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Statistical Properties of Weighted Binary
 
Random and Pseudo-Random Sequences
 

0.0 Introduction
 

The kind of problem discussed in this final report is illustrated in 

Figure 0-1; 

An n-stage binary shift register accepts the input binary random or
 

pseudo-random sequence. The sequence is shifted-one-stage-to-the-rg t--t
 

each clocking time. The values in the stages of the register are multiplied
 

or weighted by the numbers {a1 , a2, .ai -.., an} . The resulting products
 

are summed to provide the output from the system. If the input isa pseudo

random sequence the shift register may also serve as the sequence generator
 

by connecting itas a feedback shift register.
 

This problem was discussed indetail inan earlier report [1], which
 

includes an extensive bibliography. The present report presents a number
 

of extensions of [1].
 

First, the input is assumed to be pseudo-random, and the weights are
 

0 or 1. We consider the possible forms of the probability density function
 

of the output, and some of its moments.
 

Second, the input is assumed to be either random or pseudo-random, and
 

we consider the autocorrelation function and the power spectral density of
 

the output.'
 

Third, we assume that n , and consider some fundamental properties 

of infinite sums of random variables. 

Fourth, the present status and initial experiments ina new communications
 

laboratory are discussed. Itis shown how this laboratory will be used to
 

study many of the concepti considered above. The design and testing of a
 



Analog Adder Output
 

a1 a2a.ia 

Input 

Figure 0-1. Basic Circuit Being Studied 
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binary nonrecursive digital filter isdiscussed indetail.
 

Fifth, some unexpected relations to some important basic mathematical
 

relations are obtained. It isshown that such sequences as successive
 

partition numbers, and the Fibonacci sequence, can be generated by digital
 

filter circuits.
 

0.1 Applications
 

The problems studied here have a wide range of applications. First,
 

we are concerned with the generation of random number sequences with different
 

statistical properties. Such sequences are used in communications systems,
 

system identification, equipment testing, and potentially in a great many
 

other areas where random signals are required. These applications will
 

continue to grow innumber and importance as the trend towards digitalization
 

of networks and systems continues.
 

Second, we are concerned with the effect of digital filters on random
 

sequences. Insome sense this is related to the first problem. In this
 

case, however, the emphasis ison filtering. Digital filtering is rapidly
 

becoming a very important approach to filtering. The effect which such
 

filters have on random sequences is of great importance. The techniques
 

developed here can be used to design filter to have desired effects on
 

sequence autocorrelation functions.
 

Third, we have done some hardware design and development work on binary
 

nonrecursive filters, which will be useful in implementing such filters.
 

Finally, a number of the ideas and hardware which have evolved from
 

this study have led directly to applications in education. Material
 

emanating from our work is introduced inundergraduate courses inprobability
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theory, (AM 108) and communications theory (EE 141), as well as in graduate
 

courses in the same areas. A paper [17] has recently been prepared describing
 

many of the ideas discussed here in an educational context. Inaddition a
 

pair of courses indigital filtering, one at the undergraduate and one at the
 

graduate level, based largely on our contract work, are being prepared for
 

the winter of 1971. Thus the stimulus to our academic program has been both
 

clear and direct.
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1.0 Forms of Probability Density Functions
 

Some recent papers [2] - [6] have discussed the problems of the sum
 

of weighted digits in an n-stage feedback shift register connected to
 

generate maximal length sequences. Inparticular the papers by Lindholm
 

[2] and Davies [5] have been concerned with the sum over m unity-weighted
 

stages. They consider the problem of the statistics of the pseudo-random
 

variable
 

m-i 
Wi = ak- i (1-1)

k=O
 

where ai is the ith value (0or 1)of the m-sequence having period L = 2n - 1. 

n is the number of stages in the shift register feedback loop. The primary 

interest of these two papers is in the first few moments of wi . Davies also 

presents graphical results of the actual distributions of wi for n = 5 and
 

1 < m < 31.
 

Inthis study the sum (1-1) is considered over any m stages that need
 

not necessarily be successive. The probability density functions (PDF) of
 

wi are obtained in a straight-forward manner for different combinations of
 

m stages. These PDF's are compared and found to be consistent with the
 

results of reference [5] . The problem is considered for a particular case
 

but the approach isapplicable to other cases.
 

1.1 The Probability Density Function
 

Consider the 5-stage feedback shift register with generating polynomial 

in the delay operator D of the form D5 @ D2 = D , where bi stands for i 

units of delay'and 0 stands for modulo-2 addition. A shift register with five 

.stages inthe feedback loop and 26 additional stages available for summation is
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shown in Figure 1-1. We seek the distribution of the analog sum:
 

Sk = Dl + D2 + D3 + D4 + D5 + Dk , 1 < k < 31 (1-2)
 

This is the sum of the first five stages plus any other one of 31
 

stages. (Itisnot of interest to consider more than 31 stages since the
 

sequence has period 31). Consider first the case where k = 6 in equation (1-2).
 

Dl + D2 + D3 + D4 + D5 + D
6


S6 = 


= Dl + D2 + D3 + D4 + D5 + (Dl erD) (1-3) 

The second equality follows from the generating polynomial. 

(D5 ) D2 = Do implies D6 = Dl 0 D3 ) 

We now apply a method introduced inreference [6]. Group the terms in 

equation (1-3) according to the order of the delay.
 

(D1S6 = [D1 + D3 + D3 ) I + D2 + D4 + D5 (1-4) 

The last three terms and the bracketed term in (1-4) are independent
 

ifwe assume the all-zero state in the five-stage feedback shift register
 

for computational purposes. Hence their PDF's can be convolved to find the
 

PDF of S6 . The PDF of the bracketed term is found from the following table: 

D1 D3 D1 I D3 D1 + D3 + (D1 0 D3 ) 

0 0 0 0 

0 1 1 2 

1 0 1 2 

1 1 0 2 

From the above table the PDF of the bracketed term can be written as
 

the sequence
 

{1/4 0 3/41
 

where the order of the probability terms refers to sum values of 0, 1 and
 

2 from left to right. Again assuming the all-zero state for computational
 



Analog Adder Sk
 

Modulo-2 Adder
 

Figure 1-1. Sum of 6 Pseudo-Random Sequences
 
-14 
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purposes the PDF for each of D2, D4 and D5 is {l/2 1/2} 

The PDF of the sum S6 is thus the convolution: 

[1/4 0 3/41 * {1/2 1/21 * {1/2 1/21 * {1/2 1/2} = 

1/32 { 1 3 6 10 9 31 

and, neglecting the all-zero state, this becomes: 

1/31 ( 0 3 6 10 9 3 } 

Ifwe repeat this procedure for S7 and S8 we get the same PDF as for S6 

If,however, we consider S9 we obtain: 

D1 + D2 + D3 + D4 + D5 + D9 
S9 = 

D4 + D5 + D6 0 04 
= D1 + D2 + D3 + 

= [ D1 + D3 + D4 + (D + 0 D4 + D5 (1-5)
 

with PDF
 

1/31 ( 0 2 7 12 7 2 1 1
 

The important difference between equations (1-4) and (1-5) isthat in
 

equation (-4) there are two interdependent stages (1and 3)whereas in
 

equation (1-5) there are three interdependent stages (1,3 and 4). We obtain
 

a different PDF for different numbers of interdependent stages. The five
 

possible types of PDF are given inTable 1-1. The first moment and the
 

second through fifth central moment are also given.
 

There are a total of 31 ways to obtain all the PDF's. The number of
 

ways of obtaining each type is simply the combination of the 5 basic stages
 

taken r at a time where r is the number of interdependent stages. r = 1
 

corresponds to the case where k = 1, 2, 3, 4 or 5. Inthis case the weighting
 

is essentially 2 rather than 1 for one of the 5 stages.
 

This basic approach can be applied to any combination of m stages.
 

Ifm = 6 it is only necessary to group the terms appropriately and count
 

the number of interdependent terms ;,,The distribution isgiven inTable 1-1.
 



Number of 
Interdependent 
Stages 

1 

2 

3 

4 

5 

Ways to 
Obtain PDF. 

5 

10 

10 

5 

1 

PDF-(x 31) 
0 1 2 3 4 5 6 

0 4 7 8 7 4 1 

0 3 6 10 9 3 0 

0 2 7 12 7 2 1 

0 1 10 10 5 5 0 

0 0 15 0 15 0 1 

m, 
n 

3.097 

3.097 

3.097 

3.097 

3.097 

12 

1.764 

1.248 

1.248 

1.248 

1.248 

113 

0.360 

-0.267 

0.508 

0.508 

0.508 

14 

6.956 

3.614 

4.862 

3.314 

3.314 

1-5 
_5 

4.423 

-1.638 

5.427 

2.305 

6.176 

m= B (S k) 

= f [Sk - E (k)] r, r 2,3,4,5 

TABLE 1-1 
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Also, of course, tables equivalentto I-I can be obtained for any n and m
 

following the basic procedure outlined above.
 

1.2 Moments
 

It is shown in reference [5] that the first moment of a sum over m 

stages is: 

E I m (L + 1) (1-6) 
2L 

which iscalled mI inTable 1-1. 

