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INTRODUCTION AND OUTLINE

OF REPORT

This'report sumnarizes the work that has been done on the NASA
Research Grant NsG-490 since the last renorting date of July, 1969. The
report is divided into four separate parts titled:
Part I1: Stochastié Approximation and its Engineering Applications
Part 1II: Stochastic Algorithms for Self-Adaptive Filtering and
Prediction

Part IIT: The Control of Nonlinear Stochastic Control Systems Under
Disc0untéd Performance Criteria

Part IV: Linear Stability of a Nuclear Rocket Engine With Two

Reactivity Feedbacks

Each of the separate parts includes its own index, bibliography, and
pagination, and the content of each.is discussed briefly_ég_this intro~
ducrion. The report has been labeled an interim report because work in
three of the four areas is not complete, as discussed below. )

Of the four parts, Part I on “Stochastic Approximation and Its
Engineering Applications,’ is the only portion of this report that may be
considered complete. This is a tutorial treatment of the subject of
stochastic approximation that emphasizeg the algorithmic approach to
optimization in the presence of uncertainty or noise. The uncertainty
or noise may arise from basic ignorance of the underlying phenomena,
experimental errors, or inherent random fluctuations. The nomenclature

Stochastic Approximation is used to emphasize the stochastic nature of

the errors in, say, the process measurements, and the use of these



measurements (past and present) to calculate the approximate location
Qf the optimum or goal. Of particular importance is the fact that
the use of the stochastic approximation algorithms assumes no a priori
knowledge of the noise statistics that are involved in the optimization
problem at hand. This is an important practical comnsideration.

The stochastic approximation theory that is described in Part I
is the basis for Part II,"Stochastic Algorithms for Self Adaptive
Filtering and Prediction.” The basic goal of this research is to
develop a self-adaptive solution to the problem of optimal filtering,
prediction, and detection of stochastic signals imbedded in random

noise. In particular, the random noise is considered to be unknown.

i~

his ig in contrast to theories of Weiner and Kalman which require a
complete knowledge of the covariance matrices of both the plant and
observation noises. Rarely are such complete descriptions available,
and, in fact, the requirement that the noise covariance matrix be non-
singular has often resulted in unwarranted assumptions as to the nature
of the components of the noise involved. Tn this-report, an unsuper-
vised learning criterion is formulated from which self-adaptive
algorithms are derived. These algorithms lgarn the optimum discrete
time stationary Kalman filter directly. This eliminates both the’
necessity of estimating the plant'and noise covariance matrices as an
incermediate step and the need to solve the entire set of filtering
equations. The problem associated with the need for the nonsingular
measurement noise covariance matrix is thus elminated or rather by-
passed by using this alternate approach. It is shown that the stochastic

algorithms developed for estimating the optimum filter comverge in a

iidi



mean square sense with probability one. The results are wvalid for
scalar and vector values for signal and noise processes. It is
expected that the research described in Part II of this report will
be completed by July 1, 1970, and a more complete‘and final report
will be issued at that time.

Part IIT on "The Control of Nonlinear Stochastic Control Systems
under Discounted Performance Criteria,” is similar to Part IT ia that
it presents the theoretical basis for a Ph.D. dissertation. As in
Part II, the system dynamics are modeled with difference equations,
and the goal is to obtain a practiéal algorithmic approach. Here,
however, the problem is one of determining the optimal control, rather
than one of obtaining optimum estimates, as above. The approach is
through the use of dynamic programming in a partitioned state space,
where the advantage to be gained over a conventional dynamic program—
ming approach is largely a computational one. The discounting facror
in the performance criteria, B, is required to insure convergence.

The format of this presentation is largely one of theorem, lemma,
and proof, with omnly two relatively simple examples. There seems to
be real hope, however, that the optimal contrel methods developed in
Part IIT ;ay well be applicable to the control of the restartable nuclear
rocket engine, where the discounting factor B may be related to failure
probability, and the noise or variation in the system may be considered
as due to changing parameters within the system, in particular the
degeneration of the core. Mbre’will be said on thig and otﬁer applicé—

tions in the anneal report due in July.

iv



The last portion of this report, Part IV, is concerned with
"Linear Stability of a Nuclear Rocket Engine with Two Reactivity Feed-
backs." As the title implies, this research applies directly to the
nuclear rocket work. The object of this investigation is to define
stabilicy boundaries for the nonlinear reactor in a number of
parameter space. Much of the work was done by simulation on an
anaiogue computer for the linear system in preparation for attacking the
nonlinear model. An attempt to simulate the nonlinear equations on the
analogue computer proved unreliable, due to complexities involved..
Work will continue in this area, with simulation to be done on the

Electrical Engineering Department's hybrid facility.
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I. TWTRODUCTION

The purpose of this paper is to provide an up-to-
date investigation of the methods of Stochastic Approximation
and its application to the Information Sciences. The
discussion will attempt to give physical and intuitive
meaning to the mathematical conditions of Stochastic
Approximation rather than to reproduce rigorous proofs,

. which can be found in the referenced literature.

1.1 Definition of Stochastic Approximation

Stochastic Approximation is essentially an algo-
rithmic technique for optimization in the presence éf
uncertainty., This uncertainty or noise may arise from
basic ignorance of the underlying phenomena, experimental
errors or inherent random fluctuations. The nomenclature
Stochastic Approximation is used to emphasize the sto-
chastic nature of the errors in, say, the process measure-

ments, and the use of these measurements (past and present)

to calculate the approximate location of the optimum or

goal. 1In addition, no a priori knowledge of the noise
statistics is required in Stochastic Approximation

methods. Such stochastic problems are naturally more

1



difficult than deterministic problems. However, algo-
rithmic search techniques, whether concerned with random
errors or not, involve two fundamental considerations:
(1) selecting a direction in which to move,
(2) then seiecting the distance to move (choos-

ing a step size).

1.2 Effect of Random Error on Convergencela2

The effect of random error on an algorithm may
cause it to converge to some non-optimum value or even
to diverge. Therefo?e, correct comvergence (stability)
takes priority over speed of convergence optimization in
a stochastic environment. In Stochastic Approximation,
this effect is reflected in the choice of step sizes, -
consideration (2) above., The direction to move, con-
sideration (1), is selected as if the process were deter-
ministic. That is the experimental observations are
assumed to be error free. This means that some step
directions may be incorrect, but such set-backs are
swamped-out in the long run by additional data if the
step slzes are properly selected. Note this is nothing

more than a modified statement of the law of large numbers.

1.3 Intuitive Selection of the Step Size

The following statement by Poisson of the empiri-
cal law of large numbers sheds commonsense insight on the

method of Stochastic Approximation.



In many different fields, empirical phe-
nomena appear to obey a certain general
law, which can be called the law of Large
Numbers. This law states that the ratios
of rumbers derived from the cbservation of
a very large number of similar events
remain practically constant, provided that
these events are governed partly by con-
stant factors and partly by variable fac-
tors whose variations are irregular and do
not cause a systematic change in a definite
direction. Certain values of these relia-
tions are characteristic of each given kind
of event. With the increase in length of
the series of observations, the ratios
derived from such observations come closer
and closer to these characteristic constants.
They could be expected to reproduce them
exactly if it were possible to make series
of observations of an infinite length.3

Lt is upon this experiential truth that Sto-
chastic Approximation methods, as well as all applica-
tions of probablility theory, are based.. Intuitively,
then, one knows that if the present estimate (method) is
backed by extensive observations (experience), then it
should not be significantly altered by new data. The
converse 1s true for an estimate based on relatively few
noisy observations. A simple illustration of this is

the sample mean. For example, let

y=M+c¢

where ¥y = measurable information

€

Ii

experimental error (unbiased)
and M = desired constant.
Taen after “n observations (y,, ..., yn), the best esti-

mate of M is



n
1
M == Z ¥
n 0oy 71
1
= (-9 My, 5Ty
=M, 4 5 (v, - M) (1)
n-1 n n n-1
. _n )] .
where M, _, = "old" estimate
and ¥y, = new datum point

Note that M, - is weighted by (1 —-%), whereas, y, is
welghted in inverse proportion to the number of observa-
tions, which approaches zero as n approaches infinity.
However, this defense of the status quo is no longer
valid if there exist changes in the process. In such a
case, an adaptive welghting technigue must be devised.
This will be further discussed in a later section.
Regardless, the method of weighting new data in propor-
tion to 1/n is of fundamental importance in determining
the step size in Stochastic Approximation. This is

because

\J

Therefore, 1if the step sizes are decreased according to

. . 1 .

the harmonic sequence {5%, the corrections approach zero
in the limit. This property is necessary £or convergence.

