
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



NASA TECHNICAL
MEMORANDUM

Report No. 53950

^{	 F

V

ti AUG 1970

RECEIVED
+NASA sr! FACILITY

BRagRy

CA

^J

A GRAPHICAL APPROACH TO CONVOLUTION
By James C. Taylor
Astrionics Laboratory

September 26, 1969

y

N70- 36_115
°o	 (ACCESSION NNU BER) 	 (THRU)

/7/
O	 (PAGES)LL	 (CODE

T MA — 532U
4v (NASA CR OR TMX OR AD NUMBER) 	 (CATEGORY)

NASA

George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama

MSFC - Fc m 3190 f8*P1*mb6 1966)



A GRAPHICAL APPROACH TO CONVOLUTION

By

James C. Taylor

t

ASTRIONICS LABORATORY
RESEARCH AND DEVELOPMENT OPERATIONS



By

James C . Taylor

George C. Marshall Space Flip. t Center
Marshall Space Flight Center, Alabama 35812

ABSTRACT

Many pages have been devoted to the development of the theory and appli-
cation of convolution. In fact one might ask, "Why write any additional pages
unless some fundamental contribution or additional degree of sophistication is
added?" A reasonable answer to this question is that most of these pages are
devoted to a rigorous analytical treatment or a discussion to support a special-
ized subject. The purpose of this paper is to pursue a graphical approach with
sufficient analytical support to clearly illustrate the mathematical operations
involved, the physical significance, and some important areas of application of
convolution in a manner as simple and direct as possible.
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A GRAPHICAL APPROACH TO CONVOLUTION

GENERAL COMMENTS

Convolution is a powerful tool in communication theory and system
analysis, both from a theoretical and a physical applications point of view. It
provides a convenient method to relate the convolution of two functions in the time
domain to the product of their spectra in the frequency domain, thereby offering,
in many cases, a more convenient means of finding the inverse transform of
certain functions. It offers a convenient method of evaluating the response of a
linear system to an arbitrary excitation function in terms of its response to an
impulse function. Furthermore, it provides a means of graphical solution when
the functions* involved cannot be expressed by analytical means, and it is most
helpful in visually displaying relatively abstract concepts. Convolution is not a
Fourier or Laplace transformation, although it is used extensively with trans-
formation methods. It is an operation in its own right and obeys the distributive,
associative, and commutative laws of algebra. Convolution of two functions
resembles cross-correlation in that both include displacement, multiplication,
and integration. However, convolution includes a folding or reflection which
cross-correlation does not. The convolution of two functions, f l (t) and f2(t),
is generally written as f l (t) * f2 (t) and is accomplished by folding one of the
functions, shifting or displacing it by a given amount, multiplying it by the other
function, and integrating the product curve over its domain of definition. Another
solution would be to say the convolution of two functions can be obtained by scanning
one of the functions with each element of the other function from - co to +- and
summing the products at each point of the scan.

Because of the product or the overlap of the two functions, the convolu-
tion function ie; extended beyond the bounds of either function. Mathematically,
the cone _.J :ition of fl (t) with f2 (t) is written

+00

fl (t)* f2(t) = f f, (T) f2 (t - T) dT	 (i)
-00



The expression on the right-hand side of equation (1) is the convolution integral.
Sometimes it is called the Faltung integral. The notation in equation (i) is quite
popular and it should be noted that a dummy integration variable T has been
introduced so that f l (t) becomes fl ( T) and f2 (t) becomes f2 (T) . The function
f2 (T) is folded by the substitution of -r for T and is displaced along the T -axis
by an amount t. Either function could have been chosen to fold. However, once
the choice is made, the folded function is the one that must be shifted. As a
general rule, the simplest function is folded. Sometimes equation (1) is written
as

+00

fl ( T) ® f2(T) = f fi ( T) f2 (t - T) dT
t	 -00

where it is understood that the variable of integration is the dummy variable 1

but the integral is indeed a function of the offset t. For each offset value of t,
the product curve fl ( T) f2(t - T) is integrated from -oo to +oo.

