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INTRODUCTION AND OUTLINE
 

OF REPORT
 

This report summarizes the work that has been done on the NASA
 

Research Grant NsG-490 since the last retorting date of July, 1969. The
 

report is divided into four separate parts titled:
 

Part I: Stochastic Approximation and its Engineering Applications 

Part II: Stochastic Algorithms for Self-Adaptive Filtering and 

Prediction 

Part III: The Control of Nonlinear Stochastic Control Systems Under 

Discounted Performance.Criteria 

Part IV: Linear Stability of a Nuclear Rocket Engine With Two 

Reactivity Feedbacks 

Each of the separate parts includes its own index, bibliography, and
 

pagination, and the content of each is discussed briefly in this intro­

duction. The report has been labeled an interim report because work in
 

three of the four areas is not complete, as discussed below.
 

Of the four parts, Part I on "Stochastic Approximation and Its
 

Engineering Applications," is the only portion of this report that may be
 

considered complete. This is a tutorial treatment of the subject of
 

stochastic approximation that emphasizes the algorithmic approach to
 

optimization in the presence of uncertainty or noise. The uncertainty
 

or noise may arise from basic ignorance of the underlying phenomena,
 

experimental errors, or inherent random fluctuations. The nomenclature
 

Stochastic Approximation is used to emphasize the stochastic nature of
 

the errors in, say, the process measurements, and the use of these
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measurements (past and present) to calculate the approximate location
 

of the optimum or goal. Of particular importance is the fact that
 

the use of the stochastic approximation algorithms assumes no a priori
 

knowledge of the noise statistics that are involved in the optimization
 

problem at hand. This is an important practical consideration.
 

The stochastic approximation theory that is described in Part I
 

is'the basis for Part II,"Stochastic Algorithms for Self Adaptive
 

Filtering and Prediction." The basic goal of this research is to
 

develop a self-adaptive solution to the problem of optimal filtering,
 

prediction, and detection of stochastic signals imbedded in random
 

noise. In particular, the random noise is considered to be unknown.
 

This is in contrast to theories of Weiner and Kalman which require a
 

complete knowledge of the covariance matrices of both the plant and
 

observation noises. Rarely are such complete descriptions available,
 

and, in fact, the requirement that the noise covariance matrix be non­

singular has often resulted in unwarranted assumptions as to the nature
 

of the components of the noise involved. In this-report, an unsuper­

vised learning criterion is formulated from-which self-adaptive
 

algorithms are derived. These algorithms learn the optimum discrete
 

time stationary Kalman filter directly. This eliminates both the'
 

necessity of estimating the plant and noise covariance matrices as an
 

incermediate step and the need to solve the entire set of filtering
 

equations. The problem associated with the need for the nonsingular
 

measurement noise covariance matrix is thus elminated or rather by­

passed by using this alternate approach. It is shown that the stochastic
 

algorithms developed for estimating the optimum filter converge in a
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mean square sense with probability one. The results are valid for
 

scalar and vector values for signal and noise processes. It is
 

expected that the research described in Part II of this report will
 

be completed by July 1, 1970, and a more complete and final report
 

will be issued at that time.
 

Part III on "The Control of Nonlinear Stochastic Control Systems
 

under Discounted Performance Criteria," is similar to Part IT in that
 

it presents the theoretical basis for a Ph.D. dissertation. As in
 

Part II, the system dynamics are modeled with difference equations,
 

and the goal is to obtain a practical algorithmic approach. Here,
 

however, the problem is one of determining the optimal control, rather
 

than one of obtaining optimum estimates, as above. The approach is
 

through the use of dynamic programming in a partitioned state space,
 

where the advantage to be gained over a conventional dynamic program­

ming approach is largely a computational one. The discounting factor
 

in the performance criteria, , is required to insure convergence.
 

The format of this presentation is largely one of theorem, lemma,
 

and proof, with only two relatively simple examples. There seems to
 

be real hope, however, that the optimal control methods developed in
 

Part III may well be applicable to the control of the restartable nuclear
 

rocket engine, where the discounting factor may be related to failure
 

probability, and the noise or variation in the system may be considered
 

as due to changing parameters within the system, in particular the
 

degeneration of the core. More will be said on this and other applica­

tions in the annual report due in July.
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The last portion of this report, Part IV, is concerned with
 

"Linear Stability of a Nuclear Rocket Engine with Two Reactivity Feed­

backs." As the title implies, this research applies directly to the
 

nuclear rocket work. The object of this investigation is to define
 

stabilicy boundaries for the nonlinear reactor in a number of
 

parameter space. Much of the work was done.by simulation on an
 

analogue computer for the linear system in preparation for attacking the
 

* nonlinear model. An attempt to simulate the nonlinear equations on the
 

analogue computer proved unreliable, due to complexities involved.
 

Work will continue in this area, with simulation to be done on the
 

Electrical Engineering Department's hybrid facility.
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I. INTRODUCTION
 

The purpose of this paper is to provide an up-to­

date investigation of the methods of Stochastic Approximation
 

and its application to the Information Sciences. The
 

discussion will attempt to give physical and intuitive
 

meaning to the mathematical conditions of Stochastic
 

Approximation rather than to reproduce rigorous proofs,
 

which can be found in the referenced literature.
 

1.1 Definition of Stochastic Approximation
 

Stochastic Approximation is essentially an algo­

rithmic technique for optimization in the presence of
 

uncertainty. This uncertainty or noise may arise from
 

basic ignorance of the underlying phenomena, experimental
 

errors or inherent random fluctuations. The nomenclature
 

Stochastic Approximation is used to emphasize the sto­

chastic nature of the errors in, say, the process measure­

ments, and the use of these measurements (past and present)
 

to calculate the approximate location'of the optimum or
 

goal. In addition, no a priori knowledge of the noise
 

statistics is required in Stochastic Approximation
 

methods. Such stochastic problems are naturally more
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difficult than deterministic problems. However, algo­

rithmic search techniques, whether concerned with random
 

errors or not, involve two fundamental considerations:
 

(1) selecting a direction in which to move, 

(2) then selecting the distance to move (choos­

ing a step size). 

1.2 Effect of Random Error on Convergencel1 2
 

The effect of random error on an algorithm may
 

cause it to converge to some non-optimum value or even
 

to diverge. Therefore, correct convergence (stability)
 

takes priority over speed of convergence optimization in
 

a stochastic environment. in Stochastic Approximation,
 

this effect is reflected in the choice of step sizes,
 

consideration (2) above. The direction to move, con­

sideration (1), is seiected as if the process were deter­

ministic. That is the experimental observations are
 

assumed to be error free. This means that some step
 

directions may be incorrect, but such set-backs are
 

swamped-out in the long run by additional data if the
 

step sizes are properly selected. Note this is nothing
 

more than a modified statement of the law of large numbers.
 

1.3 Intuitive Selection of the Step Size
 

The following statement by Poisson of the empiri­

cal law of large numbers sheds commonsense insight on the
 

method of Stochastic Approximation.
 



In many different fields, empirical phe­
nomena appear to obey a certain general
 
law, which can be called the Law of Large
 
Numbers. This law states that the ratios
 
of numbers derived from the observation of
 
a very large number of similar events
 
remain practically constant, provided that
 
these events are governed partly by con­
stant factors and partly by variable fac­
tors whose variations are irregular and do
 
not cause a systematic change in a definite
 
direction. Certain values of these rela­
tions are characteristic of each given kind
 
of event. With the increase in length of
 
the series of observations, the ratios
 
derived from such observations come closer
 
and closer to these characteristic constants.
 
They could be expected to reproduce them
 
exactly if it were possible to make series
 
of observations of an infinite length.3
 

It is upon this experiential truth that Sto­

chastic Approximation methods, as well as all applica­

tions of probability theory, are based.. Intuitively,
 
then, one knows that if the present estimate (method) is
 

backed by extensive observations (experience), then it
 

should not be significantly altered by new data. The
 

converse is true for an estimate based on relatively few
 

noisy observations. A simple illustration of this is
 

the sample mean. For example, let
 

y = M + C
 

where y = measurable information
 

e = experimental error (unbiased)
 

and M = desired constant.
 

Then after n observations (y!, ..., yn) the best esti­

mate of M is
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M=-Zin y.
 

( - *) Mn_1 +nYn 

n- n) (1) 

,where Mn_1 = old" estimate 

and Yn = new datum point
 

Note that Mn is weighted by (1- b)whereas, yn is
 
weighted in inverse proportion to the number of observa­

tions, which approaches zero as n approaches infinity.
 

However, this defense of the status quo is no longer
 

valid if there exist changes in the process. In such a
 

case, an adaptive weighting technique must be devised.
 

This will be further discussed in a later section.
 

Regardless, the method of weighting new data in propor­

tion to 1/n is of fundamental importance in determining
 

the step size in Stochastic Approximation. This is
 

because
 

lim I = 0
 

n-


Therefore, if the step sizes are decreased according to
 

the harmonic sequence [ 3, the corrections approach zero
 

in the limit. This property is necessary for convergence.
 

Second,
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n=l n
 

This property of the harmonic sequence guarantees that
 

the correction process will not stop short of the opti­

mum point regardless of the initial estimate, i.e., the
 

sequence has an infinite amount of corrective effort.
 

Third,
 

S<0
 
n~l
 

or, equivalently
 

1.) 2 -. aN.~
 

n=N
 

This property ensures that the cumulative effect of the
 

noise error variance remains finite.2 Why this is so
 

will be explained in section 2.4.
 

in Chapter II, specific Stochastic Approximation
 

methods will be reviewed, and it will be shown that
 

equation (1) is actually a Stochastic Approximation
 

algorithm.
 



II. METHODS OF STOCHASTIC APPROXIMATION
 

Historically, two basic types of Stochastic
 

Approximation were developed. 
The first.was the Robbins­

4 ,
Monro (R-M) procedure for finding the unique root of an
 

unknown regression function and the second was the
 

Kiefer-Wolfowitz (K-W) procedure for finding the maxi­

mum of an unknown unimodal regression function.5
 

Dvoretzky unified and generalized these earlier studies.6
 

Detailed reviews of the above results and their variations
 

may be found in Derman,7 Schmetterer,8 and Venter.2 1
 

2.1' Robbins-Monro Method
 

The R-M algorithm is the exact stochastic analog
 

of a simple deterministic algorithm for solving
 

M(x) = k (2)
 

11 R1
where M:R
 

and k is any real number.
 

The deterministic algorithm is
 

xn = xn + an [k - M(Xn)] (3)
 

where an is sequence of real numbers which must satisfy
 

certain conditions to ensure convergence (see Ref. 9).
 

6 
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When there is random error present, M(x) cannot
 

be measured, but a noisy observation y(x) of M(x) can be
 

made. Now, however, y(x) is a random variable with a
 

distribution function F(yjx) defined such that
 

E~y x3 	= f y(x) d F(y x) = M(x) for all x (4) 

Thus M(x) is the regression function of y on x. The
 

problem is still to iteratively solve equation (2), but
 

equation (3) is no longer meaningful, regardless of whe­

ther F(ylx) is known or not, since M(x) is not observ­

able. Under these circumstances, a stochastic version of
 

equation (3) is defined
 

Xn+l = 	xn + an [k - y(xn)] (5)
 

where (xn is now a sequence of nonstationary random vari­

ables which converges in some stochastic sense to the
 

solution of (2).
 

2.1.1 	Convergence
 

Robbins and Monro proved that the algorithm
 

(5) converges in mean-square to the correct solution, say
 
A 
x, of (2) if the sequence (an satisfies the three con­

ditions
 

2
(a) lima = 0 (b) E a = (c) E a <
 
n*= n=l n=l n
 



8 
and the regression function M(x) can be bounded on either
 

A2

side of the solution x by a straight line.2
 

(d) M(x)l
I < a x - I+ b (a, b > 0) 

(e) E(IM(x) _ y(x)21 = a2 (x) < U2 < M for all x
 

The physical meaning of the conditions on [an is exactly
 

the same as stated in section 1.3 where an is interpreted
 

as the step size. Note that the harmonic sequence [1/h2
 

not only satisfies (a), (b), and (c), but also gives the
 

fastest possible reduction of the step size without viola­

ting any of the conditions; that is, for any sequence [I'
 
n 

< for a > 1 

n=l n' 

Condition (d) is necessary to prevent an overshoot o1 x 

that cannot be corrected by a sequence [an) satisfying 

(a), (b), and (c). Condition (e) is required for the 

obvious reason that if the variance of the measurements is 

not finite for all values of x, then it would be impossible 

to guarantee conversion of the algorithm in general. 

Blum10 and Kallianpur established independently
 

that the above conditions are sufficient for convergence
 
with probability 1 of algorithm (5). As in Ref. 2, the
 

statement is often made in the literature on Stochastic
 

Approximation that probability one convergence implies
 

mean square convergence. This is not so. However, mean­



square convergence does imply convergence with probabil­

ity one under certain conditions (see Ref. 36), but not
 

in general.
 

2.1.2 Root Finding and Extremn
 

To use the R-M technique for finding the
 

unique zero of M(x), one simply let; k = 0 in equation
 

(4) giving
 

Xnfl = xn - an y(xn) (6)
 

If M(x) 	has multiple roots, then there is no a priori way
 

to know 	to which one equation (6) will converge. Startng
 

from the 	same initial estimate x0 , (6) may converge to a
 

different zero of M(x) each time the iteration process is
 

run. This effect is a result of the noise in y(xn).
 

The R-M method can be made to search for the
 

unique extremum of M(x) with no inflection points, by
 

simply searching for the root of M'(x). If feasible, this
 

is the most effective Stochastic Approximation procedure
 

for extremum searching, i.e., it gives a faster convergence
 

rate than the K-W method. This approach-is difficult
 

*because	it must be assumed that
 

1.. M(x) is everywhere differentiable.
 

2. M'(x) =-dx Ely(x)x = EtIiy(x)lx3.12
dxd
 

and the measurements of d y(x) will generally be extremely
 
,r
 

noisy." These problems lead naturally to the K-W proce­

http:EtIiy(x)lx3.12
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dure, which will be discussed in section 2.2 after a com­

parison of the rate of step-size reduction for the R-M
 

algotitbm and a deterministic algorithm.
 

2.1.3 	 Stochastic Vs. Deterministic Step-Size
 

Reduction
 

Such a comparison is informative because it
 

will make salient the effect of noise on the rate of step­

size reduction. For simplicity, the deterministic Bolzaro
 

procedure will be used. It successively halves the step
 

sizes,
 

I Xn+l 	 - xnli1xn 	 xxn-l 

For comparison with the R-M algorithm, it is necessary
 

to use expected values since
 

Xn+1 - xna nY (xj~ 

depends on the noise in the particular measurement y(xn).
 

Therefore
 

E .Xn~ l - x n  _ an Ely(xn)f 

E~x x a 1 Ey~,IxX n I -In- anM )anM(xn) lT 1 

Snn­

n-l M(Xn)
 
f~l (x 1 ) 



ii 

where the harmonic sequence has been used for (an3.
 

Still, the form of M(x) must be known. 
First, let it be
 

constant for all x,
 

then
 

E -xn+lx n-1 1 
Ex -x =1 -2 (7)

EIxn - xn-j n n
 

Now use the other extreme M(x) Ax where A is large.
 

Then
 
Ejx - Xr (n-1) x,
 

Ex n -Xn nc n n x 
n nljn-i n-1 

but nowx =x - a M(x) =x A n­
'n n-1 n-i n n-iL n-i 

Therefore, the ratio reduces to 

EIXn+1 - Xn n-i 
Ep -x - [1~~ -1 '+ 8 

In both cases,
 

Elx. 1 - x n l 
n EMxn - Xn-1 

Thus the noise makes it impossible to decrease the steps
 
as rapidly as in the deterministic case, especially late
 
in the search.2 Equation.(7) can be obtained from (8) by
 
letting A = 0. 
Equation (8) is incorrect in Ref. 2.
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2.2 Kiefer-Wolfowitz Method
 

Following the idea of Robbins and Monro, Kiefer
 

and VWolfowitz constructed an algorithm for finding the
 

extremum (maximum or minimum)'of an unknown unimodal
 

regression function M(x). Their process is the exact sto­

chastic analog of the deterministic iteration procedure
 

first formulated by Germansky;13 his procedure was essen­

tially a form of steep6st descent,
 

Xn+ I = xn an M(xn) (8) 

where an is chosen s M(xn+) < M(xQJ. 

Whien M(xn) is unknown and/or noisy, it is neces­Tm~en
 

sary to approximate it in some way. The K-W technique
 

uses two measurements of the observable function y(x)
 

at (xn + cn) and (xn - Cn) to obtain an average slope
 

y(xn + cn) - y(x n - cn) 

2c n 

which is used as the approximation to M'!(x). This 

gives the K-W algorithm analogous to (8) 

x a Y~(Xn + cn) - Y(xn -]))
 
n+ x -a aCn 1 (9) 

n
 

This iteration process converges in mean-square and with
 

probability 1 to the minimum of M(x), say 
A 
x, if
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(a) both the step size an and the distance
 

between measurements approach zero
 

im c 0

=0
lim a 


n­

(b) 	As in the R-M method, Z a < 
n=l n 

to assure that the correction does not stop
 

A 
short of the minimum x.
 

(a)
 
(c) E P) < - so that the random effects 

will tend to offset one another in the long
 

run.
 

(d) 	To prevent excessive over-correction, a
 

restriction similar to condition (d) of the
 

R-M process is required. It is
 

M(x) - M(xl)f < ax 2 - ' + b < 

i.e., the average slope of M(x) for any pair
 

of measurements can be bounded by a straight
 

line.
 

Since.even the function M(x) = exp(x ) satisfies require­

it is not a severe restriction.
2
 

ment 	(d), 


Even though the K-W algorithm is designed for uni­

modal functions, it is interesting to examine its behavior
 

on a multiple peak M(x).14 Such an example will also
 

illustrate how to use the algorithm. The example is shown
 



14 

in Fig. 1. Herce the maximum of M(x) will be sought so
 

the minus sign in equation (9) must be changed to a plus
 

sign giving
 

3 3
 
1 Y@% + I /n) - y(xn 1/n,
.-X+ ! = Xn +(10) 

_ 1/n
 

where the sequences an = 1/n and cn = I/n have been 
chosen to satisfy conditions (a), (b), and (c). The noise 

in this problem is additive Gaussian with zero mean and
 

unity variance. Therefore, y(x) = M(x) + e. The process
 

is started by arbitrarily selecting x1 e[0,5]. Measure­

ments of y(x) are then made at (xI + 1) and (x! - 1) as
 

shown in Fig. 1, where the results for three different
 

starting points are illustrated. The convergence to the
 

absolute maximum is rapid for an initial x of 0.25 and
 

2.50, but for an initial x = 3.00, the iteration con­

verges to the local extremurn M(x) = 12.00. Because of the
 

noise, however, it is not possible to predict to which
 

extremum of a multipeak regression function that the algo­

rithm will converge, even if the same initial point is used
 

each time.
 

2.3 Generalized Process of Dvoretzky
 

The basic notion of Stochastic Approximation is
 

that for any deterministic algorithm, there exists a sto­

chastic counterpart, i.e., an algorithm where uncertainty
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M(x)
 

16
 

12
 

10
 
8 
6 

0 1 2 3 4 5. x 

n xn cn M(xn+cn) M(Xn-Cn) Y(xnIn) Y(xn-cn)
 

1 .25 1 9.5 0 9.22 0 
2 5.00 .79 16.0 8.1 15.74 6.99 
3 5.00 .69 16.o 9.1 16.67 6.53
 
4 5.00 etc.
 

End
 

1 2.5 1 9.00 9.00 8.72 8.44 
2 2.78 .79 10.28 8.02 10.02 6.91
 
3 4.02 .69 13.10 10.00 13.74 7.43
 
4 5.00 etc. 

End
 

1 3.00 1 6 8.00 5.72 7.44
 
2 1.72 .79 10.02 9.30 9.76 8.19
 
3 2.35 .69 11.76 8.68 12.40 6.11
 
4 3.7 .63 10.20 11.04 10.57 11.07 
5 3.5 .58 8.5 11.88 11.25 11.63 
6. 3.39 etc.
 

50 3.00 Converges to the local peak @ x = 3
 

Figure 1
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is present in some form. Following this idea, Dvoretzky
 

formulated a generalized Stochastic Approximation method
 

consisting of a deterministic algorithm T with a super­

imposed-random component e,
 

xn+ I = T(xl .-., Xn) + en (11)
 

where Tn n is a sequence of Bore!-measurable mappings
 

from Rn (n-dimensional Euclidean space) into R1
 .
 

Dvoretzky proved the following theorem for this process.6
 

Theorem 1. Let an, On, Yn be non-negative functions from 

Rn into R1 9 

lim cy(x1 ,..., x) = 0 uniformly V sequences x1 , x2 , 

n kl -n(X x~n) converges uniformly V sequencesx.
 

Z Yn(Xl,..., xn) diverges to 
- uniformly V sequences xl,
n
n=l 

x2 1,...
 