E, is not dependent on which m stages are selected. Hence it is 

not surprising that, inagreement with (-6), all the distributions in 

Table I-I are found to have El = 96/31 = 3.097. 

The variance, as obtained from equations (2)and (3) in reference 

[5] is:
 
2 = 12 = m(L+l) (L-m) (1-7) 

2
4L


This result is based on an assumption that the summed terms are from
 

successive stages. For m = 6 and L = 31, equation (1-7) gives a = 1.248.
 

As Table 1-i indicates, this is in agreement with our results for all values
 

of k except k = 1, 2, 3, 4, 5 (one interdependent stage). Hence the
 

variance depends only on the number of stages summed, as long as they are
 

separate stages, and not on which particular stages are selected. That
 

is,they need not be successive. A study of the mathematics inreference [5],
 

which leads to the expression for the second moment, indicates that this
 

result is reasonable. The summations involved are essentially dependent
 

only on the number of terms in the sums and not on the order of summation.
 



Similarly, the third moment 3, isthe same for 3, 4, and 5
 

interdependent stages, and the fourth moment P4 isthe same for 4
 

and 5 interdependent stages. In general, for this case, the rth
 

moment (or central moment) is the same for all those cases where
 

there are at least r interdependent stages. A number of other cases
 

of n (for 4 < n < 10) were partially checked; itwas found that the
 

rule in thepreceding sentence holds for all cases investigated.
 

THe results indicated in this chapter were published by Healy
 

[7]. This publication'was responded to by Davies [8], who indicates
 

an alternative approach to obtaining the PDF, through the use of
 

transforms.
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2.0 Autocorrelation and Spdctral Propetties
 

This section is concerned with the autocorrelation function of 

weighted and summed pseudo-random and random sequences. Consider the 

circuit shown in Figure 0-1. The,outputs of the register stages are weighted 

by (a,, a2, *..) and added to yield an output from the analog adder which 

isthe pseudo-random or random sequence of interest here. 

The PDF pseudo-random outputs has been studied in some recent papers 

([2) - [6]). In this section we restrict our interest to the autocorrelation 

function and power spectral density of the output. 

The autocorrelation function of a sequence can be considered from two
 

viewpoints. First, itcan be considered as discrete ifwe center our inter

est on an entire clocking period at a time. This is the viewpoint which
 

isof interest, for example, to the computer user who isgenerating pseudo

random or random numbers. Alternatively, we may consider the clocking time
 

to be unknown. This viewpoint iscommonly of interest to communications
 

engineers. We consider first the discrete viewpoint.
 

2.1 Discrete Autocorrelation of Pseudo-Random Processes
 

Let a1 = l and ai =0 for all i $1. Then the output is a binary
 

sequence that we write as:
 

[bl , b2,  b3 , ... , bk ... ,b2 n-1, bl, b2,  .-']
 

For this correlation study it isconveni6nt to assume that the bk take
 

values +1 and -1. Since the sequence isperiodic, we have bk + 2n _l = bk.
 

The discrete autocorrelation function isdefined as:
 

R 2n_ = bkbk+m ,m = 0, 1, 2 ... (2-1) 
1 'M' iT-lk~l 
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Consider first the pseudo-random case. It is well known [9] that the
 

autocorrelation function of a maximal-length pseudo-random sequence is:
 

Rl(m) 1 ,m =0 (2-2)
 

1
 
,n_
 

for Im I< 2n-l and that R1(m)is periodic with period 2n-l. 

Consider now the autocorrelation of the output of the system shown 

in Figure 0-1. We assume the device is connected as a feedback shift register 

of length n stages for pseudo-random number generation, and there are L 

successive non-zero weights. That is, ai = 0 for i > 1. Also assume L < n. 

Then an output value, which we might call the "kth ' output, is: 

(aLbk + aLlibk+l + ... + albk+L I) 

and a value m clock periods later is
 

(aLbk+m + aL 1 bk+l+m + ...+albk+Ll4+m).
 

Hence, the autocorrelation function is:
 

R(m ) + alb + +ab 
2n-I (aLbk L k+l 1 k+L-l) (2-3) 

(aLbk-m + aLibk+l+m + ...+ albk+L-lm)
 

Informing the product indicated in (2-3), we collect terms having the 

same difference in the indices (subscripts) of b. Equation (2-3) thus becomes: 

R((m) 1 2n-Ib I 2 b+l + ++a b - b--

Lm 2n 1 k= L k k+m aL bk+lT I k+L-1 k+L-12+m-


+ aLaL-lbk+lbk+m + ...+ a2albk+L-lbk+L-2+m
 

+ aLalbk+Llibk+m) (2-4)
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We assume the process is stationary with respect to clock intervals.
 

A comparison of equations (2-1) and (2-4) then tells us that each term in
 

the first row in (2-4) isproportional to Rl(m), each term in the second
 

row is proportional to Rl(m-l), etc. Hence equation (2-4) reduces to:
 

RL(m) = (aL2 + aL21 + ... a 2 ) RI(m) + 

(aLaL_1 + aL-laL_2 + + a2a,) Rl(m-1) + 

+ (alaL) Rl(m-L+1)
 

L-1 L-r 
= J aiai+r Rl (m+r ) , r < L (2-5) 

r=O ilOlri-


This relation holds for Iml < 2n-l. For other values of m we need
 

only note that R(m) isperiodic with period 2n-l. This arises from the fact
 

that the original pseudo-random sequence has this same period.
 

Although the relation (2-5) has been derived for a specific kind of input,
 

itcan be easily generalized for any input autorcorrelation R (m)and output
x
 

autocorrelation R (m).
 

L-l L-r
 
Ry(m) = X X aiai+ r Rx (m+ r) (2-6)
 

r=O "1:
 

where L again stands for the number of weights.
 

Let us consider two examples. First, let ai=l for 1 < i < L, ai=O for
 

i > L. That is,we assume unit weights for all L stages. Equation (2-5)
 

then becomes: 
L-l 

RL(m) = I (L-r) R, (m+r), r < L (2-7) 
r=O 

= 
This result is plotted in Figure 2-1 for n = 4 and L 1,3 and 6.
 

As a second example let us consider binary weighting; that is,let
 

ai = 2i-l for l < i < L and ai = 0 for i > L. (Itwas shown by Davies [3] and
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I-___ R,(m) 	 n= 4
I 'L=l i 

L 

-1 -2 0 2 4 6 8 10 12 14 16 18
 
TR2m) 

L 3
 

9 	 in 

4-- R6(m)
 

n=4
 
L= 6
 

I 	 m 

36,
 

Figure 2-1. 	 Discrete Autocorrelation Functionrof Unity 
Weighted Pseudo-random Sequence Sums 
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Healy [4] that this weighting leads to a uniform probability distribution). 

Substitution of ai = 2i-l into equation (2-5) leads to: 

L-l L-r 
RL(m) = 7 2i'12i-l+rR(m+r)

r=O i=l
L- 1 

=r-1 2r Lr 4 i-1 Rl(m+r), 
0= i=l 

L-l
 
2r1 4 L- 1 R(m+.r) , r < L (2-8) 

r=O 3 

The last form follows from the fact that the inner sum on the next to 

the last line isjust a truncated geometric series. Equation (2-8) is 

plotted in Figure 2-2 for n = 4 and L = 4. 

The results obtained above apply to random as well as pseudo-random 

inputs. Ifthe process is binary (taking values 1 and -1), the auto

correlation function can be defined as: 

-

Rl(m) = 	 1, m= 0 -- (2-9) 

0, m + 0 

Other non-periodic (purely random) autocorrelations may be used in
 

equation (2-5).
 

2.2 A Convolution Approach
 

In the analysis above we were interested in the relation of the output
 

autocorrelation given the autocorrelation of a known input to a specified
 

system. The system actually is a non-recursive digital filter, that is, a
 

digital filter that does not use past output values to obtain subsequent
 

outputs (outputs do not "ecur".). Douce [10] has pointed out the analogy
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-15 

75k273 R4 (m) 

" linear fall-dff 

29' \actual 
fall-off 

3 I 4 6 .. 8 10 l12 ',4 m 

67 0 2 15 

Figure 2-2. Discrete Autocorrelation Function of Binary
Weighted Pseudo-random Sequence Sums 
(n = 4, L - 4) 
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with the problem of autocorrelation functions of signals into and out of
 

continuous filters. As Papoulis [ll] shows:
 

Ryy(T) = t()h*(-T) *h(r) (2-10)
R * 


where Rxx(T) is the input autocorrelation function to a filter, Ryy(T)
 

is the output autocorrelation function h(T) is the impulse response, the
 

asterisk operators denote convolution, and the asterisk superscript complex
 

conjugation.
 

Inanalogy with the RL(m) above, the output autocorrelation of non

recursive digital filter shown in Figure 1,can be obtained from:
 

RL(m) = Rl(m) * h(m) * h(-m) (2-11)
 

where h(m) is the discrete system analog to an impulse response, It is
 

the response of the system to a sequence { 1 0 0 0 "- 1, and it is
 

simply equal to the sequence of weights { a1 a2 ... a, ...aL I . It is
 

not necessary that the input autocorrelation R1 (m) in equation (2-11) have
 

the same form as that given in equation (2-2). In fact itmay have any
 

form. *Ifthe form of Ri(m) isnot simple, itmay be more convenient to
 

apply equation (2-11) rather than equation (2-5).
 

