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Statistical Properties of Weighted Binary
Random and Pseudo-Random Sequences

0.0 Introducticn

The kind of problem discussed.in this final report is illustrated in
figure 0-1;

An n-stage binary shift register accepts the input binary random or
pseudo-random sequence. The sequence is shifted_one-stage—to—the right st
each clocking time.” The vélﬁes in the stages of the register are multiplied
or weighted by the numbers {a], By, "*t A5 Tty an} . The resulting products
are summed to provide the output from the system. If the input is a pseudo-
random sequence the shift register may also serve as the sequence generator
by connecting it as & feedback shift register.

This problem was discussed in detail in an earlier report [1], which :
includes an extensive bibliography. The present report presents a number
of extensions of [1].

First, the input is assumed to be pseudo-random, and the weights are
0 or 1. We consider the possible forms of the probability density function

of the output, and scme of its moments.

Secorid, the input is assumed to be either random or pseudo-random, and

the output.:

Third, we assume that n > = , and consider some fundamental properties
of infinite sums of random variables.

Fourth, the present ;tatus and initial experiments in & new communications
laboratory are discussed. It is shown how this laboratory will be used to

study many of the concepts considered above. The design and testing of a
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binary nonrecursive digital filter is discussed in detail.

Fifth, some unexpected relations to some important basic mathematical
relations are obtained. It is shown that such sequences as successive
partition numbers, and the Fibonacci sequence, can be generated by digital

filter circuits.

0.1 Applications

The problems studied here have a wide range of applications. First,
we are concerned with the generation of random number sequences with different
statistical properties. Such seguences are used in communications systems,
system jdentification, equipment testing, and potentially in a great many
other areas where random signals are required. These applications will
continue to grow in number and importance as the trend towards digitalization
of networks and systems continues.

Second, we are concerned with the effect of digital filters on random
sequences. In some sense this is related to the first problem. In this
case, however, the emphasis is on filtering. Digital filtering is rapidly
becoming a very important approach to filtering. The effect which such
filters have on random sequences is of great importance. The techniques
developed here can be used to design fiiter to have desired effects on
sequence autocorrelation functions.

Third, we have done some hardware design and development work on binary
nonrecursive filters, which will be useful in implementing such filters.

Finally, a number of the ideas and hardware which have evolved from
this study have led directly to applications in education. Material

emanating from our work is introduced in undergraduate courses in probability



theory, {AM 108) and communications theory (EE 141), as well as in graduate
courses in the same areas. A paper [17] has recently been prepared describing
many of the ideas discussed here in an educational context. In addition a
pair of courses in digital filtering, one at the undergraduate and one at the
graduate level, based largely on our contract work, are being prepared for

the winter of 1971. Thus the stimulus to our academic program has been both

clear and direct.



1.0 Forms of Probability Density Functions

Some recent papers [2] - [6] have discussed the problems of the sum
of weighted digits in an n-stage feedback shift register connected to
generate maximal length sequences. In particular the papers by Lindholm
[2] and Davies [5] have been concerned with the sum over m unity-weighted
stages. They consider the problem of the statistics of the pseudo-random

variable

m-1

W, = a, . (1-1)

where 25 is the ith
n is the number of stages in the shift register feedback loop. The primary

value (0 or 1) of the m-sequence having period L = 2" - 1.

interest of these two papers is in the first few moments of Wi . Davies also
presents graphical results of the actual distributions of v for n = 5 and
1 <mc< 31,

In this study the sum (1-1) is considered over any m stages that need
not necessarily be successive. The probability density functions (PDF) of
W, are thained in a straight-forward manner for different combinations of
m stages. These PDF's are compared and found to be consistent with the
results of reference [5] . The problem is considered for a particular case

but the approach is applicable to other cases.
1.1 The Probability Density Function

Consider the 5-stage feedback shift register with generating polynomial

in the delay operator D of the form D5 ) 02 = DO » Where B! stands for i
units of delay and & stands for modulo-2 .addition. A shift register with five

"stages in the feedback loop and 26 additional stages available for summation is



shown in Figure 1-1. We seek the distribution of the analog sum:

1 2 3 4 5 k

S =D +#D°+ D7 +#D"+D7 +D" ,1<k<3l (1-2)

This is the sum of the first five stages plus any other one of 31
stages. (It is not of interest to consider more than 31 stages since the
sequence has period 31). Consider first the case where k = 6 in equation (1-2).

S D.l + DZ + D3 + D4 5 b

g = + D"+ D
=pl+ 02+ 03+ 0+ 0%+ (0 @ Dd) (1-3)
The second equality follows from the generating polynomial.
(0° 8 b2 = 00 implies 0% = 0! @ 0%)

We now apply a method introduced in reference [6]. Group the terms in
equation {1-3) according to the order of the delay.
sg = [0 + 0%+ (0 0 0%) 7+0%+0"+0° (1-4)
The last three terms and the bracketed term in (1-4) are independent
if we assume the all-zero state in the five-stage feedback shift register
for computational purposes. Hence their PDF's can be convolved to find the

PDF of 86 . The PDF of the bracketed term is found from the following table:

pi n* D' g p° ' + % + (0! & %)
0 0 0 0
0 1 1 2
1 0 1 2
1 1 0 2

From the above table the PDF of the bracketed term can be written as
the sequence
/4 0 3/4}
where the order of the probability terms refers to sum values of 0, 1 and

2 from left to right. Again assuming the all-zero state for computational
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4 5

purposes the PDF for each of D2, D" and D

is {1/2 172} =
The PDF of the sum S; is thus the convolution:
{174 0 3/4) * {1/2 1/2} * {}/2 1/2} * {1/2 1/2} =
/32 {1 3 6 10 9 31}
and, neglecting the all-zero state, this becomes:
/31 {0 3 6 10 9 31}
If we repeat this procedure for 57 and Sg we get the same PDF as for Sg .
If, however, we consider Sq we obtain:

1 2 4 5 9

+ D3 + D +D°+D

S9 D" +D

1 2

p! + 02+ p°

4 . p°+pb g0t

1

+D” +D

3 4

+ D" + (D 3

4

rol e e ooh]+ 0t +0° (1-5)
with PDF
/3t {0 2 7 12 7 2 11}

The important difference between equations (1-4) and (1-5) is that in
equation (1-4) there are two interdeperdent stages (1 and 3) whereas in
equatiop (1-5) there are three interdependent stages (1, 3 and 4). We obtain
a different PDF for different numbers of interdependent stages. The five
possible types of PDF are given in Table 1-1. The first moment and the
second through fifth central moment are a1§0 given.

There are a total of 31 ways to obtain all the PDF's. The number of
ways of obtaining each type is simply the combination of the 5 basic stages
taken r at a time where r is the number of interdependent stages. r =1 =
corresponds to the case where k = 1, 2, 3, 4 or 5. In this case the weighting
is essentially 2 rather than 1 for one of the 5 stages.

This basic approach can be applied to any combination of m stages.

If m=6 it is only necessary to group the terms appropriately and count

the number of interdependent terms :~The distribution is given in Table 1-1.



Number of

Interdependent
Stages
1
2
3
4
5
™
B

Ways to
Obtain PDF .

PDF. (x 31)

10

10

E (S k)

01 2 3 5 ™ 2 M3 My
0 4 7 8 7 1 3.097 1.764 0.360 6.956
0 3 610 9 0 3.097 1.248 -0.267 3.614
0 2 712 7 1 3.007 1.248 0.508 4.862
0 11010 5 0 3.097 1.248 0.508 3.314
0 015 015 1 3.097 1.248 0.508 3,314

E{[S - E (5] Ty r=2,3,4,5

TABLE 1-1

4,423

-1.638

5.427

2.305

6.176



10

Also, of course, tables equivalentto 1-1can be obtained for any n and m

following the basic procedure outlined above.

1.2 Moments

It is shown in reference [5] that the first moment of a sum over m
stages is:

Ey =m (L+1) (1-6)
2L

which is called my in Table 1-1.
E1 is not dependent on which m stages are selected. Hence it is
not surprising that, in agreement with (1-6), all the distributions in
Table 1-1 are found to have E1 = 96/31 = 3.097.
The variance, as obtained from equations (2} and (3) in reference
[5] is:

02 = Hy = m{L+1) (L-m) (1-7)

4Lt

This résult is based on an assumption that the summed terms are from |
successive stages. For m = 6 and L = 31, equation (1-7)} gives 02 = 1.248,

As Table 1-1 indicates, this is in agreement with our results for all values
of k except k=1, 2, 3, 4, 5 (one interdependent stage}. Hence the
variance depends only on the number of stages summed, as long as they are
separate stages, and not on which particular stages are selected. That

is, they need not be successive. A study of the mathematics in reference (5],
which leads to the expression for the second moment, indicates that this
result is reasonable., The summations involved are essentially dependent

only on the number of terms in the sums and not on the order of summation.