Further) let Ax be a real number s
 

T(x1, ...,Ix) - x< man 'an"(' + On) In n
 

(12)
 
V(X 1,-, xn) Rn. Also require E Eten2 < (13)
 

n~n
 

and Efejx1 ,..., Xn3 = 0 with probability one. Then xn as
 

defined in equation (11) converges in mean square and with
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A 

probability i to x,
 

i E xn o = . - 2 = 0, Ptlim xn 

It is important to point out two features of this
 

powerful theorem.
 

(a) Since Tn may be a function of all the obser­

vations (X1 ,..., Xn), the correction may be based on all 

past measurements, instead of just on the latest measurement 

xn as in the R-M and K-W methods. 

(b) The sequences [an1, (on], and [¥n] can depend
 

on the measurements .. Q.
 

For example, these properties make it possible to devise
 

a stochastic Newton-Rapson method or a sequential least
 

squares estimator based on the last m observations, m < n.
 

The resulting accelerated convergence is obtained at the
 

expense of computational simplicity.
 

As another illustration of the versatility of
 

this theorem, consider the sample mean given by equation
 

(1),
 

Mn = Mn-l + E (Yn - Mn-J) (1) 

where M is the unknown mean. By defining the noise-free
 

algorithm to be
 

Tn = (-n) MnI + anM, n = an n 



and the superimposed random component to be
 

en = an(Yn - M), 

then Mn =T n + en 	 (la)
 

and 	ITn - MI = (1 - an)- Mn_ - M1 is a special case of 

(12) and en satisfies (13). Therefore, (1) is a special
 

case of Stochastic Approximation, which implies
 

lim E (Mi - M)2 = 0 and Pflim Mn ­n 	 MI = I.
 
n-	 n
 

Even though simple, this example is important because it
 

contains the idea of estimation of an unknown, but con­

stant system parameter. If the parameter is &lso time
 

varying, then yn can be made dependent on the last m < n 

measurements. The result is an adaptive parameter estima­

tor, e.g., see section 4.5. 

2.4 	The K-W and R-M Methods as SpecialcC~sessoff 

Dvoretzky's Process 

By defining Tn and en as 

a 
T =x + 2n [M(xn + On M(xn cn)] (9a) 

a 
en = [M(Xn +n - ­[Y(Xn 	 + cn) y(n Cn)
 

+- cn)] 	 (9b)
 

then 	x n = Tn + en gives the K-W algorithm, equation (9).
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Similarly, choosing Tn and en as
 

Tn = xn + an [k - M(xn)] (5a)
 

en = an [M(xn) - Y(Xn)] (5b)
 

then xn+I = Tn + en gives the R-M algorithm, equation (5).
 

At this point, the necessity of requiring that the
 

sum of the observation variances be finite (equation (13)
 

of Dvoretzky's Theorem) will be explained. 
For simplicity,
 

let e 
be unbiased so that the total measurement variance
n
 

is Z Efen
 
n=l e
 

22 
 N
 

if a 2E<e 2 j 2felNc
 1
ee n = e2 Een2 which is just

nN+1 n=1
 

the variance for the measurements remaining after N trials.
 

* N2 2 2
Since lim Z Een2 =a , lim E [e = 0. 

N--n~1 e Nn n~ 
Therefore, the variance of the error approaches zero as the 

number of observations increases to infinity. 
This
 

property is obviously necessary for convergence and holds
 

only if ae is finite. It is the selection of the step
 

sizes that ensures this condition; for example, in the R-M
 

process
 

2= Efe 2 Efan2 [M(xn) - Y(xn)]2 ]
e n=l 
 n--l
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2 32 2 ) 

n Sa Y(xn)2 E a (xn-[M(x = 
n=l nnn=l
 

< 2 2 2 2 2 
< an ,where a > a > a2 (xn)' Vn
 

n=l
 

2
 
< iffi E a < .
 

n=ln
 

Hence the requirement that Z an 
2 < . in the R-M process

n=l
 

and similarly for S ( < - in the K-W process. 
n=l -n 



III. 	 OTHER PROPERTIES AND EXTENSIONS
 

OF STOCHASTIC APPROXIMATION METHODS
 

in this chapter the following topics will be dis­

cussed:
 

1. 	multidimensional Stochastic Approximation
 

algorithms
 

2. 	generalized regression functions
 

3. 	asymptotic distribution of the estimates
 

3.1 Multidimensional Stochastic Approximation Algorithms
 

The multidimensional R-M and K-W methods were
 

introduced first by Blum, who used a Ltyapunov type
 

approach to prove convergence with probability one of the
 

two methods. For the R-M process the algorithm is
 

1 =Xxn + an [K-Ky(n)] 	 (14) 

where 	V K, xeRm an m-dimensional random variable 

E{y Ix = E{y(x)3 = M(x) exists.
 

Thus, the problem is to find the solution to M(x) = K.
 

To guarantee convergence, the sequence (a must satisfy
n 


the conditions previously specified, and there must exist
 

a Lyapunov type function V(x) such that
 

21
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V(x) > o, V x
 

and
 
m -a-M 1 x)<0)v( 20(_ ,M( ) = z (_X)
< o, YX 

-- i=l -- -


Fortunately, this convergence can also be established by
 

an extension of Dvoretzky's Theorem by simply replacing
 

absolute values Xn - with the norms n x
 

This avoids the search for a suitable Lyapunov function. 

if a positive definite m x m matrix R is inserted in 

equation (14) giving 

X =Xni + a R [K-y(x(n)) (15) 

the convergence is not affected. . -": Ahd, if one
 

knows Efy yT3, then choosing R = Efy yT-1 decreases the
 

variance of the estimates. Note that there is still no
 

assumption on the noise structure. Later a recursive
 

scheme for calculating R will be developed.
 

The multidimensional K-W algorithm can take sev­

eral forms, but in each case difference approximations are
 

needed for every component of.vM(x). Blum's method
 

requires m+l observations at the points
 

-x 2n y(20 = Y(x°) 

-n
-2nx2n +c' y(x-1-on~w) = y(4) 

m-=x-- +c ee y(x -iem) --y=
 



--
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where e. denotes a unit vector whose j element is 1. The
 

measurements y(x2 ) determine the one-sided derivative
 

approximations A y where
 

IYx ) - y~x) .. ,yx)-
0 )]

Ay -2 

n
 

Then the recursive relation
 

-n I- -n - an A -n (16)
 

converges with probability one to the minimum of M(x).
 

However, Sacks has shown that the asymmfetric observations
 

about xn cause slow convergence to the correct A i.
 

Based on the extension of Dvoretsky's Theorem,
 

Gray proved that the symmetric version of (16) converges
 

with probability one and in mean square.17 it is 

-n+l -sn - (17)an Yn 

where 

A Zn b(4) -'.1 y) y x /2 cn 

tir2 xj = x + cre. and x- cre.x
-n -n -n -n 

J=l, ... ,m 

This algorithm converges faster than the previous one, but
 

requires 2 m observations (2 for each dimension) instead
 

of m+l. 

http:square.17
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3.2 	 Generalized Regression Functions
 

The purpose of this section is to lay the founda­

tion for the interDretation of the regression function as
 

a performance index so that the methods of Stochastic
 

Approximation can be applied to communication and control
 

systems. Since Stochastic Approximation methods are
 

applicable to any problem that can be formulated as one of
 

regression, the extension is not difficult.
 

First, assume the observations,are from a random
 

process y(t) and there exists a function z(.,.) which
 

depends on y(t) and a parameter vector k. The performance
 

function (y,k) determines the performance index L(k)
 

defined as a regression function
 

L(k) = 	 y[f(y,k)} (18) 

=f Y(y,kS)d F(y) 

It is desired to minimize L(k) by selecting the optimum
 
A

k = k.' If L(k) is a convex function of k, then 
A
k is 

given by 

k) = 0 	 (19) 

If L(k) is known, equation (19) can be solved iteratively
 
18
 

by the gradient method giving
 

k +! = kn - an vkL(kn) 	 (20) 

where 	 Anlconverges to k.
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Note that deterministic problems 
can be put in this format
 

by letting the density function f(y) : be a delta func­

tion. 
However, when the distribution function F(y) is not
 

given a priori, L(k) is not known. 
This condition is
 

precisely the motivation for Stochastic Approximation
 

techniques. 
 Thus if 2(y,k) is differentiable, the R-M
 

method gives
 

kn+= kn- anV k.(ynl, k ) (21) 

as an iterative solution to equation (19). 
 When A(y,k)
 

is not differentiable, the K-W method gives
 

= 
k -n+la A L (22) 

where A A
-n is the vector whose jth component is 

A y -nc - A(yn+ , -c e .)][m+(ykl ej) k 
n 
 2 c
 

n 

j = i . .. , m 
Algorithms (21) and (22) can be shown to converge in mean
 

square and with probability one (see Refs. 6, 12, 15, and
 
7) for most problems in engineering application. The 

most restrictive requirement is that 
 (.-,k) have a unique
 

extremum.
 

Note the similarity between these stochastic algo­

rithms and the deterministic algorithm (20). 
 However,
 

since 
VkA(yk) in equation (21) or its approximation in
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equation (22) depends on a single realization of the
 

random process y(t) which may contain noise) k is a
-n 

non-stationary random vector.
 

in the important special case where the perfor­

mance index is the mean-square error, algorithm (22)
 

reduces to algorithm (21).12 For example, let
 

(1) x(t) be a noise corrupted signal (the noise
 

is not required to be additive),
 

(2) 	S(t) be the desired signal,
 

m 
(3) 	E kiFi(t) = S(t,k) be the estimate of S(t) 

i=1 

where the k are the adjustable parameters 

that weight the outputs of the filters 

Fj(t) such that the minimum mean-square 

error is obtained. This form is general 

since if a sufficiently large number of 

Fj(t) are used, the overall filter can 

approximate arbitrarily closely any non­
1 9
 

linear operator.


(4) 	The error e(tk) ='S(t) - S(t,k) 

(5) 	The performance function k(e(t),) 

= £(e(t,k)) = e2(t,k) 

(6) 	Thus Q4) = Ete2(t,k)J
 

For discrete values of t, algorithm (22) can be used to
 

minimize Lk), where the jth component of A A becomes
 
-n 



-- 
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3.3 

c Y)f.[S(n) - S kF(n) c(n)F.(n)] 

i=l 

Since .6(e) = e2 this reduces to 

2 m=ic(n) eFn) ~n
A[S(n) z- (3
i(2)c+cn)n))]
 

k () kF.(n)J c(23n)
in
 

m 

Hence, AA =L 
 (e(t,k)) which means the K-W procedure
-n = -
reduces to the R-M procedure for the mean-square error
 

criteria. 
This is important because the R-M algorithm
 

is computationally simpler and converges faster.
 

Asymptotic Distribution of Stochastic Approximation
 

Estimates
 

Even though Stochastic Approximation methods are
 

nonparametric (no assumption regarding the form of the
 

distribution function of the noise is necessary), it can
 

be shown that under rather general conditions the esti­

mates are asymptotically normal.16
 

http:normal.16
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Considering first the one-dimensional R-M algo­

rithm equation (5), Sacks proved that for a = A/n the n 

random variable 

2 
A r A2 a
 

7(x - x) is N 0 2A C
 

where a2 = supx E( y(x) - M(x) [23 < 

(A) 
 A
 

-and M' = slope of the regression function at x = x. 

In the multidimensional case, the random vector
 

A1

vn(xn - x) is also asymptotically normal N[O,PQP- I, 

wnere 

pQp-1 is the covariance matrix
 

Q has entries qij = A2(ab + Abj - 1)-! ij
 

* -iw = P 

7 !1Ka [y(k) - M()] [() - M(X)] T 

A 
x- x 

A 
v M (x) = B = PDP 2 

D = diagonal matrix of eigenvalues (b,, j=l, -... , m) of B 

P = orthogonal matrix 3 B = PDP -


For the uni-dimensional K-W algorithm of equation
 

(9), the random variable JWn(xn - x) is again asymptoti­

cally normal
 

N[O, A T]
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where
 

a2 sup Efy(x) - M(x) 123 < 

and 

] It A
 
-I M
 

In the multidimensional K-W process the random vector
 
A--n (xn - x) is also asymptotically normal N[0, PQP-] 

where Q has entries q - A2 (Ab. +Ab - i1 r 

V liM [y(x) - _) [y(x) - M(x)]T 
A 

Xtx
 

B = PDP-
1 

D = diagonal matrix of eigenvalues of B
 

P = orthogonal matrix 3 B = PDP-1 

For details and proofs see Ref. 16.
 

In the next chapter, techniques for accelerating
 

the convergence and increasing the efficiency (in the
 

statistical sense) of the estimators will be considered.
 

The discussion will be limited to the R-M process, since
 

analogous results hold for the K-W process.
 



IV. METHODS OF INCREASING THE RATE OF CONVERGENCE
 

ATI EFFICIENCY OF THE ESTIMATORS
 

In algorithmic techniques, one wants large step-

Sizes when the goal is far away and rapidly decreasing
 

step-sizes as the goal is approached. Historically,
 

Kester was the first to present such a procedure for Sto­

chastic Approximation methods.20
 

4.1 Kesten's Acceleration Method
 

For the R-M algorithm
 

Xn+l xn an y(Xn) (24) 

this procedure simply keeps the value of an 
constant until
 
the sign of the observation y(xn) changes, then an 
is
 
decreased in a manner that satisfies fvoretsky's Theorem.
 
The motivatioh being that when the zero of equation (24)
 
is not 
near at hand, then the measurements of Y(xn) will
 
in general be of the same sign. 
However, -as the goal is
 
approached, overshoot will occur causing the estimates to
 
oscillate about the zero of M(xn). 
 in the latter case,
 
the step sizes should be decreased rapidly. 
The table
 

below illustrates the technique.2
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Measurement # 1 2 3 4 5 6 7 8 Total 
move­
ment 

Sign of 
Measurement + + + _ + ++ 

Unaccelerated
 
values of an 
 1 1/2 1/2 -1/4 -1/5 1/6 -1/7 1/8 !1--9
 

Accelerat~d­
v f 1 1 -1 -1/2 -1/2 1/3 -1/4 l/5
 

Cruz-Diaz has suggested a normalized R-M method
 

xn1+ = xn - an sgn [Y(Xn)] (25) 

which converges under the same conditions as the regular
 

R-M algorithm.2 
 This approach greatly accelerates con­

vergence for regression functions such'as M(x) = xe -x
 

whose amplitude is very small for values of x much greater
 

and much less than the actualjzero A.
 

4.2 Dvoretzky's Optimum Sequence
 

Ih Ref. 6, Dvoretzky proved the following minimax
 

result for the sequence (anl.
 

Theorem 2. 
 If the random variable y(x) satisfies 

Ey2(x)3 < a 2 < and whose regression function
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4(x) = fEy(x)2 is bounded by 

0< - < Bk X < (26)104(x) ­

and it is known that
 

fX j \ A-(B-A) (27) 

then the sequence of
 

AC2
a AAV 2 (25)
n o2 + n 2C2 -JA Vn
 

yields the upper bound
 

A 2 U2C2 2
 
2 
max VP = max E{x - x) I 2 +(n-) A2 V(29) 

Xn +X 

The sequence defined by (28) is optimum for the R-M
 

process of equation (24) in the sense that for any other'
 

sequence, the upper bound given by (29) is violated.
 

The result is minimax since is chosen so that the
an 


maximum possible'value of equation (29) is minimum. A
 

heuristic proof of this theorem is given in Ref. 2. By
 

using equation (27), the constant C can be eliminated from
 

(28) and (29) giving
 

an (B-A) (30)

a-A[n 
+ 2A
 

A 2 ,2A72
 

-maxVY = maxEQ(Xn )23I2= (31) 
xn x 2 + (n-l)A(nn -A 
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Fopression (30) indicates that the optimum seauence in
 

the minimax sense is not harmonic and does not depend on
 

the noise. The one case where a 
reduces to a harmonic 

seauence is when M(x) is a straight line, i.e., A = B. 
Then a. = 1 The effect of the noise shows up only in 

I An 
the variance of x,n or uncertainty in the location ofX
 

given by equation (31). 
 Note that it is A, the slope of
 

the lower bounding line, that determines the size of the
 

interval of uncertainty for large n. 
Thus, if A is small,
 

the interval of uncertainty remains significant for a much
 

larger time.
 

The entire discussion of the last paragraph has 

been predicated on the assumption that Ki- 1< C, 
where C is a known constant. If this is not true, then 

equation (30) is not -the optimum sequence. However, a
 

minimax solution can still be found. 
There are two worst
 

cases; 
one where the expected value of the measurement
 

at x! = 

Other where 

falls on the upper bound B - xk xI = xi falls on the lower bound 

and the
A 

AIx - x 

(see Fig. 2). In the first case, 

1 1 - AM(xl)=B(x, -x) 

Therefore, since x2 = x, - aly(xl) and 

E{x 21 = x1 - alM(xl),
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M(x)A . 

Q) 

M(x)
 

B 


Ax 1 2x 
/x
 

Regres-sion Curve M(x)
 

Fig. 2
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E[I21 - A =2Ix ~m a= A 

Etxl- 1 MJ ) )A 

= x - a1B( - - x 

1 A 
= (l- a1 B)(x 1 - ) (32)
 

Similarly, in the second case, 

E x21 - = (l - aA)(2x1 - (33) 

For any given x1 , eauations (32) and (33) become the
 

inequalities
 

E{x 23 - x < (1 - a1 B)(X 1 - 2) (34) 

{X2 1 - >> (l - a A)(x 1 - 4) 
2x - < (aA- l)(x - (35),or 2 


The largest possible error in Elx2 is the greater value 

of(34)-and (35), 

max [Efx9 - = max [(1 - a B)(x - A 

2x), (a A -1 

(xl - 4)] (36) 

For the minimax solution a1 is selected so that (36) is
 

minimum. This obviously occurs when both terms on the
 

right-hand side of (36) are equal. Therefore,
 

S-aB = (aA l) a1 2 
1~~- -+ l- A B
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Then
 

A

min max [Efx 2 - A B 

Thus the minimax choice of a1 behaves as if the regres­

sion function M(x) were a straight line of slope (A+B)/2.
 

So in general if n - x I C, all terms of [a are set
equal to2 l<C,the terms
 
2 B Then as soon as x
 

of (a) are reduced in accordance with equation (30).
 

Since the asymptotic distribution of the R-M
 

estimator 
A2 2 

J--(x - X) is N[o, a 
n 
 (2AC -1)
 

the asymptotic distribution of xn is
 

A Ac27

N[x, 

n(2AC - 1) 

Choosing A to minimize the variance of xn+1 gives A = 

So
 

Var X = a-22 (37) 
2
- nc


and
 

n n (38)
 

is the sequence that gives the lowest asymptotic vari­

ance. The conclusion is that Dvoretzky's minimax sequence
 

sacrifices.long-term efficiency for short-term efficiency.
 

A
Note that in the vicinity of the zero x, the regression
 

function may be closely approfimated by the straight line
 
A 
 A
1(xn) -_C~n- x)3 therefLore, y(x ) C(Xn - x) + e. 
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If the experimental error (which has mean 0 and variance
 

a2) is also normally distributed, then y(xn) is
 

A 2

N[Q(xn -	x), a 3. The Rao-Cramer lower bound on the 

A
variance of unbiased estimators for x is given by
 

nE 1[ E( Onpy 

-
2 J 	 U~yE ~P(Y;x)]1 " - "(n x)) 

U
 

2A 
- Effy - C(x n - x)] 

2 

22 2
 

2
 

Thus min n 2' which is exactly the asymptotic variance
 

of xn, given by equation (37). Consequently for the
 

case of Gaussian noise, the R-M algorithm gives an un­

biased asymptotically efficient estimate of A.
 