Equation (2-11) suggests the hardware implementation shown in Figure
 

2-3. This device may be attractive as a pedagogical tool to show the effect
 

of filters on autocorrelation functions. The shift register on the left is
 

easy to build if the autocorrelation is binary, such as { 1 0 0 0 ... 


Then the shift register on the left will also be binary. But the shift
 

register on the right must be m-ary where m may be quite large depending
 

on the boudds put on the input and the weights. Ifthe input is not binary,
 

neither shift register can be binary. The major difficulty in building a
 

device such as that shown in Figure 2-3 appears to be in the m-ary shift
 

register.
 



Input 

Autocorrelation
 

.I 2 'I 3 4 5 

Analog Adder
 

Output
 

Analog Adder Autdcorrelation
 

Figure 2-3. Hardware Implementation of an
 
Autocorrelation Function Generator
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2.3 Synthesis 	of Autocorrelation Function
 

Consider the basic ci-rcuit of Figure 0-1. Given an input autocorrelation
 

Rx(m), specify the weights ai necessary to obtain a desired output auto

correlation Ry(m). This is the synthesis problem.
 

This problem is solved through use of equation (2-6). Substitution
 

of the first L integers { 0, 1, 2, ..., L ) into (2-6) yields L independent
 

simultaneous algebraic equations inthe L unknowns ai where 1 < i < L.
 

Other equations which might be written, for negative m, are not independent
 

because the autocorrelation isan even function. Hence we have L equations
 

in L unknowns, and we can therefore find the required ai
 

Of course not all autocorrelations can be synthesized for a given input
 

autocorrelation. For example, ifwe let the input autocorrelation be
 

R[x(m) I, 	m =0 (2-12)
 

i,
mnO,
 

then it isnot possible to select a1 and a2 to obtain an autocorrelation of
 

the form:
 

R (m) , m= 0 or+ 1 (2-13) 

0, m 0 and m 0+ 1 

To see this let us carry out the synthesis operation. Equation (2-6),
 

for L = 2, becomes
 
1 2-r
 

Ry(m) = I aiai+rRx (m +r)
 
r=O i=l
 

= a12Rx(m) + a22Rx(m) + ala 2Rx(m + 1) 	 (2-14)
 

a12 + a22
Ry(O) = 


R,(1) = ala 2	 (2-15) 
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Ifwe substitute Ry (0)= 1 and Ry(1) = 1 into equations (2-15) 

we find that this pair of equations has no real solution. Solving (2-15) 

for a2 yields: /2 

a2 (Ry(O) + / 2(O) - 4Ry2(1)) (2-16) 

It is clear that a necessary -conditi6i-for-a real a2 is
 

Ry(1) (2-17)
 

y2 

The equality in (2-17) gives the largest possible ratio of Ry(1) to 

Ry(0). As (2-16) suggests, this corresponds to uniform weighting (a==a2 = 

It seems reasonable, though it has not been proven here, that uniform weighting
 

should lead to the autocorrelation function with the largest possible relative
 

values for m t 0. We also note that uniform weights results inan auto

correlation which falls off linearly with m. (See equation (2-7) and
 

Figure 2-1.) Ifthe above conclusion about relative values iscorrect, then
 

any weightingowhich is not uniform should result inan autocorrelation
 

fall-off which ismore rapid than a linear function of m. This phenomenon
 

is illustrated on the right sjdeo.fEigure-2-2 for binary weighting.

2.4 Continuous Autocorrelation Functions
 

Inthis section we consider the case where the clockingreference is
 

not known. Then the autocorrelation function of a pseudo-random signal
 

is [9]:
 

R(F! (- -P 1 ,T (2-18) 
P T 

T < t < (P-flTLr 
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where p = 2n-l, and T is the time between clock pulses. Equation (2-18)
 

specifies R(T) over a time pT, which is one period. R(T) then repeats with
 

this period.
 

The power spectral density of R(T) in (2-18) can be obtained through
 

the Wiener-Khintchine theorem. As shown in the appendix (section 2-5) (See
 

also [9] for result, but not derivation):
 

S(w) :M 11T (1)+P+I (sin w T/2i n=) 6 (w-n(wn10, (2-19)(w) +1 'w 2 Wo), 219 

p wT/2
 
n+O
 

where w0 = pT2w 

This spectrum isplotted in figure 2-4 for p=15. The first zero inthe
 

(sinx)/x envelope occurs at f = l/T.That is,the zero of sinx isdictated
 
X
 

by the pulse width or time between clocking pulses. The spacing between
 

frequency components depends on the period. There are just p lines in
 

the spectrum fromthe origin to the first zero of S(w). This result suggests
 

that the pseudo-random signal can be used as an excellent source of repeatable
 

"white" noise by decreasing T far enough so that the spectrum isessentially
 

flat over the range of interest.
 

To summarize:
 

a) Decreasing T increases the frequency range over which the spectrum
 

is "flat." 

b) Increasing p decreases the spacing between lines or increases
 

the number of lines in a given band.
 

For example, suppose we require a spectrum which isflat to 5%.
 

What are the constraints on f and T ?
 



S(w)
 

, I , 
 I ,WO
 

-6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
 

rio 

Figure 2-4. Power Spectral Density of a Pseudo-Random Signal
 

Clock Frequency = --, n = 4 (p= 15)

Wo
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wT 2
 
(s in 2 : 0'. 95 

wT
 

WT
 
sin 7 = 0.975


wT 
WT 

so that
 

fT 	 0.125
 
1
 

=fmax 

We now turn to the problem of the power spectral density and autocorrelation
 

function of the output signal from the weighting system (or filter) of figure 0=1..
 

The corresponding input-output relations are [11]:
 

Ry(T) = Rx(T) * h(1 ) * h(-T) (2-20)
 

Sy(W) IH(W)I 2 S(W) 	 (2-21) 

where H(jw) is the transfer function (or Fourier transform of the impulse
 

response)of the system.
 

It is probably easier in most cases to use equation (2-21). For the
 

circuit of figure 0-1 the transfer function is:
 

L
 
ai e H(jw) = y jwT 	 (2-22)

i =1
 

where T is again the time between clock pulses. Equation (2-22) is simply
 

a series of shift terms obtain from the time-shift theorem of transform
 

theory. Then:
 

Sy M = 1 aie-ijwT 2 S(W) 	 (2-23) 

At this point we alter the basic problem slightly, adding the input
 

(with a weight a0) before it enters the register, to the other terms. S (w) is
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then:
 L 

Sy(w) i 0 aie-JiwT 2 S (W) (2-24) 

Expansion of the 1.12 term leads to:
 

L L L-r
 

(w ai + I I aiai+rcos rwT ] SX(w) (2-25)

i=O0r=l i=O
 

If we let the input be a pseudo-random sequence of period p and clocking
 

time T, then SX(w) is given by (2-19) and Sy(w) becomes:
 

L ° -i2 2()+P+l 
S (w) -L I a.2S(w) + snwy p2 i=0 1T2 P 6(w-nwO) 

wIT n=-. 

L L-r 
X ( j a cos rwT) (2-26)aai+r 


r=l i=0
 

For a particular set of{aiequation (2-26) may be reduced and eventually
 

transformed to obtain R(T). Let us consider a special case where the input
 
y


is pseudo-random and the weighting is uniform. A similar case where the weighting
 

was uniform and the input purely random was solved by Wolf [12], and the
 

development here closely parallels that work.
 

If ai=l for 0 < i < L equation (2-22) becomes:
 

L+l 
1(jw) = e -vwLT/ 2 sin r wT (2-27) 

sin wT
2 

IH(jw)I2 = (L+l) 2 sin 2 L+l (2-28) 

IHw____2T 2 wT
 

sin 2 wT (L+)
 

Substitution of (2-28) and (2-19) into (2-21) yields:
 (2-29)
 

2Sy(W) = (L+l) 6 (w) + o+l (L+l)2 sin (L+) IT s (w-nw0) 

p p -2 nto 
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A comparison of equations (2-29), (2-19) and (2-18) suggests that (2-29)
 

must be the Fourier Transform of:
 

R(p) (T+) (1 
 L+P+1 (L+I) , f< _ (L+I)T (2-30) 

(k+l) 2 (+)T < ITI < (P-L-1) T 

p 

Again, R(T) is periodic with period pT. The result is simply another
 

triangular form as shown in Figure 2-5.
 

2.5 Appendix
 

The purpose of this appendix is to show the derivation of equation (2-19) 

from (2-18). We start by writing equation (2-18) as: 

R(T) R (T) - where (2-31) 

l(, T 
R (T) T (2-32) 

0 , T < t < (P-I)T 

Since R(-) is periodic we seek its Fourier series representation. 