1

Simitarly, the third moment ug ~is the same for 3, 4, and 5
interdependent stages, and the fourth moment My is the same for 4
and 5 interdependent stages. In general, for this case, the rth
moment (or central moment) is the same for all those cases where

there are at least r interdependent stages. A number of other cases

of n (for 4 <n < 10) were partially checked; it was found that the

p————

rule in the preceding sentence holds for all cases investigated.

THe results indicated in this chapter were published by Healy
{7]. This pubiication'was responded to by Davies [8], who indicates
an alternative approach to obtaining the PDF, through the use of

transfTorms.
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2.0 Autocorrelation and Spectral Properties

This secfion is concerned with the autocorrelation function of
weighted and summed pseudo-random and random sequences. Consider tﬂé
circuit shown in Figure 0-1. The outputs of the register stages are weighted
by (a], a5, ---) and added to yield an output from the analog adder which
is the pseudo-random or random sequence of interest here.

The PDF pseudo-random outputs has been studied in some recent papers
(£2] - [61). 1In this section we restrict our interest to the autocorrelation
function and power spectral demsity of the output.

The autocorrelation function of a sequence can be considered from two
viewpoints. First, it can be considered as discrete if we center our inter-
est on an entire clocking period at a time. This is the viewpoint which
is of interest, for example, to the computer user wha is generating pseudo-
random or random numbers. Alternatively, we may consider the clocking time
to be unknown. This viewpoint is commonly of interest to communications

engineers. We consider first the discrete viewpoint.
2.1 Discrete Autocorrelation of Pseudo-Random Processes

Let ay = 1 and a; = 0 for all 1 # 1. Then the output is a binary
sequence that we write as:
[b], bys Dgs *er 5 by wio s bon-1, by, by, see]
For this correlation study it is conveniént: to assume that the bk take
values +1 and -1. Since the sequence is periodic, we have b , -n 4 =b .
The discrete autocorrelation function is defined as:

R, (m) = — 2t 1, 2 | (2-1)
m) = bob,, s m=0, 1,2 -
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Consider first the pseudo-random case. It is well known [9] that the

autocorrelation function of a maximal-length pseudo-random sequence is:

Ry (m) = 1 ,m=0 : (2-2)
1
,m# O
r

for | m | < 2"-1 and that R](m) is periodic with period 2",

Consider now the autocorrelation of the output of the system shown

in Figure 0-1.We assume the device is connected as a feedback shitt t register
of Tength n stages for pseudo-random number generation, and there are L

successive non-zero weights. That is, a, = 0 for i>71. Also assume L < n.

thy

Then an output value, which we might call the "k output, is:

(@ by * 2y by + -es ¥ agby )

and 2 value m clock periods later is

(@ by + 817 Draqap T o0 F 2Dpay qap)-

Hence, the autocorrelation function is: [
..——-——-—-'—'_';]"

1 12 "]
RL(m) = EE:;. &Ei (aLbk tap qbpgq ¥ oees Fagbyy 1) (2-3)

(@ Dy * 31 Ppatem * +o0 F 4 Ppar 1)
In forming the product indicated in (2-3), we collect terms having the

same difference in the indices (subscripts) of b. FEgquation (2-3) thus becomes:

g -
Ry (m) = E (aL Wram ¥ 27 bEiPkarem T o ¥ 21 ey Preetomm
T L L T LTI IR L

N

* 22900 P (2-4)
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We assume the process is stationary with respect to clock intervals.
A comparison of equations (2-1) and (2-4) then tells us that each term in
the first row in (2-4) is proportional to R](m), each term in the second
row is proportional to R1(m-1), etc. Hence equation (2-4) reduces to:

R(m) = (a2 + a2+ . % 2y®) Ry(m) +

H

(aja; 1+ 8 g2 .0 F --r F35ay) Ry(m-1) +
ces + (a]aL) R](m-L+1)

L-1 Le-r

1

r=0 =1

This relation holds for |m| < 2"-1. For other values of m we need
only note that R(m) is pericdic with period 2"_1. This arises from the fact
that the original pseudo-random sequence has this same period.

Although the relation (2-5) has been derived for a specific kind of input,
it can be easily generalized for any input autorcorrelation Rx(m) and output
autocorrelation Ry(m).

L-1 L-r

Ry(m) = rgo igl PP Rx(m +r) (2-6)

where L again stands for the number of weights.
Let us consider two examples. First, let a =1 for 1 <1 <L, a;=6 for
i > L., That is, we assume unit weights for all L stages. Equation (2-5)
then becomes:
L-1
RL(m) = 3 (L-r) R, m+r),r<t {2-7)
r=0
This result is piotted in Figure 2-1 for n=4 and L =1, 3 and 6.
As a second example let us consider binary weighting; that is, Jet

a; = 21'"1 for 1 <1 <L and a; = 0 for i > L. (It was shown by Davies [3] and
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1- R](m) . E = ?

— R
2 0 2 4 6 8 10 12 14 16 18
15

29

TB—-—RZ(m) -

L ;‘3
i‘ ‘J I‘ I
= | BEERREERRERR ||
& - Rg (m)
n=4
L=6
| | :

Figure 2-1. Discrete Autocorrelation Function-of Unity
Weighted Pseudo-random Sequence Sums
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Healy [4] that this weighting leads to a uniform probabjlity distribution).
Substitution of a; = 2i"1 into equation (2-5) leads to:

Ll Qir Si-1,1-14r
r=0 =]

© RL(m) R1(mjr)

-1 Ler .
) 2" } gi-1 R](mjr),
r=0 i=1

L-1

/AL Ry(mir) , 1<l (2-8)
r=0 3

The last form follows from the fact that the inner sum on the next to
the last line is just a truncated geometric series. Equation (2-8) is
plotted in Figure 2-2 for n =4 and L = 4,

The results obtained above apply to random as well as pseudo-random
inputs. If the process is binary (taking values 1 and -1}, the auto-

correlation function can be defined as:

Ry(m) =} 1, m=0 -~ (2-9)

0, m$ 0

Other non-periodic {purely random) autocorrelations may be used in

equation (2-5).
2.2 A Convolution Approach

In the analysis above we were interested in the relation of the output
autocorreiation given the autocorrelation of a known input to a specified
system. The system actually is a non-recursive digital filter, that is, a
digital filter that does not use past output values to obtain subsequent

outputs (outputs do not "kecur".). Douce [10] has pointed out the analogy
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Figure 2-2. Discrete Autocorrelation Function of Binary

Weighted Pseudo-random Sequence Sums
(n=4,L=14)
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vith the problem of autocorrelation functions of signals into and out of

continuous filters. As Papoulis [11] shows:

Ry (1) = Ry (%) * h™(-1) *h(r) (2-10)

where Rxx(r) is the input autocorrelation function to a filter, Ryy(r)
is the output autocorrelation function,h(T) is the impulse response, the
asterisk cperators denote convoliution, and the asterisk superscript complex
conjugation. |

In analogy with the RL(m) above, the output autocorrelation of non-
recursive digital filter shown in Figure 1, can be obtained from:

R {m) = Ry(m) * h(m) * h(-m) (2-11)

where h{m) is the discrete system analog to an impulse response, It is

the response of the system to a sequence {1 0 0 0 ++- 1}, and it is
simply equal to the sequence of weights { Ay Ay «er @y
not necessary that the input autocorrelation R](m) in equation (2-11) have

cer @y } . It is

the same form as that given in equation (2-2). In fact it may have any
form. ‘If the form of Rl(m) is not simple, it may be more convenient to
apply equation (2-11) rather than equation (2-5).