4.3 	Summary of Section 4.2
 

In the previous section one sees three stages of
 

the algorithmic search, in each of which the selection of
 

the coefficients an differs.2 The first stage is when
 

A 
the goal x is far away. Here, the coefficients should be
 

largest and such that
 

an A+B n=l, .. m 
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A 

Secondly, when xn is close enough to x to satisfy equa­

tion (27), then the coefficients are set equal to
 

a -
i 

, n=m l, ... , p-	 ]A
n A[n + 

LAA
 

Finally, hen xn is near enough to x for M(x) to be
 
linear, the coefficients should be
 

-i 
a =-, n=p + 1, 

where = M(x). 

in practice, it is impossible to exactly carry out this 

procedure because 

(1) 	the bounds A and B on the regression func­

tion M(x) must be estimated in general,
 

(2) 	the constant C in equation (26) is kniown
 
A 

since the experimenter selects it, but x 

is unknown so it is not possible to deter­

mine precisely when Ix - x < C, 

(3) 	the slope of the regression function attAx
 

must also be estimated since both M(x) and
 

A 
x are unknown.
 

l.4 	Another Minimax Method
 

One 	rather obvious method of accelerating the con-


A. 
vergence of x to x is to simply average, say N, obser­

vations of y(x) and use this smoothed measurement z(x) in
 

place of the y(x), i.e.,
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let z! = [y(xl) + ... + Y(x)] 
1­

z= 
 ry(x +i) + +y(x2 N)]
 

n = [Y(xN(r7-1)+) + "' + Y(xNJ)]
 

and the R-M algorithm of equation (6) becomes
 

x+ I = xn -a n zn (39)
 

and assuming the random error is stationary,
 

2
o
= 


Therefore,
 

Var [y(x)] a2 (x) = 

2 

Var [Zn] = N 

and 

1 E M(x)= M(x) 

so the bounds of equation (26) hold for EfZn. Using
 

0=- 2a/INT( AI), aan a2 22-- AC2
 

and max Ef(xn - x)] = max Var (xn C2 /N 22
 
xn 2/N + (.-)A C
 

which are the equations of algorithm (39) analogous to
 

equations (27), (28), and (29) of algorithm (24). With
 

these analogous forms, one obtains the following minimax
 

result for algorithm (39)
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an B (0
A[n + 2A- ) 

(
 

max Ex -
AX3 = 	 max Varfxn a 

2 
/N (41) 

xn A[-- (n-l)A] 

This 	result indicates, as would be expected, that a is
 
n 

unchanged and max Varfxn3 
is reduced proportionally to
 

the number N of observations used in the smoothing pro­

cess. 
 What this process has achieved, for some given
 

max Var[xn, is a reduction by the factor N of the
 

number of algorithmic iterations required, but the num­

ber of observations of y(x) is not reduced.
 

At first glance it appears that the same reduc­

tion in variance would accrue with an associated reduc­

tion in observations required if we let
 

z = 	 y(x1 )
 
1
 

2 [y(x1 ) +y~x 2 )]
 

zn y(xl) + 	... + y(x)3] (42) 

However, I tried this approach using Dvoretzky's method
 

of attack (see Ref. 6), and ended up with equations (30)
 

and (31), which indicates no reduction of the variance
 

in x The reason for this is because the zn defined by
 

(42) contains no more information about M(x), excepting 

the new observation y(xn)' than does Znl 1 . 



4.5 Acceleration and the Method of Least Squares
 

A standard problem in optimalfiltering is:
 

Given n measurements of y where
 

Yi =ca + ei, i = 1, 2, n (43)
 

o is a known 1 x k row vector which may change with i,
 

x is an unknown, but constant k vector, and e is 
an un­

biased random variable: find the estimate A n of x such
 

that Jn(x) is minimized. 
For a least squares solution,
 

J is
 
n
 

Jn- - n En = A n Cnx)'(Yn - Cn ) (44) 

where ET = [ei, .... en] xI
 
Y =n
=[ Y!' ... ,
Iyn] 
 _
 

xk
 

Cil c12 • . clk 1 

Cn C2 c 2 2 - C2k 2
 

nl Cn2. cnk 
 Ln
 

The solution is
 

V CT (YA
V n(K) 2 n- ­n Cn 0)o 

yielding

A T 
 1-CT
 

x E[= C j C
-n n n 0n Yn(45) (5
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The subscript n represents 
 number of observations of
 

from which the least sqr :s estimate n of x is made. 
iThat is now needed is a r -rsive version of (45) so that
 

new data can be incorporated iteratively as 
it is
 

received. 
This is achieved as follows: assume another
 

observation y +
= xnl- en+l is made, then 

[CT C A CT 
n+l n+l] 2n+l n+l n+l 

where
 

C = t- and Yy ­n+l Cn+l 
 Yn+
 

Thus
 

T 
 A T -T
 

n n + -n+ = -n n+l Yn+Y
In+l 


nC x +--l Yn+l
 

Subtracting C Tn ]Subratig ­-ln+l n+l from both sides gives 

cT Cn + eT (T
] a 
n n -n+l -n+n - _n_ n +l 

T c 
-_! -Sn+l xn 

T A 
-n+l n+l -n+l Xn 

or 
A -1 T CA

n+l -Sn [ c Cn +l--_ Fy+ £nq_ E]
, 


(46) 
which is the desired recursive relation. 
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However, equation (46) sti.x requires a matrix inversion
 
every time a new observatf 
i is made. This difficulty
 
can be removed by using th 
 'inside out" 
lemma of numeri­
cal analysis. First let Pn 
 T C (47)
n n n 
so that
 

=
pn1! CT+ aT 
C 0 =w 1 + cT 

nl n+! + -n n n+l -n+l - n -n-i -n+ 

(48) 
Then by the lemma, 

nT - P T + ! ]­+ --
 I 2 n+l Pn (49) 

Since cn+! P 
 is a scalar, the problem has been sig­
nificantly simplified. Substituting (47) into (46) gives22
 

A A Pn1 cT 
=x +T lI T A
 -n n nl]_l n -nl
n+l 
 - C--X7
 

-- 1
n +Pn+l--n+! 
 - 1 n±1 _n

A 
 Tp [n~ A
 

A T 
 An ']
T-n _n n ­--+1 l (50)
 

Throughout the above discussion, the existence of the
 

inverse of 
 Cn+n+ 
has been assumed. 
This is analogous
 
to the observability condition discussed by Kalman in the
 
case of state estimation of dynamic systems.23
 

To relate the recursive formula (50) to Stochastic
 
Approximation, premultily equation (48) by Pn+! and
 

postmultiply by Pn obtaining
 

http:systems.23
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n n+l [ -ni n
- -i+1 

Postmultiplying again by ct gives 

P [0T +T 'D T 

n .n+ Pnl -n+l n-i-i -Cnl'n -n~l] 

or 
T
c P T -1
 

Pn C-+i PnspCl Fcn 1 P c + TI- (51)
 

TArLen n+ is time invariant, 1n+! = c and equation (51) 

becomes
 

np TTp ~ -L (52) 

+ I ]-
P n-1 c c Pn- C7 

cLc 

S 9o (nnl) + i - (5)- Cp 


P -P ­n-2 -[c c In- n larg e 
Equation (53) was obtained by repeated application of (52) 

to itself. For a large number of iterations, the asmp­

totic versions of (53) and (5o) are 
T 
-

Pl c T = n r!_cPoT]-!, n large (5k) 

T
p c
=n+ -- PcO c--§- .2 (55)n1 Lyn~1 -

P~ PcT-1
Since P0 cc is simaply some constant k x1!
 

vector, each element of Pn c is just a constant
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divided by n+l, for 
- large.
 

Therefore,
 

lia P T 
 0, k x 1 vector
 

a P C <
 
n=l 
n ­

which are the vector equivalents of the properties
 

required of the sequence [an2 
in Stochastic Approxima­
tion methods, and Pn c 
plays exactly the same role in
~!-i
 
algorithm (50) as does 
a = - in the R-M algorithm of
n
equation (1 . Denoting P. ) ,T by y (Yl" yn (50)
 

becomes
 
A A A
 

-n +n-1 y) Eyq - n -in
 

where Y depends on all past measurements. The presenceof P 
allows one to use any available a priori knowledge. 

For example, if the confidence in the initial es.timate
 
A 
Ax is low, choose P0 = I. 
It has been shown experimen­
tally that Stochastic Approximation algorithm (50) con­
verges much more rapidly than any of the previously
 

mentioned acceleration techniques.24 
 However, two
 
iterative computations, equations (50) and (51), 
are now
 
required; thereby paying for the increased acceleration
 

with computational time and comDlexity. 
it should be
 

http:techniques.24
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emphasized that algorith 
 (50) is valid only when the
 

parameter vector x is time invariant.
 

Similar results hold in the time varying case.
 

For
 

Yi-= S-i xi + e,
 

= x and & is a knovn transition matrix, these 

results are
 
A A + 

-
. +i - c+ N +.,c- C + -nn -Ec -(nl 


(56)
 
Pn+I Nn+! Nn+l nPn N --N -- n -__ ....c N c+!+ 1- c 
 (57) 

-n+ Pn -(5) 

These three equations define the adaptive estimation pro­

cedure alluded to at the end of section 2.3. 
 They are
 

valid when c and x are time-varying and can easily be
 

adapted to the case where 6 is also time-varying.2 5 
 The
 

similarity between this estimator and Kalman's estimator
 

is striking.
 



V. CONTINUOUS TIME STOCBASTIC APPROXIMATION METHODS
 

The purpose of developing continuous time Sto­

chastic Approximation algorithms is to provide differential
 

equations analogous to the difference equations (6) and
 

(9). These differential equations can then be implemented
 

on an analog computer.
 

5.1 	The Continuous RM Algorithm
 

By writing equation (5) as
 

Xn+l - xn= Y(xn
an )
 

and considering the limiting case, we obtain the differ­

ential equation2G
 

- a(t) y(x(t)) (59) 

in which a(t) must satisfy 

lim a(t) 0, fa(t) dt= and Ja 2 (t)dt < 

The multidimensional version of (59) is just 

t - a(t) (60) 

qith the same restrictions on a(t). 

47
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For example, a suitable choice of a(t) is
 

a(t) = > 0
 

Both of the above algorithms converge in mean square and
 

with probability one under slightly more restrictive con­

ditions than the discrete time analogs.
 

5.2 	The Continuous Time K-W Algorithm
 

By writing equation'(9) as
 

a.[Y(Xn + Cn) - y(xn Cn) 

Xn+l xn an 2 c 
n
 

and again considering the limiting case, we obtain the
 

one-dimensional K-W differential equation
 

dx(t) yxa(t) + c(t)) - y(x(t) c(t))
 

dt = t2 c(t)
 (61)
 

in which a(t) and c(t) must satisfy
 

lim a(t) =0, fa(t)dt =
 

n o
 

lim c(t) = 0, f £.]2dt < 

The.multidimensional'version of algorithm (17) is
 

A(t) =- a(t) At(t) 	 (62) 
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where
 

AX(t) = [z(x(t)) -(-(t)), ... , x(C&t)) - z(x m(t)2(t 

where
 

2 (t) x~(t) + c(t) ej and xj(t) a(t) - c(t) tj
 

j = , ... ,M 

These two algorithms also converge in mean square and with
 

probability one, but again under more restrictive condi­

tions than the discrete time schemes.12
 

In the next chapter, application of Stochastic
 

Approximation methods will be made to various engineering
 

problems.
 

http:schemes.12


VI. ENGINEERING APPLICATIONS
 

The basis for application of Stochastic Approxi-'
 

mation methods to engineering problems was laid in sec­

tion 3.2, where the minimization of a performance index
 

was formulated as a regression problem. However, the
 

presence of constraint equations was not considered, but
 

can be easily included using Lagrange multipliers.
 

Assume it is desired to minimize
 

L(k) 
= y (k) 

subject to the constraints
 

Fi(k) E tfi(yoIS)3 0 = ... M < m = i 1, , 

Where m is the dimension of k. Then by defining the
 

auxiliary loss function
 

. = I + xT f 

X is a M x 1 vector
 

f is a M x 1 vector of constraints
 

and using this new loss function in equation (21), we
 

obtain
 

-n+l - ann VkI (yn+l' hn' n) (63a)
 

=n- an VkA(Yn'lIn - an -n Vkf(Yn+lt n) 

50
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Equation (63) is a function of X .which is given by the
 

companion algorithm
 

(63b)
Xn+l1 Ln +bnj f-(Yn+ls Ln) 


mxl
 

where bn must be a Stochastic Approximation sequence and
 

V7K is a M x m matrix.
 

Inequality constraints can also be handled, but
 

require the introduction of an additional vector variable
 

that converts the inequality to an equality constraint.
 

The result is three interdependent algorithms.
 

With this foundation, some application of Sto­

chastic 	Approximation methods will be presented..
 

6.1 	Coding Theory
 

Schalkwijk'and Kailath
27 considered the problem
 

of transmitting one of M possible signals, where 
each
 

signal takes T seconds'to transmit, over a noisy 
chan­

'nel without memory with the availability of 
a noiseless
 

feedback link (such a situation is 
typical of a satel-


It is important to remem­lite-to-ground transmission). 


ber that the feedback path can not increase the 
channel
 

a8
 
but does
capacity as was first shown by Shannon, 


simplify 	the complexity of the coding and decoding 
required
 

to achieve a given performance.
 

To begin with, the communication is assumed to 
be
 

over a forward channel with white Gaussian 
noise of
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No
 

spectral density N- and a noiseless feedback channel.
 

The message information is transmitted by modulating the
 

amplitude'of N orthonormal waveforms i(t), 

T­

0 
ifp(t)j(t)dt = ij, j = 1, 2, ... , N 

Since the time allowed to transmit the information sig­

nal is T seconds, these waveforms might represent N suc­

cessive and non-overlapping pulses of duration T/N.
 

Thus, the information signal transmitted has the form
 

N
 
S(t) = Z -4.cpj (t) 

i=.1* 

and the received signal is
 

Y(t) = S(t) + N(t)
 

Reception is then achieved by using filters matched to
 

the waveforms cpi(t), giving as outputs
 

Y. -4. + N. 

where, due to the assumed structure of N(t), the Ni are
 

zero mean stochastically independent random variables
 
with variance No/2.
 

This procedure is valid even if the original
 

channel is a continuous time channel because the matched
 

filter for white Gaussian noise computes the likelihood
 

ratio, which gives a sufficient statistic, and therefore
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preserves all the relevant information in the received
 

waveform required for the-decision process.
 

The coding method for sending one of the M pos­

sible messages consists of dividing the'unit interval
 

EO, 1] into M disjoint equal-length message intervals.
 

Then select as the "message point" 9ko the mid-point of
 

the kth message interval, i.e.,
 

2k-i1 

ik= 2kM' k = l, ..., M. 

Now by transmitting the code point cPk via successive
 

signals 4iJ(t), J = 1, ,.. N. At the receiver, an
 

estimate ofCPk is formed from Y 
=4. + Ni Letting an
 

denote the estimate of epk after receiving n values of yi;
 

the mean square error is
 

EC(an - P)2) n = 1, 2, ... N, 

which decreases as n increases. At the conclusion of the
 

Nth transmission a'decision is made as to which code
 

message. k was transmitted by choosing the coding point
 

closestzto a . The error probability Pe is then given by
 

P fan - PkI> 1/2 M] 

The goal is to invent a coding scheme such that 

for any given e >'0, we have Pe < e for a transmission
 

rate R less than the channel capacity of the Gaussian
 

noise channel, which here is assumed to have an infinite
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bandwidth and with the usual constraint on the average
 

transmission power Pavg For this channel, the. capacity
 

is 

= I2Nav2 bits/sec,29 

log2M bits
 
and the transmission rate R = T sec
 

It is not possible-to achieve the above-stated
 

goal by simply transmitting cpk' with 4 i = cpk; i = 1,
 

N and using a fixed rate R'less than the channel capacity.
 

However, since a noiseless -feedback link is available,
 

the receiver can re-transmit an, its current estimate of
 

k back to the transmitter. Thus the transmitter can
 

simply transmit a correction term to the receiver. Then
 
since an approaches cpk as n increases, the average power
 

(in a statistically considered sense) needed to transmit
 

the correction decreases as n increases from 1 to N.
 

This saving of average power is sufficient to achieve a
 

transmission rate arbitrarily close to channel capacity
 

while keeping Pe as small as desired by increasing T.
 

This is the idea behind the method of Schalkwijk and
 

Kailath.
 

Specifically, "theybegin by taking al, the first
 

estimate of Pk as 0.5. The receiver feeds back this
 

estimate without error to the transmitter, which then
 

generates an error signal. 1 . such that
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S(al - 9k) = - k) 0 

The signal 4 is then transmitted and observed at the
 

receiver as
 

= + NI = (0"5 - k) + N, 

The receiver now computes the second estimate
 

a. C-l 
2 1 1 71 

where C is a constant that is chosen to minimize the vari­
ance of the estimates an. From'section 4.2 equations
 

(37) and (38), this minimum is achieved by choosing C- = 
Therefore, a2 = -Y which is now re-transmitted to
 
the transmitter,;where the correction is made and sent as
 

=
A2 .0(a2-- 9k " 
.*gainthe signal received is
 

'Y2 =42 + N 2 . (c 2 9k) + NP
 

ahdctheoxe~cbverncomputes 
a
 
3 3 

3 2 2 72 
In general, then, one receives 

Y '=A + -n n +Xi 

and computes:-. 

= %t Yan" 
 (64)
 



56 
The estimate an l is then sent back to the transmitter
 

which will transmit
 

=
Sn+l ((n+l - ck) 
This coding scheme is diagramed in Fig. 3. Note that
 
equation (64) is just a R-M algorithm with
 

M(a) = O(a - cPk) and Yn(a) = M(a) + Nn 

Therefore, we know an+l converges to cPk in mean square and
 

with probability one.
 

Without going into further detail, the results
 

of this coding scheme will be summarized:
 

1., For any rate R less than C,
 

2 erfc V3e(C-R)T
P 
e 1.577 
e
 

2. 
This coding scheme achieves a given Pe for
 
a rate R with a transmission time T approximately one­

tenth as long as required for the same Pe and rate R with
 

orthogonal coding and no feedback.
 

3. 
If the delay T in the feedback path is 
included, the performance deteriorates negligibly so 

long as T << T. 

In the previous application, the channel was
 
assumed to have no bandwidth constraint. For the same
 

problem, except where the channel is bandlimited,
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Pk r...... Receiver-
It Transmitter
 

Channel
 

Communication System with Noiseless Feedback Path
 

Fig. 3
 



58 

Schalkwijk and Kailath's R-M coding scheme gave the
 

first deterministic procedure to achieve rates up to
 

hhannel capacity.
 

6.2 	 Filtering and Predictio
 

The filtering and prediction problem is essen­

tially one in system optimization. Here the attention
 

will be primarily devoted to filtering. This problem
 

reduces to finding a matched filter for a noise corrupted
 

deterministic signal and a Wiener-filter for a Gaussian 

signal in a noisy Gaussian background. The foundation 

for this appli ation was laid in section 3.2, where it 

was noted that the only restriction on the loss .function 

Y(9) was that it.be strictly convex. For simplicity, the 

old standby error squared criteria will be used here, 

I(e) = e2 (tk). 

;kThe parametric filter form is~shown in Fig. 4,
 

where"
 

t 
Fi(t) =J' hi(¢) x (t-Y)dY, i = I, ... , m 

0 

are fixed optimum filters for a given-set of m different
 

.conditions on the signal and noise. The goal'is to
 

recursively adjust.the variable parameter set k.as some
 

environmental or system condition'changes, say, the
 

noise power level or noise distribution function, so that
 

LQ).= E([e(t,k)]) = E~e2 (tk)'
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S ) 	 time-Invariant' S(t)
 
operations on
 

Fm (t ­

et 

Filter Structure
 

Fig. 4.
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is minimized. 
Thus we seek the solution to v7k Lk) = 0,
 
but this is impossible since the distribution function of
 
the error is - , -" . .. 
 ....
therro isnot assumed)tokhe-,.'knowH,.-.
a~singcStoohastic
 

Approximation, we iteratively solve vk I[e(t,k)], but
 
this requires the availability of S(t). However, the
 

problem can be simplified so that it is-not necessary .to
 

observe S(t) to select the optimum k as is indicated in
 

Fig. 4. 
Assuming the signal and noise are uncorrelated,
 

L~) ~ S3J~2} _E(i )- 2 

A 
= E(Ex 2 1] 2EfN(S + N)) + 2E{N 1 + E( 

= EI[x.- kTF]2) EfN} +2kT fth(T)R%( )d
- 5 
n 

Therefore,
 

Vk L(k) Vk EtCx 7 kTF)2 + 2 th(T)RN(T)dT
 

However,-


Vk EtEx kTF 32 still can not be computed because
 
the probability distributionfunction of x(t) is not
 

assumed to be known, even though the filters Fi(t) were­

designed for Gaussian noise. 
But the reason for having a
 

parameter vector to adjust is because N(t) may not be
 

Gaussian. Regardless, we do not assume a knowledge of
 

the structure of N(t). Therefore, to solve
 

Vk E[EC'- kJFT213 t
 
'=
 h()RNN()dT
o+2 0
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we must iteratively solve
 

VkEX - kTFJ2 + 2 h(T)RN(T)dT 
= 0 
0
 

or
 
"x - kT( + h(t)R(T)dT = 0 
 (65)
 

0
 

where the autocorrelation function RNN(T) of the noise
 
is assumed to be determinable. 
The R-M algorithm for
 

finding the optimum k is then
 

'n+l, -n+ 
n ,,k k +a x(t) - h+a(t) F(t) + K] (66) 

where
 
t
 

=5
 

In the case of detecting deterministic signals,
 
the matched 'filter hi(t) is approximated by a-linear
 

combination of known functions pi(t)
 

hi(t) sE i t)
 

where the subscript J corresponds to the filter matched
 
to the jthideterministic signal. 
An analysis similar to
 

that above then gives the optimum k.
 