R(T) C ne W , (wo = f) (2-33) 

The "DC" term, Co, is:
 

i (P 
Co _ )T- pT j 
-T 

1 T 1 1 f(P'1)T 1 dT 

-T -T 
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9 

n= 4 
L=O 

-2 0 2 4 6 8 10 12 14 16
 

Continuous 	Autocorrelation Function of Each Sequence
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n =4 
L -2--

Figure 2-5. 	Continuous Autocorrelation Function of
 
Unity Weighted Pseudorandom Sequence Sums
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+ (2T T) - pT 

pT p2T 
1 (2-34) 

The constant term - 1 in R(r) will not contri'bute to the "AC" co 

efficients inthe Fourier series, so we have: 

Cn T 	 (P-1)T R'(r)dt
 

T p ( - -)einodr
 

21 -TT Ip+l 	 in% T 

=2 1 	 + (l - ) cosnwdTd 

0 

since R'(T) is an even function.
 

sin nwoT 1-cosnwoT sin nwoT)
Cn P2T n wo n 2Wo2T n wo 

2 2 sin 2nwoT/2
2p~l) 


pT n2wo2T
 

nwoT 2
 
(

: +l sin 2 	 (2-35)

n--72 


p no
 
2 

We now substitute (2-34) and (2-35) into (2-33) to obtain:
 

1 	 p+i nw°T 2 JnwoTR() n p2 sin 	 (2-36)
 

2 

To find the power spectral density we take the Fourier transform of
 

equation (2-36).
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6(w) T R()e'jWcdt (2-37) 

This transform is obtained quite easily through use of the transform: 

[eJnWoT] = 6(w - nwv6) (2-38) 

where 6(-) is the impulse or Dirac function. Substitution of (2-36) 

into (2-37) and the application of (2-38) leads to: 

8(w) = 1 6(w) + p+l sin 11T2 s6w - nQ (2-39) 
n=-o2T-
2 n0o 
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3.0 	The Probability Distributions of
 

Certain Sums of Random Variables
 

This section deals with sums of random variables of the form
 

w 	dk 
ksk (3-1)*k=l 


i this expression d isan arbitrary fixed rational number of the form gg 

with g a natural number { 1, 2,3, 4, . . 1; and < Sk-> isa sequence 

of independent, identically distributed random variables taking certain 

non-negative integer values { 0, 1, 2, 3, . . . } with equal probabilities. 

We shall determine the distribution of the random variable S in the 

following four cases: 

Case i) : S Y ; d = ' S k = 0, 1 

=
Case (ii): S Z ; 	d = 3 sk k = 0,•1,2Ol2. 

Case (iii): S ; d = 	1, g a number from the set { 1, 2, 3, . . . 
g 

sk	 = 0, 1, 2, ., g - I 

Case (iv): S 3 ' s k :O
X ; d k =0,2
 

Cases (i)and (ii)are specializations of case (iii) We shall use case
 

(i)to illustrate the application of elementary probability theory to the 

determination of the (cumulative) distribution function of the sum S 

in case (iii) . We will see that the random variable S incases (i), 

* The symbol means "isdefined to be." 
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(ii), and (iii) isuniformly distributed on the closed unit interval E 0, 12* . 

The main emphasis is on case (iv) in which S E X has the Cantor distribution. 

Figure 3-1 gives an idea of the appearance of the Cantor function. We believe 

that some of our results incase (iv), especially the discrete approximations 

to the cumulative distribution function of the random variable X,are new and 

may be useful for computer study of sums of random variables of the form (3-1). 

3.1 The Uniform Cases
 

Case (i)deals with the random variable
 

Y y (3-2) 

where = 0 or 1, each with probability 1 , and the < > are mutually 

independent. There are at least three methods for obtaining the (cumulative) 

distribution function F(v) = Prob { Y < v ) . The first method draws on 

combinatorial analysis, and itapplies to all sums of random variables of the 

form (3-1). The second method uses convolution and leads to a functional 

equation for the cumulative distribution function F of the random variable
 

Y. The third method employs the familiar transform technique (characteristic
 

functions). We prefer the first method over the other two methods because
 

of its intuitive appeal, and we will present the first method inthis section.
 

The other two methods appear in Cramer [13]
 

Let us determine F by the first method. We note that, for any
 
fl ~m-I 

m= , 2, 3, ... , 2n and n = 1, 2, ..., the event { - <Y < -I 

* This notation is standard inmathematical literature. Thus itmeans 
here that the values of the random variable S lie in the interval
 
from 0 to I.
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occurs if and only if the first n random variables < Yk : k = 1, 2, ... , n > 

take a unique sequence of values < ak : k = 1, 2, ... , n >, namely the first 

-n digits in the binary expansion* of 1 Since the < Yk > take the two 
n
 

values 0 and 1 , each with probabilit and since the < yk > are
-, 

independent, the probability that the < Y k = 1, 2, ... , n > take the
 

particular values < ak : k =1, 2,..., n > is - . Thus the probability
k2 
 nm-1 m) I 

that Y takes a value inan interval of the form [2-, 2 equals F, 

which isthe length of that interval. Now for each m and n , the events 

2-i < Y <2!} are mutually exclusive. This implies that, for r = 1, 2, 3, 
22n 

....2n and n = 1,2, ... , we have 

[r m
m-l 

F( - ) = Prob mU { 2 < Y < I}
 

r m-1 m } 
= Prob - <hY < n 

m=l 

r 

2n
 

* If the number m-1 [0, ) admits a binary expansion that terminates
2n
 

after a finite number of digits, then there are actually two different
 

sequences < ak > of digits representing that number m-.• One sequence
V2 n 

terminates after a finite number K of non-zero ak's . The other 

sequence has repeating l's, i.e., aK+l = aK+2 = ...= 1 , and it is usually 

excluded to ensure uniqueness of expansion (Kac [19]). Inour problem,
 
however, sequences containing repeating l's form a set of probability zero
 
and so can be ignored.
 

** The strict inequality Y < K_ necessitates the minus sign in the argument
n
 

of F because we defined 2F(v) =_ Prob I Y < v I rather than F(v) = Prob {Y < v).
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Since the function G defined by G(v) = F(v-) is left-continuous on
 

(0,1]*, and since for any v e (0, 1] there is a sequence of numbers of 
r2n 

the form<r : r = 1, 2, 3, ... , ;n = 1, 2, ...j converging to v n

2

from below, it follows that F(v-) = v for every v c (0,1] . Thus 

the distribution of Y is the uniform distribution on [0, 1] with 

(probability) density function F'(v)=f(v) = 1, 0 < v < 1 

Case (ii)deals with the random variable 

zk 	 (3-3)
k 13


where zk = , 1, or 2, each with probability ,and the< z> are mutually 

independent. To determine the cumulative distribution function 

Fv) E Prob {Z < v} , we can proceed as in case (i). Letting L replace 

-1 throughout, we can show that the probability of 
Z taking a value in
2n 

an interval of the form [m- m ) equals l1 which is the length of the33n 

interval. The conclusion of the indicated procedure would be that the random 

variable Z has the cumulative distribution function F(v) = v for v s [0, 12. 

We remark inpassing that expression (3-3) corresponds to a ternar expansion 

in which the digits <Zk> have been made random variables.
 

The preceding idea is easily generalized to case (iii) inwhich we have
 

the random variable
 

S dk s k (3-4) 
k=l 

* 	 Read: The half-open unit interval that is open on the left, v=O, 
and closed on the right, v = 1. 
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1
 

The constant d may be any rational number of the form with g-

a natural number {1, 2, 3, 4, ...1 ; and <Sk> is a sequence of independ

ent, identically distributed random variables-taking the values
 

(0,l 2, ... , g-l with equal probabilities I . Considerations simi
lar to those preceding make it evident that expression (3-4) can be re

garded as the expansion of any number in the unit interval in the base
 

-g . Thus the random variable S of expression (3-4) is uniformly
 

distributed on [0, 1] . In summary, the random variable S of expres

sions (3-1) or (3-4) is uniformly distributed when the following two con

ditions hold simultaneously:
 

I. < sk > mutually independent.
 
I
 

2. Prob {sk = 0)= Prob {sk = 11 ... = Prob sk = - 1 = d 

3.2 A Non-uniform Case
 

Case (iv)deals with the random variable
 

X. kxk (3-5)
 
k=l 3k
 

where xk = 0 or 2 , each with probability and the <Xk> are mutually

2 

independent. There are at least two methods for arriving at a formula for 

the (cumulative) distribution function F(v) = Prob {X < v) of the random 

variable X. The first method uses a great deal of intuition. Motivated 

by Figure 3.1 that shows the cumulative distribution function F(4) of the 

partial sum ! -Xk , we speculate that the Cantor function is the cumu
k=l 3 
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lative distribution function of the random variable X . Then we prove
 

that this isindeed correct by using a theorem that we have formulated ex

pressly for this purpose. The second method is independent of the first
 

method, and ituses a combinatorial argument. We determine a formula for
 
K 

the cumulative distribution functions F(K) of the partial sums k 13 x k k~l 

and then we obtain F as the limit of F(K) as K approaches infinity. 

The first method isquicker, and we will present it in this section. The 

second method appears inCramer [13];here we will give only the key results
 

obtained from the second method.
 

The Cantor function G,which P. Halmos [14]gives, has the following
 

form:
 

L JS+ I L(v) <
 
k12k 2L
 

G(V) '"(3-6) 

SCk 
kk4 L(v) = 

2 

where
 
v: bk 

k=13 

bk 00, 1, or 2; k 1I, 2, 

b 
Ck k = 1, 2, ... , L 1, 

and
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fmin { k: bk =l, k 	=1, 2, ... } 

=L v)if bk 1, k , 2,....
 