The convolution of two functions can often be evaluated graphically when
the functions are so complicated that they defy analytical integration. Also they
may be curves arrived at by experiment which cannot be expressed analytically.
Therefore it is most important to understand the folding, displacement, product,
and summation steps that are embodied in equation ( i) .

GRA PH I CAL I NTER PRETAT I ON OF CONVOLUT I ON

Remembering the preceding general remarks, we will depart from the
usual analytical approach to convolution and discuss the graphical procedures
that lead to solution in considerable detail. It is believed that this approach
will supply a better understanding of the physical significance than the more
abstract analytical analysis. First, folding and displacement will be discussed,
and then the product of the two functions as one is successively displaced will
follow. Final' .,, the area under the product curve will be plotted as a function
of the displacement or the offset. This is the convolution function.

Consider a function f2 (t), shown in Figure la, in which a variable T

has been introduced in Figure ib. It is possible to fold f 2 (T) around T = 0 (and
this fact is important in convolution) by substituting -T as illustrated in Figure
2a. This folding operation is the essential difference between convolution and
cross-correlation. Figure 2b illustrates the folded function f2 (-r) shifted to the
right in the positive direction along the T -axis by an amount t. The folded and
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shifted function is now expressed as f 2 (t - r) . If the function had been shifted
to the left in the direction of the negative T -axis, it would be expressed as
f2(-t - T) . Clearly for each value of t, there is a different position for the single
pulse f2 (t - T) along the T -axis. Therefore by selecting successively larger
positive values for t (t=1, t=2, t=3, ... ), the pulse is shifted along the T -axis
in the positive direction. If another function f l ( T) is plotted and f2 (t - T) is
shifted across f i ( •r), the area under the product curve (area under the curve
obtained by multiplying the two functions in the region of overlap) is a function
of the offset t. If the area under the product curve is plotted as a function of the
offset t, the result is the locus of the convolution function f l (t) * f2 (t) .

CONVOLUTION OF TWO S IMILAR PULSES f l it) - f2(t)

Two similar pulses, fi (t) = f2 (t), are shown in Figures 3a and 3b.
The dummy variable T is introduced directly in fl (t) . Since f2 (t) is selected to
be folded, -r is directly substituted for t, as shown in Figures 3c and 3d. For
convenience, both functions are plotted on the same set of coordinates and the
folded function is shifted by an arbitrary amount in the positive direction along
the 7 -axis in Figure 3e. Since the folded function has been shifted by an amount

z	 t, it is expressed as f2 (t - T) . Figure 4 shows six successive values of t as
the function f2(t - T) is shifted across fl ( T) . The "hashed" area is the area in
which the two functions overlap. It is clear that the amplitude of the product of
the two functions in the region of overlap is unity since the respective amplitudes
a t = a2 = 1. The area under this product curve for any offset t is simply

A= a i a2 AT = 1 x i x A T	 (2)

where AT is the amount of overlap and is clearly a function of t. Table I tabu-
lates the pertinent graphical information shown in Figures 3 and 4. Now if we
plot the area under the product curve versus t, we have the locus of the convo-
lution function, as shown in Figure 5. The convolution of two similar rectangu-
lar pulses results in a triangular spectrum. The range of the convolution is
2.0 while the range of f l (t) = f2(t) = 1.0.

Expansion of the for. going graphical exercise is most convenient to
illustrate the significance of equation (1) . This equation states that a product
(curve) is formed by multiplying fl ( T) by f2 (t - T) which has been folded and
shifted by some value t. Furthermore, for each value of t the integral has a
value which is obtained by integrating the product curve over the limits -- to
+-. Figure 6 is the result of redrawing Figure 4a. The region of overlap A T

4
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TABLE I

Figure
Value of
Offset t

fj (T)f2 (t - T)AT
Area Under the

Product Curve for
Offset t

3c, 3d 0 0	 No Overlap

4a 0.4 0.4

4b 0.8 0.8

4c 1.0 1.0

4d 1.2 0.8

4e 1.6 0.4
4f 2.0 0	 No Overlap

FIGURE 5
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in Figure 4a has been divided into n increments of width A T/n. Each incremen-
tal area is