Second,



™8

—]:-200
n=1 &

Ui

This property of the harmonic sequence guarantees that
the correction process will not stop short of the opti-
mum point regardless of the initial estimate, i.e., the

sequence has an infinite amount of corrective effort.

Third,
z(F° <
n=1 n
or, equivalently
T C;)e ~ 0 ags N - =.
n
n=N

This property ensures that the cumqlative effect of the
noise error variance remains finite.2 Why this is so
will be explained in section 2.4,

In Chapter II, specific Stochastic Approximation
methods will be reviewed, and it will be shown that
equation (1) is actually a Stochastic Approximation

algorithm.



IT. METﬁODS OF STOCHASTIC APPROXIMATION

Historically, two basic types of Stochastic
Approximation were developed. The first. was the Robbins-
Monro (R-M) procec’ture}’L for finding the unigque root of an
unknown regression function and the second was the
Kiefer-Wolfowitz (K-W) procedure for finding the maxi-
mum of an unknown unimodal regression function.5
Dvoretzky unified and generalized these earlier sﬁudies.6
Detalled reviews of the above results and their variations

may be found in Derman,T Schmetﬁerer,8 and Vénter.zl

2.1 Robbins-Monro Method

The R-M algorithm is the exact stochastic analog

of a simple deterministic algorithm for solving

M(x) =k (2)

where M:R; - Rl

and k is any real number. .

The deterministic algorithm is

where a, is sequence of real numbers which must satisfy

certain conditions to ensure convergence (see Ref. 9).

6
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When there is random error present, M(x) cannot
be measured, but a noisy observation y(x) of M(x) can be
made. Now, however, y(x) 'is a random variable with a

distribution function F(y'lx) defined such that

=2

E{lylx} = [ y(x) a F(ylx) = M(x) for all x (&)

-

Thus M(x) is the regression function of y on x. The
problem is still to iteratively solve equation (2), but
equation (3) is no longer meaningful, regardless of whe-
ther F(y[x) is known or not, since M(x) is not observ-
able. Under these circumstances, a stochastic version of

equation (3) is defined
Xpq = %, Fag [k - Y(Xn)] (5)

where {xn} is now a sequence of nonstationary random vari-
ables which converges in some stochastic sense to the

solution of (2).

2.1.1 Convergence

Robbins and Monro proved that the algorithm
(5) converges in mean-square to the correct solution, say

x®, of (2) if the sequence {an} satisfies the three con-

ditions
(a.) 1im an = 0 (b) ¥ g = ® (c) T an2 < e
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and the regression function M(x) can be bounded on either

side of the solution % by a straight line.2

(d) IM(X)I‘E alx - &I%-b " (a, b > 0)

(e) E{IM(X) - y(x)lg} = 0%(x) <0° < = for all x

The physical meaning of the conditiops on. {an} is exactly
the same as stated in section 1.3 where ., is interpreted
as the step size. Note that the harmonic sequence £1/n}
not only satisfies (a), (b), and (e¢), but also gives the
Tastest possible reduction of the step size without viola-

. o s R 1
ting any of the conditions; that is, for any sequence {—E}
n

Mg

I

EE < for a > 1
n=1i n

Condition (d) is necessary to prevent an overshoot of Q
that cannot be corrected by a sequence {aﬁ} satisfying

(a), (v), and (c¢). Condition (e) is required for the
obvious reason that if the variance of the measurements is
not finite for all values of x, then it would be impossible
to guarantee conversion of the algorithm in general.

Blumlo and Kallianpurll established independently
that the above conditions are sufficient for convergence
with probability 1 of algorithm (5). As in Ref. 2, the
statement is often made in the literature on Stochastic

Approximation that probability one convergence implies

mean sguare convergence. This is not so. However, mean-



b
square convergence does imply convergence with probabil-
ity one under certain conditions (see Ref. 36}, but not
in general.

2.1.2 Root Finding and Extremum

To use the R-M technique for finding the
unique zero of M(x), one simply lets k = O in equation
(1) giving

*n41 T *n T B y(xn) ‘ (6)

If M(x) has multiple‘roots, then there is no a priori way
to know to which one equation (6) will converge. Starting
from the same initial estimate x_, (6) may converge to a
different zero of M(x) each time the iteration process is
run. This effect is a result of the noise in y(x,).

The R-M method can be made to search for the
unigue extremum of M(x) with no inflection points, by
simply searching for the root of M'(x). If feasible, this
is the most effective Stochastic Approximation procedure
for extremum searching, i.e., it gives a faster convergence
rate than the K-W method. This approach-is difficult
‘because it must be assumed that

1. M(x) is everywhere differentiable.

2. W (x) = &z Bly(x)|x} = Bt v(x) |x}. 2

and the measurements of-%i v(x) will generally be extremely

noisy. " These problems lead naturally to the K-W proce-


http:EtIiy(x)lx3.12
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dure, which will be discussed in section 2.2 after a com-
parison of the rate of step-size reduction for the R-M

algorithm and a deterministic algorithm.

2.1.3 Stochastic Vs. Deterministic Step-Size

Reduction

Such a comparison is informative because it
will make-salient the effect of noise on the rate of step-
size reduction. For simplicity, the deterministic Bolzaro
procedure will be used. It successively halves the step

gizes,

For comparigon with the R-M algorithm, it is necessary

to use expected values since
vl T *n l = ]an v (xg)

depends on the noise in the particular measurement y(xn).

Therefore

B [\%, 4 - xnl _ 8y E!y(xn)l
= [Xn - Xn—l[ fn-1 Ely(xn—l)l
a, M(x)
%n-1 M(Xn—l)
n-1 M(Xn)

no M(x, 5)
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where the harmonic sequence has been used for {a .
Still, the form of M(x) must be known. First, let it be
constant for all x, -
then
E]Xn+1 B XnL _n-1

===1 -

Sl

Elxn - Xn_ll (7)

Now use the other extreme M(x) = Ax where A is large.

Then
E]Xn+1 - X ) (n-1) Ax, ) (n-1) x
Elx, - Xn~1| n‘Axn“l n X, 4
but now x_ = x - a M(x ) = x - n-1
Ry F X n-1 “\Fpl T Xy 4 a-1 °
Therefore, the ratio reduces to
Elxn—%—l - Xl'l’ n-1 [1 - A =1 - A+l (8)
Elx - X T n n-1* - 1
n n~ll
In both cases,
Eix - X_I
lim ] n+l a 1

e Elxn - Xn—ll )

Thus the noise makes it impossible to decrease the steps
a&s rapidly as in the deterministic case, especially late
in the search.< Equation (7) can be obtained from (8) by

letting A = 0. Equation (8) is incorrect in Ref. 2,
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2.2 Xiefer-Wolfowitz Method

Following the idea of Robbins and Monro, Kiefer
and Wolfowitz constructed an algorithm for finding the
extremum (maximum or minimum) of an unknown unimodal
regression function M(x). Thelr process 1s the exact stou_
chastic analog of the deterministic iteration procedure
first formulated by Germansky;l3 his procedure was essen-—

tially a form of steepést descent,

= X, = &y, M;(xn) (8)

Entl

where a. is chosen 3 M(Xn+1) < M(Xn).

Wnen Ml(xn) is unknown and/or noisy, it is neces-
sary to approximate it in some way. The K-W technigue
uses two measurements of the observable function y(x)
at (xn + cn) and (x, - ¢,) to obtain an average slope

y(xn +—cn) - y(xn = Cp)

2 cn

“t
which is used as the approximation to M”(xn), This

gives the K-W algorithm analogous to (8)

. y(Xn * Cn) " y(xn " cn)

nt+l n n 2 ¢ ! (9)
. n

This iveration process converges in mean-square and with

.o e A
probability 1 to the minimum of M(x), say x, if



(2)

(v)

both the step size aj and the distance

‘between measurements approach zero

lim a, =0 lim ¢ 0

1
o e

o
As in the R-M method, X a, < @
n=1

to assure that the correction does not stop

q . A
short of the minimum x.

@
by (EE)2 < » go that the random effects
n=1 n

will tend to offset one another in the long
run.

To prevent excessive over-correction, &

restriction similar ‘o condition (d) of the

R-M process is required. It is
A
M(xg) - M(Xl)l < a|x2 - XI + b <=

i.e., the average slope of M(x) for any pailr
of measurements can be bounded by a straight

1ine.

. . - 2 s oot .
Since. even the function M(x) = exp(x ) satisfies require-

) R . e ops 2
ment (d), it is not a severe restriction.