To show that G of equation (3-6) isthe cumulative distribution function F,
 

restricted to [0, 1] , of the random variable X, we have formulated the
 

following:
 

Theorem:
 

If B isany non-decreasing function defined on the real line,
 

taking values inthe interval [0, 1, if X is any random variable,
 

and if the random variable Y = B(X) has a uniform distribution
 

on [0, 1], then B iscontinuous and is the (cumulative) distri

bution function of X . 

The proof of this theorem appears inthe appendix. We now apply this theorem
 

to the function G of equation (3-6) . P. Halmos [14) informs us that the
 

Cantor function G has the following properties: G is non-decreasing, takes
 

values between 0 and I , and iscontinuous. To see that G(X) has a uniform
 

distribution on [0, 1], we consider
 

G(X) =G( tx), = kw jIXk
3l kl1 

Nk
 

Setting 2r Yk , it is evident that the above expression is identical with 

expression (3-2) for the random variable Y which we have already shown to
 

be uniform on [0, 1] in section 3.1. We therefore conclude that the random
 

variable X of expression (3-5) has the Cantor function (3-6) as its
 

cumulative distribution function.
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Let us now outline the second method of obtaining the cumulative dis

tribution function F of the random variable X defined in expression
 

(3-5) where we use a combinatorial argument. We write expression (3-5) in
 

the form
 
K
 

=lim K 1

K-*c k'l 3k" 

Kli X (K)
 

where we define the partial sums
 

X(K) E k (3-7)
 

To determine formulas for the cumulative distribution function F(K)(v) 

Prob { X(K) <v ) , where K iZfinite, we first note that F(K) has 2
K 

jump discontinuities, each of size for
 
2
 

K = 4.) Ifwe count the number N(K)(v) of jump discontinuities that F(K)
 

has in the interval [0, v], to the left of some given point v, then we
 

have immediately
 

F(K)(v 1
F (v) L2 K N(K)(v) (3-8)
 

Thus the determination of F(K)(v) reduces to the combinatorial problem of
 

finding N(K)(V) . Figure 3.1 suggests that it would be advantageous to 

express any given real number v in the domain of F(K) in its ternary 

expansion 
bk 

v= 
k=l 3 
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The elements of the sequence<,bk> are numbers (not random variables), and 

they can be 0, 1, or 2. This representation of points v allows us to 

analyze the effect of each digit bk on the number N(K)(v) of jump dis

continuities in [0, v]. The work which we are leaving out here can be found 

in Cramer [13] ; let us state only the key results. The number N(K)(v -) of 

jump discontinuities which F(K) has in the half-open interval [0, v) depends 

only on the digits<b, : k = 1, 2, ...,min (L, K) > , i.e., 

N(K)(v -)=N(K) kI -) 

The digits following bmin(L,K) merely place v somewhat to the right of the
 

min(L,K) b
 
point I -k , but still within an interval on which F(K) is constant.
 

k=l 3
 

The results of the combinatorial argument are the formulas
 

K K-k 
J=l 2 Ck + l, L(v) > K 

N(K)(v) = (3-9)
 
-L l2 K- k Ck + 2K L L(v) < K 

k=l
 

and the recursion formulas
 

2 N(K)(V) , L(v) < K + 1 

N(K + l)(v) = 2 N(K)(V) - 1 , L(v) = K + 1 

2 N(K)(v) - 1 + cK + 1 L(v) > K + 1 

-bK+ 1
where cK K + 1 -0 or 1 when bK+ 0 or 2. Equation (3-9) 

can be written inthe equivalent form
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2K
min(L-1,K) 2 - k - min(L, K) 

k=1 

Substituting this expression into equation (3-8) yields the cumulative
 

distribution function
 

min(L-l,K)F(K)(v) = I~ 2k + n(L '
 
k=l 2 2
 

K finite, of the random variables X(K) defined in expression (3-7).
 

Let us now obtain the cumulative distribution function F of the
 

random variable X defined in expression (3-5) as the limit of F(K) as K
 

approaches infinity. Since X is the pointwise limit of X(K) as K
 

approaches infinity, X(K) also converges to X in distribution so that we
 

can write F(v) = lim F(K)(V) at all points v where F is continuous,
 
K 

i.e.,everywhere as shown inCramer [13]. Performing the limiting operation 

yields 

SCk + L(v) < 

F(v) = 
ck
 

J - S L(v)c
 

This equation is exactly the Cantor function (3-6) that we arrived at in
 

the earlier part of this section.
 

3.3 Conclusion
 

Z dks

This section has dealt with the distributions of the sums 
 k
k=l 


where the random variables <sk> are independent and identically distributed,
 

each taking certain non-negative integer values {0, 1, 2, 3, ...} with equal
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probabilities. Using elementary probability theory, itwas shown that 

these sums are uniformly distributed on [0, 1] when 1 is a natural number 

fl, 2, 3, 4, ...} and the <Sk> take the values 0, 1, 2, ... , . 11 for 

k 1, 2, ... , each with probability d . The main emphasis was on the sum 

X s 1 xk where xk = 0 or 2, each with probability . Two methods 
k= I 
k1 3N 

were presented to show that X has the Cantor function as its cumulative
 

distribution function F. The first method employed a theorem that. was
 

formulated expressly to prove this. The second method used combinatorial
 

analysis to arrive at formulas for the cumulative distribution functions
K 

F ( of the partial sums k 1 xk . Then F was obtained as the limit 

of F(K) as K approaches infinity. 

The authors feel that this work may furnish a theoretical basis for 

further studies in the following areas of application: 

1. Output distributions of digital filters with known input processes.
 

2. Distributions of the analogue sums of the weighted outputs obtained
 

from feedback shift registers.
 

3. Discrete systems identification using known discretinput processes.
 

4. Singular detection and estimation problems.
 

5. Determination of the distributions of the sums I dk where
 
k=l
 

< d < 1
 

3.4 Appendix
 

Let us prove the theorem that we stated in section 3.2. Since B is 

non-decreasing, X < v implies B(X) i B(v) . This means {X : X < vI C 

IX : B(X) < B(v)} . Define B(X) = Y . Since Y is assumed to be uniform, 
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we have Prob {X < vI < Prob {Y < B(v)1 = B(v) p Similarly, X > v implies 

B(X) > B(v) , so that Prob {X > vi < Prob {Y > B(v)1 1 - B(v) ; then 

I - Prob [X < vI < I - B(v), and Prob fX < v) > B(v) . We have thus obtained 

the inequalities 

B(v) < Prob {X < v) < Prob (X < v < B(v) 

which lead to the equalities 

Prob {X < v) = Prob {X < vi = B(v) 

These equalities allow two conclusions. From the equality Prob { X < v I = B(v) 

we conclude that B is the cumulative distribution function of the random 

variable X . And from the equality Prob {X < vi = Prob {X < vi we conclude 

that X has no mass points, i.e., B is continuous. This completes the 

proof of the theorem. 
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4.0 	Pseudo-Random Noise Generation
 

And Digital Filter Implementation
 

The purpose of this chapter is to discuss the hardware implementation
 

of some of the devices used in previous chapters, and to describe some actual
 

circuits built and some of the experimental results.
 

A pseudo-random sequence of length L can be generated from a shift
 

register containing n stages, where each stage can assume M different
 

levels. With proper feedback connections, the length L can reach a maximum
 

of Mnl before repeating itself. In this chapter we describe the shift
 

register, its-use in generating pseudo-random sequences, the nonrecursive
 

digital filter into which the sequence is fed, and the implementation of the
 

noise generator and filter.
 

4.1 Shift Register
 

Let us consider the n-stage shift register shown in Figure 4-1. Each
 

stage can assume the values 0 or 1. Two inputs are provided to-the register:
 

a clock input (CP) and a data input.
 

When the clock pulse input is activated, each stage assumes the state
 

of the stage on its left. The first stage assumes the state of the data
 

input.
 

A hardware realization of a binary shift register uses flip-flops as
 

its constituent stages. The output of a flip-flop can assume one of two
 

levels, the logical 0 and 1. We will assume that the hardware realization
 

uses J-K flip-flops, whose characteristic table and logic diagram are given
 

in Figure 4-2. Qk represents the output at the kth clock pulse, Qk+l the
 
zk k
 

output at the (k+l)th clock pulse, and Q the complement of Q . The logic
 

diagram representing Figure 4-1 will then be as shown in Figure 4-3, where the
 

sumbol-f represents an inverter.
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Cp>
 
1 2 3 . n
 

)ata
 

Representation of a Shift-Register
 

Figure 4-1
 

Clear
 

inputs output
 

3 K Qk+l CP C 

0 0 Qk Q 
0 1 0 

1 0 1 K Q 

Set
 

a) Characteristic table b) Logic diagram
 

Figure 4-2
 

Cp >
 

Clear
 

Data "
 
1 2 3 n
 

Set T
 

Logic Diagram of a Shift-Register
 

Figure 4-3
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4.2 Pseudo-Random Sequence Generator
 

The sequence of states of any of the flip-flops of the register shown
 

in Figure 4-3 is a maximal-length pseudo-random sequence if the proper data
 

are fed into the first flip-flop. These data can be generated by a feedback
 

configuration, involving two or more connections as shown inFigure 4-4,
 
a 

where-f -- b denotes a modulo-2 adder, with truth table 

a 

0 0 1 

11 0 

a 

b 

Ib 

a 

b--

The symbols used here are defined by their truth table given in Figure 4-5. 