Equation (2-11) suggests the hardware implementation shown in Figure
2-3. This device may be attractive as a pedagogical tool to show the effect

of filters on autocorrelation functions. The shift register on the left is

easy to build if the autocorrelation is binary, suchas {1 0 0 0 ...}

Then the shift register on the left will also be binary. But the shift
register on the right must be m-ary where m may be quite large depending
on the bourds put on the input and the weights. If the input is not binary,
neither shift register can be binary. The major difficulty in bﬂi]ding a
device such as that shown in Figure 2-3 appears to be in the m-ary shift

register.
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2.3 Synthesis of Autocorrelation Function

Consider the basic circuit of Figure 0-1. Given an input autocorrelation
Rx(m), specify the weights a; necessary to obtain a desired output auto-
correlation Ry(m). This is the synthesis problem.

This problem is solved through use of equation {2-6). Substitution
of the first L integers { 0, 1, 2, ..., L } into {2-6) yields L independent
simultaneous algebraic eguations in the L unknowns a where 1 < i < L.

Other equations which might be written, for negative m, are not independent
because the autocorrelation is an even function. Hence we have L equations
in L unknowns, and we can therefore find the required a; .

Of course not all autocorrelations can be synthesized for a given input

autocorrelation. For example, if we et the input autocorrelation be

Rym) =11, m=0 (2-12)
0, m#$0,

then it is not possible to select ay and 2, to obtain an autocorrelation of
the form:

Ry(m) =11, m=0or+] (2-13)
0, m#FO0andmy#f +1

To see this let us carry out the synthesis operation. Equation (2-6),

for L = 2, becomes

1 2-r
Ry(m) = FZO 121 aiai+rRx(m +r)
= %R (m) + a,7R (m) * aja R (m 1) (2-14)
Ry(O) = a]2 + a22
Ry(l) = aq3, (2-15)
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If we substitute Ry(O) = 1 and Ry(I) = 1 into equations (2-15)
we find that this pair of equations has no real solution. Solving (2-15)

for 2y yields: ’ 12
- (Ry(D) + _/Ryz(o) - 4Ry2(]) ) (2-16)

a

2 . Jp—
It is clear that a necessary-conditich for a real 2, is

Ry(

1)
e
50T <

(2-17)

The equality in (2-17) gives the largest possible ratio of Ry('!) to

Ry(O). As (2-16) suggests, this corresponds to uniform weighting (a1 = ).

3 =‘/_____—é—
It seems reasonable, though it has not been proven here, that uniform weighting
should lead to the autocorrelation function with the largest possiblie relative
values for m § 0. We also note that uniform weights results in aﬁﬁauto—
correlation which falls off linearly with m. (See equation (2-7) and

Figure 2-1.) If the above conclusion about relative values is correct, then

any weighting°wnich is not uniform should result in an autocorrelation

fall-off which is more rapid than a 1inearlfunction of m. This phenomenon

is fllustrated on the right side of Figure-2-2 for bimary weighting.-

g

2.4 Continuous Autocorrelation Functions

In this section we consider the case where the clocking reference is

not known. Then the autocorrelation function of a pseudo-random signal

n

is [81: ' T

Ry = | B oLy oL g e (2-18)

-%- , . T <1< (P-1)T
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where p = 2"-1, and T 1s the time between clock pulses. Equation (2-18)
specifies R{t) over a time pT, which is one period. R{t) then repeats with
this period.

The power spectral density of R(t) in (2-18) can be obtained through
the Wiener-Khintchine theorem. As shown in the appendix (section 2-5) (See

also [9] for result, but not derivation):

[2¢]

S{w) = —%—- s (w) + P+; (;}72W T/2) 7§ (w-n wo), (2-19)
P p n=w

nt0

_ 2%
where wo =T

This spectrum is plotted in figure 2-4 for p=15. The first zero in the

(sinx)/x envelope occurs at f = 1/T.That is, the zero of s;nx is dictated
by the pulse width or time between clocking pulses. The spacing between
Tfrequency components depends on the period. There are just p Tines in
the spectrum fromthe origin fo the first zero o% S{w). This result suggests
that the pseudo-random signal can be used as an excellent source of repeatable
"white” noise by decreasing T far enough so that the spectrum is essentially
flat over the range of interest.
To summarize:
a) Decreasing T increases the frequency range over which the spectrum
is "flat.”
b) 1Increasing p decreases the spacing between lines or increases
the number of lines in a given band.
For example, suppose we require a spectrum which is flat to 5%.

What are the constraints on ¥ and T ?
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Wl 2
sin 2 = (.95
( Wl )
Z
wl
sin ~2 = 0.975
Wi
Z
so that
fT =« 0.125
fmax = %T

We now turn to the probiem of the power spectral density and autocorrelation
function of the output signal from the weighting system (or filter) of figure 8=1..
The corresponding input-output relations are [11]:

Ry('r) RX(T) * h{t) * h{-1) (2-20)

YT
Sy(w) [H(Gw} | Sx(w) (2-21)

where H(jw) is the transferlfunction (or Fourier transform of the impulse
response)of the system.

It is probably easier in most cases to use squation (2-21}. For the
circuit of figure 0-1the transfer function is:

a e wWT (2-22)

H(jw) =
1 1

i

ne--1r

where T 1is again the time between clock pulses. Equation (2-22) is simply
a series of shift terms obtain from the time-shift theorem of transform
theory. Then:

L

_ -ijuT|2 _
Sy(w) izl ase Sx(w) (2-23)

At this point we alter the basic problem slightly, adding the input

(with a weight ao) before it enters the register, to the other terms. Sy(w) is
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then:
L .
- -JiwT,2 _
Sy(w) [120 a,e ] Sx(w) (2-24)

Expansion of the ]u]2 term leads to:

o L 9 L L-r
y(w) = [120 a;" + Z] 120 a;a., cos rul ] Sx(w) (2-25)

If we let the input be a pseudo-random sequence of period p and clocking

time T, then Sx(w) is given by (2-19) and Sy(w) becomes:

L .
- 1 2.1 P+] | . WTj2
!{I n::-cn
2 nFd
Sk ) (2-26)
X a.a. cos rwT 2-26
p=] §=0 1 17

For a particular set of{ai}equation (2-26) may be reduced and eventually
transformed to obtain R&(r). Let us consider a special case where the input
is pseudo-random and the weighting is uniform. A similar case where the weighting
was uniform and the input purely random was solved by Wolf [12], and the
development here closely parallels that work.

If a;=1 for 0 < 1 < L equation (2-22) beccmes:

. +1
H(gw) = e 9WLT/2 oipn 5 7 (2-27)
sin Wl
3
L+1
M2 = )2 sin® 7w (2-28)

sin? 3’—;— (L+1)2

Substitution of {2-28) and (2~19) into (2-21) yields:

(2-29)
. Wr 2%
Sy(w) = (141)% 5 (w) + E;l.(L+1)2' sin (L+1) = nZ-mG (w-nw,)
p2 b (L+1) ﬂ; 10
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A comparison of equations (2-29), (2-19) and {2-18) suggests that (2-29)

must be the Fourier Transform of:

-

Ried = 1B ) 0 - i - (L;1)2 o le] < (LT (2-30)

- (412

P (L+1)T < |« < (P-L-1) T

Again, R{<t) is periodic with period pT. The result is simply another

triangular form as shown in Figure 2-5.
2.5 Appendix

The purpose of this appendix is to show the derivation of equation (2-19)

from (2-18). Ve start by writing equation (2-18) as:

R{t) = R {x) - %— where (2-31)

Pl Ly | e
R (<) = (2-32)
0 , T< 1< (P-NT

Since R{t) is periodic we seek its Fourier series representation.