Even though the K-W algorithm is designed for uni-

modal functions, it is interesting To examine its behavior

. I
on a multiple peak M(x).l‘ Such an example will also

illustrate how to use the algorithm. The example is shown
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in Fig. 1. Here the maximum of M{x) will be sought so
the minus sign in equation (9) must be changed to a plus
sign giving

3 3
y(xn + /n) - y(xn - i/n
3

(

!
b4
b

g TR

1 (10)
1/n

where the sequences a, = 1/n and e, = % 1/n have been
chosen to satisfy conditions (a), (b), and (¢). The noise
in this problem is additive Gaussian with zero mean and
unity variance. Therefore; v(x) = M(x) + e. The process
is started by arbitrarily selecting X, €[0,5]. Measure-
ments of y(x) are then made at {(x; +1) and (x; - 1) as
shown in Fig. 1, where the results for three different
starting voints are illustrated. The convergence to the
absolute maximum is rapid for an initial x of 0.25 and
2.50, but for an initial x = 3.00, the iteration con-
verges to the local extremum M(x) = 12.00. Because of the
noise, however, it is not possible to predict to which
extremum of a multipeak regression function that the algo-
rithm will converge, even if the same initial point is used

each time.

2.3 Generalized Process of Dvoretzky
The basic notion of Stochastic Approximation is
that for any deterministic algorithm, there exists a sto-

chastic counterpart, i.e., an algorithm where uncertainty



ﬁ(x)l
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' Figure 1

5. x

n Cn M(xn+cn) M(xn~cﬂ) y(xn+cn) y(xn~cn)
.25 1 3.5 0 9.22 0
.00 .79 16.0 8.1 15.74 6.99
.00 .69  16.0 g.1 16.67 6.53
.00 etc. o

1 9.00 9.00 8.72 8.4L
.78 .79 10.28 8.02 10.02 6.91
.02 .69 13.10 10.00 13.74 7.43
.00 ‘etc. .
.00 1 6 8.00 5.72 7.4h
.72 .79 10.02 9.30 9.76 8.19
35 .69 11.76 8.68 12.40 6.11
79 .63 10.20 11.04 10.57 11.07
58 .58 8.5 11.88 11.25 11.63
39 ete.
.00 Converges to the local peak @ x = 3
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is present in some form. Following this idea, Dvoretzky
formulated a generalized Stochastic Approximation method
consisting of a deterministic algorithm T with a super-

imposed  random component e,

X g = Tn(xl, rees X)) + e, (11)

where Tn’ n > is a sequence of Borel-measurable mappings
from R* (n-dimensional Euclidean space) into R™.

Dvoretzky proved the following theorem for ihis process.

Theorem 1. Iet o B

Rn into Rl 3

a2’ Yo be non-negative functions from

lim e (x4,..., x

- = O uniformly V¥ sSequences Xqs Xps --

»

[+=]

PN B_(xl,..., X_) converges uniformly y sequences X
n=1 = n

lJ
Kpsens

«

pil yn(xl,..., xn) diverges to « uniformly ¥ Seduences Xy

Xpysoon

Further, let % be a real number 3

}Tn(xl,..., x ) - % < max {a ,[(T + antxn - Ql = Yyl

(12)
< @ (13)

»

(==
n
1 N s E
ACIFRN x,) €R°. Also require niW {en

2
}
and E{enlxl,..., xn} = 0 with probability one. Then x, as

defined in equation (11) converges in mean square and with
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e A
probability 1 to X,

=0, P{1lim x_ = &} = 1.

AIE
o n

lim Elx- - X
n-—) 003 ‘O'

It is important to point out two Ffeatures of this

" powerful theorem.

(a) Since T, may be a function of all the obser-
vations (xl,..., xn), the correction may be based on all
past measurements, instead of just on the latest measurement
x, as in the R-M and K-W methods.

(b) The sequences {an}, {8.}, and {Yn} can depend

n
on the measurements (x;,..., X )-

n
For example, these properties make it possible to devise
a stochastic Newton-Rapson method or a sequential least
squares estimator based on the last m observations, m < n,
The resulting accelerated convergence is obtained at the
expense of computational simplicity.

. As another illustration of the versatility of
this theorem, consider the sample mean given by eguation

(1),

- 1
My=M¥, 1 +3 (yn - Mn—l) (1)

where M is the unknown mean. By defining the noise-free

algorithm to be

M

- - =31
Tn = (1 - a ho1 Tt anM, Y, = 2, =%

0



and the superimposed random component to be

ep = 2 (v, - M),

then M, =T +e, (1a)

and ITn - MI =(1-a.)"

Mo 1 - MI ls a special case of
(12) and e satisfies (13). Therefore, (1) is a special
case of Stochastic Approximation, which implies

lim B {1, - ¥)°} =0 and Pflimy - M} = 1.

e )

Efén though simple, this example is important because it
contains thé idea of estimation of an unknown, but con-
stant system parameter. If the parameter is &lso time
varying, then Y, can be made dependent on The last m < n
measurements. The result is an adaptive parameter estima-

tor, e.g., see section L.5.

2.4 The XK-W and R-M Methods as SpecisalcCdsesiof”

Dvoretzky's Process

By defining Tln and e, as

a
T=x. +-§EE; [M(xn 4 cn) - M(xn - Cn)] (9a)
a
e, = 2n0n [y(xn - cn) - M(xn +—cn) - y(xn - cn)
et M{x, - c )], (9p)

=L

then x, ., = T + e, gives the K-W algorithm, equation (9).

18
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Similarly, choosing Tn and e, as

T, =x, + a, [k - M(x )] (5a)

en = oy [M(x) - y(x,)], (50)

then x ., = T, * e, gives the R-M algorithm, equation (5).
At this point, the necessity of reguiring that the
sum of the observation variances be finite (equation (13)
of Dvoretzky's Theorem) will be explained. For simplicity,
let e, be unbiased so that the total measurement variance

o~

is é E{e_e} =g 2.

e N
Ir 6 © < @, r Efe 2} —¢® - 3 E{ene} which is just
< n=N+1 n € n=1

the varilance for the measurements remaining after N trials.

: N 2, 2 2 2
Since lim T E{en } = 0,7, lim ) fe ©} = 0.
e n=1 I Mo p=N+1 0

Therefore, the variance of the error approaches zero as the
number of observations iﬁcreases to infinit&. This
pProperty is obviously necessary for convergence and holds
only if Ueg is finite. It is the selection of the step
sizes that ensures this condition; for example, in the R-M

process

2 _ = 2 _ % 2 2
O = nil E{en b - n=1 E{an [M(Xn) - y(xn)] J
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o©

= I an2 E{[M(x)) - y(xn)]g} = % a® 02(xn)

n=1 n=1 n
<¢® 5 a 2, where 0% > o2 > o2 (x. ), v
—_ n — - n n

n=1
<eiffi T &’ <o,
n=1

=]

Hence the requirement that I a_2

< » in the R-M process
n=lL

[=+)

a
and similarly for I (EE)2 < = in the K-W process.
. n=l n



IIT. OTHER PROPERTIES AND EXTENSIONS

OF STOCHASTIC APPROXTIMATION METHODS

Iin this chapter the following topics will be dis-
cussed:
1. multidimensional Stochastic Approximation
algorithms
2. generalized regression functions

3. asymptotic distribution of the estimates

3.1 Multidimensional Stochastic Approximation Algorithms

The multidimensional R-M and X-W methods were
introduced first by Blum, who used a LEyapunov type
approach to prove convergence with probability one of the

two methods. For the R-M process the algoxrithm is

X, =X, +a, [K-y(x,)] (14)

3 m > = >
wiere y K, XeR g an m-dimensional random variable
y(x) »

E{y|x} = E{y(x)} = M(x) exists.

Thus, the problem is to find the solution to M(x) = K.

To guarantee convergence, the sequencé {an} must satisfy
the conditions previously specified, and theré must exist
a Lyapunov type function V(x) such that

21
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and 0 3(x)
(LU0, M(x) = 2 —p— M () 20, v

Portunately, this convergence can also be established by
an extension of Dvoretzky's Theorem by simply replacing

absolute values lxn

A . A
- X |W1th the norms]lg& - “ii .
This avoids the search for a suitable Iyapunov function.
If a positive definite m x m malrix R_l is inserted in

equation (14) giving

Xy =X, gt e, RIK - y(x(n))] (15)

the convergence is not affected. .0 I TAnd, if one
knows E{y y'}, then choosing R = E{g_g?}_l decreases the
varlance of the estimates. Note that there is still no
assumption on the noise structure. Later a recursive
scheme for calculating R will be developed.