2n
The maximal length sequence L = - 1 will be achieved before repetition of 

the sequence given the proper feedback connections. For certain lengths of the 

register, feedback from the output of only two stages will not give the maximal 

length, and more than two feedback connections are required. Table 4-1 gives the 

possible feedback connections for a maximal length sequence when the number n 

of stages goes from 4 to 15. A maximal-length four-stage pseudo-random sequence
 

can then be described by Figure 4-6. The states of the flip-flops of Figure 4-6
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Representation of a Pseudo-Random Sequence Generator 

Figure 4-4 

a 

b 

a 

b 

T _ -a 

b 

b 
aa 

b 

a 

C 

a) AND gate b)OR gate c) NAND gate 

Symbols and Truth Table of Logic Functions 

Figure 4-5 

cP 
Clear 

Set --_. " ,> -

Logic Diagram of a 4-stage Pseudo-Random Sequence Generator
 

Figure 4-6
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n feedback connections for maximal length 2r1-I 

4 1 C4 or 364 
5 2Q5 or 3)5 

6 1 (6 or 5(6 
7 1 67 or 3 ( 7 or 4 )7 or 667 
8 365)7(8 

9 4M9 or 469 
10 3 f 10 or 7 6 10 

11 2 11 or 96 11 
12 6 8 6 11 Q 12 

13 466 I0 6 13 

14 468 @ 13614 
15 4 @ 15 or 7I15 or 8)15 or 14 6 15 

Feedback Connections 

Table 4-1 
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are shown in the timing chart of Figure 4-7, assuming that all the flip-flops
 

have been set to 1 at t=O. Any one of the columns is a pseudo-random sequence
 

of 0 and 1. Itshould be noted that the all-zero state of the register never
 

occurs. If it did, the register would be locked in that state.
 

4.3 Digital Filter
 

Consider the preceding shift register with n stages, and a clock of
 

frequency fc Hertz. A shift will occur every T seconds (T= 1/fc). At time
 

kT, the last stage of the register contains the state of the first stage at
 

time (kT - (n - 1)T), or (k- n + I)T. At any given time the states of
 

the first stage at times kT, kT-T, kT-2T, kT-3T, up to kT-(n-l)T are present
 

inthe register. This suggests the possibility of "filtering" the sequence
 

using a nonrecursive digital filter defined by the equation:
 

n-l
 
y(kT) I (4-1)
X a1 x (kT-iT) 


i=O
 

where y(kT) and x(kT) are the output and input of the filter at time kT
 

respectively, and ai are the weights given to the present input and n-l
 

previous inputs. With the representation of Figure 4-1, equation (4-1) can
 

be realized by Figure 4-8. A number of hardware realizations of Figure 4-8
 

can easily be imagined. The simplest one implements the weights by resistors,
 

as shown in Figure 4-9. Ifwe wish to make the contribution of the output of
 

a stage to the total sum y(kT) independent of the state of the other stages
 

(condition that has to be met to assure the linearity of the output summer),
 

then this configuration limits us greatly inthe choice of acceptable values
 

for the Rj's. Any Rj should always be much larger than R, such that, looking
 

from the output of one stage, R looks much smaller than the parallel combin

ation of all the other Rj's. Given RE>>R, RE can be neglected, and, for all
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'Clock Flip-flops
 

A B C D
 

10 1 1 1 

20 0 1 1 

30 0 0 1 
41 0 0 0 

50 1 0 0 

60 0 1 0 

71 0 0 1 

81 1 0 0 

90 1 1 0 

10 1 0 1 1 

11 0 1 0 1 

12 1 0 1 0 

13 1 1 0 1 
14 1 1 1 0 

115 1 1 1 1 starts repeating itself 

Timing Chart for the Register of Figure 4-6
 

Figure 4-7
 

y(kt) 

a 

IA 

Representation of Equation (1)
 

Figure 4-8
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A Simple Hardware Realization of Figure 4-8
 

Figure 4-9
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Figure 4-10
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Vin 
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Multiplier Using an Operational Amplifier
 

Fiourp 4-11
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practical 	purposes, the current through R isthe sum of the currents
 

through each Rj. This is shown in Figure 4-10. Ideally, we would not like
 

to be limited in the range of available weights. Unless we use active devices,
 

we cannot expect the weights to exceed 1,and the above realization adds a
 

further limitation on the lowest acceptable weight.
 

Multipliers can be implemented using operational amplifiers, represented
 

yinby the symbol- , as shown in Figure 4-11 where Vou t = 

This last factor isthe weight a. of the filter, having a range that islimited
 

only by the operating characteristics of the amplifier. Figure 4-8 would then
 

have the realization of Figure 4-12. The condition RI>>R2 still holds, but
 

does not have any effect on the weights defined by the input and feedback
 

resistors of the operational amplifier.
 

A simpler realization of Figure 4-8 can be implemented using a single
 

operational amplifier, in a summer configuration. Consider the operational
 

ampli-fier of Figure 4-13 with two inputs (inverted and non-inverted). All
 

resistors have the same value. Due to the non-inverted input held at ground
 

level, point 0 can be considered very close to ground level, independent
 

of the input and feedback currents. Since the input impedance is very high
 

(of the order of megaohms), the current into the amplifier can be neglected,
 

and thus
 

Rf 
 R1 2 
 R3
 

Since all 	resistors have the same value, the output voltage is
 

Vo = V1 + V2 + V3 (4-3)
 

Ifwe want to add weighting factors to the different inputs,'the values of
 

the input resistors can be varied to give
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>-y(kT) 

Realization of Figure 4-8 Using Multipliers
 

Figure 4-12 

Summer Configuration of an Operational Amplifier
 

Figure 4-13 
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Vo _ 1 + V2
 + V3 
R R Rf 

Vo= VI f)+ V2(2f + -f) (4-4) 

where the factors Rf/R are the weighting factors. An alternate way of
 

weighting the input currents isto weight the input voltages before sending
 

them into the summing circuit as shown in Figure 4-14. The current through
 

the input resistor is negligible in comparison to the current through the
 

variable resistor.
 

This last configuration has been chosen in our implementation.
 

Its shortcoming compared with the previous configuration is the limitation
 

inthe range of weighting factors (0to 1), but its simplicity (Ioperational
 

amplifier against k)offsets the shortcoming.
 

All essential elements for the realization of the pseudo-random sequence
 

generator and the digital filter have been presented. A few more details have
 

to be added.
 

Inthe implementation of some nonrecursive digital filters, some weights
 

assume a negative value. A resistor cannot have a negative value, but the
 

voltage applied to itcan be inverted, giving the same effect. In the
 

implementation of a shift register using flip-flops, the output of any of
 

the stages always has its complement available from the other output of the
 

flip-flop. This is shown in Figure 4-15.
 

One of the methods of finding the weights of the filter is to realize
 

the inverse Fourier transform of the required frequency spectrum. The
 

result isthe impulse response of the filter. For final calibration of the
 

weights, it isuseful to see this impulse response on the screen of an
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V3 _ 

Weighting of the Inputs to a Summer 

Figure 4-14 

CP> 

x(kT-T) 

aa2 

- > y(kT) = a lx(kT)-a 2x(kT-T) 

Implementation of Positive and Negative Weights 

Figure 4-15 
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oscilloscope. A way of feeding an impulse to the filter must be provided.
 

The sequence l,0O,O,O,O,O,...,jcontaining m terms (m larger than n, the
 

number of stages used by the filter), is fed into the filter from the shift
 

register and repeated to provide a continuous display on the oscilloscope.
 

The reset line for the register sets the first stage, and clears all the
 

other stages (at the same time providing for the initial conditions appropriate
 

for the generation of the random sequence). The resistor should provide the
 

option of a circular configuration, where the first stage assumes the state
 

of the last stage when the CP input is activated. (This method is used in
 

section 4-7. See Figure 4-32).
 

The variable resistors of Figure 4-14 are calibrated to give the
 

required weights. If the stage associated with the resistor to be calibrated
 

is in the 1 state, with all the other stages in the 0 state, the output
 

voltage of the filter will be a function of the setting of that particular
 

variable resistor, and the weight will be given by
 

a : Vo-(4-5)
 

Vmax
 

where Vout is the measured output voltage, and Vmax is the voltage chosen to
 

represent the weight of 1. A manual clock and a D.C. voltmeter at the output
 

are provided to facilitate the calibration.
 

When testing the operation of the shift register and when calibrating
 

the resistors, it is useful to have a visual display of the state of the
 

stages used by the filter. The output of the stages can be amplified and
 

sent to a light bulb. The clock should have a frequency low enough to allow
 

time to check the feedback operations and the shifting.
 

Figure 4-16 shows a logic diagram of a four stages shift register
 

together with a digital filter using all four stages.
 