By using the continuous Stochastic Approximation
 

differential equation corresponding to the difference
 

equation (66), the optimization of k may be simply imple­

mented on an analog computer.
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6.3 	 Estimating Probability Densities and Correlation
 

3 0
 
Functions
 

The estimation of an unknown function y = f(x)
 

from a finite number of randomly observed points of the
 

input data x(t) which may also-be noise corrupted can be
 

solved using Stochastic Approximation by assuming that
 

f(x) may be represented or approximated by a sum ofgarbi­

so that
trary independent functions cpi(x), 


m
T
A 
Z k..(x) 	 (67)f(x) kkT(x)= i=l Ia 

For simplicity,
where k is our variable parameter vector. 


let the p.(x) be orthonormal and choose k to minimize
 

L(k) = Cf(x) _ ITsq(x)] 2 dx 

x
 
by again solving
 

kT2 (x)3(x) dx '='0
vkL(k) 2j [f(x)-
x
 

2Y f(x)2 (x)dx - 2k = 0
 -

because the pi(x) are bthonoral. Therefore, L(k) is
 

minimized at
 

A f(x)a(x)dX = zf2(x)3
 
x
 

but f(x) is unknown, so use the Stochastic Approximation
 

algorithm to solve
 
A
 

Et 2 (x) - k) = o 
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The necessary recursive relation is simply
 

n+l kn+ an [P(Xn) 
-n
 

or its continuous analogue
 

dk a(t) E£Ex(t)3 - k(t)) 	 (69) 

To estimate a correlation function R(r) Etx(t-r)x(t).
 

of the random process,x(t), when f(x(t)) is unknown,,one
 

.applies the algorithm
 

Rn.i 	 BjT) +'aj £x(n+)x(n) ­

.or
 

dRt(T)dt ) a(t) .Ex(t+T)x(t) - R (T) 	 (70)' 

6.4 	Identification
 

There are many examples where Stochastic Approxi-'\
 

mation methods can be applied to system identification.23 5 38
 

Here the elementary'case of identifying a causal time
 

invariant discrete system will be considered., If the
 

input is applied at n = 0, the output x'(n)'may be written
 

using the-convolution summation as
 

m
 
x(m) Er k.u(m-i) kTu•i=o . 7--

The identificationaprocedure consists of determining the
 

weighting sequence k,. ...,.k.denoted'bk kT by observing
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the output x(t) which may be noise corrupted and mini­

mizing some convex error criteria L(k) = EtA(e(t))3.
 

Invoking the methods of Stochastic Approximation, one
 

obtains
 

kSn+i =kh +a tCx~n3)IkTu~n22U3 un]
 

and we know
 

Cko, ..., km)T
= k9.i.m k 

rz*4
 

6.5 Dual Control
30
 

This is'one of the most difficult problems in con­

trol theory and was essentially 
defined by Fel'baum

31
 

using the decision theory approach. The goal is to con­

trol a.plant with unknown parameters and external 
distur­

bances. 'Fel'baumIs approach is almost impossible to apply,
 

even if the'a priori distribution of the plant parameter
 

and the external influences are given, except in 
simple
 

cases.
 

A more general approach that is somewhat less com­

plicated than Fel'baum's and requires less a priori 
knowl­

edge is a Stochastic&Approximation formulation.
 

Given the.linear discrete system
 

M N­
x(n) = F Cx(n-i) + E diu(.n-i) 

i=l i=l 

= cTx +dT u
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where C and d are unknown.
 

Define k = (C1, ... ; CM, dl, dN)
... 


and Z(n) =Ex(n-l), 
..., 2(n-M), u(n-l), ...,u(n-N)
 

Therefore, x(n) 
 kTZ(n) and choose the loss function
 

2(.) to be a convex function
 

'I = I[x(n) - kTz(n)] 

We want to find the solution to Vk Ef £3= 0 by iteratively
 
solving Vk e(.) = 0. 

Using the R-M method, the convergent identification algo­

.rithmis.
 

ka kn-l a n Vkex(n+l) -'Tn-1) Z(n)] 

hn-l an L)[x(nl) - kT(n-1) Z(n) z(n) <(71)
 

where 
' denotes the derivative of2 with respect to.its
 

argument.
 

The controller is designed to generate a control
 

law of the form
 

P
u(n) =ATr[x(n)] =T i[ Ex(n) ] 

where the mi 
are linearly independent functions. 
 The con­

trol performance index I(kopt
 , ) is u
I(opt, ) E(J[x =k Tk
-o
 

'(2%t) ~ E -- -­opt b' u(x, A)]3
 

where J is a convex loss function., Now we wish to find the
 

Aopt that solves VAI(kopt; 
 = 0 us ngonly knowledge of 
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V, J- Z, u (kt Z, B)], but kopt is not known so the
 

best one can do is use V j[kTl .Z(n), u(kn_!Z, )1
 

or equivalently
 

V5JIkIT_ Z(n), jTm[x(n) ]
 

Thus the algorithm for finding the optimum 0 is
 

nAn-J + bn VBJkTZ(n), T m[ T.1 Z(n) ]3 

-n-l + bn VJfx(n-l) + u(n-1)3 (72)
 

which gives the convergent control algorithm. Note that
 

the equation of identification (71) and that of control
 

(72) are interdependent. Their block diagram representa­

tion is shown in Fig. 5. Analogous continuous algorithms
 

can easily be derived for analog simulation.
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k 

-::n 

4 Co~Pntlr
 
x(nn)rt 

x(n) 

((n)
 

Realizations of Algorithms (71) and (72)
 

Fig. 5
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6.6 Controllable Parameters
30
 

A common problem in control systems and in mass
 

production of, say, missile components is to adjust a set
 

of controllable parameters k to minimize the influence
 

of uncontrollable changes in a set of parameters c on
 

desired system performance. For example, c may be the
 

pole and zero locations or gain and k may be the state
 

variable feedback coefficients. Or c may be the mean
 

values and variances of a set of variables and k may be
 

the adjustable means and variances of a set of control­

lable parameters.
 

Thus, we define a performance criteria I(c,k)
 

where the variations in c may be random, but stationary.
 

The attempt is to find the value of k that minimizes
 

EfT(c',k)1 J I(c,k)dF(c) = J(k) 
c 

This problem can be solved in general even if F(L) is 

unknown by applying Stochastic Approximation, obtaining 

the algorithm, where 0n_1 is obtained by continuously monitoring 

it. k -i + an vkIfn k (73) 

'32
 
6.7 Allocation of Limited Resources

30


This last application deals with an Operation
 

Research problem in reliability or allocation of limited
 

resources. It is desired to find the optimum method
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p(x) = kTE(x) of distributing a limited quantity of
 

.resources 
x in which we wish to maximize the expected
 

gain G
 

G = Efg[p(x),x]J 

under the constraint on the resources
 

Y W(x)p(x)dx = c
 

x 

.where W(x) is a weighting function, say, 1 in this exam­

ple.
 

When the probability density function f(g) or
 

equivalently f(x) is not known, it is 
common practice to
 

seek a minimax solution. By applying Stochastic Approxi­

mation, we can avoid this conservative approach.
 

It is first necessary to guarantee that the con­

straint
 

fp(xjdx -6 IS T flxd c-

x x 

k - c 0
kT B 


is satisfied. This is easily accomplished by using
 

Lagrange multipliers, giving
 

I = G(k) + X(TB- c) 

and seeking the solution to
 

VkI=O
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by recursively computing
 

k = k + anfvkg[k-ly(x),X + x1 1 (74) 

Xn =X + bEkT_j-c) (75)
n n-i
 
or using their continuous counterparts
 

=dk d a (t) VkgE kT(t) cp(x (t)),x(t)]I + X(t)b I 

0= b(t)[kT(t)Bcl
 

The block diagram for equations (74) and (75) is shown in
 

Fig. 6. The unusual characteristic of the schematic is
 

that it is in essence a perceptron, a device originally
 

devised by Rosenblatt33 
in his work on artificial intel­

ligence.3 4 
 Here, however, Rosenblatt's threshold functions
 

have been replaced with the linearly independent func­

tions c.
 

In concluding this chapter, it should be noted
 

that the techniques discussed in Chapter IV on acceler­

ating Stochastic Approximation schemes may be used in all
 

the applications considered.
 