The multidimensional K-W algorithm can take sev-
eral forms, but in each case difference approximafions are
needed for every component of-vxy(ﬁj. Blum's method

requires m+L observations at the points

1 _ 1
Ip = I tepsy T X(Eene) = v(xg)
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where_gj denotes a unit vector whose J element is 1. The
measurements Xfﬁé) determine the one-sided derivative

approximations A ¥, where

.1 -
Ay = [E(Eﬂ) - Y(E.?l), v z('}_cﬁ) - X(_}E?l)]

=Y c
a n

Then the recursive relation
(16)

converges with probability one to the minimum of M(x).
However, Sacks has shown that the asymmetric observations
. . L A 16
abouu_gn cause slow convergence to the correct X.
Based on the extension of Dvoretsky's Theorem,

Gray proved that the symmetric version of (16) converges

with probability one and in mean squa.re.17 It is

Enil T Ep T Ay B T, (17)
where
-1 o -m
Ay, = lylx) - y(x7), > 3(xy) - y(zM1/2 ¢
andra2 J - x. +ce,and x99 =x%x -c¢ e.
—Il —I n— n ~n =]
J=1, ..., m

This algorithm converges faster than the previous one, but

requires 2 m observations (2 for each dimension) instead

of m+i,
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3.2 Generalized Regression Functions

The purpose of this section is to lay the founda-
tion for the interpretation of the regression function as
a performance index so that the methods of Stochastic
Approximation can be applied to communication and control
systems. Since Stochastic Approximation methods are
applicable to any problem that can be formulated as one of
regression, the extension is not difficult.

First, assume the observations are from a random
process y(t) and there exists a function 4£(.,.) which
depends on y(t) and a parameter vector k. The performance
function £(y,k) determines the performance index IL(k)

defined as a regression function

I

L(x) = B, [4(7,5)} (18)

Il

J’mﬂ (v,E)a F(y)

It is desired to minimize L(k) by selecting the optimum
A - A
k=%k." If L(k) is a convex function of k, then k is

given by

Vi Hk) =0 (19)

If L(k) is known, equation (19) can be solved iteratively

by the gradient method givinng

Enyn = By - ey vph(ky) (20)
- LY L - /\ - '
where k .. converges to k.
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Note that deterministic problems can be put in this format
by letting the density function £(y) . be a delta func-
Tion. However, when the distribution function F(y) is not
iven & priori, L(k) is not known. This condition is
precisely the motivation for Stochastic Approximation
techniques. Thus if 4(y,k) is differentiable, the R-M

method gives

= - 1
§n+l kn fny Ef(yh+l’ gh) (21)

as an iterative solution to equation (19). When £(y,k)

is not differentiable, the X-W method gives

k

=k -
Enel T Eq T 8 B J?'n (22)

where A_&n is the vector whose Jjth component is

J ]
n 2 cn

Algorithms (21) and (22) can be shown to converge in mean
square and with probability one (see Refs. 6, 12, 15, and
17) for most ﬁroblems in engineering epplication. The
most restrictive requirement is that E(-{g) have a unique
extremunm,

Note the similarity between these stochastic algo-
rithms and the deterministic algorithm (20). However,

since ‘sz(yag) in equation (21) or its aporoximation in



equation (22) depends on a single realization of the
random process y(t) which may contain noise, Eh'is a

non-stationary random vector.

i~

n the important special case where the perfor-
mance index is the mean-square error, algorithm (22)
reduces to algorithm (21).12 For example, let
(1) =x(t) be a noise corrupted signal (the noise
is not required to be additive),
(2) S(t) be the desired signal,
m
(3) E X, F, (t) = B(t,k) be the estimate of §(t)
where the kj are the adjustable parameters
that weight the outputs of the filters
Fj(t) such that the minimum mean-square
err0or 1is obtained. This form is general -
since if a sufficiently large number of
Fj(ﬁ) are used, the overall filter can
approximate arbitrarily closely any non-
linear 0perator.19
(4) The error e(t.k) = S(t) - S(t,k)
(5) The performance function £(e(t),k)

= 4(e(t,k)) = e°(t,k)

(6) Thus L(k) = E{e®(t,k)]
For discrete values of t, algorithm (22) can be used to

minimize L(k), where the jth component of A 4 becomes
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A ﬂi = (2 ¢ )—l {£[5(n) - g k.Fs(n) - c(n)Fj(n)}
i=1 + % Q

- 20S(n) - _éfl K,y (n) + o (0)F, (n)]

Since #(e) = ee, this reduces to

a9 = “Liurs( 2 ‘
n = (2 ¢ ) T{4[S(n) - ii k;F; ()] e F,(n)]
= 2[8(n) - iil kP, ()] 7 (n) (23)
=EE?* 2(e(t,%))

Hence, A £ = v ,t(e(t,k)) which means the K-W procedure

reduces to the R-M procedure For the mean-sguare error
criteria. This is important because the R-M algorithm

is computationally simpler and converges faster.

3.3 Asymptotic Distribution of Stochastic Approximation

Estimates
Even though Stochastic Approximation methods are
nonparametric (no assumption regarding the form of the
distribution function of the noise is necessary), it can
be shown thet under rather general conditions the esti-

6

mates are asymptotically normal.l
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Considering first the one-dimensional R-M algo-
rithm equation (5), Sacks proved that for a_ = A/n the

randeom variable

A?GE
r-

VE Gy - )10 7 (0, (00

whereo2 = sup. E{lY(X) - M(K)'2} < @

1A , ) A
and ¢ = M'(X) = slope of the regression function at x = x.

¢
In the multidimensional case, the random vector

V a(x, ~‘§) is also asymptotically normal N[O,PQP"l],

n
where
PQ,P"l is the covariance matrix
_ *
I — 2 1 _l
Q has entries 4y = A (ab, + Ab s - 1) Ts 5
¥ -
T =P le
mo= 1 [y(k) - M(x)][x(x) - M()1"
A
XK
A -1
v, M (x)=B=>PDP
D = diagonal matrix of eigenvalues (bj’ j=1, ..., m) of B

P = orthogonal matrix > B = PDp ~

¥or the uni-dimensional K-W algorithm of equation

(9), the random variable \fﬂtxn - %) is again asymptoti-
cally normal
A202 ]
A

Dy
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where

0% = sup,_ E{jy(x) - M(x) 2} <

and

In the multidimensional K-W process the random vector

Vo e (x

L (= —_ﬁ) is also asymptotically normal N[O, PQP'l],

2 -1 %
b - -9 = LL LL - - -
where Q has entries 4 5 A (.Abi + .Abj 1) s 5

* -1
T =P "qP

. | T
To=n [y(x) - Mx)] [x(x) - M(x)]
piged
oy
B = PDP ~
D = diagonal matrix of eigenvalues of B

-1
orthogonal matyrix 2 B = PDP —

o
i

Y
o]
(1

details and proofs see Ref. 16.

In the next chapter, techniques for accelerating
the convergence and increasing the efficiency (in the
statistical sense) of the estimators will be considered.

The discussion will be limited to the R-M process, since

analogous results hold for the K-W process.



IV. METHODS OF INCREASING THE RATE OF CONVERGENCE
AND EFFICIENCY OF THE ESTIMATORS

In algorithnic technigues, one wanis large step-
sizes when the goal is far away and rapidly decreasing
step-sizes as the goal is approached. Historically,

. Kester was the first to present such a procedure for Sto-

- . . 0
chastic Approximation methods.2

4,1 Kesten's Acceleration Method

For the R-M algorithm

Xy = X, - a,, y(xn) (21)

this procedure simply keeps the value of a, constant until
the sign of the observation y(xn) changes, then a, is
decreased in a mannef that satisfies Dvoretsky's Theoren.
The motivation being that when the zero of equation (24)
is not near at hand, then the measurements of y(xn) will
in general be of the same sign. However, -as the goal is
approached, overshoot will occur causing the estimates to
osclllate about the zero of M(xn). In the latter case,
the step sizes should be decreased rapidly. The table

below illustrates the technique.2

30
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Measurement # 1 2 3 L 5 6 7 8 Total
move-
ment

Sign of

Measurement + + = - + - +

Unaccelerated 1lg

values of a_ 1 1/21/2 -1/h -1/5 1/6 -1/7 1/8 1558

Acceleratéd v 17

values of a_ r 1 3 -1/2 -1/2 1/3 -i/h 1/5 2 50

Cruz-Diaz has suggested a normalized R-M method
Xpa1 = ¥y - 8y sen [y(x )] (25)

which converges under the same conditions as the regular
R-M algorithm.2 This approach greatly accelerates con-
vergence ror regression functions such as M(x) = xe™ ™
whose amplitude is very small for values of x much greater

k] o - {
and much less than the actual zero X.

L.2 Dvorebzky!s Optimum Sequence

In Ref. 6, Dvoretzky proved the following minimax

result for the sequence {an}.