AA = fl (T ) f2(t - T) A Tn

where the area is a function of the offset t. Then the area under the product
curve in the interval t=0 to t=0.4 is the sum of all incremental areas within
the interval

t=0.4

A = Z fl ( T)f2(t - T) 
^T

t=0
n

From the fundamental theorem of integral calculus

Lim	 t	 t

AT — O Y fi(T)f2(t - T) OT = f fl (T)f2(t -T) d 
n ^ ao 0	

n	
0
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Since the product curve is zero outside the interval of overlap, nothing is
added to the integral to replace the limits of integration by -- , +-

t	 +00f fi (T)f2(t - T) dT = f fl(T)f2(t - T) d 	 (3)
0'	 -00

This is the convolution integral given in equation (1) .

GRAPHICAL CONVOLUTION OF TWO DISSIMILAR PULSES
flit) # fit)

The convolution of two dissimilar rectangular pulses results in a trun-
cated isoceles triangle; the sides become steeper as the width of the narrow
pulse becomes more narrow. The understanding of this convolution leads con-
veniently to an important property of convolution; that is, if a function f l (t) is
convolved with a delta function or unit impulse 6(t), the result is the function
ft(t) itself or

fl (t)* a(t) = fl (t)
	 (4)

This concept will be extended to show that if a function f l (t) is convolved with
a unit impulse function 8(t - t

0 ) 
positioned at t = to*  the function fl (t) is trans-

lated along the t-axis in the positive direction by an amount t
0 

which is written

fi(t)* d(t - to) = fi (t - to ) .	 (5)

The procedure will be identical with that of the graphical convolution of two
similar rectangular pulses. However, f 2 (t) is chosen to be n narrow pulse com-
pared to fi (t) . Upon comparison of the two exvmples, it will be clear that as the
width of f2 becomes very narrow, the convolution function becomes more rec-
tangular. Furthermore as the width becomes more narrow, the height of the
convolution function decreases. If"the height of f 2 is allowed to increase as the
width decreases in such a manner that the area becomes and remains unity, f2
becomes the delta function 6 (by definition) and equation (4) will hold.

The two functions are illustrated in Figures 7a and 7b. A dummy
variable T has been introduced in place of t in Figures 7c and 7d, and f 2 has

9
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been rotated about the origin by substitution of -T for T. Both functions are
drawn on the same coordinate system in Figure 7e. The function f 2 has been
shifted along the positive direction of the T -axis by an amount t which causes an
overlap AT of f1 (T) and the folded and shifted function f2(t - T) in Figure 7f.
A product curve exists as long as the two functions overlap, and the area under
this curve for each t is easily determined for this case by the simple product of
the amplitude of each curve and the amount of overlap AT which is

A = f1 (T)f2 (t - T)AT = i x i x AT .	 (6)

Table II tabulates the area under the product curve for the corresponding offset
t along with its functional overlap OT. The area under the product curve is plot-
ted as a function of the offset in Figure 8. Comparison of Figure 8 with Figure
5 illustrates graphically that as the width of one rectangular pulse becomes more
narrow, the slopes of the sides of the product curve increase and the peak be-
comes truncated and decreases in magnitude. In fact, the shape of the curve in
Figure 8 begins to approach the shape of the function fl (t), except the height is
greatly reduced.

TABLE II

Offset
t

Overlap
AT

Area Under
Product Curve

fl(T)f2(t - T)AT
for t

0 0 0

0.1 0.1 0.1

0.2 0.2 0.2

0.4 0.2 0.2

0.6 0.2 0.2

0.8 0.2 0.2

1.0 0.2 0.2

1.1 0.1 0.1

1.2 0 0

II
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To more closely reproduce f l (t) we must increase the height of f2 (t) as
its width w is decreased. If we decrease the width and increase the height so
the product of the width and the height equal unity, the maximum value of the
area under the product curve will equal the amplitude of f l (t) throughout the
region in which the overlap is constant (as the narrow pulse is shifted through
the broad one) . This case is illustrated in Figure 9 where the function f 2 (t) of
Figure 3a is chosen with an amplitude five times that of f l (t) and with a width
w which is one-fifth that of fl (t) . The area of the pulse is unity. Data for the
graphical convolution of the functions of Figure 9 are tabulated in Table III and
the convolution function is plotted in Figure 10. If the convolution f 1 (t) * f2(t)
of Figure 10 is compared with f i (t) in Figure 3, it shows that

fl( t)* f2( t) = fl (t)
	