http:ligence.34
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c 

k 

F--4 )n 1--

TI 

~~k n_(n 

~~~~~g,(-)k 
.......
 

--n- C.0(Xn 

Circuit Realizing Equations (74) and (75)
 

Fig. 6­
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CONCLUSION
 

This paper has been in essence an attempt to deal
 

with many topics in optimization theory from an algo­

rithmic viewpoint suitable for computer solution. Such an
 

approach is especially useful in complicated engineering
 

systems where the only analytically feasible solution
 

requires simplifications that make the results meafiizr­

less.
 

It should be pointed out that many other research
 

topics which are appropriate for Stochastic Approximation
 

methods have not been presented. Some of these subjects
 

are pattern recognition,random-rounding computer errors,
 

quantal response in biological systems, learning control
 

systems, inertial and non-inertial non-linear system
 

identification and control, process control, estimation
 

in radar and radio astronomy, trainable threshold logic
 

and probabilistic automata. In addition, the Stochastic
 

Approximation algorithms considered contain the Potential
 

Function method of Aizerman, Braverman, and-Rozonoer as
 

a special case.
3 7
 

In closing, areas of future research will be
 

cited. A few of these are: development of a
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(1) 	Stochastic Approximation Newton-Rapson
 

Method
 

(2) 	Stochastic Approximation Conjugate Gradient
 

Method
 

(3) 	and extension of Stochastic Approximation
 

Methods to function spaces as has been done
 

for steepest ascent methods.
 

A forthcoming paper on self-adaptive filtering and pre­

diction will describe original results which are a direct
 

consequence of this study.
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ABSTRACT
 

In this report the problem of self-adaptive optimal
 

estimation of a sampled stochastic signal observed in random noise
 

is formulated and an engineering solution is deyeloped. Chapter I
 

introduces the topic and reviews the results of recent research.
 

Chapter II gives the necessary background material from estimation
 

theory. Chapter III develops the learning criterion and derives the
 

adaptive stochastic algorithms from it. The learning criterion is
 

based on the principle of orthogonality of Chapter II. Chapter'IV
 

presents the experimental results obtained by applying the learning
 

criterion and associated algorithms to specific systems.
 

ii
 



CHAPTER I
 

INTRODUCTION
 

i I Prologue
 

Recently considerable attention has been directed toward selfr
 

adaptive Cor self-learning) optimum systems, The basic idea is quite
 

simple: one wishes to design a system to perform efficiently in an
 

unknown or changing environment without the necessity of direct human
 

intervention. Such systems are extremely important in the context of
 

control and communication theory where it is often impractical or impossible
 
,/ 

to obtain the a priori information required to specify the optimum system.
 

In this repoft the goal is to provide a self-adaptive solution to
 

the problem of optimal filtering, prediction, and detection of stochastic
 

signals imbedded in random noise. However, before discussing the prin­

cipal results, a historical survey of this topic is appropriate.
 

1.2 Background and Historical Survey
 

One of the most important topics in control theory is the stochastic
 

control problem. Here one is required to determine-the optimum controller
 

for a given plant without precise knowledge of the state x(t) of the
 

plant. The stochastic approach to optimum control is motivated by the 

fact that in general ­

1) Some of the state variables are not available for measurement, 

2) the measurements contain noise, 

3) the plant is subject to random input disturbances. 

II
 



By using the state transition representation, a linear dynamic system 

model of the plant can be described by 

x(n+l) = x(n) + Di(n) + w(n) (1.1) 

and the measurements of the state x(n) by 

y(n) = Hx(n) + v(n) (1.2) 

where 

x(n) is the system m x 1 state vector 

M(n) is the Z x I control vector ­

w(n) is the m x' white perturbation noise input vector 

(Dis the one-step m x m state transition matrix 

D is the m x k control matrix 

*y(n) is the p x 1 measurement vector 

v(n) is the p x I white measurement noise vector 

H is the p-x m observation matrix. 

The approach (Lee, 1964) generally used to attack this problem is to
 

first estimate the state x(n). Then this estimate x(n) is used as if it
 

were the actual state to. calculate the optimum control employing determin­

istic methods such as the maximum principle. In other words the stochastic
 

control problem is separated into two phases,: referred to as estimation and
 

control. It has been proved that for linear systems with a quadratic per­

formance index and'subjected to white Gaussian noise inputs, the optimal
 

stochastic controller consists of an opt'iial estimator (filter) in cascade
 

with an optimal deterministic controller (Joseph and Tou, 1961). This result
 

is known as the Separation Theorem. In this thesis, .only-the estimation
 

phase is considered because the deterministic control solution is well known
 

(Shultz and Melsa, 1967 or Sage; 1968). In communication theory an equally
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important topic is the stochastic detection problem. Here one is required to
 

Jetermine the optimal receiver for detecting the presence of a stochastic signal
 

K(t) imbedded in additive random noise v(t). Assuming the signal x(t) has a
 

rational spectrum, it is possible to represent it as the state of a linear
 

dynamic system with a white noise input (Kalman, 1960)> The linear dynamic
 

system is called the signal generating process, and in state transition repre­

sentation is described by
 

x(n+l) = 4x(n) + w(n) (1.3) 

and the measurements of the signal x(n) by 

y(n) = Hx(nJ + v(n) (1.4) 

the notation is the same as that of equations (1.1) and (1.2). The signal 

generating process (1.3) is identical to the control plant process (1.1), 

except for the control input 1 (n). However, the Separation Theorem states 

the control term can be disregarded in the estimation phase. Therefore', the 

estimation problem and its solution are identical for both control and com­

munication theory. 

Also; there exists an analogous Separation Theorem solution to the stochastic
 

detection problem (Kailath, 1963) which states that for a Gaussian signal with
 

rational spectrum observed in white additive Gaussian noise, the optimal sto­

chastic detector consists of an optimal estimator (filter) in cascade with
 

the optimal detector for a deterministic signal, i.e., the output of the
 

filter is considered to be the actual signal. Again, only the estimation
 

phase is considered since the deterministic detection solution is well known
 

(Hancock and Wintz, 1966, or Van Trees, 1968).
 



Because of the identical mathematical framework of estimation in a
 

tontrol or communication context, no distinction between the two areas is
 

made in the text that follows.
 

Wiener (1949) and Kolmogorov (1941) are credited with the solution for
 

a single input-single output system. Wiener formulated the problem in terms
 

of finding the optimum (in a minimum mean-square error sense) linear filter.
 

He showed that a necessary and sufficient condition for optimality was that
 

the filtersatisfy the Wiener-Hopf equation, and developed a method (spectral­

factorization) for solving this equation for signals with a known stationary
 

rational spectrum and for noise with a known stationary white spectrum.
 

Following Wiener's pioneering work, there developed an extensive liter­

ature which interpreted, simplified, modified, and extended his results.
 

Detailed bibliographies may be found in Stumper (1955) and Balakrishman
 

(1963).
 

However, the case of a non-stationary multidimensional signal-in non­

stationary multidimensional noise remained unsolved in an engineering sense
 

until 1960-1961 when Kalman (1960) and Kalman and Bucy (1961) published their
 

fundamental papers. Instead of seeking a solution to the Wiener-Hopf equation
 

in the frequency domain with the attendant problem of spectral factorization,
 

Kalman combined the concept of state variable representation of dynamic systems
 

with the orthogonal projection in a Hilbert space representation of linear
 

filtering to obtain a direct solution in the time domain. In contrast to the
 

Wiener's method, Kalmants results are in recursive form and therefore ideally
 

suited to real-time sequential digital computation. However, both the Wiener
 

and Kalman theories require complete knowledge of the message generating and
 

observation noise covariance matrices, denoted by Q and R respectively,
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In the real world such extensive a priori information is generally
 

not available. The consequence of not knowing R and/or Q is a suboptimal
 

filter, i.e., an increase in the error covariance matrix. In some cases
 

the increase is unbounded (Sorenson 1966). Detailed investigations of the
 

suboptimal performance caused by insufficient a priori information have been
 

widely reported in the literature, e.g., Soong (1965),'Heffes (1966), and
 

Nishimura (1966, 1967). In addition, the inverse of R must exist to perform
 

the Kalman filter computations. The presence of either noiseless measurements
 

or correlated observation noise can render R singular. In practice R is
 

often ill-conditional simply because one measurement is an order of magnitude
 

more accurate than the others. Thus the Kalman filter formulation can gener­

ate application difficulties. Bryson and Johansen (1965) and Bryson and
 

Mehra (1968) have modified the Kalman framework to handle this particular
 

problem, but their technique necessitates state augmentation which increases
 

the dimension of the filter and the computation time'.
 

1.3 Statement of the Problem and Previous Results
 

The inadequacy or absence of a priori knowledge leads naturally to the
 

consideration of adaptive or learning approaches to optimum estimation.
 

Specifically, a self-adaptive solution to the sampled data, stationary op­

timum filtering and prediction problem is sought which does not require a
 

priori specification of R and Q and retains the recursive features of Kalman's
 

formulation.
 

Previous adaptive techniques can be divided into two types. The first
 

due to Magill (1965)•assumes that the parameters of R and Q belong to a finite
 

ensemble of a priori known possibilities. An optimum Bayesian pattern recog­

nition algorithm for Gaussian distributions is used to learn wich sampled
 



data process is being observed. With this knowledge, Q and R are uniquely
 

specified. 
Magill's method is valid only for a scalar observation process
 

and is cumbersome to apply. 
For example, given N unknown elements of Q with
 

the single unknown element R, and M possible values for each variance, there
 

are (N+l)M combinations. 
 Bach combination requires the implementation of
 

the corresponding Kalman filter equations. 
Hilborn and Laihiotis (1969)
 

extended Magill's technique to a vector observation process and prove mean
 

square and probability one convergence.
 

The second approach is to estimate directly the components of R and Q.
 

Shellenbarger (1966) showed how to use the likelihobd principle to ac­

complish this estimation under the assumption of Gaussian distributions
 

and other more restrictive requirements which limit its utility. 
As a
 

result, Shellenbarger (1967) developed a more general least-squares learning
 

method to determine R and Q. Proof of convergence is not considered. It is
 

important to note that both of these approaches require the determination of
 

both the R and Q matrices, and the existence of the inverse of the estimated
 

R matrix. 
Then the entire set of Kalman's equations must be solved for the
 

estimated optimum filter each time the estimates of R and Q are updated.
 

1.4 Approach to the Problem 
 ".
 

' In this-repoit; an unsupervised learning criterion is formulated
 

from which self-adaptive algorithms are derived. 
These algorithms learn
 

the optimum discrete time stationary Kalman filter directly. 
This elimi­

nates both the necessity of estimating R and Q as an intermediate step and
 

the need to solve the entire set of filtering equations. The number of
 

parameters to be determined and the computation time is also reduced. 
 In
 

addition, the problem associated with the existence and computation of
 



-
R is avoided. Satisfaction of-the learning criterion is shown to be a
 

necessary and sufficient condition for optimal filtering. The stochastic
 

algorithms developed for estimating the optimum filter converge in a mean­

square and with probability one. The results are valid for scalar and
 

Vector valued signal and noise processes.
 

1.5 Organization of the Report
 

The second chapter presents a comparison of Wiener and Kalman filter
 

theory which serves also to introduce the notation to be used. The review
 

of Kalman's theory lays the foundation for the motivation of the learning
 

criterion.
 

Chapter III formulates the learning criterion and proves its necessity
 

and sufficiency for optimum filtering. The stochastic algorithms required
 

for performing the adaptation indicated by the learning criterion are then
 

presented. The theory of Stochastic Approximation is invoked-to prove the
 

convergence of the algorithms. An extension to time-varying signal and noisc
 

statistics is suggested.
 

Chapter IV applies the theory of Chapter III to specific problems and
 

presents the results of simulations which illustrate the success of this
 

self-adaptive method for (1) different initial values of the filter matrix
 

with R and Q held constant and (2) different values of R and Q with the
 

initial choice of the filter matrix fixed.
 

Chapter V contains conclusions along with recommendations for further
 

research.
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I CHAPTER II
 

OPTIMUM FILTERING
 

2.1 	 Introduction and Organization
 

The objective of this chapter is to present several of the more
 

important results from the theory of optimal estimation. The application
 

of these results to the engineering problem of extracting a stochastic
 

signal from noisy observations or estimating the state of a control system
 

leads to the Wiener and Kalman theories which are developed and compared.
 

At this point it is necessary to specify exactly what is meant
 

by filtering, and prediction, of a stochastic signal x(t) observed in
 

additive noise v(t).
 

Definition: Observe the sum z(nT) = 
x(nT) of the two random processes 

x(t) and v(t), representing the signal and noise respectively, 

over the discretetime interval ((n-m)T, nT), n > m. Filtering 

is the estimate of x(r) at T = nT. 

Prediction is the estimate of x(T) for T >:nT. 

Both cases will be dealt with in the succeeding pages, but the
 

greatest emphasis is placed on filtering because it is the key operation.
 

Note that even though x(t) and v(t) may be continuous functions of time,
 

the data z(nT) is observed only at discrete times. That is, in this
 

thesis only sampled data is considered.
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2.2 	 Optimal Estimation: Bayesian Approach
 

To discuss optimality, a criterion of optimality must be defined.
 

Suppose that a random variable x is to be estimated from the set of data
 

Z = {z(1), ..., z(n)1. Then x will be called the optimal estimate of x
 

given Z if and only if the average loss
 

E (2(x-i)} E {E £(x-x)I Z = z fL(xfZ)I (2.1) 
z x z 

is a minimum, where 2(x-x) is an appropriately defined loss function.
 

In equation (2.1) the expectation with respect to Z is not dependent
 

upon.x; therefore, it suffices to choose x such that
 

L(xIZ) { IZE{x-x) 	 £2..2) 

is minimized. A solution based on minimizing (2.4) or, equivalently,
 

(2.2) is called a Bayes estimator. It has been shown (Sherman, 1955,
 

±958) that for a rather general class of loss functions g(.) and a
 

posterior densities that the Bayesian estimator is:,the conditional
 

x = B {xjZI 	 (2.3) 

THEOREM 2-1. Let S = {Z('): k is symmetric and convex). If the a 

posteriori density p(xIZ) is symmetric about its conditional mean 

E {x Z1, then the conditional mean E {xlZ~is the optimum estimator 

of x given Z in the sense that it minimizes.(2.2) for all LES. 

.9
 



proof: 

Z(e) = Z(-e) symmetry (a) 

R(ae + be 2) < a Z(e ) + b -V 1(e2)e2 convexity (b) 

where a + b = 1, a s (0,1) 

and p(IZ) p(-ylz) symmetry (c) 

where y = x - E{xjZ} 

L(xlz),'= E{z(x-) Iz} 

= Ex{z(-x)Z} by (a) 

= Ey {Z(x - E xZ - y)IZI 

=Ey {Z( -- E xIZ + y)IZ} by (c) 

= Ey {(E xZ -­ x- ylZ} by Ca) 

Ey {(E xIZ -.x +y)Iz by (c) 

= E £Zy (y-{ E xIZ - x})jz} 

13 k(yz&+f E xfZ - x + 1(y 

-(E xjz - ;1)Izl by (a) 

> E{i(i y + {E xIZ - Xl + y 
22- 2y 

- (E xIZ -x} )Izl by (b) 

= E{z(y)IZ} with equality iff x E{xIZ} 

Q.E.D. 

The class S can be greatly extended if we add two restrictions to the 

conditional density. 

THEOREM 2-2. Let S = {Z('): £ is symmetric and i(e ) > >0 for 

e2 > e > 0, z(0) = 01. If the a posteriori density p(xlZ) is 
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(1) 	 symmetric and monotone nonincreasing about its
 

conditional mean.
 

(2) 	 decreasing rapidly enough so that lir Z(y) p(yjz) = 0, 

where y = x - E{ xIZl
 

then-E{ -xfZ1 is the optimum Bayes estimate.
 

proof: see Viterbi (1966).
 

Some examples of the £() S I arc
 

(K, [e [> k
 

0 le [> k 

kCe) 	 = K le 

p,1Ce K 1 -~ exp 	 Cej 

Note that under the conditions of Theorem 2 the conditional mean Ef xfz1
 

coincides with the maximum a posteriori estimate.
 

In general what follows will concern vector-valued random
 

processes x(n). Equation 2.2 then becomes
 

L(x(n)I Z(n)) = E fztx(n) - x(n)j n) 	 (2.4) 

where Z(n) = {z(1), .... z(n) and!1" I denotes the norm of the 

vector. Theorems 2-1 and 2-2 extend readily to include this case 

(Kalman, 1960). 

If the error squared is chosen as the loss function, then 

restrictions (1) and (2) of Theorem 2-2 on the a posteriori density are 

unnecessary. 
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THEOREM 2-3. Let £ x(n) x(n)jj = (n) - X(n) 22 (n) - x(n] T 

[(n) - x(n) , then E {x(n) IZ(n)} minimizes (2.4) without any 

restraints on p(x(n) IZ(n)). 

Proof: 

^ T ' T ^ T 
E {fs-x t-xjIZ J= x x 27 B{x jZi + E{? x Z 

- = (x - E{x IZI )T (x B {x jz} ) + E { xl Z I-[Ef xZ E{xI z J 

>~ Tx IZ) [B {x [Zlj T t lz . - j BxZ 

with equality iff x(n) = E{ x(n)f Z(n)} Q. .D. 

2.3- Principle of Orthogonality and the Wiener-Hopf Equation
 

The contents of theorems 2-1,- 2-2, and 2-3 give the "in princi­

pal" solution of the Bayes estimation problem for a 'wide class of loss
 

functions and probability structures. However, the explicit computation.
 

of this optimum estimate E{x(n) Z.(n)} is formidable except in the
 

important case when {x(n)1 and {z(n)} are Gaussian, Here we have the
 

well known result that E{ x(n) IZ(n)1 is a linear function T [zcn)J of the 

observations z(-), e.g., see Deutsch (1965). "The optimal linear operator 

.TfZ(n) can be determined using the orthogonal projection theorem 

THEOREM 2-4. Let {x(n)} and {z(n)} be zero mean .random sequences. Let 

Z(n) represent the closed linear manifold 1 generated by the data 

fB z(i) ..., z(n) }where B is the general m x p generator matrix 

Pnr 7(n) 



if either 

(i) 	the random sequences {x(n)}, {z(n)} 
are 	gaussian or
 

(ii) 	the estimator x(n) is required to be a linear function 

T Lz(na of the data {z(i), ... , z(n)} and k jjx(n) - x(n)II 

= [Ix(n) - x(n)l2. Then the optimal estimate x(n) of x(n) 

is such that the error e(n) - x(n) - x(n) is orthogonal to
 

Z(n), I.e., 

(x(n) - x(n), Bz(j)) E{ x(n') -' ­

x(n)" 
T 

z (j)} 
= 0 Bz(j) s Z(n) (2.5) 

where (*,') 
 is the inner product induced on Z by E{Q)(*)}. 

Proof: see Kalman (1960) 

COROLLARY 2-5 (x(n) - x(n), x(n)) =E'{ (n) 	 0 

where x(n) = T [Z(n)J 

Under condition 
Ci) of the theorem, the orthogonal projection of i'(n)
 

on Z(n) is identical to the conditional mean E{x(n) fZ(n)}. Thus, this
 

theorem implies that the optimum linear estimator can not be improved
 

upon unless the random phenomenon are non-Gaussian and, even then,
 

only by assuming knowledge of at least third order probability distri­

bution functions.2 Consequently we know the general form of x(n) in
 

the 	sampled-data case is
 

I n 
x(n) T [(n)J = . A(n,v)z(v)z (2.6) 

V=i,
 

Given any random sequence, there exists a unique Gaussian random
 
sequence with the same mean and covariance.
 

13 ­
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where A(n,v) is an m x p filter matrix. If the data acquisition rate
 

is high enough to be considered continuous, then (2.6) becomes an
 

integral equation. Regardless, A(n,v) is chosen to satisfy the
 

orthogonal projection theorem. 
This is the method employed by Kalman
 

(1960) to solve the optimal filter problem.
 

Kalman and Bucy (1961) used this theorem, i.e., the orthogo­

nality of e(n) and Z(n), 
to derive the multidimensional Wiener-Hopf
 

equation. The Wiener-Hopf equation is given by the outer product
 

-x~n)] ) (z(j) = E{[x(n) - J 

= [o], (j) e Z(n) (2.7) 

Since x(n) is given by (2.6), (2.7) can be written
 

rn T
E{ L(n) Z TA(nv] z(M. z (j)} = E{x(n) z ()(V=" 
 (2.8) 

Z A(n,v) E z(v) zT(j))V = i~ = [Z] zj) E Z(n)~
 

If i = - in (2.8), the sum is assumed to be uniformly convergent so
 

the order of summation and integration may be interchanged. For the
 

scalar case it is obvious that the result given by orthogonal
 

projection theorem equation (2.S) and the Wiener-Hopf equation (2.7)
 

are identical. To show this equivalence in the random vector case, a
 

dual space approach was used. 
The result is summarized in Theorem 2-6.
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THEOREM 2-6: 
 A necessary and sufficient condition for
 

U x(n) - x(n)] zT(j)} [ Ptz(j) Es ZeCn)27
 

n
 
where x(n) = z A(n,v) z(&)
 

=i
 

is that A(n,v) be chosen such that
 

E fx(n) -.x(n)] T Bz(j) = 0 (2.5)
 

Proof: see Kalman (1960) and Kalman and Bucy (1961)
 

COROLLARY 2-7: B{ xcn) - n CTn)l [1 

This theorem and the accompany corollary provides a common framework for
 

the filter theory of Wiener and Kalman.
 

2.4 Wiener and Kalman Filter Theory
 

The purpose of this section is to present the results of Wiener
 

and Kalman for comparison. 
The reader is referred to the appropriate
 

references in section 1.2 for a'complere derivation. The model used
 

is given by equations (1.3) and (1.4)
 

x(n> 1) = ¢ x(n) + w(n) (1.3)
 

z(n) = H x(n) + v(n)
 

with 'E '{w(n) wT (n)} = Q(i) 
 (1.4)
 

E fv(n) vT(n)} = R(n)
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Wiener's approach uses the frequency domain 4 and the solution is
 

given in terms of the Z-transform A(Z) of the m x p filter matrix
 

A(n- ) as illustrated in FIGURE 1. The problem of synthesizing the
 

filter remains. Employment of the frequency domain requires the
 

following restriction.
 

'(I) 	 The system 0 and observation matrix H are time invariant.
 

(2) .	 The statistics of w(n) and v(n) are stationary. 

(3) 	 The data z(n) are known for past time, i.e., i = - in 

equation (2.8).-

Under 	these conditions, equations (2.6) and (2.9) become
 

n 
x(n) = E A(n-v) z(v) (2.9) 

and
 

3 
To the author's knowledge, the first general technioue for
 

determining the optimum multiple input---multiple output discrete
 
filter using Wiener's method was given by Motyka and Cadzow (1967).
 

4
 

Since 	only sampled data is considered, frequency domain means
 
-

the Z-transform domain. 
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ahd 

T 
 T 
{x(n)z(j)} - z A(n-v) E {z(v) z (j) } 

n 
SRxz (n-j) - A(n-9 ) Rzz(v-j) 

[0], j n.(2.10) 
By a change of variable (2.10) can be rewritten 

R (a)- z. A(-) R ( =[o]E-.)ao ... ,o}, (2.11) 
= 
xz 0 zz 

The cross-spectral (generating function) matrix representation of 

(2.11) is 

Sxz (Z) (Z) Zz) = [a] (2.12) 

Since each element of (2.11) is zero, each element of (2.12) is a
 

polynomial in positive powers of Z only. 
Thus each polynomial element.
 

must converge for all Z inside the unit circle. 
Assuming zz (Z) has
 

a spectral factorization of the form
 

-

zz(M)= A(Z AT M
 

-
where A(Z ) is 
a p x p matrix whose elements represent the Z-trans­

form of stable, linear, casual systems (i.e., polynomials containing
 

a constant and positive powers of Z) and have no poles inside the unit
 

circle, then a physically realizable Wiener filter exists. 
 The frequency
 

domain expression for this optimum filter is 
-

17
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_i
T [A T(Z)I A-I(2-I) Ixz(Z)}+] 2.3
 
-[(Z) z z(Z)} (2.13) 

where { } is a matrix whose elements are constants and { } is a 
c 
 + 

matrix whose elements contain only poles inside the unit circle. 
The
 

"in principle" solution given by (2.13) is not easy to synthesize,
 

and is not suited to machine computation.
 

Kalman"s time domain approach not only eliminates these two
 