Theoxem 2. TIf the random variable yv(x) satisfies

a2 2 ) . -
E{y (x)} £ 0° < = and whose regression function
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M(x) = E{y(x)} is bounded by

O<A1X-}/}:% M(x)<Bl}.~xt<m (26)

ang it is known that

|2 - %] <0 /—(29— (27)

2

AC A V'q 2 LY

8y = = - (28

B 0% +na"c®  TFHAUn ATB )

yields the upper bound

2.2 2 C oyt

A 0
max Vn = max E{xn - x)g} = — o C 55 = — Vo ,,(29)

Xn X, 0 + (n-1) ATC +_A2Vn

The sequence defined by (28) is optimum for the R-M
process of equation (2L) in the sense that for any other -
sequence, the upper bound given by (29) is violated.
The result is.minimax since a, is chosen so that the
meximum possible’value of equation (29) is minimum. A
heuristic proof of this theorem is given in Ref. 2. By

using equation (27), the constant C can be eliminated from

(28) and (29) giving

. (30)

2
max Vn = max B{(x - x)e} = U (31)

X X, A[E%é + (n-1)A]



Expression (30) indicates that the optimum sequence in
the minimax sense_;é_ggi harmonic and.gggélggg depend on
the noise. The one case where & reduces to & harmonic
sequence is when M(x) is a straight line, i.e., A = B.
Then a, ='%E' The effect of the noise shows up only in
the variance oﬁ X, or uncertainty in the location of Q
given by equation (31). Note that it is A, the slope of
the lower bounding line, that determines the size of the
interval of uncerﬁainty:for large n. Thus, if A is small,

the interval of uncertainty remains significant for a much

(=0

larger time.

The entire discussion of the last paragraph has
been predicated on the assumption that le - % |< C,
where C is a known constant. If this is not true, then
equation (30) is not -the optimum sequence. However, a
minimax solution can still be found. There are two worst
cases; one where the expected value of the measurement

A .
at x, = 1Xl falls on the upper bound B k - X !and the

. - A
other where X, = 2xl falills on the lower bound AIX - X l

(see Fig. 2). In the first case,
A
)

1
M(lxl) =B("xy - %

Therefore, since X, = X, - a.,y(x,) and
2 1 1 1

Blxy} = x; - aM(x),
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M(x)

Regression Curve M(x)

Pig. 2
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L A L i A
E{"x,} - ¥ = "%, - aM("xy) - %
1 ) ] A A
= "%, - aB(Txy - X) - X
1 A
= (1 - aB)("x; - %) (32)
Similarly, in the second case,
A
B(%x,} - = (1 - a,8)(Pxy - %) (33)

For any given X, equations (32) and (33) become the

inegqualities

Blxy) - £ (1 - aB)(x; - %) (34)
E{x,} - > (1- aqh) (xq - -"i’\)
o B{x,} - £ < (a8 - 1)(x) - ) (35)

The largest possible error in E{XQ} is the greater value

of (3L)- and (35),

max [E{xe} - éj = max [ (1 - alB)(xl - g), (aqd - 1)

(Xl - 5%)] (36)
For the minimax solution a, is selected so that (36) is
minimum. This obviously occurs when both terms on the

rigrt-hand side of (36) are equal. Therefore,

A - 1) ::;i} S——

1-aB= (a

1
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Then

A
min max [E{x, - X}]

Thus the minimax choice of 24 behaves as if the regres-
sion function M(x) were a straight line of slope (A+B)/2.
S0 in general if Pﬁ - % lz C, all terms of {an} are set

A
equal togféfg—. Then as soon as Ixn - xl < C, the terms

of {a } are reduced in accordance with equation (30). 2

Since the asymptotic distribution of the R-M

estimator
2 2
Vn (x - x) is N[O,

(2AC 1)
the asymptotic distribution of Xn is
2 2
Nj&, —209
n(2A¢ - 1)

. e s . o . -1
Choosing A to minimize the variance of X a1 &lves A= .

So
2

ng

o

Vaxr {xn}

I

(37)

no

and

°n = T (38)
is the sequence that gives the lowest asymptotic vari-
ance. The conclusion is that Dvoretzky's minimax sequance
sacrifices.long~term efficiency for short-term efficiency.
Note that in the vicinity of the zero %, the regression
function may be closely approximated by the straight line

M(Xn) P Q(Xﬁ - }”)_, therefore, Y(X ) Q(X _ }/é) T a.
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If the experimental error (which has mean 0 and variance

02) is also normally distributed, then y(x,) is

A 2
1.

N[g(xn - X), O The Rao-Cramer lower bound on the

. . . AL .
variance of unbiased estimators for X 1s given by

. A
1/n w240y %)12y v

3% .
‘ A
; A C(y - €(x, - %)) o
[/}
([0 p(ysX))2y - gy e 123
3% o}
2
Ayvi2
= &5 By - ¢(x, - 017
o !
_fe
cr"Jr 02
O2
Thus vﬁin = —5, which is exactly the asymptotic variance
1 ne

of X, glven by equation (37). Consequently, for the

case of Gaussian noise, the R-M algorithm gives an un-

. o s s . a N
biased asymptotically efficient estimate of X.

1.3 Summary of Section 4.2

In the previous section one sees three stages of

the algorithmic search, in each of which the selection ©

Lo . 2 . . .
the coefficients &, differs. The first svage 1s when

4y

A . . s s N
the goal x is far away. Here, the coefficients should be

largest and such that
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Secondly, when Xn is close enough to % to satisfy equa-
tion (27), then the coefficients are set equal to

g = n=m-=21, ..., P
n
T Al o+

X A
Finally, when x is near enough to x for M(x) to be

3 - 1, T » RN Y
i , T Y 11
linear, the coefficients should be

1 o .
a, = o’ n=p+1L, ...

where { = M(x).
In practice, it is impossible to exactly carry out this
pfocedﬁre because
(1) the bounds A and B on the regression func-
tion M{x) must be estimated in general,
(2) the constant C in equation (26) is known
since The experimenter selects it, but %
is unknown S0 1t is not possible to deter-
mine precisely when ‘Xn - %! < G,
(3) the slope of the regression function at %

must also be estimated since both M{x) and

A
X are unknowrn.

L. Another Minimax Method

One rather obvious method of accelerating the con-
Y A . . .
vergence of x_ to X is to simply average, say N, obser-

vations of y(x) and use this smoothed measurement z(x) in

place of the y(x), i.e.,



i
let zy =% [y(xl) + ... +-y(xn)}
A
fp = 17 (ger) + oor F Y0 ]
1 y 1
%1=ﬁ[Y@Nmﬂ}ﬂ)*"'TV@mQ]

and the R-M algorithm of equation (6) becomes

x =X - &a_ &

n+l n n n
and assuming the random eryror is statlonary,

Var {y(x)] =0 oe

I

= (x)

and

B{z } =% g M(x) = M(x)

so the bounds of equation (26) hold for E{Zn}‘

~/.2 o
¢ S 295/n 0 = AC

39

(39)

Using

AEB—A) 1L 02 1 5 o
T\?— + nA~C
2.2
and max E{(xn - %)} = max Var {Xn} — o~ /N
X
il

6°/N + (n-1)42¢2

which are the equations of algorithm (39) analogous to

equations (27), (28), and (29) of algorithm (24). With

these analogous forms, one obtains the following minimax

result for algorithm (39)
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= 1 40)
a_ = I (4
n A[I’i -+ (.QT)]
) o ‘
max E{x - %} = max Var{x } = B?A/N (41)
n X, i Al=— + (n-1)A]

Tpis result indicates, as would be expected, that a, is
unchanged and max Var{xn} is reduced proporitionally to
the number N of observations used in the smoothing pro-
cess. What this process has achieved, for some given
max Var{xn}, is a reduction by the factor N of the
mumber of algorithmic iterations required, but the num-
ber of observations of y({x) is not reduced.

At first glance it appears that the same reduc-
tion in variance wou;d accrue with an asgsociated reduc-

tion in observations required if we let

Zq = Y(Xl)

Zé = % fY(xl) -+ Y(Xg)]

Z, =-% [y(xl) + o, +—y(xn)} (42)

However, I tried this approach using Dvoretzky's method
of attack (see Ref. 6), and ended up with equations (30)
and (31), which indicates no reduction of the variance
in X The reason for this is because the ., defined by
(#2) contains no more information about M(x), excepting

the new observation y(x,), than does Zo_q-



4.5 Acceleration and the Method of Teast Squares

A standard problem in

optimal filtering is:

Given n measurements of v wWhere

¥i = c.X * e, i

o) i

c is a known 1 x k row vector

X 1ls an unknown, but constant

biased random variable:

(L3)

which may change with i,

X vector, and e is an un-

Tind the estimate %ﬂ of x such
that Jn(x) is minimized. For a least squares solution,
J_ is
n
N & - _ T - ]
In(x) = B B, = (¥, - ¢ x) (Y, - Cx) (&)
where BE- = [ei, cees o] _Ei
7 X = |
YI'l = [yl’ . E] yﬂ] - }'{
Tk
€11 C12 + - - Cpx L1
“a =1%1 %22 - - sl = [
C~ Cn o . c
| nl "n2 nk | =
The solution is
= - ool _ Ay o
Ve Inlx) = - 20, (v, - ¢ %) =0
yielding
A T -1 T .
X, =lo e 7 ¢, v (45)
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The subscript a represents . number of observations of
¥ from which the least squ :3 estimate %E.Qf X 1is made.
¥Wnat is now needed is a v _.rsive version of (45) so that
new dava can be inﬁorporated iteratively as it is
recelved. This is achieved as follows: assume another

observation Vs

17 Epp X T

_ is 3 then
en+l made, e

T

L Cuerl X

where

Thus .