(7)

for 0.2 _s t :s 1.0. As the width of f2 (t) becomes very small and its ampli-
tude is increased so the area remains unity, the equality of equation (7) holds
over almost the entire range of fl (t) . Finally in the limit as the width approaches
zero and the height approaches infinity, f 2 (t) becomes the Dirac delta function

12



or unit impulse 6(t),  equation (7) becomes equation (4) , and equation (1) may
be rewritten as

+00

f1 (t) * 6(t)	 f fl ( T) 6(t - T) dT = fl( t )	 (8)
-„

TABLE III

t A T fl(T)f2(t -T)AT

0 0 0

0.1 0.1 0.5

0.2 0.2 1.0

0.4 0.2 1.0

0.6 0.2 1.0

0.8 0.2 1.0

1.0 0.2 1.0

1.1 0. 1 0.5

1.2 0 0

CONVOLUTION OF A FUNCTION WITH AN IMPULSE FUNCTION

It is now convenient to consider the important case of convolving a
function fl (t) with an impulse function 6(t - to) positioned at t = to . First, as

in the preceding example, we will convolve f l (t) with a narrow finite pulse
f2 (t - to) that is positioned at t = to . Both functions are shown in Figure ila.

A dummy variable is introduced in Figure lib. The function f 2(T - to) is rotated

around the origin (T = 0) by substitution of -r in Figure lie. Finally the rotated
function is shifted in the positive direction along the T -axis by an amount t. The
overlap AT and the area under the product curve fl ( T) f2(t - t0 - T) AT are tabu-

0
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lated for several corresponding values of t in Table IV. The convolution
function is plotted in Figure 12. By comparing Figure 12 with Figure 10, the
convolution function of Figure 12 is identical except it has been displaced by
an amount t = to • Furthermore, as the width w of the function f2 is allowed

to become smaller and smaller as the height is allowed to become greater
and greater and the area is held constant at unity, the height of the plateau
of Figure 12 remains equal to the amplitude of fl (which is 1. 0 in this case)
over a larger and larger range of the offset t. Finally in the limit as f2(t-t0)

becomes the delta function b(t - to) (which is a function with zero width,

infinite height, and unit area) the convolution function of Figure 12 becomes
that of Figure 13, which is exactly that of f 1 (t) of Figure I la shifted to the
right by an amount t = to.

From an analytical point of view, the same argument used to arrive at
equation (3) yields

+00

fl(t) * f2(t - to) = f fi (T)f2 (t - to - T)dT
-,0

15
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and as

f2(t - t 0 ) -+ 6(t - t0)

+00

fl (t) * 6(t - to ) = f fi ( T) 6(t - to - T)dT = fi (t - to )	 (9)
_„

D I RAC DELTA FUNCTION

Expansion on the Dirac delta function should add substance to the previous
discussion as well as enhance physical interpretation of subseque,it convolution
techniques. The delta function is a powerful tool in analyzing transformation
problems. It may be regarded by the civil engineer as a concentrated load, by
the electronic engineer as a unit impulse function, and by the physicist analyz-
ing an optical system as a point (or line) source. In many applications the
analyst may determine the response of a linear system to an arbitrary excita-
tion functiwi from its response to the delta function. This function is not an
ordinary function in that it has a definite value for each point within the domain
of definition and must be used with discretion to avoid inconsistencies. A r gor-
ous treatment of the properties of the del+a function must be based upon dis-
tribution theory rather than conventional mathematics. The delta function at
the origin is defined to be zero everywhere except for t = 0 or