[==]

W, 2
R(z) = n;_m C, M7, (uy = B%J (2-33)
The "DC" term, Co’ is:
) (P-1)T
CO = T R{t)dt
T
r.T (P“'1 )T
O T R ) IR £ 1 R | 1
R A e - Ul sl { p dr

=T -T
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+ ]
-,—;:—Z.lT (27 - T) - o o
- PJZ (2-34)

The constant term - %- in R(x)} will not contribute to the "AC" co=

efficients in the Fourier series, so we have:

(p-1)T
¢ = EI' | R'(1)dt
=T

T S
= 3-1]-‘ E‘?“ (1 - J%L) eano‘rd'r
J

-

2 (Tpn

pt ;P
0

1 - -%) cosnwgTdt

since R'(t) is an even function.

c - 2(p+1) {sin nwOT . 3—cosnon i §1n nwOT)
n PZT n wo n 2w02T now,
. 27
) 2(?+]) 2 sin nwOT/Z
pZT nzwozT
nwo? 2
. LS
B p,%_ S]2w — (2-35)
p 0

We now substitute (2-34) and (2-35) into (2-33) to obtain:
nw T |2

R(x) = —%—+ ¥ Ei%- sin -3;1— ejnon (2-36)
p - P T T
n¥o 2o

To find the power spectral density we take the Fourier transform of

equation (2-36).
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s(u) = [m R(<)e gy (2-37)

-

This transform is obtained quite easily through use of the transform:

[ed™oT] = 6{w - nwé) (2-38)
where §(-) is the impulse or Dirac function. Substitution of (2-36)

into (2-37) and the application of (2-38) leads to:
2

. Wl
8{w) = —%-6(w) + Ei%- SN =% I olw - mw) (2-39)
P o W | neee
2 n#o
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3.0 The Probability Distributions of
Certain Sums of Random Variables

This section deals with sums of random variables of the form

vk
S = d
kZ1

S, - (3-1)*

} this expression d is an arbitrary fixed rational number of the form %—
with g a natural number { 1, 2, 3, 4, . . . }; and < S, > is a sequence
of independent, identically distributed random variables taking certain
non-negative integer values { 0, 1, 2, 3, . . . } with equal probabilities.
We shall determine the distribution of the randem variable S in the

following four cases:

Case (i) : S=VY; d=-]é--; S T Y = 0,1

Case (ii): S=73; d=%; s, 22,=0,1,2,

Case {iii): S ; d = %—, g a number from the set { 1, 2,3, . . . };
S, = 0, 1,2, « + v5g~-1.

Case (iv) : S=zX3; d= %—; S T X, =0,2,

Cases (i) and {ii) are specializations of case {(iii) . We shall use case
(1) to illustrate the application of elementary probability theory to the
determination of the (cumulative) distribution function of the sum S

in case (ii1) . We will see that the random variable S in cases (i),

* The symbol = means "is defined to be."
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(i1), and (§ii) is uniformly distributed on the closed unit interval [ 0, 1]* .
The main emphasis is on case (iv) in which S = X has the Cantor distribution.
Figure 3-1 gives an idea of the appearance of the Cantor function. We believe
that some of our results in case (iv}, especially the discrete approximations
to the cumulative distribution function of the random variable ¥, are new and

may be useful for computer study of sums of random variables of the form (3-1).
3.1 The Uniform Cases

Case (i) deals with the random variable

A

K Yk (3-2)

Y

m
-1 8

where Y = 0 or 1, each with probability %—, and the < Y > are mutually
independent. There are at least three methods for obtaining the (cumulative)
distribution function F(v) = Prob { Y <v } . The first method draws on
combipatorial analysis, and it applies to all sums of random variables of the
form (3-1). The second method uses convolution and leads to a functional
equation for the cumulative distribution function F of the random variable
Y. The third method employs the familiar transform technique (characteristic
functions). We prefer the first method over the other two methods because
of its intuitive appeal, and we will present the first method in this section.
The other two methods appear in Cramer [13] . f

Let us determine F by the first method. We note that, for any

m=1,2,3 ...,2%and n=1,2, ..., the event { ==L <y <D

2 2"

* This notation is standard in mathematical Titerature. Thus it means
here that the values of the random variable S 1lie in the interval
“from 0 to 1..
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occurs if and only if the first n random variables < Yy * k=1,2, «o. s n>

take a unique sequence of values < a k = 1, 2, vo. » 0 >, namely the first

n digits in the binary expansion* of E:%- . Since the <y, > take the two
2
values 0 and 1 , each with probability %—, and since the < yy > are

independent, the probability that the < Y ¢ k=1, 2, ... , n > take the

particular values < a : k=1,2, ... 4 n>is —%-. Thus the probability
2

that Y takes a value in an interval of the form [E%l . -{2 equals —% s
2 2 P
which is the length of that interval. HNow for each m and n , the events
{ ﬂ$§- <Y <-{2 } are mutually exclusive. This implies that, for r = 1, 2, 3,
2 2
cees 2" and n = 1, 2, ey We have**
F(X- - ) = Prob 5{1’—‘:’—<v<-”l~}
2" m=] 2" T 2"
r
= § oprob (Zloy By
m=1] 2 2
=
N

* If the number Eﬁl-e [ 0, 1) admits a binary expansion that terminates

i
after a finite number of digits, then there are actually two different
sequences < a, > of digits representing that number m%}. One seguence
i 2

terminates after a finite number K of non-zero ak's . The other

sequence has repeating 1's, i.e., Apeq = Bygp = 00 T 1 , and it is usually.

excluded to ensure uniqueness of expansion (Kac [19]). In our problem,
however, sequences containing repeating 1's form a set of probability zero
and so can be ignored.
*% The strict inequality Y < Eﬁ. necessitates the minus sign in the argument
2

of F because we defined F(v} = Prob { Y < v } rather than F{v) = Prob {Y < v} .
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Since the function G defined by G{v) = F(v~) is left-continuous on
(o, 1]*, and since for any v ¢ (0, 1] there is a sequence of numbers of
the form <£ﬁ tr = 2, 3, ces 2" sn=1,2, ...5 converging to v
from be?ow? it follows that F{v-) =v for every v e (0, 11, Thus
the distribution of Y 1is the uniform distribution on [0, 1] with
{probabitlity) density function F'(v)=f(v) =1,0<v <1,

Case (ii) deals with the random variable
‘ (3-3)
F '

where z, = 0, 1, or 2, each with probability %-, and the< z) > are mutually
independent. To determine the cumulative distribution function
F(v) = Prob {Z < v} , we can proceed as in case (i). Letting lﬁ- replace

3

1

zn

an interval of the form [E%l.’ mﬁé equals lﬁ-, which is the length of the
3 3 3

interval. The conclusion of the indicated procedure would be that the random

throughout, we can show that the probability of Z taking a value 1in

variable Z has the cumulative distribution function F(v) =v for v e [0, 11.
We remark in passing that expression (3-3) corresponds to a ternary expansion
in which the digits <zy.> have been made random variables.

The preceding 1idea is easily generalized to case (iii) in which we have

the random variable

. v ok
S=£dsk. (3“4)

* Read: The half-open unit interval that is open on the left, v=0,
and ciosed on the right, v = 1.
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The constant d may be any rational number of the form %- with g

a natural number {1, 2, 3, 4, ...} 3 and <S> is'a sequence of independ-
ent, ddentically distributed random variables-taking the values

{0, 1, 2, vv. , g-1} with equal probabilities %—. Considerations simi-
lar to those preceding make it evident that expression (3-4) can be re-
garded as the expansion of any number in the unit interval in the base

g = %—. Thus the random variable S of expression (3-4) is uwiformly
distributed on [0, 1] . In summary, the random variable S of expres-
sions (3-1) or (3-4) is uniformly distributed when the following two con-
ditions hold simultanecusly:

1. < s, > mutually independent.

- - - - = _ -
2. Prob {sk = 0} = Prob {sk =1} = ,,. = Prob {sk =T 1} =d.

3.2 A Non-uniform Case
Case {iv) deals with the random variable

1
- X (3-5)}
1 3k k

>
]
fie~18

i K
where X = 0 or 2 , each with probability %-, and the <x> are mutually
independent, There are at least two methods for arriving at a formula for
the (cumulative) distribution function F(v) = Prob {X < v} of the random
variable X. The first mefhod uses a great deal of intuition. Motivated
by Figure 3.1 zhat shows the cumulative distribution funciion F(q) of the
partial sum kél %E'xk s we speculate that the Cantor function is the cumu-
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lative distribution function of the random variablie X . Then we prove

that this is indeed correct by using a theorem that we have formulated ex-
pressly for this purpose. The second method is independent of the first
method, and it uses a combinatorial argument. We determine a formula for
the cumulative distribution functions F(K) of the partial sums kgl %k i
and then we obtain F as the 1imit of F(K) as K approaches infinity.
The first method is quicker, and we will present it in this section. The
second method appears in Cramer {13];here we will give only the key resulis
obtained from the second method.

The Cantor function G, which P. Halmos [14]gives, has the following

form:
+ A V) € @
K2y ok ok’
G(v) =4 {3-6)
b
k=] Zlf ; L{v) = o
where
o b
k
v=E § —
k=1 gf
bk_O’], or 2, k‘-".l, 25 ey
b
_ k -
CI( '2-—; k"]gZ’ ,L""i,

and
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min{ k: b, =1, k

it
il
L 3
™
L")
L]
L 3
-
-

k
L(v) =
o if bk F1, k=

|
—d
-y
N
-
»

To show that G of equation (3-6) is the cumulative distribution function F,
restricted to [0, 1] , of the random variable X, we have formulated the
following:
Theorem:
If B 1s any non-decreasing function defined on the real line,
taking values in the interval [0, 1], if X is any random variable,
and if the random variable Y = B(X) has a uniform distribution
on [0, 1], then B 1is continuous and is the (cumulative) distri-

bution function of X .