difficulties, but also the three restrictions listed on page 9 .
 He 

used the orthogonal projection theorem to obtain the following recursive 

set of equations for optimum filtering and prediction: 

x(n) = 4 x(n-1) + K'(n) - H i (n- (2.14) 

= E {x(n) f Z(n)} for Gaussian noise 

K(n) = Z(n) HTR-(n) (2.15) 

= z(nin-1) IT [H Z (nn-i) HT + R(n)] -i 

= Kalman filter matrix 

Z(n) = Coy {x(n) Z(n)} 
 (2.16)
 

=E{ [(n) (njLcn) - Z(n) 

= z(njn-1) HT H Z (njn-1) T + R(n]-(njn-1) 
 H Z (njn-l) 

= Error Covariance matrix ­

Z(n+lln) = E { (n+l) - @ x(n) x(n+l) - . (n) TI Z(n)} (2.17) 

- I 

- @ 1(n) DT + Q(n+l) 

- One-step prediction error covariance matrix 
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x(n+!1n) = q)x(n)
 

= One-step prediction of x(n+l)
 

= E {x(n+l) Z(n)} for Gaussian Noise
 

The block diagram for the Kalman filter is shown in Figure 2.2. Note
 

that it is in the form of a closed-loop feedback system. The necessity
 

of knowing the covariance matrices Q(n) of the white plant perturbation
 

(signal generating) noise and R(n) of the white observation noise is
 

obvious from inspection of (2.15) - (2.17).
 

When restrictions (1) - (3) required for the Wiener approach are
 

satisfied, the Kalman filter is equivalent to the Wiener filter. This
 

must be true from Theorem 2-6. However, the computational superiority
 

of Kalman's method is still evident. It is interesting to determine
 

exactly how the Kalman filter matrix K is related to the optimum
 

Wiener filter A(n-v). For this case
 

x(n) = ( x(n-I) + K n) H 6 n-1 z A(n-a) z(a) 
- ~ 1 n - ~-3 I a ~ -)za 

From Theorem 2-6
 

or B (n>) >i {1(n in 3 Ln~1 + Tj 1 }=
E L )n - x(nj T( E Ln - x(n) xT(n) H(2.19) 

or
 

T ~TT 

The left hand side of (2.19) is E(n) HT from Corollary 2-7, and the 

T 
right hand side is E {5(n) v (n)} since v(n) is independent of x(n). 

Therefore, 
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T 	 'T 
E.n 	H =B: {x(n) v (n)}
 

n 
 T 
= B { Z A(n-a) z(a)v (n)) 

a ­

-BE Z A(n-a) jH xNa) +v(aj v (n)) 

P T
 
n A(n-a) E {v(a) v (n) 

- A(O)R 

which implies 

-A(O) = Z(n) HT R


A
 
=K
 

Thus the impulse response of the optimum Wiener filter mazrix evaluated
 

at time equal to zero gives the optimum Kalman filter matrix.
 

2.5 Summary 

This chapter has reviewed some of the fundamental concepts of
 

estimation theory and its application. It was shown that for
 

Gaussian noise the optimum estimator is linear. For a given system
 

this important result yields the filter theory of Wiener and Kalman
 

which was reviewed and compared.
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CHAPTER III
 

FORIULATION OF THE LEARNING CRITERION AND
 

THE ASSOCIATED STOCHASTIC ALGORITHMS 

3.1 Introduction and Organization of the Charter
 

In Chapter II some of the important concepts of estimation
 

theory were reviewed, and the results of Wiener and Kalman filter
 

theory were presented and compared. There it was shown that for
 

optimum filtering the estimator must satisfy the Wiener-Hopf equa­

tion. This equation is also the fundament of the learning criterion
 

to be developed in this chapter. Stochastic algorithms, based on 

this criterion, are derived which asymptotically converge to the 

optimum filter. Stochastic Approximation techniques are invoked to 

prove this convergence. 

3.2 The Learning Criterion
 

The purpose of the learning criterion is to provide a necessary
 

and sufficient condition for an adaptive solution to the optimum
 

filter problem when the signal and noise covariance matrices Q and R
 

are unknown. In addition, this criterion must have two additional
 

characteristics.
 

(1) it must be a function of measurable and/or calculable
 

quantities.
 

(2) it must provide information from which convergent algorithms 

can be derived.
 

Otherwise, the criterion is meaningless from an engineering point of
 

vie. 
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THEOREM 3-1. 

Given the dynamic system ­

x(n+l) = ¢ x(n) + w(n) (1.3) 

the observation process
 

z'(n) = H x(n) + v(n) (1.4)
 

and the filtering equation
 

x(n) =x(n-l) + Kn Z(n) - H 4)x(n- (2.14)
 

If Kn = Kopt
 

HT [ T -

T H + R
 

That is, Kopt is the optimum Kalman filter matrix.
 

Then,
 
T zs 

Ef6,n+i 6j} (6n+l 6j).= 0 -V'-n (3.1) 

where,
 

6j = z(j) - H 0 x(j), and conversely.
 

This theorem is important because it implies that when K is not the optimum
 
n
 

filter matrix, the residual process {&fl} is not orthogonal.
 

-EOREM 3-2. The Learning Criterion
 

If B 
n-
TT j 1= 0 -Yjn and E{Xo} =0,
 

then,
 

B {6n+l T }= [0] A-N ,
 

and conversely.
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Thus, the lack of orthogonality, when K is not equal to K is
 
n opt
 

reflected in a non-null correlation matrix between the residuals,
 

SjT} =C(n+l-j) \ f0i j-n 
 (3.2)
 

C(n 1.j) could be used as a basis for learning Kopt if a technique can
 

be devised to utilize this correlation between and to adjust K
 
n-u, ad 
n, ajsKn


such that Kn Kopt as n
 

Note first, the fact that the correlation between 6 and 6
 
ni-i n
 

can be represented by the stationary Markoff-sequence
 

a =P5 i e (3.3)

n-n - n
 

where fe } is a zero mean random sequence, Post-multiplying both sides
 

of (3 3) by 6T and taking the expected value gives

n
 

E{f6n~l 'S PniE{ 6n T } + E {en 6nTI
nin nr n 

or 

C(i) = P C(O) + Ef e 6 T 
n n 

Choosing the state transition matrix P = C(!) C(O) 

.forces E.{6 S = [0] P represents the correlation between S andn nn:
 

6n­. if P can be forced to approach [0j as n approaches -, then from
 
theorems 3-1 and 3-2, K +approaches Ko Thus an algorithm is required
 

L7which uses P to adjust Kn+I such that P - as n . Equivalently, 

the adjustment must force 1 > as n .-n+
 en 
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3.2 Development of the Adaptive Algortthms
 

in the derivation of this algorithm the measurement matrix H is
 

assumed to be invertible so that P can be written in the form
 

P = H D A Kn+I (3.4)
 

where AKn+ is an arbitrary matrix chosen to satisfy equation (3.4).
 

Let the initial value of the filter matrix be Kn then
, 


?,&-1) (n)
xn) = + KI° - H ¢ 0(±)J(3.5)nn
 

Rewriting eq (3:3)
 

P 6n0
 e = " 
n n+1 0 

= z(n+l) Hb×(n-t) - H 0 A Kn z(n) - H 4 x(n-1] (3.6) 

Substituting (3.5) into (3.6) gives 

e = z(n±l) - H ¢ { .Px&n-l) + o [z(n) - H c x } 

H AK+ - [ z(n) - H 0 x n-I 

= z(n+l) - H P{ x(n-1) + (K + AK z(n) - H 0 ?n-1] 
n n+1 L 

= z(n+l) - H '{'. xn-l) + KH n­

-.1
 n 


= z(nel) - H 4 x(n) 

=n 1 (3.7)
 

1 

Equation (3.7) implies that P = 0 in the equation 
1 o 

= P 6 + e =.e 
n+l 1 n n n 

and since 

e{e L(n) - H x(n-) 0 

{[z(n+l)-H (h () - H ' (n(3.8) 
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0 
From Theorem 3-1 and 3-2, AK+ is the correction to Kn required to
 

satisfy eqn (3.8). Therefore, under steady-state conditions
 

K0 
+K = K
 
AKn+1 
 opt 

T nT} 

However,' since the B{ 6n+ l 6 } and E{6 n 6 are unknowm, AKn+ can not 

be calculated. 

But P n+ and, therefore Kn+l, can be estimated by using the method of 

stochastic approximation (Dvoretzky 1956),. A detailed survey of 

stochastic approximation is contained in Hampton 1969. 

To provide insight into the derivation of the stochastic algorithm, 

the problem of determining P is reformulated in a performance index 

framework. Let L(P) be the expected value of the performance index 

to be minimized. 

L(P) = E {k (6 n+1 - an+l)} (3.9) 

where £ p n) T5n+l - n+I = n+i - 6n+rP 5n), is the performance index. 

When t(P) is known (the deterministic case), equation (3.9) can be mini­

mized by solving
 

V L(Popt)= 0 (3.10)
 

iteratively
 

PPn+! P +V n L(Pn) Bn+l (3.11)
 

under appropriate convergence conditions.
 

- 27"­



In the case at hand L(P) is not known. This condition is precisely the
 

motivation for stochastic approximation which states that (3.11) may be
 

replaced by the random matrix sequence -


Pn + (6n+l - 6n+l) Bn+l (3.12) 

wheren+l an+l Wn+l
 

{a I is a sequence of real numbers such that
 
c0 oo 2
 

a >a and Ea < 
n n=o n n=o n 

and Wn I is a sequence of uniformly bounded linear matrix operators. 

Under the above conditions the random "sequence generated by (3.12) 

converges to Popt in mean square and with probability one. 

Choosing a = 1/n and remembering P = H A K then (3.12)
n 
 n n
 

becomes
 
0 0) oT}
 

P. P +{(6n P 6 o o I n (3.13)nrI n n~i- n n 11 +1
 
n+n
 

n + { z(n+) H n [n - H ¢ x } 1n+I - x(n) P-nlj 

P + K ^ H )l ^ 6 " 60T 

n+n 
 T 
n n n#1 n 

Pn+ {z(n 1) - H ¢ x&n-1) + Kn+ an"(zn - H ¢ x 7n }n jj-n+ 

= P + {z(n+l) - H 4 xdi)} (n) - H 0 x(2 I]Iwn+I 

1 O T 
= H AKn + 

A an+i ) n+ (3.14) 
n+l 

=28­



and 

AK =~ (EN H- P-1 T-1T

n+l 


n+l
 

In equation (3.13) the expression in braces is the gradient of the 

nerformance index and determines the direction of the correction term. 

Wn+ is a weighting matrix and determines the magnitude of the correction 

term. The choice of Wn+I is vitally important since it determines the 

rate of convergence of the algorithm. From a computational viewpoint it 

is more efficient to let Wn+i'be a constant matrix for all n. For chis 

choice the correction term merely follows the local gradient at each stage 

of iteration. From a statistical viewpoint it is more efficient to let 

(3.15
-1 1 -1. -o oT 

' 
=+ 1 0 T I1 '.15TW {nW (6n) 

n n n n n n ) n 

For this choice the correction term is such that the performance index is
 

minimized at each iteration stage. Thus, intuitively (3.15) should converge
 

more rapidly, but at the expense of computation -time.
 

Instead of estimating P and then calculating AK as is required in
 
opt
 

using the stochastic algorithm of (3.14), it would be desirable to estimate
 

K directly. This can be accomplished by re-defining the performance
 
opt
 

index Z(-). Let
 

A = D (NTH)-HT [z(n+l) - H-6 x(n-1] 

6= z(n) - 4 x(n) and n 
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£(An+1I K 1 6 = (A 1 KfK )T (A n Kn+i 6) 

Then
 

Kn + 7 K L(K)
K 1 =n+ Bn+I (3.16)
 

T

=K +i{A -K 6 16
 

n n+l n n 
 n 	Wn+l
 
nfl-


If 	H- exists (3.16) becomes
 

AA 1 
K +i = Kn + { [ (n+l) - (n-1 - n) - X I sn +_ 

[z 	 n+l 

+ z(n+l) - x(n-1) k n n - Oxcn- T 

K" x 
 n
t+(]+-1 - 6 T n--i--_	 
+in~ 

nn~l
 
n 
 n+l 
 nn +n
 

n+ 1:
 

Equation (3.17) with W defined as in (3.18) satisfies the convergence

n
 

conditions of stochastic approximation. Therefore, K n+ converges to
 

K 

opt

, the optimum Kalman filter matrix, in mean square and with
 

probability one.
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3.3 Estimation of r, E, R, and Q 

By including an estimate of C(0) in the computational routine,
 

convergent algorithmt for the error covariance r; the one-step
 

prediction error covariance E; the plant perturbation noise covariance
 

Q, and the observation noise covariance R, are easily derived. These 

algorithms are 

Cn(0) =Cnl(0) +a En T _ (0 (3.19)
 

where a is chosen to satisfy the requirements of stodhastic approximation,
n 

Znn Kn C (0) (3.20)
n
 

r n (I - K ) Z (3.21).n n n 

R = K n (3.22)
n-"n n 

Qn= zn - r (3.23) 

Equations (3.20) through (3.23) are valid for H = I. Analogous 

results hold for H / I. 

In Chapter IV the experimental success of the algorithms derived in
 

this Chapter are presented.
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CHAPTER IV 

NUMERICAL SIMULATION OF THE SELF-ADAPTIVE
 

FILTERING ALGORITHMS
 

4.1 Introduction
 

In Chapter III, the learning criterion for self-adaptive filtering
 

was formulated and several convergent stochastic algorithms for performing
 

this adaptation were derived. In this Chapter these algorithms will be
 

applied to specific systems. The experimental -results were obtained on
 

The University of Arizona's CDC 6400, using the FORTRAN IV language. In
 

interpreting these results it should be pointed out'that double precision
 

arithmetic was not used.
 

4.2 	 Experimental Results
 

Given the system defined by
 

SI 	 n W (1.3) 

z = H x 	 + v (1.4)n n n 

with Q and 	R unknown, the optimum estimate of x is computed with a 
n+l 

Kalman filter of the form
 

Xn+1 = xn + K +1 - H) 	 (2.14)
 

Since Q and R are not known the optimum value of K can not be calculated. 
Howeve , ICop t can be- learned using the algorithm 

^ A -1 . T 

n+ = n n+l n 	 n+l (3.17) 
n+l 
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with 

Wn + (3.18) 

EXAIPLE 1: Ist Order Plant
 

= 1/2, H = 1, Q = 1, R = 1
 

x+ 1/2 x + w
 
n n
 

z = x +v
n n n 

For this Ist order case, it is easily shown that 

. - Q/R - 1 + (1 + Q/R - )+ Q/R2)2 
opt 2, 2 4 Q " 

= 0.53 

Figure 4.1 illustrates the adaptive process for an initial value of the
 

Kalman filter
 

K =0.0
 
0
 

which corresponds to the one extreme of assuming the measurements are 

just noise, i.e., they contain no information. As can be seen Kn as 

determined by (3.17) has essentially converged to Kopt within 200­

iterations, with K n K as n . In opt 1, Z, Q, and R were also estimated 

using equations. (3.19) through (3.24). These results for 1,000 iterations 

are compared with their actual values in FIG. 4.1 

FIGURE 4.2 illustrates the adaptive process .for an initial value of K 

equal to 

K = 1.0 

which represent the .other extreme of assuming the measurements contain no noise, 
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i..e., they are perfect. Again Kn has essentially converged to K within
 
opt
 

600-iterations. This indicates that algorithm (3.17) is not sensitive to
 

the initial value of K
 

Other Ist order problems were considered with ')being varied from
 

0.2 to 1.0 (the threshold of instability), and with the values Q and R
 

also being varied. In all cases considered Kn converged to Kop t within
 

2,000--iterations.
 

EXAMPLE 2: 2nd Order Plant
 

FO.966 0.000 .441 0.738 

L27 38 0.610L o 4 , 

H =I , R= I 

For this case
 

[Zo 1.07 

i.0oWoo 

and
 

V600 0.201 [ll k12
 
opt 
 L0.200 
 0.400k 121 k22j. 

For this example K was chosen to be
 
0 =F40 0.00 

o Ioo o I2 o 00 0.60]
 

The results of the adaptation process is shown in FIG. 4.3 (a) through
 

FIG. 4.3 (c). Again the process has essentially converged in 1,000 

iterations. Note that symmetry was forced on k 2(n) and k21 (n). 

The adaption process for the same system and K without forcing 

symmetry is illustrated in FIG. 4.4 (a) through 4.4 (d).
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The random sequences {wn I and vn used for simulating the adaptive
 

process were Gaussian in all examples presented. Analogous results'were
 

obtained for uniformly and triangularly distributed sequences.
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'CHAPTER V
 

CONCLUSION
 

This report has presented a self-adaptive technique for learning
 

the optimum Kalman filter matrix in an environment where the covariance
 

matrices of the plant and observation noise are unknown a priori. A future
 

paper will describe this technique in greater depth and extend its appli­

cation to nonlinear systems and present the experimental results for higher
 

order systems.
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THE CONTROL OF NONLINEAR STOCHASTIC
 

CONTROL SYSTEMS UNDER DISCOUNTED PERFORMANCE CRITERIA
 

Introduction
 

Systeis described by difference equations (state ecuations) and
 

subject to uncertainty as to how they will evolve are of interest in
 

many fields including engineering and economics. The optimal control
 

of such systems was first formulated by Bellman in 1958, and major
 

contributions were subsequently made by Howard (1960), Derman (1964),
 

Blackwell (1962, 1965), and Veinott (1969). However, while much
 

attention has been given to the existence of a solution under various
 

conditions, little work has been directed toward the development of a
 

practical algorithm. It is the purpose of this report and the author's
 

dissertation to develop such an algorithm for discounted performance
 

criteria. A fundamental study of stochastic control systems is made
 

in Chapter II, which establishes the basis for the development of the
 

algorithm in Chapter III. This report consists of these chapters and a
 

summary of the example problems worked to date with a brief explanation
 

of a proposed nuclear rocket control study.
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CHAPTER 2
 

THE CONTROL OF FINITE MIARKOV CHAINS
 

1.1 Introduction
 

A meaningful analytical examination of the stochastic control problem
 

is found in considering the control of finite Markov chains. Dynamic plant
 

equations and plant noise are modeled by a set of transition probabilities
 

over a finite state space. Each control law is associated with a set of
 

transition probabilitiesand a cost function is defined. It is found that
 

the cost function may be minimized by either dynamic programming or Howard's
 

policy iteration. This chapter examines both these methods and the propertie
 

of the cost function under various control laws.
 

2.2 	 Finite Markov Chains
 

Let (2,T, Prob) be a probability triple with 2 the set of elementary
 

events, ,5, the a-algebra of subsets of C2and Prob the probability 

a measure onT. The finite set of real numbers, = { 1x, 2x, -- x is 

called the state space and constitutes the range of the random variable x 

mapping0 ontoX. A stochastic process is a sequence 

of random variables.
 

The stochastic process y is said to be a Markov chain if for
 

whenever Prob[E0\EE .'-\E -] # 0. That is 

i
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where the pij(n) are the transition probabilities defining the chain. The
 

transition (stochastic) matrix for the chain is
 

The transition probabilities are related by the Chapman-Kolmogorov equation
 

¢,( (2.1) 
kzzi
 

where \S \Y1 Yn 4 I 

A chain is said to be homogeneous if
 

Then 

Let /d.4- -- Pcob = ';c] be the a priori probability 

that the chain is at state i71 at time n , and let
 

be the row vector of all a priori probabilities at time Y1 , then 

and, for homogeneous chains
 



The states are classified as
 

(a) '; is persistent if Prob 1 .v Srt ht I. 

(b) t is transient if Prob 'n 4 

(c) ;I is aperiodic if 

and
 

(d) T/ is ergodic if it is persistent and aperiodic (for finite
 

chains)
 

A chain is said to be ergodic if all states are ergodic. Examples of
 

state classificati6n are given in Figure 2.1, where the transition
 

probabilities are represented by arrows.
 

The following theorem will be useful in examining the control of
 

Markov chains.
 

Theorem 1: For a finite homogeneous ergodic Markov chain with transition
 

, there exists a unique stationary probability distribution 1 ,
matrix? 


and
 

-PC -geometrically fast. 

Or in matrix form,
 

P>_i _ - geometrically fast 

(Doob (1953), Ch. 5 §2).
 

Thus,
 



Yz 

(a) 

Figure 2.1 a) ergodic chain, b) non-ergodic chain, State 1
 
is transient, and State 2 is persistent, c) non-ergodic chain,
 
States 1 and 2 are persistent but chain is not aperiodic.
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or
 

and 

2.3 	 Controlled finite Markov chains
 

The dynamic system to be controlled has a finite state space
 

and 	is observed periodically (at every discrete time period). 
 At each
 

time period a control, 0( , which influences the behavior of the system is
 

applied from a set of possible controls A. As a result of the application 

of the control L EGA with the sysrem in state %I., X at time ­

there 	is a time independent,
 

(1) 	stage cost Q < k, 06) c' incurred, and 

(2) 	 transition of the system from at time * -- to X Y_ 
at time + with 

There is also a discount factor, 
 , O <\ ; whereby, the cost 

X(xzof for being in state C and applying a control 9 Y1 periods into 

the future has a discounted cost of P I _t(-x) at the present. 

Let 1T denote the set of control functions tA from X into A
 

(i.e., xAE- implies u(i N for all C- ). A policy,", specifies 

a sequence of control functions for all time; W = uIo a .o. 

Thus, at time V , with the system in state X+, the control C 



is applied. A stationary policy is a policy for which U.L I 

i.e., = * , • L 

Let rrU Ix ~ 9- T 

be the column vector representation of the stage cost for all stares
 

under the control U&\ . Let PM- be the 7xT I'arkov transition
 

matrix for the control jA in the Markov chain established by the policy T,
 

Thus, by the Chapman-Kolmogorov equation, the transition matrix from time 

to trY is 

For the policy\ and the initial state the total expected cost vector
 

is \lrw' =r41 ' j S 

where 

t7)(c&nuX st+j (2.3) 

or
 

Juo)+ >t{Ant 
4 * 

where A 



or, ia vccwon form, 

q'% "',, for ­.U'.t all 
*.t2
 

w¢here Meats
 

ti & eied ass,Orwhhot.L. oomo 

The aheo~ams in this saco are su zo" 31 -:.;:;- :. ) an( 

szy n 1.
The profs ME follow B!eck.al_ a-_o.c vzb_ .... _n ..
 

,for zh:e --. i., Ala axpz&e an.­sg.z they provide f-az~O bala&vf-y .1 


f:a"AG" \/aW£ ...... dfee= yPez of ?Woliao.
 

!m ... eeexssa .. .Ch thaz for an arbitrary , q<:... 

and any --­

-roof. Consider the i- element
 

http:B!eck.al


8 

Let L for any 

Obviously, )9 O Thus, the set 

has a lower bound of zero and hence a greatest lower bound for say 6%'A. 
The control function such that (%C 0(- satisfies the lemma. 

Theorem 2 (Blackwell) If there is an optimal policy --V= Uo1 U1
 

there is an optimal policy which is stationary.
 

Proof. By hypothesis,
 

for all "WX147-1 < 

where ,Tk ,oo= " 

Also, \ (JQ, < \. QRM 

By the lemma, there exists a gE\J such that 

and 

> L + L - ,6?() N(\t\L(.+' k(&M­,pie 
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By continuing this process,
 

Ns r4 P0( . ~fl since and 

is a stochastic matrix. 

Thus, as' - 00 

but since v* is optimal
 

and is a optimal stationary policy.
 

Theorem 3 (Blackwell) Let 7- = k0OQ 1 , 

and f _. LAO)U J... I - If 

VCT) <\Ar% for all -Tr--

then j is optimal. 

Proof. By hypothesis, 

UV)for all6X 

Or ?c for all -C ekfT. 4 cv)v 

h for all E
 

or f Ar?(~Uz4f t Y1 ~{< t, Jw 
Continuing this substitution process for the policy wd§ [ o 

)P(iz) 

or -T\- '(A\~]> ","
 



i0
 

Again as) flP ) (M .P( ) ( - b 

Each ft is an arbitrary element of U; thus as A-, V(Tt) becomes 

the cost of any policy. That is
 

-W) x, .\I(' for any 

Thus is optimal.
 

Theorem 4 (Blackwell) Let if and 

i - uo,°o-]. V1&r') theni- OT <if 

for the stationary policy f, V(<)< '4Q& ( < means 

for all elements with < for some element)
 

Proof. By hypothesis,
 

pf )*-ro <\i KLC*) - OV(To 

UU')fP(f)L(n4- fl 4(.\&rs) < "N('w). 

Continuing this substitution process,
 

.N-\kY\-

Once again, as ,V 0.-'I NC.r)" 

V( I <VO , 

completing the proof.
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Theorem 5 (Howard) If k is finite, then there is an optimal stationary
 

policy.
 

Proof. Consider any stationary policy ' then either
 

(a) X +I&z?TN. s(:T& r i 1 fJ for all 

or
 

for some 

and some t 

If (a)holds, then for any rc IfYL- 4 ( % the policy 

§(4,j,° oo is more costly than the stationary policy 3 , i.e., 

and by Theorem 3 5 is optimal. On the other hand, if is not 

optimal, i.e., there is some ) for which (b) holds, then a new control 

function, U , is defined such that for all 

u( -- ' .,for case (a)
 

-- , (b).
c for case 

Then by the construction of U, for the policy -, 

By Theorem 4,
 

Thus, we have a policy, U , which improves upon 3 Since A'is 

finite, there are only a finite number of stationary policies. Thus, 

there is one which has no improvement and is optimal. 
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The motivation for restricting the class of control laws studied to
 

those that are stationary is contained in Theorem 2; it is seen that any
 

optimal policy may be replaced by a stationary optimal policy. Theorem 5
 

lays the basis for a constructive method of finding this optimal stationary
 

policy, Howard's iteration in policy space. In the next section this
 

procedure is explained. The set of admissible control policies is taken
 

to be stationary; thus, for notational convenience the policy L,= t U,
 

and the control function 1j<CC are considered to be equivalent, and
 

2.5 Howard's policy iteration for O<4 vc 

Before the method of policy improvement contained in the proof of 

Theorem 5 can be applied, there must be a means of obtaining the expected 

cost vector, \(U) , for any ---. . Consider any stationary policy, L 

over f stages, then let,
 

~L 

(2.6)
kk)*-

or in matrix form
 

,-,. , (2.7)
 

The stage cost function L ,U( is bounded for all 7. by
 

definition. Let this bound be 14t Then
 

"4(Ll~ kAt­



It is apparent that the sequence
 

"-,a LA k., LA~ o* "Oxlu :° 

is monotonically increasing-for all I. Since .j(C _) is bounded, 

it follows that the limit exits. 

Say, \ = ,)O-~ \J~, 

This limit is
 

or the total excepted cost of applying the policy UEU from (2.3).""
 

Again taking the'limit as - from (2.6),
 

or k>6 

Thus - - = L(& )­

and
 

•Aj( = Ltz-fV6-811 L-O (2.10) 

if the-inverse exists.
 

To establish the existence of the inverse, consider an arbitrary
 

stochastic matrix exists if and only if
 

0 or A9- where . O. However, 

for a stochastic Matrix P, all eigenvalues are of magnitude equal to
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or less than one. Thus, 8e _ - -O only if , b\ 