6(t) = 0	 t * 0	 (10a)

such that the area is unity

+ccf 6(t)dt = 1.	 (1oh)

This function is represented by Figure 14a, in which the function exists only at
the point t = 0 and the one in parenthesis reminds us that the area of the function
is unity. If the delta function is translated along the !-axis in the positive direc-
tion by an amoutit t = to ,

6(t = t0) = 0	 t * t 	 (1la)

19



and the area is

+00f 6(t - tO)dt = 1	 (fib)
-00

1	 ,

In this case the function only exists at the point t = t
0 , 

as shown in Figure 14b.

0	 0	 to
{o)	

(b)

FIGURE 14

A very important property of the delta function will be shown and sub-
sequently utilized to analytically arrive at the convolution result given in equa-
tion (9) . Figure 15 illustrates a function of a real variable t plotted along with
a delta function positioned at t = T, which by definition does not exist at any
point except t = T. The two functions intersect at f (t) = f (T) ; therefora

f(t) 6(t - T) = f(T) 6(t - T) .	 (12a)

Let t = Q - t and we have
0

f(o - tO) 6(v - t  - T) = f(T) 6(v - t  - T)	 (12b)

20
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Integrating equation (12a) over the range of t(-- to +-) gives

+00	 +00

1 f(t) b(t - T)dt = f f(T) b(t - T)dt
-,0	-,0

The factors in. the integrands on both sides are equivalent from equation (12a) .
However, the factor f(T) in the integrand on the right (equation 12a) is not a
function of the variable of integration t and the right-hand side may be written
as

+00	 +00

f f(T) S(t - T)dt = f(T) f 8(t - T)dt	 (13)
-00	 -00

and since by definition of the delta function the integral on the right is unity,

+00

f(T) f d(t - T)dt = f(T)	 (14)
-0,

I

21



which states that multiplying a delta function 6(t - ,r) by the function of a real
variable f(t) and integrating over a range of t from -- to +- is equivalent to
substituting T for t.

With the above principles in mind and with the aid of Figure 16, we have
direct analytical proof of the important property that if a function f(t) is convolved
with the unit impulse function 6(t - to), the function f(t) is translated in the

positive direction along the t-axis by an amount t o . Figure 16 shows that

+00

f(t) * 6(t - t) =
0	

f f(T) d(t - t 
0 - 

T)dT
-oo

The factors in the integrand are of the same form as equation (12b) ; therefore

+00

f(t) * 6(t - to) = f f(t - to) 6(t - t  - T)dT
_00

The factor f (t - to) does not contain the variable of integration and is brought

outside the integral

+00

f(t) * 6(t - tO ) = f(t - tO) f 6(t - tO - T)dT
_,0

By definition of a delta function the integral is unity and the convolution is

f(t)* 6(t - to) = f(t - to)	 (15).

which is f(t) of Figure 16a displaced by an amount t = t o . This is plotted in
Figure 17.

PRACTICAL IMPULSE FUNCTION

From a practical point of view, the unit impulse function is generally
regarded as an impulse of infinitesimal duration d T and an amplitude h which is

22
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o	 fe

FIGURE 17

large ( tends to infinity) . This very narrow and very long rectangular pulse has
an area equal to unity which is an even function. Since the area is finite, the
pulse can be integrated over its interval. This type of pulse is approximated by
the application of a voltage for a very short duration or the instantaneous charge
transfer. Quite often it is convenient and very useful to work with an impulse
function rather than a unit impulse function. In this case, the impulse has an
area other than unity. The area k of the impulse is regarded as its strength
and is written as a coefficient in the form k 6(t - t o) . This type of impulse is

similar to the delta function except that the amplitude is controllable. In truth,
it is what one is most likely to encounter in practice. Subsequently it will be
shown how a convolution can be built up from a succession of impulses of proper
amplitude within a chosen interval. Figure 18a illustrates an impulse of width
dT and height h with a strength k = h d T which is positioned symmetrically around
t = T. The factor k gives the strength, and the factor 6(t - T) gives the position.
Therefore the impulse may be shifted along the taxis by selecting values of T.