The proof of this theorem appears in the appendix. We now apply this theorem
to the function G of equation (3-6) . P. Halmos [I&j informs us that the

Cantor function G has the following properties: G s non-decreasing, takes
values between 0 and 1 , and is continuous. To see that G(X) has a uniform

distribution on [0, 1], we consider

G(X)

It
o]

11 B

s
Setting —%— Yy o it is evident that the above expression is identical with

expression (3-2) for the random variable Y which we have already shown to
be uniform on [0, 1] in section 3.1. We therefore conciude that the random
variable X of expression (3-5) has the Cantor function (3-6) as its

cumulative distribution function.



Let us now outline the second method of obtaining the cumulative dis-
tribution function F of the random variable X defined in expression
(3-5) where we use a combinatorial argument. We write expression (3-5) in
the form

K

X = lim ) x
Ko k=1 3¢ K

= 1im X(K)

K>

where we define the partial sums
y 3-7
X(K)-:kg'lgk' Xk . (‘)

To determine formuias for the cumulative distribution function F(K)(V)

-5 M

Prob { X(K) <v}, where K is finite, we first note that F(K) has 2
jump discontinuities, each of size lK' . {(Figure 3.1 shows F(K)(v) for
2

K=4.,) If we count the number N(K)(v) of jump discontinuities that F(K)
has in phe interval [0, v], to the left of some given point v, then we

have immediately

-1 -
F(K)(V) = 2K N(K)(V) . (3 8)
Thus the determination of F(K)(v) reduces to the combinatorial problem of
finding N(K)(v) . Figure 3.1 suggests that it would be advantageous to
express any given real number v in the domain of F(K) in its ternary
expansion

] X
v = .
&
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The elements of the sequence<b, > are numbers (not random variables), and
they can be 0, 1, or 2. This representation of points v allows us to
analyze the effect of each digit b, on the number N(K)(v) of jump dis-
continuities in [0, v]. The work which we are leaving out here can be found
in Cramer [13]; let us state only the key results. The number N(K)(v =) of
Jump discontinuities which F(K) has in the half-open interval [0, v) depends

only on the digits <b, : k=1, 2, ..., min (L, K) > , i.e.,

“min(L,K) by
k=1 3K

N v =) = Ny

The digits following bmin(L K) merely place v somewhat to the right of the
min{L,K) b

point Z i but still within an interval on which F(K) is constant.
k=1 3

The results of the combinatorial argument are the formulas

% K
¢, +1, L{v}) > K
k=1 K
N(K)(V) "{ Lo] (3-9)
) oK - k ¢y + oK - L s L{v) <K
k=1

|
and the recursion formulas

2 Ny (v) 5 L(v) <K+

Nk + 1) (V) = 2N () =1, L(v) = K+ 1
2 N(K)(v) -1+ Cp g1 > E{v) > K+ 1
by 4+ 1
where ¢ , ;1 = 57— =0 or 1 whenb, ;=0 or 2. Equation (3~9)

can be written in the equivalent form
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min(l’.-1 aK) 2K -k c K= min(f—s K)

+ 2

N(K)(V) = K

Substituting this expression into equation (3-8) yields the cumulative

distribution function

Iﬂ‘in(L-],K)C
T A S W
( k21 oK min(L,K

K finite, of the random variables X(K) defined in expression (3-7).

Let us now obtain the cumulative distribution function F of the
random variable X defined in expression (3-5) as the 1imit of F(k) as K
approaches infinity. Since X 1is the pointwise 1imit of X(K) as K
approaches infinity, X(K) also converges to X 1in distribution so that we

can write F(v) = lim F(K)(v) at all points v where F dis continuous,
K+ o

i.e.,everywhere as shown in Cramer [13]. Performing the 1imiting operation

yields
L-1 ¢
k 1
o, L(V) < ®
_ P
F{v) ={
T, L
s V) = o
k=1 E?Z

This equation is exactly the Cantor function (3-6) that we arrived at in

the earlier part of this section.

3.3 Conclusion

(<~

This section has dealt with the distributions of the sums kZ] dksk

where the random variables <5 > are independent and identically distributed,

each taking certain non-negative integer values {0, 1, 2, 3, ...} with equal
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probabilities. Using elementary probability theory, it was shown that

these sums are uniformly distributed on [0, 1] when %- is a natural number

{1, 2, 3, 4, ...} and the <5 > take the values {0, 1, 2, +.., %-- 1} for

k=1, 2, ..., each with probability d . The main emphasis was on the sum

><

n
He-138
wxl-—-'

Xy where Xy = 0 or 2, each with probability %-. Two methods
K

1
were presented to show that X has the Cantor function as its cumulative
distribution function F. The first method employed a theorem that.was
formulated expressly to prove this., The second method used combinatorial
analysis to arrive at formulas for the cumulative distribution functions
F(K) of the partial sums kzl %E'xk . Then F was obtained as the limit
of F(K) as K approaches infinity.

The authors feel that this work may furnish a theoretical basis for
further studies in the following areas of application:

1. Output distributions of digital filters with known input processes.

2. Distributions of the analogue sums of the weighted outputs obtained

from feedback shift registers.
3. Discrete systems identification using known discreteinput processes.
4. Singular detection and estimation problems.

5. Determination of the distributions of the sums ) dksk where

k=1
%-< d<1.

3.4 Appendix

Let us prove the theorem that we stated in section 3.2. Since B s
non-decreasing, ¥ < v implies B{X) < B(v) . Thismeans {X : X <V} <«

£X : B(X) < B(v)} . Define B(X) =Y . Since Y is assumed to be uniform,
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we have Prob {X < v} <Prob {Y <B(v)} =B{v] , Similarly, X > v implies
B(X) > B(v) s so that Prob {X > v} < Prob {Y > B(v)} =1 - B(v) ; then
1-Prob {X<v}<1-B(v), and Prob {X < v} > B{v} . We have thus obtained
the inequalities

B{v) < Prob {X < v} < Prob {X < v} < B(v)
which lead to the equalities

Prob {X < v} = Prob {X < v} = B(v) .
These equalities allow two copclusions. From the equality Prob { X < v } = B(v)
we conclude that B s the cumulative distribution function of the random
variable X . And from the equality Prob {X < v} = Prob {X < v} we conclude

that X has no mass points, i.e., B 1is continuous. This completes the

proof of the theorem.
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4.0 Pseudo-Random Noise Generation

And Digital Filter Implementation

The purpose of this chapter is to discuss the hardware implementation
of some of the devices used in previous chapters, and to describe some actual
circuits built and some of the experimental results.

A pseudo-random sequence of length L can be generated from a shift
register containing n stages, where each stage can assume M different
levels. With proper feedback connections, the length L can reach a maximum
of M'-1 before repeating itself. 1In this chapter we describe the shift
register, its-use in generating pseudo-random sequences, the nonrecursive
digital filter into which the sequence is fed, and the implementation of the

noise generator and filter.
4.1 Shift Register

Let us consider the n-stage shift register shown in Figure 4-1. Each
stage can assume the values 0 or 1. Two inputs are provided to- the register:
a clock input (CP) and a data input.

When the clock pulse input is activated, each stage assumes the state
of the stage on its left., The first stage assumes the state of the data
input.

A hardware realization of a binary shift register uses flip-flops as
its constituent stages. The output of a flip-flop can assume one of two
levels, the logical 0 and 1. We will assume that the hardware realization
uses J-K flip-flops, whose characteristic table and logic dijagram are given
in Figure 4-2. Qk represents the output at the kth clock pulse, Qk+] the
output at the (k+1)th clock pulse, and ék the complement of Qk- The logic

diagram representing Figure 4-1 will then be as shown in Figure 4-3, where the

sumbol-[>~ represents an inverter.
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cP
Clear

Data
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Representation of a Shift-Register
Figure 4-1
Clear
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a) Characteristic table b) Logic diagram
Figure 4-2
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Logic Diagram of a Shift-Register

Figure 4-3
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4.2 Pseude-Random Sequence Generator

The sequence of states of any of the flip-flops of the register shoﬁn
in Figure 4-3 is a maximal-length pseudo-random sequence if the proper data
are fed into the first flip-flop. These data can be generated by a feedback
configuration, involving two or more connections as shown in Figure 4-4,

a
where «@< b denotes a modulo-2 adder, with truth table

a

b 0 1
0|0 1
1 11 0

a—.—.—...._.
'B-———D——;
'a‘_____\_l:D——
b ——ti ./

- R

T —L/
N— ) .