T T A
|:Cn Gn +-En—l—l-gn—}--l]-gsn—l-l

T A T
- [Cn cn] £ +'En+1 Ina1

m

b s T . e .
Subtracting [En+1 [N Qn from both sides gives

T T A Ay T _FLT A
LC, Cy +enp Chaad Epyg - %) =cena Vosr ~ LCpa1 Snaad %
o T Al
=S [yn+1 T Chny ln]
or
A A T T 1T A
o1 T En +'[cn ?n +-9n+l-9n+l] Cnna [y:+l "-Enél-fn]
(L6)

wiilch is the desired recursive relation.
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However, equation (46) stir:. reguires a matrix inversion
every time a new observat: - is made. This difficulty

can be removed by using th  'inside out" lemms of numeri-
T

i i 1 ¥ J -

cal analysis. First let P C, C, (47)

$0 that

-1 T _ AT T _ -1 T

Pn+l" Cn+1 Cn+1 Cn Cn T Chn a1 = Py T Chs Snna
— ()

then by the lemma,

P =P - P lc S 17 e o p (49)

n+l n n n+1 -+l n-—n+1 b -n+l "n

Since c, 1+l Fn Speq 18 a scalar, the problem has been sig-

nificantly simplified. Substituting (47) into (46) gives22

A _A -1, 7T -1 7 _ AN
Enpy T E, PP e e 0] Spa1 Wnaa - Cpgd X,
= D T . _ A
=, F Pn+l-5n+l [yn+l Eﬂfl.gi_l
A iy A ~
T Zn T nyr Snn [yn+l Vo1 (50)

Throughouf the above discussion, the existence of the
inverse of CZ¢1 Cn'l has been assumed. This is analogous
to the observability condition discussed by Kalman in the
case of state estimation of dynanmic systems.23

To relate the recursive formula (50) to Stochastic

Approximation, premultiply equation (18) by P_.q and

postmultiply by Pn obtaining ‘ ’
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bl

_ T
Pn - Pn+1 L1 Chs1 Snsl Pn]

Postmultiplying again by E}. gives

Py Cns1 = Pasa [eppn * Cg-}l Chi1 Py Syl
or ’
Pt Snel = Pelnst [Cns1 Pn Cnpa *ITT (5D)
When ¢ ., is time invariant, Cn41 = & and equation (51)
becomes
Pc =P ¢ [ep e +117 (52)
=P 4 el 2 c P 3 et I]Tl
= Fho E? (3 E-PQ—Q-E? + 1] '
=P g? [(n¥1l) ¢ P ot + 177t (53)

o o —

Equation (53) was obtained by repeated application of (52)
-4 2 2 > 2 £
to itself. 3 For a large number of iterations, the asymp-

totic versions of (53) and (50) are
l‘rl
P

oI
O —
T —_— T -1
Poap e = mnrl [cP c™17, n large (54)
T
P e A
End &4 T e B &1 Dygyy e x 1 (55)

T

. .
¢ P c¢™] 7 is simply some constant k x 1

T [ .

Since P_¢
O

T . s .
c&” is Jjust a constant

vector, each element of L
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divided by n+l, for - large.

Therefore,
. T

lim L 0, k x 1 vector

nme

z Pn£T=i

n=1

=] ‘__12
and % [Pn_gi] <

n=1

whrlch are the vector equivalents of the properties
required of the sequence {an} in Stochastic Approxima-
tion methods, and Pn_gT plays exactly the same role in
-1 =1
algorithm (50) as does aR = %:in the R-M algorithm of
. . T
equation (1 . Denoting P,oo by ¥ (yl, cees yn), (50)

becomes

where y depends on all past measurements. The presence
of PO allows one to use any available a priori knowledge.
For example, if the confidence in the initial estimate

A .
X is low, choose PO = I. It has been shown experimen-

o)
tally that Stochastic Approximation algorithm (50) con-
verges much more rapidly than any of the previously
mentioned acceleration techniques.24 However, two
iterative computations, equations (50) and (51), are now

required; thereby paying for the increased acceleration

with computational time and complexity. It should be
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emphasized that algorithm (50) is wvalid only when the
barameter vector x is time invariant.

Similar results hold in the tinme varying case.

For

Vi =84 & * 8y
Xiq1 = ¢ X; and @ is e known transition matrix, these
results are
A = AL ik T, -1 WA\
Engr T2y TNy & Lgn Nov1 & + 1] (yn+; _‘En+19£n)

(56)

P = N - N el e W c +1Tt e w (57)
“n+l n+l n+l —n "=n "n+l =n =n “n+l

- = =T

mn+l =& P & (58)

These three equations define the adaptive estimation pro-
cedure alluded to at the end of section 2.3. They are
valid when ¢ and X are time-varying and can easily be

. , . . . 2
adapted to the case where & is also time-varying. 2 The

[e2]
[

milarity between this estimator and Kalman's estimator

is striking.



V. CONTINUOUS TIME STOCHASTIC APPROXIMATION METHODS

The purpose of developing continuous time Sto-
chastic Approximation algorithms is to provide differential
equations analogous to the difference equations (6) and
(9). These differentié; equations can then be implemented

on an analog computer.

5.; The Continuous R-=M Algorithm

By writing equation (5) as

xn—l--l Xy T 7oA y(Xn)

and considering the limiting case, we obtain the differ-
ential equation26

LLe) = - a(s) y(x(t)) (59)

in which a(t) must satisfy
w

lim a(t) = 0, Ja(t) at =« and [ a®(t)at < e
) O o ‘

The multidimensional version of (59) ié‘just

x(t) = - a(t) y(x(t)) (60)

vith the same restrictions on a(t).

L
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For example, a suitable choice. of a(t) is

1 £ >0

a(t)=t+l ——

Both of the above aigorithms converge in mean'square and
with probability one under slightly more restrictive con-

ditions than the discrete time analogs.

5.2 The Continuous Time K-W Algorithm

By writing equation’ (9) as

i vix, +c ) - y{x, ~-c)
x -x =g n n n n

]
1 1 ‘ n ‘ 2 Cn

and again considering the limiting case, we obtain the

one~dimensional K-W differential equation

| y(x(t) +c(t)) - y(x(t) - c(¥))
R OR 2 E(%)
' (61)

in which a(t) and’é(t) must satisfy

lim a(t) =0, fma(t)dt =

l’l‘"°°‘ ¢

. ® ra(t)2
ifﬂ 0(?) = 0, of ‘Ei ] é? < o

The.multidimensional version of algorithm (17) is

x(t) == a(t) 4 y(t) | (62)



kg

where
Ay(t) = Ly (8) - x&2(E)), .., p(E)) - Z(xT™(t) 3726 ()
where .

zj(t)' = x(t) +c(t) g5 and 2I(t) = x(t) - o(t) 25
Jd=131, «vey m

These two algorithms also converge in mean square and with

probability one; but again under more restrictive condi-

tions than the discrete time schemes.]_'2
In the next chapter, applicétioh of Stochastic

_ Approximation methods will be made to various engineering

problems.
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VI. ENGINEERING APPLICATIONS

The basis for application of Stochastic Approxi--
mation methods to éngineefing problems was laid in sec-
tion 3.2, where tﬁe minimization of a performance index
was formulated as a regressioﬁ problem. However, the
presence of consfraint equations was not-considered, but
can be easily included using iagrange multipliers.

Assume it is desired to minimize

L) = B, ()

subject to the constraints
Fi(_k:) = Ey{fi(y’l{_)} =0 i=1, «vo, M<m

vwhere m 1s the dimension of k.- Then by defining the
auxiliary logé function
sl =2 +2% ¢

A is a M x 1 vector
f is a M x 1 vector of constraints
and using this new loss function in equation (21), we

obtain

e 1 ’ '
= ) - : T
=ky - ey Vk’g’(yn—i-l’—}in.) - ay Ay Vki(ynﬂ_’-]’—c—n)

50
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Equation (63) is a function of A which is given by the

companion algorithm

where bn must be a Stochastic_Approximation sequence and
Vi is a M x m mabtrix.