Suppose the height h of an impulse of constant but infinitesimal width d T follows
some function f (t) . Then any ith impulse is written k  6(t - T i) , as shown in
Figure 18b, where ki = hid T = f (Ti ) d T .

24
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SCANNING AND SUPERPOSITION PROPERTIES OF CONVOLUTION

It is important to note that when two functions are convolved, the result
is the same as if one of the functions is scanned by each element of the other
and the products are summed. Recognition of this scanning property leads
directly to the realization that the convolution integral is in truth a superposition
integral. Thus, if f, (t) is convolved with f2 (t) , it is possible to partition f2(t)
into small increments of width and convolve fl (t) with each increment. A super-
position of the incremental convolutions results in the total convolution
fl (t) * f2 (t) . Strictly speaking, the superposition of the incremental convolu-
tions approaches f l (t) * f2 (t) as the incremental width of the partitions approaches
an infinitesimal. In this case, the function f 2 (t) is thought to be divided into
adjacent impulses such that any ith impulse is k  6(t - t i) in which the impulse

has a strength k  and is positioned at t i along the t-axis. Each of these impulses

within the domain of definition of the function f 2(t) is then convolved with fl (t) .
Superposition of all these convolutions yields the total convolution. This is
easily shown by graphical means. Figures 3a and 3b are redrawn in Figure 19
where f2 (t) is partitioned into five increments (a, b, c, d, and e) of width d T

and height h (h = 1 in this case) . The increments are respectively positioned
at too  tl , t2i tg, and t4 . These partitions are rather large to consider as im-

pulse functions (a good approximation of the unit impulse is to choose a width
d T so the impulse height will be i/dT and the area dT x i/dT = 1) . They are
convenient for graphical illustration and, in this simple case, give ideal results.
Impulse notation will be used to emphasize the convolution of partitions of a
function f2(t) with fl (t) . The partition a of f 2 (t) in Figure 19 is clearly the
function f2 (t) in Figure 7a, whereas the function f l (t) of Figure 19 is the function
fl (t) of Figure 7b. The convolution function of the two dissimilar pulses shown
in Figure 7 is plotted in Figure 8. Therefore the convolution function of the
partition a of f2 (t) with fl (t) in Figure 19 must be identical with the convolution
function of Figure 8. This convolution f i (t) * k 6(t - to) is plotted in Figure 20a.

The other partitions are identical in width and height and only differ in succes-
sive position along the t-axis. Therefore their convolution functions are identi-
cal with that of partition a except they are successively displaced along the taxis
by an amount d T. These convolution functions are b, c, d, and a of Figure 20.
Addition of the functions a, b, c, d, and a results in the convolution function
fl (t) * f2 (t) of Figure 20f which is identical with that of Figure 5. Therefore
we may convolve fl (t) and f2 (t) directly or we may partition f2 (t) , convolve
each partition with fl (t), superimpose the convolutions, and arrive at the same
result.
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CONVOLUTION AND THE RESPONSE OF A LINEAR SYSTEM

The superposition properties of the convolution integral make it a most
useful and convenient means of specifying the response of a linear system in
terms of its impulse response and excitation function. In fact, a very important
theorem sometimes referred to as Borel's theorem states, "The response of a
linear system to an arbitrary excitation is the convolution of the excitation func-
tion and the system impulse response." Therefore if the impulse response of
the system is once determined, it may be convolved with any arbitrary excitation
function to result in an expression for the system response. The importance of
this statement is magnified by the fact that if there is no analytical expression
for the excitation function, the integral can be evaluated graphically. Further-
more it is often convenient to partition the excitation function into a succession
of impulses similar to the delta function except that the amplitudes are controlled
according to the amplitude of the partitioned function. Convolving the system
impulse function with each successive excitation impulse and superimposing the
results gives the desired system response. The impulse response is most con-
venient and widely used to characterize the input-output relations of a system
and is defined in the following way. If the input excitation of a system is the
delta function 6(t), the output response is the impulse response h(t) . Sometimes
the impulse response is called Green's function (by the field theorist) or the
spread function (by the optical physicist) .
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Borel's theorem will be illustrated but not proved, although a rather
general proof may be given without undue difficulty. ( The proof is based on the
classical theory of second-order linear differential equations, a modicum of
operational calculus, and the definition of Green's function.) In so doing; con-
sider a linear system such that an input delta function b(t) causes an output h(t)
as shown in Figure 21a. Since the system is said to be linear, the input and
output could be represented by a differential equation with constant coefficients,
and the invariance of the input and output relations would not be disturbed by a
translation of time. Therefore if the input excitation is delayed by a time t = T,
the output response is likewise delayed by a time t = T as shown in Figure 21b
( this function is that of'f l (t) in Figure 19) , and by definition the impulse response
of the system is h(t - T) . Let an arbitrary input excitation fi (t) (idGatical with