The symbols used here are defined by their truth table given in Figure 4-5.

The maximal Tength sequence L = 2" - 1 will be achieved before repetition of

the sequence given the proper feedback connections. For certain lengths of the
register, feedback from the output of only two stages will not give the maximal
length, and more than two feedback connections are required. Table 4-1 gives the
possible feedback connections for a maximal length sequence when the number n
of stages goes from 4 to 15, A maximal-Tength four-stage pseudo-random sequence

can then be described by Figure 4-6. The states of the flip-flops of Figure 4~6



{EX

Representation of a Pseudo-Random Sequence Generator

Figure 4-4
a ] a . a
b o b b
a a a
\b01 NEIR N
0i01i0 01011 04111
101 11141 11110
a) AND gate b) OR gate c) NAND gate

Symbols and Truth Table of Logic Functions
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Figure 4-5
CP > o o &
C]ear:>, s
J 1 J 1 J 1 )
a—_—{>o-— K 0 ¢ I 0 K
Set™s & L L

Logic Diagram of a 4-stage Pseudo-Random Sequence Generator

Figure 4-6




feedback connections for maximal Tength 2l

Ny

Jaofm o Y W W =

84 or 364

@5 or 385

6 or 586

87 or 387 or 487 or 687
6587868

89 or 489

B 10 or 7 8610

#11 or 98611

688611 012

86810813

88613814

15 or 7815 or 8815 or 14815

Feedback Connections

Table 4-1
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are shown in the timing chart of Figure 4-7, assuming that all the flip-flops
have been set to 1 at t=0. Any one of the columns is a pseudo-random sequence
of 0 and 1. It should be noted that the all-zero state of the register never

accurs. If it did, the register would be locked in that state.
4.3 Digital Filter

Consider the preceding shift register with n stages, and a clock of
frequency fc Hertz. A shift will occur every T seconds (T = 1/fc). At time
KT, the last stage of the register contains the state of the first stage at
time (KT - (n - 1} T), or (k - n + 1)T. At any given time the states of
the first stage at times kT, kT-T, kT-2T, KT-3T, up to kT-(n-1)T are present
in the register. This suggests the possibility of "filtering" the sequence

using a nonrecursive digital filter defined by the equation:
n-1

y(kT) =} a; x (kT-iT) (4-1)
i=0

where y(kT) and x(kT) are the output and input of the filter at time kT
respectively, and a; are the weights given to the present input and n-1
previous inputs. With the representation of Figure 4-1, equation (4-1) can
be rea]iéed by Figure 4-8. A number of hardware realizations of Figure 4-8
can easily be imagined. The simplest one implements the weights by resistors,
as shown in Figure 4-9., If we wish to make the contribution of the output of
a stage to the total sum y(kT) independent of the state of the other stages
(condition that has to be met to assure the linearity of the output summer),
then this configuration limits us greatly in the choice of acceptable vaiues
for the Rj's. Any Rj should always be much larger than R, such that, Tooking

from the output of one stage, R Tooks much smaller than the parallel combin-

ation of all the other Rj's. Given RE>>R, RE can be neglected, and, for all
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Clock Flip-flops
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o1 1 T 1
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3]0 0 0 1
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6 0 0 1 O
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Timing Chart for the Register of Figure 4-6

Figure 4-7

Representation of Equation {1}

Figure 4-8
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A Simple Hardware Realization of Figure 4-8

Figure 4-9
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practical purposes, the current through R s the sum of the currents

through each Rj. This is shown in Figure 4-10. Ideally, we would not like

to be Timited in the range of available weights. Unless we use active devices,
vie cannot expect the weights to exceed 1, and the above realization adds a
further Timitation on the Towest acceptable weight.

Multipliers can be implemented using operational amplifiers, represented
R
by the symbo1-ﬁ:>&-, as shown in Figure 4-11 where Vout = Vin‘§§
This last factor is the weight a; of the filter, having a range that is Timited
only by the operating characteristics of the amplifier. Figure 4-8 would then
have the realization of Figure 4-12. The condition R1>>R2 still holds, but
does not have any effect on the weights defined by the input and feedback
resistors of the operational amplifier.

A simpler realization of Figure 4-8 can be implemented using a single
operational amplifier, in a summer configuration. Consider the operational
ampiifier of Figure 4-13 with two inputs (inverted and non-inverted). All
resistors have the same value. Due to the non-inverted input held at ground
level, point 0 can be considered very close to ground level, independent
of the input and feedback currents. Since the input impedance is very high

(of the order of megaohms), the current into the amplifier can be neglected,

and thus

IRf = 1R1+ IRZ + 1R3 (4-2)
Since all resistors have the same value, the output voltage is

V=V Vg (4-3)

If we want to add weighting factors to the different inputs;~the values of

the input resistors can be varied to give
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.V_o = !.1. + ."_2. + .\{3..
Re 1 R Ry
R R R
- f f f
vV, = V1(§;) + Vztﬁéa + Vs(ﬁgJ (4-4)

where the factors Rf/Rj are the weighting factors. An alternate way of
weighting the input currents is to weight the input voltages before sending
them into the summing circuit as shown in Figure 4-14. The current through
the input resistor is negligible in comparison to the current through the
variable resistor.

This Tast configuration has been chosen in our implementation.

Its shortcoming compared with the previous configuration is the Timitation
in the range of weighting factors (0 to 1)}, but its simplicity (1 operational
amplifier against k) offsets the shortcoming.

A1l essential elements for the realization of the pseudo-random sequence
generator and the digital filter have been presented. A few more details have
to be added.

In the implementation of some nonrecursive digital filters, some weights
assume a negative value. A resistor cannot have a negative value, but the
voltage applied to it can be inverted, giving the same effect. In the
implementation of a shift register using flip-flops, the output of any of
the stages always has its complement available from the other output of the
flip-flop. This is shown in Figure 4-15.

One of the methods of finding the weights of the filter is to realize
" the inverse Fourier transform of the required frequency spectrum. The
result is the impulse response of the filter. For final calibration of the

weights, it is useful to see this impulse response on the screen of an
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Figure 4-15
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oscj11oscope. A way of feeding an impulse to the filter must be provided.

The sequence{},0,0,0,0,0,0,...,}containing m terms (m larger than n, the
number of stages used by the fiiter), is fed into the filter from the shift
register and repeated to provide a continuous display on the oscilloscope.

The reset line for the register sets the first stage, and clears all the

other stages (at the same time providing for the initial conditions appropriate
for the generation of the random sequence). The resistor should provide the
option of a circular configuration, where the first stage assumes the state

of the Tast stage when the CP input is activated. (This method is used in
section 4-7. See Figure 4-32),

The variable resistors of Figure 4-14 are calibrated to give the
required weights., If the stage associated with the resistor to be calibrated
is in the 1 state, with all the other stages in the 0 state, the output
voltage of the filter will be a function of the setting of that particular

variable resistor, and the weight will be given by

v

a= VQEE (4-5}
max

where Vout is the measured output voltage, and Vmax is the voltage chosen to
represent the weight of 1. A manual clock and a D.C. voltmeter at the output
are provided to facilitate the calibration.

When testing the operation of the shift register and when calibrating
the resistors, it is useful to have a visual display of the state of the
stages used by the filter. The output of the stages can be amplified and
sent to a 1ight bulb. The clock should have a frequency Tow enough to allow
time to check the feedback operations and the shifting.

Figure 4~16 shows a logic diagram of a four stages shift register

together with a digital filter using all four stages.
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4.4 A Hardware Realization of the Ragdomw§§qqencemGeneratox;_A.

R

Implementation of the register of Figure 4-16 uses Digital Equipment
Corporation (DEC) f1ip chip modules. Reference [151 gives a detailed
description of the modules. We will present here only the parts of the
modyles that are used in the imp1ementafion of the register. The modules
are mounted on a DEC H901 mounting panel, with a type DEC 700D power supply
and input panel that provides for the push button pulsers and a clock.