Inequality constraints can also be handled, but
reguire the introduction of an additional vector variable
that converts the inequality to an equality constraint.
The result is three interdependent algorithms.

| With this foundation, some application of Sto-

chastic Approximation methods will'be presented.,

6.1 Coding Theory

Schalkwijk and Kailath®! considered the problem
of transmitting one of M possible signals, where each
signal takes T seconds 'to transmit, over a noisy chan-
rnel Without memory with the availlabllity of a noiseless
feedback link (such a situation is typical of a satel-
1ite-to-ground transmission). It is important to remem-
ber that the feedback path can not increase the channél
capacity as was first shown by Sha.nnon,28 but does
simplify the.complexity of the coding and decoding required
to achieve a given performance.

To begin with, the communication is assumed to be

over a forward channel with white Gaussian noise of



N
spectral density-§9 and a noiseless feedback channel,

The message information is transmitted by modulating the

amplitude of N orthonormal waveforms mi(t),

. '
| cpi(t)cpj(t)dt =8, i, =1, 2, veu, N
(o]

J
Since the time allowed to transmit the information sig-
nal is T seconds, these waveforms might represent ﬁdsuc-
cessive and non-overlapping pulses of duration T/N.

Thus, the information signal transmitted has the form

and the received signal is

Y(t) = 8(t) +‘N(t)

Reception is then achleved by using filters matched to

the ‘waveforms @i(t), giving as outputs
Yy =y + 0

where, due to the assumed structure of N(t), the N, are
zero mean stochastically independent random variables
with variance Nb/2' -

This procedure is valid even if the original
channel is a continuous time channel because the matched
filter for white Gaussian noise computes the likelihood

ratio, which gives a sufficient statistic, and therefore



53

preserves all the relevant information in the received
waveform required for the.decision process. '

The coding method for sending one of the M pos-
sible messages consists of dividing the unit interval
(0, 17 into M disjoint equal-length message intervals.
Then select as the "message point" wk, the mid;point of
the ktﬂ message interval, i.e.,

L2k -1

cpk _—_EI‘T", k=l, LI Mc

Now by transmltting the code point P via successive
signals 4 191 (t), =1, ... N. At the receiver, an
estlmate of Py is formed from Y -:@ + N Ietting %n
denote the estimate of ¥, after receiving n values of I,

the mean square error is

¢

E{(O'-n - QP&S)Q} n =‘l; 2, v N

which decreases as n increases. At the conclusion Qf the
Nth transmission a 'decision is made as to which code
message_cpk was transmitted by choosing the coding point

closest ‘to e The error probability Pe is then given by

The goal is to invent a coding scheme such that
for any given € > 0, we have P < € for a transmlsSlon
rate R 1ess than the channel capac1ty ot the Gaussian

noise channel, which here 1s assumed to have an infinite
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bandwidth and with the usual donstraint on the average

transmission power Pav . For this channel, the capacity

g
is
P
- avg . 29
c 2N_n2 bits/sec,
108oM 1446

and the transmission rate R = 0 So0

!
.

.

It ig not éossible'to achieve the above-stated
goal by simply tranbmit?ing Py wiﬁh,@i = 9 i =1, f..,
N and using a fixed rate R’ less than the channel capacity.
However, since a noiseless .feedback link is available,
the receiver can re-transmit O its current estimate of
ék back to the'transmitter. Thus the transmitter can
simply transmit a correction term to the receivef. Then
‘since «. approaches.cpk as n increases,‘the average power
(in a statistically considered sense) needed to transmit
the correction decreases as n increases from 1 to N,
This saving of average powef is sufficient to achieve a
transmission rate arbitrarily close to channel capacity
while keeping Pe as small as desired by increasing Tf‘
" This is the idea behind the method of'Schalkwijk and
Kailath.

Specifically,’they‘begin by taking a,, the first
estimate of P, &8s 0.5. The receiver Teeds back this
estimate.without error'to the transmitter, which then

generates an error signald . such that
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A1 ='B(C‘-1 - cPk_) =g (0.5 - Cpk_.), g.> 0

The signal,al is then transmitted and observed at the

recelver as

Yy =g+ N, =B(0.5 - mk) + Ny

The receiver now computes the second estimate

;o - -1

;

where { is a constant that is chésen to minimize the wvari-
ance of the estimates an.1 From' section 1.2 equations

(37) and (38), this minimum is achieved by choosing C_l = B8
Therefore, Ay = 0y —-%-Yi which is now re~transmitted to
the transmitter, where the correction is made and sent as

AQ = B(ae.;.mk)L . Again the signal received is -
T =4y + Ny =8(ay - @) + N, .

ahdchheomgcéiverjcomputes a3'
= -8B
a3 0o 5 Yé
In general, then, one receives
.Yn =/dn + NY‘[
and computes . -

el = Oy B Y. (614)
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The estimate an+1 is then sent back *o the transmitter

which will transmit

“ng1 = B(0n4 - @)

This coding scheme is diagramed in Fig. 3. Note that

equation (64) is just a R-M algorithm with

Me) =B - @) emd Y,(a) = M(a) + 1,

¥

Therefore, we know Gpn4 COnverges to P in mean square and
with probability one.

Without going into further detail, the results
of this coding scheme will be summarizgd:

1. For any rate R less than c,

\[ée(C-R)T}

P, = 2 erfc { L.577

2. This coding scheme achieves a given Pe for
a rate R with a transmission time T approximately one-
tenth as long as required for the same Pe and rate R with
orthogonal coding and no feedback.

3. If the délay T in the feedback path is
included, the performance deteriorates negligibly so
long as v << T,

In the previoué'app}ication, the channel was
assumed to have no bandwidth constraint. For the same

problem, except where the channel is bandlimited,



“Pransmitter

A

Channel

Recelver

n+lL

Communication System with Noiseless Feedback Path

‘Fig. 3
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Schalkwijk and Kailath's R-M coding scheme gave the

first deterministic procedure t0 achieve rates up to

channel capacity.

6.2 Filtering and Predictio

The flltering énd predicﬁion problem is essen-
tially one in system Optgmization. Here the attention -
will be primarily devoted to filtering. ~This problem‘
reduces to finding a matcheﬁ filter for a noise cogrup£ed
deterministic signal and a Wiener filter for a Gaussian
signal in a nolsy Gaussién bgckg%éund. The fbundétionh
fof fhis app;iﬁétion was laid in section 3.2, where it
was noted that the only restriction on the“loss.function
L(*) was that it.be strictly convex. For simplicity, the
old standby error sﬁuared criteria will be used here,
L(e) = 'ea(t,g).
| » The ‘parametric filter form. is-shown in:Fié. b,

where *
t :
Py (t) =_J; hy (%) x (t-p)ae, ~ i=1, ..., m

are fixeé optimum Tilters. for a given-set of m different
.condifions on the éignal and noise. The goal is to
recursively adjust. the variable parameter set_gias some
‘environmental:or system qondition‘changes, say, the

noise power level or noise distribution function, so that

L{k)-= E{sle(t,k) ]} = E{ee(t,_lg).}
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Filter Structure

Fig. 4.
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is minimized. Thus we seek the solution to Y L(k) =
but this is impossible since the distributioﬁ_function of
the error is notvassumedvtosberknowts?. aUsingceStochastic
Approximation, we iteratively solve vy tle(t,k)], but
this requires the availabllity of S(t). However, the
problem can be simplified so that it is not necessary to
observe S(t) to select the optimum k as is 1nd1cated in’

Fig. 4, Assuming the signal and -noise are uncorrelated,

©

B{(S - s]e} B{[% - % - N]e}

L(k) =
= B{[x - %32}‘ - eE{N(s + M)} + 2E{N 81 + B¢
- silx - K7 - B0 +.2£T'£tH(T)RNN(T)dT
Therefore,

. . ‘t
. T_..2
Vi L (_1_{.) =V Bf(x - KFT 42 .[ (T )Ryy(7)ar
However,-

vy Eflx - 3??]2} still can not be computed because
the prdgﬁbility distribution: function of x(t) is not
assumed to be known, even though the filters Fi(t) were
designed for Gaussian noise. But the reason for having a
parameter vector to adjust is because N(t) may not be
Gaussian; Regardless,'we do nof éssume a knowlédge of

the structure of N(t). Therefore, to solve

.o t
,» T_.2 . .
v@mw~£F1}¢?£MH%ﬂﬂmfo
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we must lteratively solve

Ve lx - k o f h(r)Ryy(r)dr = 0
or

- - [x - k FIF + f h(r) Ryy(r)ar = O’ (65)