f2 (t) in Figure 19) be applied to the input as shown in Figure 21c. According to
Borel's theorem the output response f o(t) is the convolution of the excitation

function fi (t) and the impulse response h(t - T) , and we may write

fo (t) = fi (t) * h(t)	 ( t6)

which is

+00

fo(t) =	 f fi(T)h(t -T)dT	 (17)

A plot of the system response f 0 (t) is the same as that in Figure 20f.

To emphasize the principle of linear superposition embodied in the
integral of equation (t7), it will be developed with the aid of Figure 21. The
input function fi (t) is partitioned in increments of width AT and height fi(T)

where the height is f i (t) evaluated at the position T of the given increment. As

AT becomes smaller, the fin. , `ion f  (t) becomes smaller, the function f  (t)

becomes more closely approximated by a series of adjacent impulses of strength
k = f  (T)AT which are positioned at d(t - T) ; therefore a typical input pulse is

f.(T) AT 6(t - T)
1

If the increments are sufficiently small, the pulses approximate the unit impulse
function ( strength unity) so that, if the unit impulse function b(t - T) results in
a response h(t - T) , the incremental input impulse with strength fi ( T) AT located

at b(t - T) results in an incremental response ( Figure 21c) .
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Afo (t) = fi (T)ATh(t -T) 	(18)

According to thw• _)rinciple of linear superposition, the response of a linear sys-
tem to an excitation function fi (t) up to a given time t is the sum of its responses

to all of the incoming impulses up to the time t. In other words, we may add up
all of the contributions ( response) to the present Ume to arrive at the total.

Therefore the sum of all the responses to the individual input impulses
from t = 0 to the final time t is

t
f0 (t) _ Z fi (T)ATh(t — T)

t=0

It has been emphasized that as AT becomes smaller (amplitude is now controlled
to correspond with the amplitude of the input function) f i (t) is more closely

approximated by the series of adjacent impulses; therefore equation (19) more
closely approximates the system response. In the limit as AT — 0 the expres-
sion

Lim	 t
f (t) = AT — 0 Z f.(T) h(t — T)OTo	 t-0 1

becomes the integral

t
fo(t) = f fi ( T) h(t - T)dT

0

which is a convolution integral that defines the system response in terms of the
impulse response and the input. Equation (20) is sometimes referred to as the
superposition theorem.

Since the integral is zero for any value of t for which the product of the
factors in the integrand is zero, nothing would be added to change the limits of
the integral from t = -- to +oo and equation (20) becomes

(19)

(20)
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+00

fo (t)= f fi ( T) h(t - T)dT	 ! ti)
-00

Equation (21) holds if fi (t) and fo(t) are periodic, aperiodic, or random.

CONVOLUTION THEOREM

From the standpoint of solving linear differential equations, the transfer
function is the reciprocal of the characteristic function in the transform solution
of all linear differential equations. From a systems point of view, it is simply
the ratio of the response output transform to the excitation input transform and,
in addition to the impulse zesponse, is widely used to characterize the input-
output relations of a linear system. The transfer function is discussed here in
the context of arriving at the v-ry important convolution theorem.