Reulse \I 

10
 

Sout 

Logic Diagram of a Four-stage Shift Register and a Nonrecursive Digital Filter 
0a
 

Figure 4-16
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4.4 A Hardware Realizationofthe Random Sequence Generator_.-


Implementation of the register of Figure 4-16 uses Digital Equipment
 

Corporation (DEC) flip chip modules. Reference [15] gives a detailed
 

description of the modules. We will present here only the parts of the
 

modules that are used in the implementation of the register. The modules
 

are mounted on a DEC'H901 mounting panel, with a type DEC 700D power supply
 

and input panel that provides for the push button pulsers and a clock.
 

Figure 4-17 shows the logic diagram for the DEC R201 flip-flop.
 

Fifteen of these were used (implementation of a 15-stage shift register).
 

The symbol-- denotes a-diode-capacitor diode (DCD) gate7. The feedback
 

logic is realized with the DEC Rlll NAND/NOR gates, shown in Figure 4-18,
 

with the following symbol.to represent a common emitter transistor:
 

Collector output
 

Base input
 

Emitter
 

The DEC R107, shown in Figure 4-19, is used to provide for the
 

complement of some of the outputs.
 

The DEC W520comparator and DEC W501 Schmitt trigger were used to 

provide some means for applying an external clock signal and for feeding an 

external binary sequence. They are.shown in Figure 4-20. The symbol t7 
stands for a difference amplifier.
 

The complete wiring diagram for a 15-stage pseudo-random noise generator
 

i-s given in Figure 4-21. THe outputs of stages 14 and 15 are used as feed

back. 
The dotted lines coming from the DEC R107 module indicate alternate,
 

connections when an external sequence is fed into the register. 
In this
 

case, the feedback connections have to be disconnected (disconnect the wire
 

going into S of R107 coming from Rlll).
 

http:symbol.to
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4.5 A Hardware Realization of a Nonrecursive Digital Filter
 

The main difficulty encountered when implementing the diagram of
 

Figure 4-14 was finding an operational amplifier with a good response at a
 

clock frequency around 1 MHz. The Fairchild integrated circuit vIA709 and
 

its self-compensated version, the pA741, were first used with a voltage gain
 

of 10. With a slew rate of .3V/sec. at unity gain, the output waveform was
 

greatly distorted, making itdifficult to operate at a clock frequency faster
 

than 1OOKHz. (The slew rate is one of the factors describing the operation
 

of an 	operational amplifier: it isdefined as the rate of change in the out

put voltage when a step input voltage saturates one of the-inputs).
 

The Fairchild 1A715 isdesigned for high-frequency applications, with
 

a slew rate of 65 V/sec. at a voltage gain of 100, and 20 V/sec. at unity
 

gain. Efforts were made to use this operational amplifier, but major
 

difficulties were encountered when trying to compensate it. After repeated
 

trials, the "ringing" at the output without an applied input signal could
 

still 	not be eliminated.
 

The Fairchild pA702C High Gain, Wideband DC Amplifier was chosen. It
 

has a slew rate six times faster than the pA741, giving satisfactory operating
 

characteristics at a clock frequency of 10 MHz.
 

In Figure 4-22 the input comes from the output (direct or complemented)
 

of the first seven stages of the shift register of Figure 4-20. The
 

positive voltage applied at pin 8 of the amplifier is provided by the 700D
 

power supply, and a negative voltage of 7 volts coming from an external power
 

supply isapplied at pin 4. The characteristics of the pA702C are given in
 

the appendix.
 

4.6 	 Experimental Measurements on the Linearity and
 

Frequency Response of the Digital Filter
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A nonrecursive digital filter isdefined by equation(4-1),repeated
 

here for convenience
 
M-I 

y(kT) = I ai x(kT - IT) (4-1)i=O 

The output y(kT) is a linear function of the actual input and the (m-i)
 

previous inputs. The circuit of Figure 4-22 will realize equation- (4l)-dn1 
5
 

if the operational amplifier has a linear characteristic in its voltage range
 

of operation. The maximum output voltage isreached under the conditions
 

ai = 1
 

x(kT - iT)= 1 (logical)
 

for all i's. It.is a function of the voltage gain of the feedback amplifier,
 

the voltage level associated with the logical state 1, and the number of
 

stages used by the filter.
 

To check the l-inearity ofthe feedback amplifier in its range of
 

operation, all the weights can be set to 1, and a sequence of m O's
 

followed by m l's can be fed into the shift register connected ina circular
 

configuration, m stands for the number of shift-register stages used by
 

the filter. With a linear characteristic of the summer, the oscilloscope
 

display should look like a staircase with a constant increase between each
 

step. The experimental results are shown inFigure 4-23. The results
 

indicate excellent amplifier linearity.
 

Another important characteristic of the summer of Figure 4-22 is a
 

good frequency response at the clock frequency used when filtering input
 

signals. Ideally, for an applied step input, we would like the output to
 

rise instantly without any overshoot. Practically we are limited by a
 

definite slew rate and a certain amount of overshoot, generally larger as the
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slew 	rate increases. The overshoot is eliminated by the output low

pass 	filter of Figure 4-22. Figure 4-24 shows the output of the four

stage 	pseudo-random sequence generator with clock periods of 3.33 us. and
 

I us., without output filter. Experiments have shown that such overshoot
 

adds 	a few low frequency components to the power spectrum of the pseudo

random sequence, and high frequency components outside the range of interest.
 

The time constant of the output filter has been found by trial and error.
 

Varying the time constant by regular steps; the overshoot was reduced to
 

a point where the low frequency components due to overshoot reached a minimum.
 

The final shape of a four-stage pseudo-random sequence isshown inFigure
 

4-25, at three different clock frequencies. From these results, we chose the
 

clock frequency of 300 KHz. to run the experiments presented inthe next
 

section. Itisthe fastest clock frequency without serious distortion of
 

the output.
 

A close look at Figure 4-24 a will show a small fluctuation at each
 

clock pulse when the output stays at the same level between pulses. This is
 

due to a very high frequency oscillation of the output of the stages of the
 

shift register at the clock pulse, when the output should not change level.
 

This could be eliminated by the use of a better flip-flop to realize the
 

shift register, or by a lowpass filter inserted between the output of the
 

stages and the weights of the filter.
 

4.7 	 Design and Experimental Results
 

of a Lowpass Digital Filter
 

Inthis section, we will present a method for finding the weights of
 

a nonrecursive digital filter with m delays, design a lowpass filter,
 

describe the statistical characteristics of the input to the filter (a15
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stage pseudo-random sequence), and finally present the experimental results
 

of the filter implementation.
 

The frequency response S(wT) of a nonrecursive digital filter is
 

given by 

S(wT) o8n e jnwT (4-6) 
nI 

Equation (4-6) is assumed periodic in wT and defined for -w< wT
 

The Bn 'sare the Fourier coefficients of the periodic function S(wT), and
 

are given by
 

an= " S(wT) e jwTn d(wT) (4-7)
-71 

Given a filter specified in the frequency domain by S(wT), the inverse Fourier
 

transform of S(wT) will give the Ban's that describe the impulse response of
 

the filter. As most periodic functions are exactly described only by an
 

infinite number of Fourier harmonics, there will be,in most cases, an 

infinite number of on's. Ifwe want to realize the desired frequency 

response by a nonrecursive digital filter which has a finite impulse response 

(ithas only a finite number of delays), the infinite series of Bn'S will 

have to be truncated, some sn's Themade zero outside a given aperture. 


implementation of a desired S(wT) on a nonrecursive digital filter will then
 

be only an approximation of an ideal frequency response. The larger the
 

number of delays, the more accurate will be the implementation.
 

To find the number of delays required for a desired accuracy,
 

successive trials have to be made: first obtain the on's by taking the inverse
 

Fourier transform of S(wT); truncate the series of anIs according to a chosen
 
n
 

aperture, and transform the truncated series to get a modified S'(w T), the
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approximation to the ideal S(wT). Ifthe modified S'(wT) is not accurate
 

enough, try a different number of Sn's (go from m delays to m' delays), or
 

change the position of the aperture, and repeat the process until
 

results are obtained. (Aweighting function, called a "window", can be used
 

to modify the n s, improving the shape of S'(wT). Examples of these are
 

the Hanning window, the Hamming window, the Blackman window, etc. The use
 

of a weighting function is neither discussed nor applied here.)
 

The Fast Fourier Transform (FFT) isof great help in determining the
 

number of delays and the weights of the filter. The function S(wT) is put
 

into sampled form, using M samples. For use with the FFT, the number M
 

should be a power of 2. We give an example of the method by realizing
 

a lowpass filter with m = 7 (the number of delays in Figure 4-22). The input 

to the filter will be a pseudo-random sequence of length 215 - 1, that has a 

power spectrum given by equation 2-19, and shown in Figure 4-26. (Figures 

4-27 and 4-28 are further illustrations of equation 2-19. They are the power 

spectra of the output of a four-stage generator, with two different scales.) 

We would like to filter out all the frequency components of the first lobe 

higher than f,/3, with fc the clock frequency of 300 KHz. As S(wT) is 

periodic for a digital filter, the desired frequency characteristics S(wT) 

of the filter will be as shown in Figure 4-29. Part of the power spectrum 

of the first lobe of the shape Sin x / x input is shown in Figure 4-30. 

