  = 2 k (k = 0,1_,x •• ) converges to

T(0)	 Proofs are based on those in ref. 2.

It is clear that every entry of (2.4) is a linear com-

bination of elements of the zero th column; that is,

(k+m) _	 m	 (k+i)	 •
Tk 	 i=0 cm,m-i Tk+i	 (3'1)

where the coefficients cm,m--i are independent of k .

From (2.6), it follows that for m # o

+ -
Tkk+m) _ (4m  Tkkim) - Tkk m 1)1 (4m . - 1)	 (3.2)

From this observation and from (3.1), it follows easily by

induction on m that for m # 0	 the coefficients cm,m- i

obey the recursion formula

cm,m-i	
[4m 

cm-1,m-i	 cm-lym-1-i1/0
m - 1)
	 (3.3)

for i = 0,1,• • •,m	 assuming cm-1,m = cm-1,-1	 0
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If tm (x) are the polynomials defined by

tm (x) . -=	 k=0 Cm k x
k , m = 0,1,2 1 ...	(3.4)

then from (3.3) we have that, for m 0

_	 `
tm(x)	

m
k=0 ^4 

m cm - 1,k - cm-1,k-11(4
m - 1) x k

[( 4m - x)/(4m _ 
1) 1 Em-1 c	 xk

J	 k=0 m-1,k

( 4m - x) t,-1(x) /(4m - 1)

From this result it follows that, for m 0

	

tm(x) - nm=1 ( 4 1 - x)111
nm=1 (4 1 - 1)I	 (3.$)

which, together with the fact that c a,o = 1	 allows us to

conclude that

tm(1) - F i
m
= 0 cm,i = r i

m
=0 cm,m-i = 1	 (3;.6)

for each m .
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0

Further, we have the following:

(3.7) LEM A. For each m i=0 ( cm i ( <_ 2

Proof-, Since	 -

tm(-1) - H i=1 (41 + 1)] [n i=1(41	
1)-	 lr	

JL

r. 117=1(4i + 1)/( 41 - 
1)J < 2L

it suffices to show that E i= 0 ! cm it = tm(-1) for each m .
To prove this, it is sufficient to show that (-1) 1 cm'i > 0

for i = 0,1,2,••-,m	 Suppose that m = 1	 Since

(-1) , cm 0 = cm 0 = tm (0) > 0 for all m , we have that

( -1) 0 c i'o > 0	 Further, using (3.1) and (3.2) ; it can be

observed that c i'l = -1/3	 hence (-1)1 c191 = 1/3 > 0 .

Suppose the statement has been proved for m = n - 1	 We

consider (-1) 1 cn i , where i s•{0,1,•--,n-1}	 From

(3.3) ,

(
-1)1 

Cn,i	 1
4n(-1)c

n-1,i - (
- 1)1 

cn- l,i-1] (4n1)

and by the induction hypothesis, (-1)i cn-1,i > 0	 and

cn-1,i-1 > 0 for i e*{0,1,•--,n-1)	 Therefore,

I
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[4n(-l)1 Cn-1 i +	 cn	
(4n 	 1) > 0	 Finally,, 

( -1)n cn,,n	 Con(-1)n  c n-ln	

( _ j) n 
c n-1, n-1 (4n 
	

1)
C

10 + (_1)n-1 
Cn-1,n-ll/(4 

n	 1) > 0

since	 _l)n	 Cn-1,n-1 > 0 by the induction hypothesis.

Before the convergence of the Romberg method can be

shown, we need to observe that for each k

lim c	 0	 (3.8)
M40D m,m-k

To show this, observe that from (3.5)

t 
M 
(4x)	 4m t 

M
(x)(1	 x)/(4m	x)

and

tm_,(x)	 tm(x)(4m	 1)/(4'	 x)

Hence

t
M
 (4x)	 t

M (X)	 x tm-,(X)

or

m	 c	 (4 k	 1) x k
	 M-1 c	 x k+I

I k=O M ' k	 k=O m-'I,k

U
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By equating coefficients, we then have i

k -	 )cm,k	 =	 - cm-l,k-1^(4	 1
3

S

Repeated application of this last relation gives

cm m- k	
( - 1)m-k ck 0 II i=1 .( 4 1 -	 1)	 (3.9)

From this last relation,	 (3.8) is apparent.