If the input to a linear system fi(t) Fourier transforms into F  (w) and

the output response fo (t) Fourier transforms into F o(w); that is

S [ fi ( t) I = Fi(w)

ff[f0 ( t) I = F0(w) ,

the transfer function H(w) is by definition

Fo(cv)
H(w)	

F i (w)

and the Fourier transform of the output response is

F0(w) = H(w) Fi (w) .	 (22)

The inverse Fourier transform of equation (22) is the response of the system
in terms of the transfer function and the input excitation
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fo ( t) = T -1 [ H(w) _Fi(w) ]
	 (23)

By comparing equations (23) and (21) we can write

+00f fi ( T) h(t -T)dT = -1 [H(w) Fi (w))	 (24a)
-00

or equally

+.0f fi ( T) h(t - T)dT	 = HM Fi (w)	 (24b)
_00

Equations (24a) and (24b) are a form of the convolution theorem which shows
the equivalence of two powerful methods of arriving at the response of a linear
system. Whether the system response is determined by the convolution of the
input and the impulse response or by the inverse of the product of the input and
the transfer function transforms is a matter of choice.

The convolution theorem is one of the most widely used tools iP. frequency
analysis and is worthy of a more general statement and proof. Before doing so,
however, the shifting theorem will be reviewed because it will be used in a very
straightforward proof. According to the shifting theorem, if the Fourier trans-
form of f2(t) is

+00

.̀F[ f2( t) ) _ ,J fe(t)e -iwt
dt _ F

2(w)	 (25)
-00

then the Fourier transform of f2 (t - T) is

5: [ f2( t -T) 1 = 
e-iwTF

2( w ) •	 (26)

Equation (26) states that a shift of T in the time domain is equivalent to the

multiplication by the factor a-i w T in the frequency domain. To prove eiaation
(26) , it is only necessary to perform the operation indicated on the left-hand
side of the equation which is
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+00

[f2(t -T)j = f f2 (t- T)e -iwt dt	 (27)
_,p

and make the substitution

77 = t - T

so that

f2( t - T) 1 = ./ f2(n) e	 d 17
_00

The exponential factor in the integrand contains a factor a-i w 
T 

which does not
contain the variable of integration and may be moved outside the integral,

+00

f2(t-T)) = e-iwT f f2(n) e-iwrid1

_,p

The integral is clearly the Fourier transform of f 2 (r7) and is identical in form
with the Fourier transform of f2 (t) in equation (25) ; therefore we may write

-17 [f2( t - T) ) = e
-iwT 

F2( w )	 (28)

which is proof of the shifting theorem.

Now it is convenient to state and prove the convolution theorem. If fl(t)
transforms into F l (w) and f2 (t) transforms into F 2 (w) ; that is, if

T̀[fi ( t)) = FI(w)

and

T[ f2( t) ) = F2(w)

then

f fj (T) f2(t - T)dT	 = F 1 (w) F2(w)
	

(2Q;
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To prove that equation (29) is true, it is necessary to perform the
operation indicated on the left, and equation (29) becomes

+0+oo
f f fl (T) f2 (t — T)dT a-iwt dt = F 1 ( w) F2(w)

_,0 _,^

To use the shifting theorem, the expression within the brackets of the
above equation may be rearranged so that

f

+co

[Zf2(tfl (T) 	 -T) 
a-iwt dt dT = Fi (w) F2(w)

_,p

The expression within the brackets in the integral on the left-hand side of the
above equation is the Fourier transform of the function f 2 (t - T) of equations
(26) and (27) ; therefore

+00
f fl(T) F2(w) e

-	 dTdT = F i (w) F2(w)
_,0

The factor F2(w) in the integrand of the above integral does not contain
	1	 the variable of integration and may be moved outside.

F2(W) 
f f, 

(T) 
a-iwT dT = F1 (w) F2(w)

_00

	

It 	 The integral is now the Fourier transform of fi (T) , which is of the form
fi (t) , and the result is

Fi( w) F2(w) = Fi( w) F2(w)

which proves the convolution theorem.
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