The cutoff frequency of the desired filter is indicated by fo. The frequency 

response of the ideal lowpass filter for -T < wT_< T is shown in Figure 

4-31a) in sampled form; its Inverse Fast Fourier Transform (IFFT) isgiven 

by b) of the same figure. As the hardware implementation has only 7 stages 

(Figure 4-22), we chose an aperture of 7AT (when AT = 1/fc), centered about 

I0Making all the other sn'szero (Figur6 4-31 c) ) and taking the FFT
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of the truncated series, we get the frequency characteristics of the filter
 

shown in Figure 4-31 d), which isan approximation of the ideal character

istics of a) in the same figure. Assuming that this approximation isaccurate
 

enough for our purpose, we should realize this filter by implementing the
 

following weights:
 

aI = -.194
 

a2 = -.059
 
a3 = .597
 

a4 = 1.0
 

a5 = .697
 

a6 = -.059
 

a7 = -.194 

After setting of the variable resistors of Figure 4-22, the impulse 

response of the filter can be checked by circulating a 1 in the shift 

register, all other stages being in the state 0. This impulse response is 

shown in Figure 4-32. The approximation to a sinx x form isapparent. 

The power spectrum of the digitally-filtered pseudo-random sequence is
 

shown in Figure 4-33. The scaling is identical to the one in Figure 4-28,
 

which isthe input to the filter. Figure 4-34 gives a better idea of the
 

periodicity of a digital filter. It shows the output of the filter for
 

about 5 cycles. The input to the filter corresponding to the same is
 

shown in Figure 4-26. For curiosity, we have shown in Figure 4-35 the output
 

of the filter in the time domain for a short part of the long periodic sequence.
 

4.8 Software Simulation of a Lowpass Digital Filter
 

Finally, we present a simulation on the IBM 1130 of the lowpass
 

nonrecursive digital filter presented above.
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A Fortran program has been written containing three main parts:
 

generation of the input pseudo-random sequence, simulation of the filter,
 

and Fast Fourier Transform of the output. Because of the limitation in the
 

computer memory size available (16,000 words of 16 bits), we could not
 

simulate the complete output of a 15-stage noise generator. Instead we
 

used a 9-stage shift register (with states .5or -.5 to avoid D.C. component
 

in the power spectrum), with a sequence of 512 terms. The change inthe
 

number of stages used has the effect of increasing the distance between the
 

power spectral lines, without affecting the sin x/x envelope. The power
 

spectrum of the input is shown in Figure 4-36.
 

The output of the filtered sequence is shown in Figure 4-37. This
 

simulated result agrees very closely with the experimental results.
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5.0 Generation of Partition Numbers
 

This section describes an interesting and unexpected approach to the
 

generation of partition numbers and some other sequences through the use
 

of convolution, and digital filtering techniqes.
 

5.1 Partition Numbers and Convolution
 

A partition of a positive integer is the expression of the integer as 

a sum of positive integers. For example, the integer 4 has 5 partitions. 

4 =4 

4 =3 + 1 

4=2+2 

4=2+I+1
 

4 =1 + 1 +1 +1
 

A change in order is not considered to lead to a new partition. The
 

number of partitions of the integer n shall be called the "partition
 

number" here, and denoted p(n). From the above example, p(4) = 5.
 

It is well known (see for example, Alder [16]) that a generating function
 

for p(n) is given by
 

f(x)- 1 lxi < 1 (5-1)
11 (1 - x ) 
V1
 

An alternative to this multiplication procedure for obtaining p(n) is
 

suggested by the convolution theorem of operational calculus.
 

Consider the following expansion of equation (5-1)
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f(x) x 21-x1 1- ." 1.x
 
1-xX
 

: (1 + + + .) (I + 4 + . 

•1+ x3 + x6 + . . . (5-2) 

The p(n) are the coefficients of the xn terms in the infinite product. The
 

sums in parentheses in equation (5-2) are each inthe form of a z-transform
 

of a sequence. The sequences corresponding to the first three sums are:
 

{1 0 1 0 1 0 "
 

{1 0 0 1 0 0 .
 

Further terms have associated sequences with progressively more
 

zeros between ones. Since equation (5-2) is-essentially a product of
 

z-transforms, we know that f(x) is the z-transform of a sequence which is
 

the convolution of the sequences associated with the sums on the right in
 

(5-2). This follows from the convolution theorem. That is:
 

F(w) :{1 1 1 1 1 1 } {1 0 1 0 1 0 1... 

{1 0 0 1 0 0 1 0 

where F(u) isthe z-transform of f(x) and * indicates discrete convolution 

(See Healy [18]) . is the set of positive integers associated with the 

terms inthe sequences, in ascending order from 0. At first glance itmight 

seem that an infinite numbers of convolutions need be carried out to obtain 

values of P(n), which are just the terms in F(). But actually, since the 

kth sequence has the form: 
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{ 1 00 0 0 1 0 0 . .
 

k-I
 

convolution by this and higher order sequences will reproduce the first k
 

terms in F mo) without change. Hence to obtain the first k terms in F(w),
 

that isthe first k numbers of partitions p(n), it isonly necessary to
 

convolve the first k sequences. Fortunately, this operation iseasily
 

done intabular form as shown in table 5-1. The table is carried out far
 

enough to-generate the first 9 values of p(n), which appear as the first
 

nine numbers in the 9th (bottom) row.
 

The table is generated inthe following way. Write a sequence of ones
 

as the top line. To get a number in the next row, add the number above the
 

desired number to the second number to the left plus the fourth number to
 

the left, etc. until you reach the left. Tb get any number inthe jth row,
 

add the number above it in the j-1 row, to the number j units to the left in
 

the j-1 row, to the number 2j units to the left, etc. until you reach the
 

left. (e.g. in the third row, 12 = 5 + 4 + 2 + 1). The above procedure
 

simply carries out the process of successive discrete convolution.
 

Table-5-1 has some additional information. Consider the diagpnal rows
 

(+450 ) For example, the 5 h diagonal row from the upper left is
 

{ 1 3 3 2 1 1 1 , reading from upper right to lower left. The sequence 

gives the number of partitions of 6 into u parts where p is the order of the
 

numbers in the sequence. Similarly, the mth diagonal row gives the number
 

of partitions of m into pparts as a sequence of values corresponding .to
 

P = 1, 2, 3, -,. The number of partitions of m into parts the largest 

of which is 1 isof course given by the inverse sequence as suggested by 

Alder's [16] theorem 2,. A similar procedure can be used to find numbers of 

partitions into even parts or odd parts or a number of other possible forms.
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5.2 bigital Filter Generation
 

The above convolution of sequences suggests another viewpoint, or
 

method of generating p(n). The sequences of ones, separated by k zeros,
 

is simply the discrete impulse { 1 0 0 0 } for discrete
 

systems] response of a one feedback-stage recursive digital' filter with
 

k + 1 units of delay. This is illustrated in figure 5-1. Hence the
 

necessary convolution of sequences with increasing zeros-spacing (value
 

of k) can be obtained as the discrete impulse response of a cascade of
 

filters with increasing k, as shown in figure 5-2.
 

The ouitput of the first stage in figure 5-2 is the first line in
 

table 5-1, the output of the second stage is the second line, etc. 
 It is
 

apparent from the argument in the preceding section that to obtain the
 

first k p(n) it is necessary to cascade k filters.
 

5.3 Generation of Other Sequences
 

It should be apparent from the above that there are man, sequences
 

which can be generated by digital filters. One example is the Fibonacci
 

sequence in which each number is the sum of the previous two numbers in
 

the sequence. The sequence begins as:
 

1 1 2 3 5 8 13 21 34 55
 

This sequence has a generating function:
 

G(x) 1 (5-3)

2
 x
1 -


From the fundamental property of the sequence, as expressed above, or
 

from the generating function, we deduce that the sequence can be generated
 

by a two stage recursive digital filter as shown in figure 5-3. This
 



{T 0 0 0 ... z(~l 

ZZr = time delay of r clock periods
 

Figure 5-1. Recursive Digital Filter Stage (RDFS)
 

{1 1 2 2 33 ..- 2 3 5 6 9 ... 

1 1 1 .. 1 2 3 5 7 0 

fl 0 0 0".. DFS RDFS RDFS RF
 

Figure 5-2. Digital Filter Partition Number Generator to 
0 
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1 1 1 1 1 1 1 1 1 

11 2 2 3 3 4 4 5 5 

1 1 2 3 4 5 7 81012 

1 1 2 3 5 6 9 11 15 18 

1 1 2 3 5 7 10 13 18 23 

1 1 2 3 5 7 11 14 20 26 

1 1 2 3 5 7 11 15 21 28 

1 1 2 3 5 7 11 15 22 29 

1 1 2 3 5 7 11 15 22 30 

Table 5-1 



92 

circuit adds the number delayed by one time period (Z1 ) to the number delayed
 
by two time periods (Z-2) to form the new output.
 

It is apparent that many other sequences can be generated by other
 

feedback schemes.
 



{ 1 1 2 3 5 8 13 21
 

Figure 5-3. Fibonacci Sequence Generator
 

k0 
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