The convergence of the Romberg scheme may now be

proved.

(3.10) THEOREM.	 The convergence of the zeroth column

of the array (2.4) implies the convergence of all further

columns of (2:4) to-the same limit,

(k)Proof.	 Suppose that	 lim Tk 	- T(0)
b

_	 f(t) dt
k-^^ a

Consider the elements	 Tkk+m) 	 k = 0,1,•- • of the	 mth

column, where	 Tkx+m)	
^i=0 cm,m-i Tkk	 ) for each	 k

We show that	 lim Tkk+m) = T(0)	 Let	 e > 0	 be assigned.
k-)-co

Choose	 N	 a positive integer, such that

ITkk) 	- T (0) < c/ [ (m ^+ 1) U]	 for	 k >_ N
I

where

U = max
Icm,m-iI i	 =	 0,... 'm	 By	 (3.6) =Fi0cm^m-i ~ 1'
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hence

("m) T0 )
_	 _	 m

Tk	 (	 i=0 cm ,m- i
k+i

Tk+i T (0)

m	
cI 	 m,m-i T(k+1'k+i

m	
c	 T Oi = 0	 m,m-i	 ( )

_	 m
^1=0 cm,m-i(Tk

(k+i)
+i T(0))

Therefore, for	 k >_ N

+m) i

l

(k
Tk	 ` T ( a ) <	 (m + 1)	 U ', a/[(m + 1 )	 U]	 =	 e

and the theorem is proved.

.(3.11) THEOREM.	 The convergence thof the zero	 column

of the array (2.4) implies the convergence of all diagonal

sequences; that is, of all sequences T(
k
k+m) 	 k	 constant,

M	 to the same limit.

Proof.	 Let	 k	 be a fixed nonnegative integer.	 Under

the assumption that	 lim Tkk) = T (0)	 =
b

f (t) dt ,	 wek;^, Ja	 ,

show that	 lim T (
k
k+m) = T(0) We note that a sequence-to.-

M4 (*

sequence transformation is established by (3.1) between the



• 19

CO

sequences	 Tkkii)	 and	 Tkk+m) Then, according	 =
1=0	 m=0

to the Silverman-Toeplitz theorem (Theorem 4.1,	 II, p.	 64),5

a necessary and sufficient condition that Tkk+m) -► T(0)

as m -► 	 ,	 is that

(a) ^
m

i=0 Ic. $m-iI < M
	 for every positive integer	 m >_ No

(b) lim cm,m-k = 0	 for each fixed	 k	 and

(c) -l-	 ,
i
m 
=0 cm,m-i = Am	1	 as	 m

•.
g

;'these conditions are satisfied by Theorem (3.7) and statements

(3.6) and (3.8) .

Thus, under only the assumption that f is Riemann

integrable on [a,b] , the convergence of the Romberg scheme

has been shown. Therefore, in the usual case of interest,

noted in Section I, the diagonal entries T (k) converge to

fb
T(0) if only 
	

f(t) dt exists. However, it has not yet
a	 -

been shown which column or diagonal converges to T(0)

"faster." The remainder of this section will be concerned

with this problem.

1

t
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(3.12) Definition.	 A function f(x) has "order xk

as	 x	 approaches 0," and we write f (x) = 0 .(xk) if con-

stants	 M	 and	 x o 	exist such that for all ^x^ < X0.$•

g f (x) l < M xk

(3.13) Definition.	 A function. f(x) has an asymptotic

series as	 x	 approaches 0, if constants a o ,	 a l , •••	 exist e

such that :For all	 m

y(x)	 =	 ao +a,x +a2 x 2 +...+am xm +0(xn,.1
) (3.14)•

(3.15) THEOREM.	 If	 f (2m+2) (t) is continuous for =

a < t -5 b	 then there are number3 a am depending

on	 f	 but not on	 h ,	 so that

T(h) _

	

	
b
 f(t) dt + ai h2 + ... + am h 2 + 0(h2m+2)

a
(3.16)

In other words, T(h)	 as an expansion consisting of the

•	 _first Cm+1) terms of an asymptotic series.