Figure 4~17 shows the logic diagram for the DEC R201 fiip-fiop.

Fifteen of these were used (implementation of a 15~-stage shift register).

The symbol—|-

1

denotes adiode-capacitor-diode (DCD) gate. The feedback

T
logic is realized with the DEC R111 NAND/NOR gates, shown in Figure 4-18,

with the following symbol.to represent a common emitter transistor:

«

. Collector output

Base input  ——_ 4

i
Emitter

The DEC R107, shown in Figure 4-19, is used to provide for the

complement of some of the outputs.

g T

The DEQJQSZﬁ_gompavator and DEC W501 Schmitt trigger were used to
provide some means for applying an external clock signal and for feeding an
external binary sequence. They are,shown iﬁ Figure 4-20. The symbol ::i:>
stands for a difference amplifier.

The complete wiring diagram for a 15-stage pseudo-random noise generato}
is given in Figure 4-21. THe outputs of stages 14 and 15 are used as feed-
back. The dotted lines coming from the DEC RTﬁfﬂﬁaaa?gd;;E;;;;;—;;;;;;;;e\
connections wheﬂ an external sequence is fed into the register. In this

case, the feedback connections have to be disconnected (disconnect the wire

going into S of R107 coming from R111).
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Hardware Realization of a Pseudo-Random Sequence Generator

Figure 4-21



63

4.5 A Hardware Realization of a Nonrecursive Digital Filter

The main difficulty encountered when implementing the diagram of
Figure 4-14 was finding an operational amplifier with a good response at a
clock frequency around 1 MHz. The Fairchild integrated circuit pA709 and
its self-compensated version, the pA741, were first used with a voltage gain
of 10. With a slew rate of .3 V/sec. at unity gain, the output waveform was
greatly distorted, making it difficult to operate at a clock freaquency faster
than 10CKHz. (The slew rate is one of the factors describing the operation
of an operational amplifier: it is defined as the rate of change in the out-
put voltage when a step input voltage saturates one of the.inputs).

The Fairchild pA715 is designed for high-frequency applications, with
a slew rate of 65 V/sec. at a voltage gain of 100, and 20 V/sec. at unity
gain. Efforts were made to use this operational ampiifier, but major
difficulties were encountered when trying to compensate it. After repeated
trials, the "ringing” at the output without an applied input signal could
still not be eliminated.

The Fairchild uA702C High Gain, Wideband DC Amplifier was chosen. It
has a slew rate six times faster thqn the pA74]1, giving satisfactory operating
characteristics at a clock frequency of 10 MHz.

In Figure 4-22 the input comes from the output (direct or complemented)
of the first seven stages of the shift register of Figure 4-20. The
positive vollage applied at pin 8 of the amplifier is provided by the 700D
power supply, and a negative voltage of 7 volts coming from an external power
supply is applied at pin 4. The characteristics of the pA702C are given in

the appendix.

4.6 Experimental Measurements on the Linearity and

Frequency Response of the Digital Filter
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Hardware Realization of a Nonrecursive Digital Filter

Figure 4-22
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A nonrecursive digital filter is defined by equation{(4-1),repeated
here for conveniencea
m-1
y{kT) = E a. x(kT - iT) (4-1)
Lo
i=0
The output y(kT) is a Tinear function of the actual input and the (m-1)
previous inputs. The circuit of Figure 4-22 will realize equation (421)Y7only

if the operational amplifier has a linear characteristic in its voltage range

of operation. The maximum output voltage is veached under the conditions

x(kT - iT) = 1 (logical)
Tor ?11 i's. It.is a function of the voltage gain of the feedback amplifier,
the voltage Tevel associated with the logical state 1, and the number of
stages used by the filter. -

To check the linearity of the feedback amplifier in.%gg';énge of
operation, all the weights can be set to 1, and a sequence of m 0's
followed by m 1's can be fed into the shift register connected in a circular
contiguration, m stands for the number of shift-register stages used by
the Tilter. With a linear characteristic of the summer, the oscilloscope
display should look 1ike a staircase with a constant increase Eg;gggg_gg;b,m__
step. The experimental results are shown iﬁﬂg%éa;;~;:;;t“;;; results
indicate excelient amplifier linearity.

Another important characteristic of the summer of Figure 4-22 is a
good frequency response at the clock frequency used when filtering input
signals. Ideally, for an applied step input, we would like the output to

rise 1instantiy without any overshoot., Practically we are limited by a

definite slew rate and a certain amount of overshoot, generally larger as the
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Linear characteristics of the summer of figure 4-22

Figure 4-23

Clock period 33348
Oscilloscope sweep time .2mS/cm
Sensitivity .2V/cm

Weight setting aj=1 for all j's
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slew rate increases. The overshoot is eliminated by the output low-
pass filter of Figure 4-22. Figure 4-24 shows the output of the four-

stage pseudo-random sequence generator with clock periods of 3.33 us. and

1 us., without output filter. Experiments have shown that such overshoot
adds a few low frequency components to the power spectrum of the pseudo-
random sequence, and high frequency components outside the range of interest.
The time constant of the output filter has been found by trial and error.
Varying the time constant by regular steps; the overshoot was reduced to

a point where the low frequency components due to overshoot reached a minimum.
The final shape of a four-stage pseudo-random sequence is shown in Figure
4-25, at three different clock frequencies. From these results, we chose the
clock frequency of 300 KHz. to run the experiments presented in the next
section. It is the fastest clock frequency without serious distortion of
the output.

A close look at Figure 4-24 a will show a small fluctuation at each
clock pulse when the output stays at the same level between pulses. This is
due to é very high frequency oscillation of the output of the stages of the
shift register at the clock pulse, when the output should not change level.
This could be eliminated by the use of a better flip-flop to realize the
shift register, or by a lowpass filter inserted between the output of the

stages and the weights of the filter.

4.7 Design and Experimental Results

of a Lowpass Digital Filter

In this section, we will present a method for finding the weights of
a nonrecursive digital filter with m delays, design a lowpass filter,

describe the statistical characteristics of the input to the filter (a 15-
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Qutput of a 4-Stage Pseudo-Random Sequence Generator Without Output Filter
Figure 4-24
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stage pseudo-random sequence), and finally present the experimental results

of the filter implementation.

The frequency response S(wT) of a nonrecursive digital filter is

given by

-]

S(wT) = ] g, eI (4-6)

n=-c

Equation (4-6) is assumed periodic in wT and defined for -m < wl < = .
The Bn's are the Fourier coefficients of the periodic function S(wT), and
are given by

B =

5 [w S(uwT) e WTn d(wT) (4-7)

-

no| —

m

Given a filter specified in the frequency domain by S(wT), the inverse Fourier
transform of S(wT) will give the Bn's that describe the impulse response of
the filter. As most periodic functions are exactly described only by an
infinite number of Fourier harmonics, there will be,in most cases, an
infinite number of Bn's. If we want to realize the desired frequency
responsé by a nonrecursive digital filter which has a finite impulse response
(it has only a finite number of delays), the infinite series of Bn's will
have to be truncated, some Bn's made zero outside a given aperture. The
implementation of a desired S(wT) on a nonrecursive digital filter will then
be only an approximation of an ideal frequency response. The larger the
number of delays, the more accurate will be the implementation.

To find the number of delays required for a desired accuracy,
successive trials have to be made: first obtain the Bn's by taking the inverse
Fourier transform of S(wT); truncate the series of Bn's according to a chosen

aperture, and transform the truncated series to get a modified S'(w T), the
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approximation to the ideal S(wT). If the modified S'(wT) is not accurate
enough, try a different number of Bn's (go from m delays to m' delays), or
change the position of the aperture, and repeat the process until

results are obtained. (A weighting function, called a "window", can be used
to modify the Bn's, improving the shape of S'(wT). Examples of these are
the Hanning window, the Hamming window, the Blackman window, etc. The use
of a weighting function is neither discussed nor applied here.)

The Fast Fourier Transform (FFT) is of great help in determining the
number of delays and the weights of the filter. The function S(wT) is put
into sampled form, using M samples. For use with the FFT, the number M
should be a power of 2. We give an example of the method by realizing
a lowpass filter with m = 7 (the number of delays in Figure 4-22). The input

to the filter will be a pseudo-random sequence of length 215

- 1, that has a
power spectrum given by equation 2-19, and shown in Figure 4-26. (Figures
4-27 and 4-28 are further illustrations of equation 2-19. They are the power
spectra of the output of a four-stage generator, with two different scales.)
We wou]d like to filter out all the frequency components of the first lobe
higher than fC/3, with fc the clock frequency of 300 KHz. As S(wT) is
periodic for a digital filter, the desired frequency characteristics S(wT)

of the filter will be as shown in Figure 4-29. Part of the power spectrum

of the first lobe of the shape Sin x / x input is shown in Figure 4-30.