0implies > L Therefore, , or 

equivalently d t - zI , and the inverse exists. 

Another useful result follows immediately. For a fixed policy 

x.xCU the cost Lk) is a continuous function of Consider 

It is apparent that the elements of the inverse are rational functions of
 

with no singularities for 0< Thus xtrp' is a continuous function off
 

Howard's policy iteration is a two-step iterative process as
 

follows:
 

(1) for a given stationary policy Ij determine 

TLG&)" 

and go to step 2 with VZV ( u) 

(2) for the cost function \=(\,,&z1---, )select 1A k1such that 

u(-)CA minimizes 

and repeat step 1.
 

The process is terminated when step 2 yields no further improvement.
 

The resulting LA is the optimal stationary policy by Theorem 4 for a
 

finite control set A. The last V generated by the process is the total
 

expected cost vector for the optimal policy U . The policy iteration
 

procedure can be started at either step 1 or step 2. If there is no
 

convenient policy to assume for initiating the process, that is, if
 

there is no policy suspected to be near the optimum, then it is attractive
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to let V-= o initially. This results in the first policy iteration 

improving upon the 'tage cost--a reasonable procedure if no additional
 

.knowledge is available about the optimum.
 

2.6 Direct dynamic programming
 

An alternative to considering the infinite duration process with a
 

stationary control just solved by policy iteration is to examine a
 

finite duration process. An optimal control sequence which minimizes the
 

expected cost over fl time periods is sought. The conventional dynamic
 

-programming functional equation results, and taking the limit as rV OC 

the same control is obtained as by policy iteration,, Consider 

... + "l -,) + 

tz4 ~-~ p hK~(jS (2.11)' ~ 

where •-, -L is an arbitrary terminal cost, 1L ..
 

As before, the set .of cost functions
 

.st (' I",).. . * is bounded for all 
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& since 

where CA 

Let Q (x 

terminal cost 

that 

Now assume 

and show 

-n 

/j for \1W .. ; for this 

L) decreases monotonically.- To show this, observe 

k.)-for all\ 

S for all 

-for all I 

Thus k.,.(, ,),and is seen to decrease 

monotonically. .Again, since the 'sequence tr.l %r 

is monotonically decreasing and bounded below by zero, it has a limit
 

as n, oo , say, a ( C) . Taking this limit in (2.11) 
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fluf~B(2.12) 

Thus, (2.12) defines the expected cost function for an optimal policy over
 

an infinite duration. Furthermore, it can be established that the solution
 

to the equation is unique, Assume to 
the contrary that two solutions, JQC) 
and j(i) exist with associated control functions ', and $ Then. 

Subtracting yields,
 

'3 
By successive substitution,
 

Taking the limit as V -- t e , 

LU - k0 for all L 

By a symmetrical argument, 

for all7'c 

Thus,
 

and the solution 
 -to (2.12) is seen to be 

unique. Also by letting .cv>.o the control which results from dynamic
 

programming is optimal for the original cost function (2.3). 
 Since
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.
Z Lsay. 

There exists no such that
 

It is seen that the solution to (2.12) is the same as the solution of
 

Howard's policy iteration procedure.' Thus, the solution of the dynamic
 

programming iterative equation:
 

as y-.)co yields the same cost function as does policy iteration. It
 

is also apparent that, if the limiting control function resulting from
 

dynamic programming is used as a stationary policy, then this policy is
 

the same as the one resulting from policy iteration.
 

One important question still remains unanswered. What is the rate
 

df convergence of the dynamic programming solution to the stationary
 

optimum? As before, the sequence
 

decreases monotonically to \YC . 
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Let 3 '. c 

then
 

6YA C2.A13) 

The maximum deviation of from V thus decreases at a rate of 

at least . Practical experience shows that this estimate of the rate 

of improvement is quite close. It is seen that for (less than about .7 

the rate of convergence is very rapid. 

The maximum error, 6 , is, of course, impossible to obtain during 

the dynamic programming algorithm since the final cost N is unknown. A 

bound on C can however be found. 

Let 

As before, for
 

C. ( O 
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Thus 

and o 

However, 

or
 

Thus the error is bounded by the observable stage difference', Sn.
 

The dynamic programming algorithm can be terminated when SVgets 

sufficiently small.
 

2.7 Howard's policy iteration for R t 

The control of finite Markov chains with (i.e., no
 

discounting) is somewhat more difficult to examine than the discounted,
 

cost chains. It is convenient to assume not only a finite set of
 

stationary control laws, but also to restrict A such that for any
 

the resulting Markov chain is ergodic. Before defining what optimal
 

.control means for the undiscounted costs, the behavior of the cost
 

function is examined.
 

Let,
 

Uyx4J (2.15)t-) 
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be the undiscounted expected cost function for the stationary policy, 1,
 

applied to " stages. Then, as before,
 

= ,J (u .,(2.16)
 

with Z = 

or, 

In matrix form
 

= L(~ * (2.17)4?&Mk~4- V~u~c' 


By Theorem 1,
 

where as Yfl--*&M , geometrically fast. 

Consider, 

j9o y'Vu= An nZ ?&)L() ,ifthe limit exists, 

However, V)fl-400 M4 Q-_ 

x.
tn. ,,tAL,-,.' = since Q, -aO 

Thus1
 

)aL43&I'V#O 


and for large Y,
 

\fIh(AY\ - n(uLG4-. constant 

(2.18)
say
k LL) Lk) ,2C 
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=HL(a) 


policy tt , and the vector WA(J4)- is called the potential of the policy.
 

Substituting (2.18) into (2.17):
 

The scalar Q(LC is the stationary average.cost of the
 

or
 

with ( 

In the limit as Nt)_) c 

\N)(fl x-~t~i
L~l4-?VV4Lfl(2.21)
 

A stationary policy 06J is said to.be optimal if 

C '<(u ov c\ U E-

That is, the optimal policy for is the one which accrues the least 

average cost. 

The question arises, does (2.21) determine ( and \444 uniquely? 

To answer this, consider two solutions,V4 1 3 and Y)a for the same policy 

Lk. (2.21) immediately yields, 

or 7 

where A=
 

Thus,
 

However, the elements of are bounded as - thus C0 and =G . 

Therefore the stationary average cost is determined uniquely by (2.21). 

http:L~l4-?VV4Lfl(2.21
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Now, 	 with C=C, in the limit as 
C 

The 	only solution to this equation is
 

7 constant. 

Therefore, the potential, N(cf , for a given policy, UCJ , is 

determined up to an additive constant. 

Howard's policy iteration for undiscounted cost may now be specified 

as follows: 

(1) for a given stationary policy, C4&- , determine 3 (u) and 

from W(u1 from 

and 	go to step (2) with V4 = Wi(u) " 

(2) 	for the potential function, \4 , select U such that L ( ) 

minimizes 

J ~J
 

and repeat step (1). 

Again, the process is terminated when there is no further improvement in 

- , or equivalently when the policy Lt ceases to change in step 2. 

To show that the policy iteration indeed yields an optimum stationary 

policy, consider any policy ,\- , then 

&NrCCu>.~.cir&.z L A~~&4q~vr(ifl (2.21)-

A new policy, LA} is generated by minimizing the right hand side of
 

2.21. It is apparent that the additive constant in W does not affect
 

'A. 	Now, 
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where 

and - applies for some L. 

Thus, 

- '4(&) 	 *'? ~(2.22)
A 

Recalling that for the stationary probability distribution, , associated
 

with AA 

AA 

and multiplying, (2.22) byjxi and summing yields,
 

or OCU) 3 (W) ) 0	 A
A 

Therefore, v4) and the policy', U , generated by policy 

iteration is superior to U , the policy which preceded it. Since there 

are only a finite number of policies eventually there occurs a policy 

which can not be improved upon in step (2). This policy is the optimal 

policy.
 

2.8 The optimal control as
 

It is interesting to consider whether the control obtained for < 

but sufficiently close to one is the same as the control for f--
Let flzi be a fixed policy arbitrarily close to one with an associated 

optimal policy U Then call the second best policy the one with ­
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minimum maximum deviation from "( , where the notation includes 

the dependence on . Thus the second best policy is such that 

is minimized. Now, since for any fixed 1-k . LP) is continuous in f 
it follows that there exists a d such that for all /< the 

cost of the policy LA is less than that of the second best policy. 

Holding this policy fixed, a potential type function is defined for 

4 \ 
'o so that the optimal policy as --P may be examined. Let, 

ufl L (2.24)-

where is the average stationary cost of U for ,and
 

Since Z (&i is constant with respect to t finding the 

control such that U('x) minimizes( 

is the same as the control which minimizes YC/4)"v(Y' /tZk)"IAJ 
Now examine the potential function as 

Vol; 

- 4) 5 L ( 4J) ')Z( 
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In the last section
 

existed for undiscounted cost; thus,
 

and further it is apparent that,
 

-- is= A otku 
Also, 

Since the control policy obtained by applying step two of Howard's policy 

iteration to either V4U f or ,U, is the same, it follows 

that the optinum policy e$ is valid for , 0 / \ Thus the undiscounted 

problem can be solved by solving the discounted problem for ft. sufficiently 
close to one. 



CHAPTER Ill
 

A NUMERICAL ALGORITH4 FOR OPTIMAL CONTROL
 

3.1 Introduction
 

In Chapter II the characteristics of the expected cost function were
 

examined, and two methods, Howard's policy iteration and dynamic program­

ming, were developed for obtaining the optimal control of finite Markov
 

chains. In this chapter stochastic systems whose state space is defined
 

on the continuum are considered. However, rather than view these systems
 

rigorously as infinite state diffusion processes, they will be considered
 

as 
finite Markov chains with the large but finite discrete state space.
 

A numerical algorithm which employs a quadratic approximation to the
 

expected cost function for a partitioned state space will be developed.
 

3.2 System description
 

The systems to be studied are defined by a set of difference*
 

equations
 

called the plant equation, where
 

V = time parameter 

= n-dimensional state vector 

= q-dimensional control vector 

= n-dimensional random vector, plant noise 

T = n-dimensional vector function. 

The state Z=& 1 p4z ... zx') is restricted to the statespace 

=. \mst4 m j,,and any transition out of this 

27
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region under (2.1) is not considered. The control .O is---,is 

restricted to the control space . The random variable , called 

,the plant noise, has a known probability density function,
 

which is time invariant~and is independent from one time instant to
 

another. If it is desired to model a system with correlation between
 

plant noise from one time instant to the next, it is possible to define
 

additional state variables and new random variables for which the plant
 

noise is independent (Meier 1965). Also, with no loss of generality
 

is considered to have zero mean.
 

Stochastic constrol systems with continuous state space can be 

considered, as an approximation, to be finite Markov chains by establishing 

a grid on the state space . The grid points are states of the finite 

Markov chain and the transition probabilities, , defining the chain 

under a stationary control law, are obtained by determining the probability 

of a state transition from *IX on the grid to a hypercube about ( on
 

the grid. To better illustrate this, consider the second order system.
 

in Figure 2-1. The transition probability ,() under control( is
 

defined as -

I :( 3.2) 

The stage cost at time V is defined as before, 

The total expected cost function is, as in Chapter II, for a stationary
 

control law, Lk
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2 ' QJt Li P CU) %'C.3-x 

Again the control law U. with uQ< ctc \ is sought which minimizes 

V) for all -XE56/or for the finite Markov chain representation all C 

which are grid points. 

As before, 

W~xl~~z 1a.ytfPYQ~~LXtV±S? (3.3) 

3.3 	 Solution by Howard's policy iteration
 

To find the optimal control via policy iteration it is first necessary
 

to model the system as a finite Markov chain. A grid must be established 

which is sufficiently fine to approximate the behavior of the system 

defined on the continuum. Dividing each coordinate x'Cinto ML equal 

increments <[ wide accomplishes this for MC small enough 

and defines T= N grid points. 

Now to obtain transition probabilities under the stationary 

control '0 it will be necessary to perform the integration in (3.2) 

times. Then having attained the )YS transition matrix 

step one of the policy iteration procedure (Section 2.5) requires
 

inverting
 

also, a matrix. In the minimization in step two, it will again be 
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necessary to evaluate (3.2) 71 times for each control law considered. 

The number of control laws considered will depend on the numerical
 

minimization technique used, but it is evident that this number could be
 

large even for limited control spaces. To see the prodigious labor
 

necessary to employ Howard's policy iteration for systems with continuous
 

state space, consider a second order example with
 

and let & &->. . Then , and J [ . Thus 

P has elements as does Already it is evident that while 

Howard's policy iteration is a valuable technique for finding the optimal
 

control of finite Markov chains with very few states and a useful
 

theoretical tool, it is impractical to employ it on the systems defined
 

in this chapter. It would be necessary in the present example to store
 

100 million transition probabilities in computer storage and invert a
 

i3,X1. matrix to achieve only step one of the first iteration of
 

Howard's method-clearly an overwhelming computational task. On the other
 

hand, it will be shown in the next section that dynamic programming as
 

developed in Section 2.6 offers a more palatable numetical solution.
 

3.4 Solution by dynamic programming
 

To employ dynamic programming, as before, a N-stage minimum expected
 

cost function is defined,
 

--
or jc 

.& ,.f4 u a 
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with U xo3 -O. Again a grid is imposed on the state space with N 

increments along the -L axis and jW 1T,Q total grid points. It would 

now be possible to employ (3.2) to define the T'AT transition matrix P and 

(3.3) would become, as in the last chapter,
 

XI rnv~ij j~i4R h Y ( ) < 
for all the grid points. However, to avoid the difficulty of obtaining 7, 
a more convenient approximation is to quantify the noise in a manner 

similar to imposing a grid on the state space. That is, the probability 

density function is approximated by imposing a grid on the domain 

of and attaching a probability to each grid point. Then the noise 

is described by the set of noise values ... and the 

associated probabilities, j *I . Now 

equation (3.3b-becomes, 

%c~~ (1) N 3.4)\i'U(1)$_'%)AC# ~ 

for L , , .J' Equations (3.1) and (3.4) describe 

the dynamic programming numerical algorithm for the solution of the
 

stochastic control problem with discounted cost. While the dynamic
 

programming functional equation (3.4) offers a solution to a wide range
 

of problems analytically, the computational requirements of high-speed
 

computer memory and computing time can become excessive except for simple
 

problems. The memory requirements are the same as for deterministic
 

problems while the computation time is more severe. To better observe
 

these difficulties and to see that Bellman's "curse of dimensionality"
 

not only affects memory requirements but also computing time in the
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stochastic control problem a more detailed examination of the algorithm
 

is in order.
 

Since it was shown in the previous chapter that J Unnu ,tr 

there is no necessity to store all the cost functions and control functions 

generated as (3.4) is solved. Only the last cost function and the present 

cost function,and control function that is being generated, need be stored. 

Thus, 3 W Ct% memory locations are required to store the infor­

mation vital to the iteration of (3.4). Further, for economy in 

computation time, these values should be stored in high-speed memory 

(Larson, 1968) which for most computers is limited to about i(Q words.
 

Thus for the second order example of Section 3.3 it wouldtbe necessary
 

to have available 3-i0 high-speed memory locations. For a three 

dimensional state space with )AO,, storage)% ( 


locations would be necessary, overwhelming the capacity of nearly any
 

computer. This "curse of dimensionality" is a severe limitation to the
 

problems solvable by dynamic programming. A first order problem is shown
 

in Figure 3.2. To evaluate U CX, 7 with the control U CX ) applied 

it is necessary to evaluate ( 4 by interpolation of the stored 

cost function at time W times where i is the number of 

discrete noise levels used to approximate the probability density function
 

For a second order plant with
 

and % independent of \.& then both and could be quantified 

separately into sa-, M4, and W1, levels. Thus)Nr 1, f" and in general 
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-i, j- Vti 

L 

Figure 3.2a The dynamic programming numerical algorithm for first
 

order problem.
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for a 1\ order plant N 7- ktV , and the cost function must be 

evaluated .,-[ times for each iteration of (3.4). Consider each 

noise element quantified into, say, five levels. The number of cost
 

function evaluations necessary for the stochastic problem as opposed to
 

uhe deterministic problem (1=i =o I increases by a factor of 

five for each increase in dimensionality. Thus the "curse of dimen­

sionality" affects the computation time of the stochastic problem with
 

respect to the quantization of the noise. It is the main vurpose of
 

this dissertation to develop an algorithm which alleviates the high­

speed memory requirement and long computational time intrinsic to a
 

straightforward application of dynamic programming to the stochastic
 

control nroblem. The next section begins the development of this
 

algorithm.
 

3.5 Dynamic programming with a partitioned state space
 

The problem of excessive high-speed storage which is attendant to
 

the dynamic programming algorithm was attacked with considerable success
 

by Larson (1964, 1968) for the case of a deterministic plant and
 

continuous time, i.e.,
 

Larson's method, called state increment dynamic programming, took
 

specific advantage of time being defined on the continuum. This restric­

tion and the deterministic nature of his plant equation thwart a direct
 

application of his technique to the discrete time stochastic problem
 

under study. However, a basic concept of Larson's method will be
 

employed for the problem at hand. State space will be partitioned into
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blocks, and these blocks will be treated individually in calculating 

the optimal control and cost function. The expected cost function, 

iN-D, over each of these blocks will be approximated by a quadratic 

surface. The effect of this partition and the quadratic surfaces is
 

to substantially reduce the amount of high-speed memory necessary and
 

also to reduce the computation time. The price paid for these advan­

tages is a more approximate control law than that achieved by
 

conventional dynamic programming. However, the classes of systems
 

examined will be restricted such that this loss of accuracy is not
 

substantial.
 

To better illustrate these concepts, consider the second order
 

problem and two dimensional state space in Figure 3.2. Here the
 

state space has been partitioned into 25 blocks of equal dimension.
 

There is no advantage in unequal dimensions so for simplicity equal
 

dimension blocks are used for the partition. The expected cost
 

function is also partitioned into the surfaces above each block. In
 

are illustrated.
the figure the furface partitions above blocks 0 and S 


These surfaces are then to be approximated by a quadratic fit which
 

..,
in the two dimensional case will be, for block 


tZ 

and for th& n order system,
 

The block size is selected such that, as illustrated in
 

Figure 3.3, when is under consideration and control LA is applied
 



-
K ---- . -­

1/ / _ / - /
 

7 7
 

3 21Y / 

Figure 3.2b, Partitioned two dimensional stata space:
 



Figure 3.3 Transitions from the state X
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,(-4A lies in the block containing L7L or an adjacent block. This
 

condition can be met easily enough by making the block size very large.
 

However, since the cost function or surface over each block is to be
 

approximated by a quadratic surface, it is also desirable to have the
 

blocks small in size. Thus, a compromise must be reached, and this
 

comnromise obviously depends upon the problem being solved. A
 

reflective examination of the system equations is usually adequate to
 

determine an appropriate block size.
 

Consider for example that the state space in Figure 3.2 is
 

Xrnr ~xM'n,= -29 and ;zr-'41 Zmazzl 2-S and that 

Thus, each block would have 100 points in it 

(including its boundaries) with 10 increments to a side. The cost 

surface above each block would be described by 6 numbers, 0 , 

andS . Since for each - a member of block A ( x. 

is restrained to be a member of either ' or a block adjacent, it is 

possible to evaluate (3.3) for all points in 8, with only the 

parametric description of 'BA and its adjacent blocks in high-speed 

memory. Thus, recalling Figure 3.3, only Qt36 high-speed memory 

•locations are necessary to store the cost surface for the partitioned
 

state space algorithm. For conventional dynamic programming 5 -rD -CC 

high-speed memory locations would be necessary. 

Obviously, even for conventional dynamic programming it would be 

possible to store the entire cost function in low-speed memory (tape,
 

disc, or drum storage). However, then it would be necessary to go to
 

low-speed memory for each cost function evaluation. This is a time­

consuming process which would involve -IFf--gIaccesses& to
 
t:; cri 
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low-speed storage where K, is the number of controls evaluated at each
 

state point. With K the example considered in Section 3.3 would
 

require itDC; .Q0. cA 0 accesses to low-speed memory. For the
 

partitioned state space (PSS) algorithm only accesses would have to be
 

made to low-speed memory, where Y is the number of blocks (25 accesses
 

for the problem in Figure 3.2). In the next section the PS3 algorithm is
 

shotm to reduce computation time as well as high-speed storage.
 

3.6 The quadratic anproximation of the cost surface
 

The criteria for fitting the quadratic surface to the cost function
 

over a given block is taken to be unweighted least squares regression.
 

For block 13 recall,
 

AQLfU *Z-3 -. , ., (3.5) 

and the functional to be minimized is,
 

for the V\= --- "Z parameters of the quadratic surface. Thus 

j 

•which yields,
 

A
 

+ ((3.6b) 

and .• . A 
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(3.6) may be summarized in matrix form as,
 

Sz- ----­ (3.7) 

where= Ctp;.., K, TT 
-

and -7-( ) >, Z"-xtIt ,&-7_(-< 0c> ,. -z, 

are Xx\-\ column vectors, and Sis the AbA matrix described by (3.6)
 

such that (3.7) holds.. Thus, the column vector, : , describing the
 

quadratic surface is
 

It is not necessary to invert a S matrix for each block; instead, since
 
all blocks have the same dimensions S ,'f may be calculated for a block
 

with standard coordinates, and T-iX) transformed to this block. Thus the
 

MV. matrix ' need be inverted only once. Further, the storage for the
 

surface for 1 and adjacent blocks is Nlsr36tA locations. Thus,
 

n -2 

To see that the quadratic approximation not only reduces high-speed
 

storage requirements but also computation time, recall (3.3)
 

zC\K> it, on(ra'01l~d % X
Iz1A ({z~.~. 



For the noise quantified into values (3.3) becames(3.4),
 

Therefore, it is necessary to evaluate ( -) es for each 

control considered where i will have a tendency to increase geometri­

cally with the dimension, fl . On the other hand, for FSS dynamic 

programming with lying in block I and parameters Tz(.C) describing 

Lr~~ for );(C 

or approximately,
 

r4%) IA)A A u5 / £-yy(--x =Y'Ajv' ''+2 

-t-' -I "' -, -t 
"-"~ ¢ ~ l ,. = 

2 (3.8) 

C h/\. -'it in}xt=1
Thus, only one cost function evaluation must be made for each control
 

and the additional term,
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calculated using known covariances, E The cost function 