Proofs of this result will be found in Ralston 6 and

7Henrici (Theorem 13 . 6, p. 257). 	 We can now prove a theorem

which is of a more g^.ieral nature than the Romberg scheme and

which will describe the "speed of convergence" of the columns

of the array (1.3). We will consider the quantities Pik)
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as j and k both tend to infinity, with n k j held
:fixe,' These form the nth column of the array (1.3), con-

tinuing to designate the first column as the -zero
th
 column.

The theore-ff­ind the proof given here - are in ref. 1. It is

essentially the same theorem as that , given in ref. 7

(Theorem- -12.4, p. 240), except that in the latter theorem,

it is assumed that the ratio (h k+1 
/h 02 is a fixed constant

between 0 and 1 for all k

(3.17) THEOREM. Assume that for m	 a positive

integer, the function y(x) haszan expansion consisting of

the first m+l terms of an asymptotic series; that is,

y(x)	 a. + ' a, 
X +	 + a. xm + O(xm+l )	 (3.18)

as- x approaches 0. Assume further that the evaluation

points x 0 , XIS	 satisfy

0 - < a	 xkfxk-1 < P < 1	 (3.19)

for all k	 Then, for P < m	 th'e values 
p(
kk)n defined-

by p(kk)	 k
p (k) (0) with	 k n satisfy-n	 -n

p(kk)-	 a 0 
+- 

(
- 1)n an+l xk-n	

xk + 0(x nk+2)
	

(3.20)
-n 
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as k approaches	 Furthermore, if an 0	 then

lim([Pk-nk - a Q 	Pkkn+1 - ao	 = 0	 (3.21)
J L..	 k

That is, the nth column converges to ao faster than the

(n-1) st column.

Molerl proves the theorem by first proving the following

lemma.
ti

(3.22) L•E1^tA. Assume x0,, • • • satisfy (3.19) and

for any positive integer s define Q (k) by)'s

(k)	 s
Qk,s - xk

and for j c k

Qtk) =	
x 

QCk-1) - 
x• 

1(k) 
^'[x	 x•

) J)Is	 C k )I s 	 J l +l , s	 k 

Then

0	 if s < n	 (3.23) .

0 (xk) as k -^
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Proof.	 By Theorem (1.1)	
Q(k) 

s	 is the value at 0 of-
the polynomial of degree	 n	 which interpolates the ^u'..ction - -	 3

xs —a.t: the points	 xk-n'- • • ^' xk

•	 Case I.	 s < n	 Qk_n,s(x)	 XS	 is a nolynomial of

degree	 n , -which has	 n+1	 zeros. 	 Hence, it is identically

= 0	 (In fact,	 s"--m .)zero and therefore	 Qkkn s

Case 2.	 s = n + 1Qk 0	 (x) - xn+l	 is • a polynomial	 ..

of degree	 n+l	 which has the	 n+1	 roots,	 xk_n , •••, xk
i

Thus, by the fundamental theorem of algebra,

Qkn	 (x)	 - xn+ 1	 =	 - 1(x - xk
-n)	

...	 (x _ xk)s

Th.-.refore,

Qkkn ,s 	- 1(-1) n+l xk_n ...- xk	 -	 (
_1)n 

xk-n ... xk a

. Case 3.	 s >_ n + 2	 We use (3.19) and induction on

n	 Let	 n = 0	 Then	 Qk(ks =)	 s-	 Assume thexk = O(xks
1
 .-

`
statement has been proved for 	 n = m - 1	 Then

Q (k)	 _	 x	 Q(k-1)	 - x	 Q(k)	 )k-m,s	 [ k	 k-m ' s	 k-m	 k-m+l,sl	 (x	 - xk	 k-mJ
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By the induction hypothesis, we have

Q 	 _ IXk-m,sk 0 (Xks - 1) - xk-m O \xk/ (xk xk-m)

_	 (x !x ) 0 xs	 - 0 xs	 (x x[ kl k-m ( k-1)	 k)	 k^ k-m
3

Since 0 < ar ^ xk (xk _ 1	 O^xk_1) = 0(xkl	 Further, since

xk/xk_1 :5 p < 1 , we have that xk/xk-m <_pm and hence

Qkkm^ s = ^(1 + Pm)1(1 - am)^	 Oxk )	 /= 01xk

Therefore, the proof of Lemma (3.22) is complete.