The cutoff frequency of the desired filter is indicated by o The frequency
response of the ideal lowpass filter for -t < wT < t is shown in Figure
4-31a) in sampled form; 1its Inverse Fast Fourier Transform (IFFT) is given
by b) of the same figure. As the hardware implementation has only 7 stages

(Figure 4-22), we chose an aperture of 7AT (when AT = 1/fc), centered about

B, + Making all the other Bn's zero (Figure 4-31 ¢) ) and taking the FFT
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of the truncated series, we get the frequency characteristics of the filter
shown in Figure 4-31 d), which is an approximation of the ideal character-
istics of a) in the same figure. Assuming that this approximation is accurate

enough for our purpose, we should realize this filter by implementing the

following weights:

By -.194
a, = -.059
ag = .597
" 1.0

ag = .597
ag = -.059
e -.194

After setting of the variable resistors of Figure 4-22, the impulse
response of the filter can be checked by circulatinga 1 in the shift
register, all other stages being in the state 0. This impulse response is
shown in Figure 4-32. The approximation to a 512—5- form is apparent.

The power spectrum of the digitally-filtered pseudo-random sequence is
shown iﬁ Figure 4-33. The scaling is identical to the one in Figqure 4-28,
which is the input to the filter. Figure 4-34 gives a better idea of the
periodicity of a digital filter. It shows the output of the filter for
about 5 cycles. The input to the filter corresponding to the same is
shown in Figure 4-26. For curiosity, we have shown in Figure 4-35 the output

of the filter in the time domain for a short part of the long periodic sequence.
4.8 Software Simulation of a Lowpass Digital Filter

Finally, we present a simulation on the IBM 1130 of the lowpass

nonrecursive digital filter presented above.
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Impulse response of the lowpass nonrecursive digital filter

Figure 4-32
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A Fortran program has been written containing three main parts:
generation of the input pseudo-random sequence, simulation of the filter,
and Fast Fourier Transform of the output. Because of the limitation in the
computer memory size available (16,000 words of 16 bits), we could not
simulate the complete output of a 15-stage noise generator. Instead we
used a 9-stage shift register (with states .5‘or -.5 to avoid D.C. component
in the power spectrum), with a sequence of 512 terms. The change in the
number of stages used has the effect of jncreasing the distance between the
power spectral lines, without affecting the sin x/x envelope. The power
spectrum of the input is shown in Figure 4-36.

The output of the filtered sequence is shown in Figure 4-37. This

simulated result agrees very closely with the experimental results.
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Power Spectrum of the output of the filter
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5.0 Generation of Partition Numbers

This section describes an interesting and unexpected approach to the

generation of partition numbers and some other sequences ithrough the use

of convolution, and digital filtering techniges.

5.1 Partition Numbers and Convolution

A partition of a positive integer is the expression of the integer as

a sum of positive integers. For example, the integer 4 has 5 partitions.

4 =4
4=3+1
4=2+2
A=2+7+]1
4=1+1+1+1

A change in order is not considered to lead to a new partition. The
number of partitions of the integer n shall be called the "partition
number" here, and denoted p(n)}. From the above example, p(4) = 5.

It is well known (see for example, Alder [16]) that a generating function
for p(n) is given by

Fx) = ——, x| <1 (5-1)

T (1 - x%)
v=1

An alternative to this multiplication procedure for obtaining p{n) is
suggested by the convolution theorem of operational calculus.

Consider the following expansion of equation (5-1)
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1 3 1
fx) = 5 .
Pex 1 - % 1-x°
= (1 + x + x2 + .0 .) 0 (01 2 + x4 d oo s)
'(.i + x3 + X6 L S Y -) - s e (5_2)

The p(n) are the coefficients of the x" terms in the infinite product. The
sums 1n parentheses in equation (5-2) are each in the form of a z-transform

of a sequence. The sequences correspending to the first three sums are:
{+r v+ v+ 11 %1% « « - }
{101 010 = =+ 1}

{1 00100+ - -1}

+ N . + - L]

Further terms have associated sequences with progressively more
zeros between ones. Since equation {5-2) is-essentially a‘product of
z-transforms, we know that f(x) is the z-transform of a sequence which is
the convolution of the sequences assocjated with the sums on the right in
(5-2). This follows from the convolution theorem. That is:

Fle}={1 1.7 1.1 1 « « « }*{1 071 01 01

{1001T06067 0+« « «}*. -
where F(w) 15 the z-~transform of f(x) and * indicates discrete convo1u£10n
(See Healy [18]) . w is the set of positive integers associated with the
ferms in the sequences, in ascending order from 0. At first glance it might
seem that an infinite numbers of convolutions need be carried out to obtain
values of P(n), which are just the terms in F(w). But actually, since the

kth sequence has the form:

.}*
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{1006+ - = 00100 + + + « 1}

convolution by this and higher order sequences will reproduce the first k
terms in F{w) without change. Hence to obtain the first % terms in F(w),
that is the first k numbers of partitions p(n), it is only necessary to
convolve the first k sequences. Fortunately, this operation is easiT&
done in tabular form as shown in table 5-1. The table is carried out far
enough to .generate the first 9 values of p(n), which appear as the first
nine numbgrs in the 9P {bottom) row.

The table is generated in the following wayl Write a sequence of ones
as the top Iing. To get a number in the next row, add the number above the
desired number fo the second number to the left plus the fourth number to
the left, etc. until you reach the left. Tb get any number in the jth row,
add the number above it in the j-1 row, to the number j units to the left in
the j-1 row, to the number 2j units to the left, etc. until you reach the
left. (e. g. in the third row, 12 =5+ 4 + 2 + 1}. The above procedure
simply carries out the process of successive discrete convolution. )

Table~b~1 has some additional information. Consider the diagpnal rows
{+ 45°) . For example, the Sth diagonal row Trom the upper left is
{1 3 3 2 1 11}, reading from upéer right to Tower 1ef£. The sequence
gives the number of partitions of 6 into u parts where p is the order of the
numbers in the sequence. Similarly, the mth diagonal row gives the number
of partitions of m into - parts as a sequence of values corresponding .to
u=1, 2, 3, ==+ . The number of partitions of m into parts the largest
of which is u isvof course given by the inverse sequence as suggested by
Alder's [16] theorem 2. A similar procedure can be used to find numbers of

partitions into even parts or odd parts or a number of other possible forms.
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5.2 Digital Filter Generation

The ébove convolution of sequences suggests another viewpoint, or
method of generating p(n). The sequences of ones, separated by k zeros,
is simply the discrete impulse [ {1 0 0 0 - - -+ 3 for discrete
systems] response of a one feedback-stage recursive digital filter with
K+ 1 units of delay. This is illustrated in figure 5-1. Hence the
necessary convolution of sequences with increasing zeros-spacing (value
of k) can be obtained as the discrete impulse response of a cascade of
Tilters with increasing k, as shown in figure 5-2.

The oufput of the first stage in figure 5-2 is the first line in
table 5-1, the output of the second stage is the second line, etc. It is
apparent from the argument in E@qﬂprecedigg section that to obtain the

PR

first k p(n) it is necessary to cascade k filters.
5.3 Generation of Other Sequences

It should be apparent from the above that there are man, ...... sequences
which can be generéted by digital filters. One example is the Fibonacci
sequence in which each number is the sum of the previous two numbers in
the sequence. The sequence begins as:

112 35 8 13 21 38 55 -« - -

This sequence has a generating function:

G(x) = 1 (5-3)

1 ~-x- xz

From the fundamental property of the sequence, as expressed above, or
from the generating function, we deduce that the sequence can be generated

by a two stage recursive digital filter as shown in figure 5-3. This
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4 4 5 5

7 81012

911 15 18

10 13 18 23

11 14 20 26

11 15 21 28

11 15 22 29

11 15 22 30

Table 5~1
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circuit adds the number delayed by one time period (Z'l) to the number delayed
by two time periods (2"2) to form the new output.
It is apparent that many other sequences can be generated by other

feedback schemes.
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