evaluation is of C( ,- rather than ; however, the compu­

tation time of the two evaluations is comparable. The quadratic 

approxtmation to the cost function2 therefore, affords a significant
 

savings in cost function evaluations and computation time.
 

3.7 PSS algorithm
 

Once the state space has been partitioned, the PSS dynamic programming
 

algorithm can be applied. A flow diagram of the basic procedure is
 

contained in Figure 3.4 while a more detailed flow diagram and Fortran
 

program listing are to be found in Appendix A.
 

A particular block is designated as the origin block (for example,
 

block 1 of Figure 3.2) and the cost surface associated with ft is determined
 

by techniques to be discussed in Section 3.9. The origin block is
 

generally selected to contain the minimum of the cost function over all
 

state space if possible. For many problems it is easy to define the origin
 

block appropriately, such as the stochastic regulator problem where the
 

system is to be driven to the origin of state space..
 

With the cost surface for the origin block obtained, another block,
 

say 10 , is considered for processing (Step 2). Both this block and all
 

adjacent calculated blocks are brought into hgh-speed storage. The block
 

being processed must have at least one calculated block next to it. This
 

is not a significant restriction on the method, as, in general, the blocks
 

are ordered in such a manner that they radiate out from the origin block
 

as they are considered (Figure 3.2).
 



Find cost surface for
 
block at the origin
 

Tode 1-iIkey l 

Determine the next
 

block to be processedj
 

Determine all adjacent
 
-blocks that have been
 
processed and bring into1
 
high-speed storage the
 

parameters describing
 

their cost surface
 

Compute the optimal Compare present 
control and cost for block cost surface 

each point in the block to past cost surface 
being processed to determine the 

_ _ convergence of the 

Fit these costs withl , algorithm 
a quadratic surface[ MODE = 2 

IMODE = 1 

IStore the control and If maximum deviation 

cost surface parameters of the surfaces is 

in low-spedstorage'.- ,set greater than WTKey= 2 

Has the la-s-t bhock 

[been processedN
 

Yes
 

Is Key =2 ? i No
 

Yes
 

MfODE =2 Key = 1
 
Process I is maximum Yes
 
origin Wo ' iteration
 

block exceeded ?
 

Figure 3.4 Flow diagram for Dynamic Programming with Partitioned
 
State Space.
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The optimal control and cost of each point X 
 is calculated
 

(Step 4) by
 

where x/(,,Lk e with -(rn) known, or b is the closest block to the
 

point -() 
 for which E(rn) is calculated. The iteration variable
 

has been suppressed since the blocks will be stored back in the same
 

location after they are processed. That is, the stage identity is
 

destroyed. The set of costs, 
 'L%)\X ez& , is then fitted (Step 5) 

with a quadratic surface, Z(A) For the first pass through state space
 

MOo E l ,the control for ? and the parameters of adjacent blocks 

are then placed in low-speed storage (Step 7)-and Step 2 is repeated.
 

After all of state space has been considered once, the algorithm goes
 

into MAoD Z (Step 8). For all subsequent calculations -(XQcx& is 

assured of lying in a calculated block for the evaluation of (3.8). Also,
 

a comparison of the present cost surface and the previous cost surface over
 

the block is made (Step 6) to determine the convergence of the algorithm.
 

Convergence is guaranteed for P3<1 by (2.12). 
 The process is continued
 

until convergence is attained over all of state space or until a maximum
 

number of iterations is reached.
 

3.8 Block processing order
 

-Before the algorithm described in the last section may be applied,
 

the partition of state space must be ordered; i.e., 
an integer must be
 

associated with each block which determines when it will be processed
 

during a pass through state space. The only restriction upon this ordering
 

is that each block be adjacent to a block previously processed during the
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current processing sequence., This restriction causes the blocks to tend
 

to radiate out through state space from the origin block as they are 

considered. There is, however, reason to be more selective in the 

ordering. Namely, it would be ideal if the optimal control, Lt , at a 

point A always caused Pty LJ to lie in a block which had already been 

processed during that pass through state space. This could be accomplished 

if the optimal control were already known. The block ordering could be 

taken opposite to the direction , that is, opposite to the 

direction of the expected transition from -X under optimal control. 

Obviously, if the optimal control were known, the problem would be solved; 

however, in many problems although the optimal solution is not known, 

there is some knowledge as to the manner in which the system should be
 

controlled.
 

This idea was made explicit by Larson with the concept of preferred 

direction of motion. The preferred direction of motion is, basically, the 

expected direction in which the trajectories of the system tend under 

optimal control. The information used in establishing the preferred 

direction is a priori and rests on an intuitive feeling for the system's
 

behavior. The blocks are then processed opposite to the preferred
 

direction.
 

If the preferred direction is not known, the algorithm still works
 

and will converge, although more iterations over state space may be
 

necessary. Thus a general technique for ordering the blocks in the
 

absence of a preferred direction is desired. This objective can be
 

achieved in the following way, again suggested by Larson. Let the blocks
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be designated as in Figure 3.5 where 1j, is the origin block and is 

defined to have coordinates ",] (oy) The blocks B,...t- are 

said to lie in layer one Quo , in layer two 

etc. These blocks have coordinates, 
'?oD%= na0es0 

The ordering is achieved by counting with 2-digits modulo lip -/V \
 

for the blocks in layer h. Take for example layer one; counting
 

yields 00, 01, 02, 10, 11, 12', 20, 21, 22. These numbers MOD/3 are
 

associated with the block coordinates (0,0), (0,1), (0,-i), (1,0),
 

(1.1), (1,-i), (-1,0), (-1,1), respectively, and the block
 

ordering through the first layer is achieved. For the second layer
 

counting MOD/5 yields 00, 01, 02, 03, 04, 10, 11, 12, 13, 14, 20, 21,
 

23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44. The MOD/5 digits are
 

associated with the block coordinate elements as follows:
 

z ~ i-\w 



A t"
 

V z . \ I
 

Figure 3. BlcIreigfrascn re ytm
 



Thus, the sequence of MIO0/5 numbers corresponds to the block coordinates 

,0,(0,I), (0,-!), (0,2), (0,-2), (1,0), (l,l), (1,-i), (1,2), (1,-2), 

(-i0),(-1,1) !-), (-1,2), (-l,-2),(2,0), (2,1), (2,-l), (2,2), (2,-2), 

(-2,0), (-2,1), (-2,-i), (-2,2), (-2,-2). Deleting those coordinates in 

layers !over than layer two results in the sequence, (0,2), (0,t2 ), (1,2), 

Q ,-2), (-1,2), (-1,-2), (2,0), (2,1), (2,-l), (2,2), (2,-2), (-i,0), (-2,1), 

(-2,-1), (-2,2), (-2,-2) with the associated blocksZZ- ,,, 4- * 

This counting procedure can be carried out through an arbitrary number of
 

layers and for a 11' order system. The <order system would require
 

counting with -digits MoDY[/P A detailed flow diagram and program
 

listing for the ordering of blocks is in Appendix C.
 

3.9 Calculating the origin block
 

To initiate the PSS algorithm it is necessary to calculate the
 

quadratic cost surface associated with the origin block for the first pass
 

through state space. This can be done either by dynamic programing
 

using quadratic approximation over the origin block or by policy iteration
 

also employing quadratic approximation.
 

Howard's policy iteration has application in finding the cost function
 

of the origin block for the continuous state space stochastic control
 

problem. Again, let the quadratic cost surface over the origin block be
 

described by
 

Then for a fixed policy LAO defined for all grid points in the block,
 

it is desired that
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L- (3.9)
 

However, there are in general more than Q I i 7 i Z)t. points in a
 

block for a voorder system. Thus, a least square equation error criteria
 

is used Lo determine the quadratic fit for the cost function. That is,
 

letting
 

A%
 

the functional,
 

is minimized with respect to t,. This minimiza-


I 
tion determines a set of linear equations which in turn define the 

quadratic surface, LY&C>, associated with rhe policy Ut This 

surface is then used in step two of Howard's policy iteration to determine 

a new policy £jJ , The policy iteration is carried out until conver­

gence. It has been found numerically that while this procedure works 

well at the origin block (containing the minimum point of the cost
 

surface) it does not converge well for other blocks. Thus, it can not be
 

used to find the cost surface for blocks other than the origin.
 

A second technique to find the cost surface of the origin block is
 

to employ dynamic programming. Assuming a terminal cost of zero, the
 

dynamic programming algorithm can be applied to each point in 156 , i.e.,
 

ck J 
O 



This cost function is fitted with a quadratic surface J-(so) , then,
 

'ccii. )L&AU> ' -, 7LY.Y- 3 ,.,'(3.3) 

is calculated for all /Cf . Again a quadratic surface t]v()is 

fitted to the cost function ajL. and (3.3) applied. This procedure is 

carried our until convergence with the speed of convergence described in 

(2.1Bl ­



EXAMPLES 

1) Scalar examples
 

(a) 	plant equation - x (V e\ inL~o6 .J C'-b 4 "k
 

stage cost - j , =
 

noise - ,
 

discount factor
 

state space -- 4 10
 

control UU $2,.
 

(b) 	plant equation E\ c' =- cxf . (w' "- uJ x + Z 

stage cost xj-i L
 

noise z2 - t (c1 I' )
 

discount factor
 

state space -/t X < I 0
 

control -T_.Z ( LA (22
 

Problems (a) and (b) were solved by both dynamic programming and PSS
 

dynamic programming. The state space was partitioned into
 

The percentage difference by the two methods in the final cost
 

functions was less than 3%, and the control functions were identical.
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2) Second order example 

plant equation X( C -_ zC a> -4 r-- Ct 

noise c, ._ . A.?w . , ) 

discount factor - -] 

state space . %- -

control - u 2 

grid - I& -- --CW 

partition - blocks are square with side 2 units long ,i.e., 

25 grid-points per block 

This problem was solved by both dynamic programming and PSS dynamic 

programming. The percentage difference by the two methods of the 

cost functions was less than 5.4%, while the control functions Were 

identical (within the accuracy of the search). The PSS-method took 

approximately 1/5 the computation time of standard dynamic program­

ming. the noise the cost functions were within 10% 

of each other, while the accuracy of the control was unaffected. 

3) The discount factor interpreted as a reliability probability 

Let = Prob [the system does not fail in one time period] 

7 =Prob [the system fails in one time period], 

and, let 

be the stage cost of operating, and 

be the cost of failure. Now the total expected cost is, 



.'Wi 

.( -2 At-;,. ' . 

Thus, the cost function to be minimized for the discount factor, 7-A
interpreted as a reliability probability is the same as before
 

except for an additive constant - which does not affect the
 

minima. Therefore, the PSS algorithm can be applied to problems of
 

this nature. In particular, say, to a nuclear rocket control system
 

where the control, UI , is applied briefly at the start of a control
 

period and the rocket is allowed to coast for some time with the
 

probability of a system failure being . The study of a particular 

system of this nature is under way presently.
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ABSTRACT
 

The nonlinear equations describing nuclear reactor behavior
 

due to reactivity feedback from variation of temperature and
 

moderator density in the core are analyzed. Parameter spaces are
 

defined, and stability boundaries for the linearized system are
 

determined. Analog computer solutions of the linearized equations
 

are presented as verification of the stability of the system.
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CHAPTER 1
 

INTRODUCTION
 

A large amount of work has been.done in the past on the problem
 

of analyzing a nuclear reactor with two reactivity feedback mechanisms
 

for stability. In a recent doctoral dissertation,(I ) Schmidt
 

concentrated upon a system with feedback from two different temperature
 

regions. In his work, a parameter space is defined, and stability
 

boundaries are plotted. In the following paper, a method for determin­

ing coordinates for such parameter spaces and stability boundaries
 

in general is demonstrated, by application to a system presented by
 

2 )

Smith and Stenning.(
 

Analog computer solutions to the linearized system equations
 

are presented in the form of state space plots of the system power vs.­

that system state which gives rise to the prompt reactivity feedback.
 



CHAPTER 2
 

OPEN LOOP SYSTEM EQUATIONS
 

The differential equations which describe the system to be studied
 

are presented in this chapter. These include the point reactor model,
 

the prompt jump approximation, and the reactivity feedback model
 

corresponding to feedback due to a temperature variation and a gas
 

density or pressure variation in the core.
 

The equations are normalized and linearized about an equilibrium
 

operating point, because the normalized form is more conveniett to use
 

in the analog computer simulation of the system, and because the
 

method of stability analysis to be used is applicable only to the
 

linearized form. The feedback loop transfer function is determined,
 

and its pole-zero plot is included as an aid in visualizing the system
 

dynamics.
 

Neutron Kinetics Equations
 

The point reactor model is well known, and its derivation will
 

not be repeated here. In the case of one delayed group of neutrons,
 

the source free equations may be written
 

11( j--
p H2
 

where N is the mean neutron density or power
 

r is the mean delayed neutron precursor concentration,
 

p is the reactivity of the system,
 

2
 



is the neutron generation time,
 
m
 

3 is the delayed neutron fraction, = 
 i
 

and
 

X is the mean weighted precursor decay constant,
 

Since the derivation of this lumped parameter model assumes that
 

the delayed neutron precursors remain very close to the spot at which
 

they were created, it is not entirely applicable to the case of a
 

rocket engine in which the core is made of graphite, and the precursors
 

are said to diffuse rapidly and may be swept out with the propellant
 

before releasing a neutron. This difficulty may be partially circum­

vented by using a modified value of 8, the delayed neutron fraction.
 

The equations are normalized about the equilibrium operating
 

values N and P
 
0 0
 

where L- -r AKN' ° " 

The linearization is accomplished by expanding these equations in
 

a Taylor series about the equilibrium operating point X0 , neglecting
 

higher order terms.
 



4a( k -V 
,,- t-. 

7: 

In terms of the original system variables, 6 X ­
xo 

If is small compared to I N or xr in equation 2-la, it maydt N 
be neglected. Equation 2-la then yields r = - N..£
 

Substituting this value of rinto equation 2-lb and simplifying,
 

This is the nonlinear prompt jump approximation to the one delayed
 

group point reactor kinetics equation. Normalizing about the equil­

ibrium point as was done previously,
 

Linearizing,
 

7--­

4
 



'FeedbackEquations
 

The feedback system to be studied represents a proposed nuclear
 

rocket engine in which the reactor is used to impart high energy to
 

hydrogen propellant, which moves through the reactor, acting as coolant
 

and moderator, and is then expelled from the nozzle. 
The prompt re­

activity feedback mechanism in this system is the temperature, which
 

causes expansion of the graphite core. 
An increase in temperature leads
 

to an increase in hydrogen moderator pressure, or a decrease in density.
 

This is the delayed feedback mechanism.
 

The nonlinear equations for temperature-pressure -feedbackare
 

given below: 

I- ' N It-
L
 

- $J 

?-<-, ;_ ##, , '- - v -- c' -

where 6 and i have replaced the somewhat more complicated coefficients 

of Smith and Stenning. The external reactivity term is necessary to
 

insure that po = 0, since the temperature and pressure are absolute
 



quantities and are always greater than zero. 

Upon normalization,
 

where c and d are defined as the normalizing constants for the equations 

describing the behavior of the system variables which control the prompt 

and delayed feedback mechanisms, respectively. 

The useful relation 62To 3Po is discovered as an equilibrium
 

condition of equation 2-9b.
 

The normalized equations are linearized to
 

( L /6 -2& 

6. 



In matrix form,
 

These equations are in the standard form x = Ax + bu, y = c x, 

with N'as.the control input u, and the output y = 6p'. 

The feedback loop transfer function is given by
 

(3'.7
 

.7.
 



For real roots, the discriminant in equation 2-13 must be greater
 

than or equal to zero, or
 

A pole-zero plot for the feedback system for c/d <.20 is shown in
 

Figure 2.1.
 

1S
 

-It
 

Figure 2.1 Pole-zero plot of -H(s) for Temperature-

Pressure Feedbabk
 

Unfortunately, the position of the poles and zero is not independent
 

of the equilibrium point about which we choose to linearize and normalize
 

our equations. Had this position been determined only by e and 4i,
 

we could choose any equilibrium point and derive stability criteria valid
 

for every equilibrium point in the linearized system. If the system
 

states varied at a reasonable rate, we could assume the system rem~ined
 

close to some equilibrium (not necessarily the starting equilibrium)
 

at all time, and ther position in the parameter space relative to the
 

boundaries remained fixed during a short-term perturbation.
 

8
 



If the quantities which define the stability curves are functions
 

of the particular equilibrium point, however, the effect will be to
 

move the stability curves around the parameter space during an excur­

sion. Whether this results in a larger or smaller region of stability
 

than predicted remains to be seen.
 



CHAPTER 3
 

CLOSED LOOP SYSTEM
 

In this chapter, the neutronic behavior predicted by a) the prompt
 

jump approximation, and b) the one delayed group point kinetic model is
 

coupled with the feedback equations. A parameter space is defined, and
 

the stable and unstable portions of it are determined. The results of
 

analog computer solutions of the linearized equations corresponding to
 

various points in the parameter space are presented.
 

10
 



Derivation of the Stability Planes
 

The linearized prompt jump equation is repeated here for convenience:
 

From equation 2-12,
 

(AC,
-
 "
 

Substituting for
 

/ I 

- (~c-~v '+ [(-.b .+ W­

+ [cMl 4 lo 

(ktn>t~t1-YK CAI, 4 Itcw 
_ - - -c 

This is the closed loop system matrix. If its eigenvalues all have
 

negative real parts, the system is asymptotically stable. A necessary
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condition for this is that the coefficients of the system characteristic
 

equation not change sign. We will form the characteristic equation and
 

compute the Hurwitz determinants. The conditions assuring their positive­

ness will lead to the stability boundaries in the parameter space.
 

The characteristit'equation is
 

rC 
-4 A- C j k\-, C+ 

The Hurwitz determinants are
 

- 'I 

it-C, cA~ 

cc-s LL4M~c- 4-(\4>A$)A'4Y~t 

NUti A, ~v)cK 



ifwelet CA, z, ) 

and set the determinants equal to zero, the curves defined will be the
 

boundaries between stable and unstable systems. H3 is the static stability
 

line; H2 the resonance line. The space, as it might appear when typical
 

operating parameters are substituted for b,c, and d, is shown in Fig. 3.1.
 

The static stability line H 3 is in this case situated on the y­

axis, which means that it is independent of the equilibrium value we 

choose to calculate c and d. Furthermore, the analog computer studies 

detailed in the next section show that the system behavior is quite 

insensitive to the value of y chosen if x is held constant. The ef ect
 

of the "moving" stability boundaries referred to in the last chapter
 

should therefore not be too great.
 

To determine the region of stability if the prompt jump model is
 

replaced by the one delayed group point reactor model, we will repeat
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the procedure outlined previously; i.e. find the linearized system
 

closed loop matrix, determine the characteristic equation, form the
 

Tiuritz determinants and set them equal to zero. The resulting equations
 

are the stability boundaries in a parameter space whose coordinates
 

are the product of the feedback coefficients and any set of constants
 

by which they are consistently multiplied in the equations.
 

The system is defined by equations 2-3a, 2-3b, 2-11a, 2-11b, -and
 

2-12. If the closed loop system matrix
 

tt 

is manipulated as before, the stability boundaries are
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Analog Computer Simulation Results
 

The University of Arizona's Computer Systems, Inc. 5800 analog
 

computer was used to simulate the linearized equations to verify the
 

stability plane results. 
For these runs, two specific cases were
 

chosen; one corresponds to the parameters used by Wiberg and Woyski,
 

for which the feedback loop poles are real, and the other is a fabri­

cated case in which the feedback loop poles are complex.
 

Case A 

A system with No = 2000 MW, = 20000 K, 0 = .2, =.06.To 


-
= .0745, and A= .1 se I would have normalized time constants 

b = .1, c = .2, d = 3.33. Since c/d = i3= .06, condition 2-14 

for real poles is met. 

The parameter space with these values substituted for the inverse 

time constants is shown in Figure 3.2. The values of A{, A' corres­

ponding to points A-L on Fig. 3.2 are listed in Table 3.1. 

3. 
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Response to a nonequilibrium N'(0) is shown in Fig. 3.3.
 

As was predicted, the system is unstable for x<0. The behavior at points
 

K and L indicates that the stability boundary is where it was predicted
 

to be. (Note, however, that this space is valid only near the
 

operating level, and we cannot draw any conclusions from it about
 

very low power operation.) The system may be driven unstable, but A'
 
2 

must be very large. 

Use of the stability boundary equations determined for one delayed 

group neutronics results in a very slight shifting of the boundaries. 

The prompt jump equation is seen to be a good approximation to the point 

reactor kinetic equations in this case. 

Case B 

if i/M3 .4, with all the other parameters remaining the same as 

in'Case A, c = .710, d = 1.775, and c/d = .4. The poles of the feedback 

loop transfer function are now complex. The new stability boundaries 

are shown in Fig. 3.4. Resonant behavior may be expected as the value 

of y is increased for x)0. State space plots for'the linearized-equa­

tions are shown in Fig. 3.5.. Sustained oscillations are observed in 

the vicinity of point F, and the system is unstable at point G. 
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Chapter 4
 

CONCLUSION
 

The nonlinear equations describing the behavior of a proposed
 

nuclear rocket engine were linearized and analyzed. Regions of linear
 

stability and instability in a parameter space were delineated, and a
 

general method for the determination of the coordinates of such parameter
 

spaces was outlined.
 

Two particular systems were chosen for further investigation. They
 

corresponded to feedback system transfer functions with and without complex
 
/ 

poles. The system with complex poles exhibited oscillatory behavior for
 

certain values of feedback coefficients, as was predicted.
 

Much work remains to be done on the problem of determination of the
 

regions of stability for this system. A digital computer code has been
 

written to help in the plotting of the stability boundaries. With its
 

help, an-investigation of the effect of changing only the equilibrium
 

power on the stability boundaries may be carried out. 

An attempt has been made to simulate the nonlinear equations on the
 

analog computer, but due to the complexity of the problem and inherent
 

inaccuracy of the nonlinear computing devices, the results were deemed
 

unreliable. However, arrangements have been made with the Electrical
 

Engineering Department for use of their PDP-9 digital computer. The
 

problem will be coded in DARE, a new digital simulation language. It
 

is hoped that with this tool, the nonlinear systems equations may be
 

solved and used to verify the predicted system stability.
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