Proof of Theorem (3.17). We first establish the

following proposition which is stronger than (3.20). Under
1

the hypothesis of Theorem (3.17)..
3
5p (k) = ao + an+1 Qkkn ,n+1 + ... + am Qkkn, m + Orxk+1

(3.26)

Proof is again by induction on n	 For n = 0	 the

statement follows from (3.18) and the - fact that Q (k) = xsk,s	 k

Assume statement (3.26) is true for the case n-1	 Then-,

(k) _	 (h-1) _	 (k)	 _
pk-n	 rxk Pk-n	 xk-n p (k)

	 (xk xk-n)

f

•	 x

l	 -



and by the induction

P (k)(	 _
pk-n	 x	 ank a0 t 

- xk-n [ao +

+ am Qkkn+l

4 .
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hypothesis, we have	 -

Q (k-1) + ... + a Q (k-• l ) + 0(xm+1
 ^Jk-n,n	 m k-n,m	 k-1 J

an 
Qkkn

+l,n + ...

+ 0 xm
+1

.m	
k	 (xk - 'k-n)

= a + a Q (k)	 + a	 Q(k)	 + ... + a Q(k)
_	 n+l_ k-n,n+l	 m k-n,m

m+1	 m+1
+ [(xk/xk-n) O (xk-l) - O(xk )l ({xk/xk-n) - 1^J

Since Q(k)k-n,n -= 0 by (3.23), and by the proof of (3.25),

statement (3.26) is true. Finally, since

(n)	 n
	Qk-n,n+l	 (-I) xk-n ... x 

and

	

(k)	 _	 ( n+i)
	Q

(k)
	 0 xk

for i	 2,• . •,m-n , (3.20) is true.



=	 Z.

Finally, if an 0 , then

C
(k)(k)

Pk--n-..— ao ^Pk-n+l - ao

an+1 x, _ n ... x	 +2k + O`xk

n+i(-1) n+l
 an xk-n+l ... xk + p xk 

t (an+llan)xk-n + 0Cxk)]/(!   4(xk 

O(xk)	 which implies (3.21).

• Therefore, ' if an ^ 0 , the nth column converges faster

• than the (n•-1) st column.

This theorem is now applied to the general ;scheme

developed in the Romberg Integration Section. Using the

fact that the coefficients a n occurring in the expansion

of T(h) in (3.16) have the form

l(B2n) /[(2n) 1]1 f (2n-11 (b) - f (2n-1) (a)
C	 ^

•	 r'

0.
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where the B 
2 

are the Bernoulli numbers, we have

(3.27) COROLLARY. If f (2m+2) (t) exists a. d is con-

tinuous for a 5 t :5b 	 and if. 0< a :5h k jhk-1  5 P< 1

for all _k___, then for n < m , the entries in the nth

column of (2.4) satisfy

b

Tkkn = f f (t) dt
a

+ ( _ 1) n an+1 (hkYn .... hk ) 2 + 0(h2kn+4/ as k -^	 •

(3.28)

Furthermore, if

(2n-1)(, )	 f(2n-1) ( a)	 (3.29)

tb
the entries in the nth column converge to J f(t) dt

a
faster than those in the (n -1) 5t column.

If'we , further assume that f is analytic on [a,b)

then i -t follows from results_of Gragg 8 and Bulirsch and

Stoer 9 that

(3.30) THEOREM. If T(h) has an asymptotic expansion

in powers of h 2 (guaranteed if f is analytic on [a,b)),

and if 0 < a:5 
hkjhk-1:5 

p < 1 for all k	 then for

each m >_ 0	 constants Em exist such that

^ T
( k) - a o 1 5 E

m+1 (hk 
...'hk

+m)2	 (3.31)
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Hence, if (3.28) and (3.31) are true, and if am+1 ^ 0

then the principal diagonal converges to a o faster than

themth---column of the array (2.4). Therefore, if am # 0

for all m >_ 1 , then the principal diagonal converges to
t

ao faster than any column of the array (2.4).

In ref. 1 it is noted that Corollary (3.27) suggests

which functions may not work well with the scheme. For

example, functions whose low-order derivatives do not

exist at the end points of integration, would make the

expression (3.29) for the corresponding low-order coefficients

meaningless. Also, periodic functions whose odd-order

derivatives are equal at a and b we might expect not to

be adaptable to the scheme. On the other hand, functions

f
	

which are analytic or have high-order derivatives on (a,bj

and are not periodic, we would expect to be, in many cases,'

particularly adaptable to this scheme.

Bauer, Rutishauser, and Stiefel 2 remark that the argu-

ments used to prove Theorems (3.10) and (3.11) can be

applied to the more general case if only hk'hk-1:5 p '4

for all' k	 Further, it is noted in ref. 2 that lemma

(3.7) guarantees the numerical stability of the Romberg

scheme, but for more slowly increasing sequences N 	 the

susceptibility to round-off error is increased.



29

_._-- CONCLUDING 'REMARKS

-As noted previously at the end of the Romberg Integra-

tion Section, it would seem practical to choose a sequence

Nk less rapidly increasing than the sequence 2 k	One

choice that would certainly minimize the number of calcu-

lations at each step would be N  = k + 1 , k = 0,1,-- -

However, this choice obviously does not satisfy the require-

ment hk/hk_1 :5 < 1 for all k and, as noted in ref. 2,

can cause severe numerical instability if many columns of

the table (2.4) are computed.

Another choice, suggested by Bulirsch 10 is

i
1	 -, k - 0

	

N-	 2 (k+l)/2	 -	k -	 , k odd	 .

3 - 2k/2-1	 k even

That is, N  = 1,2,3,4,6,8,12,16,--• 	 In this.case

p=3/4 .

Another choice suggested in ref. 2 is the sequence	 i

N  = 1,2,3,6,9,18,27,54,•-• (all powers of 3 and their

doubles). For this choice h k/hk _ 1 < p < 1 for all k ,
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but the modification is more susceptible to round-off errors

than the Romberg scheme, since the sum m_ Ic	 ( isi=0 m,m-i

higher than that for the Romberg methol (up to 3.5).

The best cioice of sequences appears to depend on the

function, or at least class of functions, being integrated.

In-ref. 2 the function 1/x is integrated between 1 and 2•

using the 1,2,3,6,9,•-- modification. It is noted that

even if no improvement on the Romberg scheme can'be made, it

does appear that computing time will be reduced to some

degree in the long run.

There is a very extensive derivation and discussion of

the Romberg algorithm and its generalizations in ref. 2.

Bulirsch 10 has extended the method* of Romberg to any

sequence of numbers h. with lim h. = 0 , by considering

a linear matrix transformation of the sequence T(hi)

Meir and Sharma n give: an improvement of the result of

Bulirsch. Stroud 1^ has considered error estimates for the

Romberg procedure, and compared them with error estimates of

the Gaussian formulas. In a recent paper by Bulirsch and
IP

Stoer, 13 it is proposed to use a Romberg-like scheme based

on rational function extrapolation. The authors give

applications of their method in refs. 13 and 14, and compare
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it with the Romberg scheme using polynomial interpolation in

refs. 13 and 15.

The-Romberg algorithm and its generalizations used for

the numerical integration of definite integrals are based

on the assumption that the trapezoidal approximation with

step h has an asymptotic expansion in powers of h2

It is proposed in refs. 2 and 3 to apply similar ideas to

the solution of first-order ordinary initial-value problems

using Euler's method as the basic discretiza*_ion. The

corresponding asymptotic expansion then also contains odd

. powers of h	 Gragg16 has established the existence of

simple discretizations of both first and special second-order

systems which have asymptotic expansions in powers of h 2 .

He then proposes to apply the modification of Bulirsch and

Stoer to obtain the solution for this type of ordinary

initial-value problem. Refs. 2 and 1 give examples where

the basic assumption of the existence of .n asymptotic

2expansion of T(h) in powers of h 	 is not valid.

y
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