’

where the autooorrelation function Rpy(r) of the noise
‘is assumed to be determinable. The R-M algorithm for

finding the optimum k is then

i = Ky oy Hx(6) - R(8) 1 R(6) + K3 (66)

where - o o
' t
In the case of detecting deterministic signals,
the matched filter hj(t) is approximated by a_linear
combinatién of known functions mi(t)
h.(t) = Z k. t
5{t) L E By 9 (t)
where the subscript j corresponds to the filter matched
to the Jjthideterministic signal., An analy51s similar to
that above then gives the optimum kJ
By using the continuous Stochastic Approximation
dlfferentlai equatlon correSpondlng to the dlfference :
equation (66), the optlmlzatlon of k may be 31mply imple-

mented on an analog computer.
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6.3 Estimating Probability Densities and Correlation

30

Functions

The estimation of an unknown function y = f(x)
from a finite number of randomly observed points of the
input data x(t) which may also-be noise corrupted can be
solved using Stochastic Approximation by assuming that
£(x) may be represented or approximated by a sum of arbi-
trary independent functions mi(x), so that

m
'iil kimi(x) (67)

A T ‘
£(x) = ke(x) =
'whé}e‘g is our variable parameter vector., For simplicity,
let the mi(x) be orthonormal and choose k to minimize

(k) = [ [£(x) - Kp(x)T° ax

X

by agéin solving

o L(s) = 2f [2(x) - Klo(x) Jo(x) ax = 0
. X

it

2f £(x)p(x)ax - 2k =0
x .

because the @, (x) are orthonormal. Therefore, L{k) is

minimized at

£ ee)ax = Bo(x)}
X

vut £(x) is unknown, 8o use the Stochastic Approximation
algorithm to solve
: ' A
E{p(x) - k} =0
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The necessary recursive relation is simply

Kpjp =En * ay la(xy) - &k

or its continuous analogue )

E=a() lefx()) - k(1)) (69)
To estimate a correlation function R(T) = E{x(t+¢)x(t)}

of the random‘process,x(t)é when £(x(t)) is unknown,,one
_applies the algorithm - -

ngl = R (T) +ay [x(nﬁw)x(n) - Rn(T)J
.or

T - al) Dxfornas) - BT (70)

6.4 Tdentification

There are many examples where Stochastlc Approx1—\;

mation methods can be applled to system ldentlflcatlon.
Here the elementary case of identifying a causal time

invariant discrete system will be considered.' If the
“input is applied at n = 0, the output k(p)‘may be written

using the-convolution summation as

x(m) = Z klu(m-l) ='§?g

i=0 ’

The identification.procedure consists of determining the

T

weighting sequence k., ¢+, .k, denoted.by‘gr by observing

26,35

38
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the output x(t) which may be noise corrupted and mini-
mizing some convex error criteria L(k) = B{2(e(t))}.
Invoking the methods of Stochastilc Approximation, one

obtains

k

k . =k, +a ﬁ'[x[n] - k u[n]] u [n]

and we know : '

Limk =k =Lk, «¢s ]
e BT o’ ! km

6.5 Dual Control3o

' This is one of the most difficult problems in con-
trol theory and was essentially defined py‘Fel'baumsl
using the decxslon theory approach. The goal is to con-
trol a. plant W1th unknown parameters and external distur-

]

' bances.' Eel'baum s approach is almost impossible to apply,
even ifltﬁexa'priori distribution of the plant parameter
and- the expernal influences are given, except in simple
cgseé. |
| A more general approach that 1s somewhat less com-
plicated than Fel'baum's and requires 1ess a priori knowl—
edge 1s a Stochastic’ Approximation formulat;ont
Given the linear discrete system
M N -
x(n) = = Ciﬁ(n—i) + Z diu(n-i)
i=1 i=l

-z +d"
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where C and d are unknown.

DEfine_}_{_ = (c1; ey C rs d

M’ “1° )

L ] d
a.l’ld _Z_(l’l) =-[£{-(n"1), LAY ] X(n"M), U(n— )_ LI -U.(n"'N)]
Therefore, x(n) k Z(n) and choose the loss function

£(+) to be a convex function

= 2lx(n) - x%2(n)]

We want to find the solution to v, E{4} = 0 by iteratively
solving Vi L(+) = 0,

Using the R-M method, the convergent identification algo-

Trithm is.

En_l\%:an.vkﬂfx(n+l) -'5?(n—1)‘g(n)]

~

k
™n

.’iﬁn-l a, 4'0x(n+l) -~ K5(n-1) Z(n)1 2(n) ° (71)

where £' denotes the derivative of 4 with respect to its

argument.
The controller is designed to generate a control

+

law of the form

r

) . .
a(n) = 8% nlx(m)] = 3 g malx(n)

where the m, are linearly independent functlons. The con-

trol performance index I(k Dt B) is

T
where J is a convex loss functlonw Now we wish to find the

ﬁgpt that SOlves-YQI(kopt; B) =0 ps;nglonly'knowledge of
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T T .
?ﬁ Ik ot 2oV (k pt_g,.g)], but koo I not known so the
) : _c - © .
best one can do is use % thn_l_gﬁn), u(kn_lg,_g)]

or equivalently

VIl ) Z(n), 8mlx(n) 7}

Thus the algorithm for finding the optimum £ is

- T o T
Bh = By TP VEJ{._IS _%(n), B ﬂ[.lin?,el Z(n) 1

= 8,1 Fb, VBJiﬁ(n—l) + u(n-1)} (72)

which giyes the convergent control algorithm. Note that
the equation of identification (71) and that of control

(72) are interdependent. Their block diagram representa-
tion is shown in Fig. 5. Analogous continuous algorithms

can easily be derived for analog simulation.
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- =n
ii;I]_ :) .B_n
{\ /ﬂ-\/\
x(n)
u(n)
> Plant
x(n)
= Controller (K.l
u(n) x(n)
" AN
By )
“u(n)

Realizations of Algorithms (71) and (72)

‘Fig. 5
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6.6 Controllable Parameters30

A common problem in control systems and in mass
production of, say, missile components is to adjust a set
of controllable parameters k to minimize the influence
of uncontrollable changes in a set of parameters c on
desired system performance. ForAexampie, ¢ may be the
pole and zero locations or gain and k may be the state‘
variable feedback coefficients. Or ¢ may be the mean
va;ues and variances of a set of variables and k may be
the adjgstable means and variances of a set of contrel-
lable parameters.

Thus, we define a performance criteria I(c,k)
where the variations in ¢ may be random, but stationaxry.

" The attempt is to find the value of k that minimizes

B{1(c,x)} = [ T(c,k)ar(e) = J()

|0

This problem can be solved in general even if F(c) is

unknown by applying Stochastic Approximation, obtaining

the algorithm, where cp.7 1s obtained by continuously monitoring
it.

En = En—l + an.vg'I[Eﬂrlen—l] (73)

6.7 Allocation of Limited Resource330’32

This last application deals with an Operation
Research problem in reliability or allocation of limited

resources. It is desired to find the optimum method
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p(x) = k'p(x) of distributing a limited quentity of
.-resources x in which we wish to maximize the expected
gain G

¢ = Efglp(x),x1}

under the constraint on the resources

| W(x)p(x)ax = ¢

X
- where W(x) is a weighting function, say, 1 in this exam-
ple.
' When the probability density function f(g) or
equivalently £(x) is not known, it is common practice to
seek a minimax solution. By applying Stochastic Approxi-
mation, we can avoid this conservative approach.

It is first necessary to guarantee that the con-

straint

ip(X)dx - & = E?i@(x)dx -c

is satisfied. This is easily accomplished by using
Lagrange multipliers, giving

I=6(k) +1(EB - c)
and seeking the solution to

YEI = 0
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by recursively computing
. T
En =k q T an{vggtﬁn—l@(xn)’xn] - Kng} (74)

‘T Aael %'bniggulgfc) ' (75)

Oor using their continuous counterparts

il

5 = () 17 elkt ()0 (x(t)),x(t) ] + A (t)b}

b(t){E"(%)Bc]

The block diagram for equations (74) and (75) is shown in
Fig. 6. The unusual characteristic of the schematic is
that it is in essence a percepiron, a device originally
devised by Rosenblatt33 in his work on artificial intel-

i3
1igence.35

Here, however, Rosenblatt's threshold functions
have been replaced with the linearly independent funec-
tions w. .

In concluding this chapter, it should be noted
that the techniques discussed in Chapter IV on acceler-

ating Stochastic Approximation schemes mey be used in all

the applications considered.
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T1

— (x,) Kn-1 1 En
— () = @'F:Z <¢’—-——-@<:an - i
2_____.._ ' TT 4
T 1g—n--l |
:’-1 ng)( )
—~ KT w{x )
—n-1 “\'n

Circuit Realizing Equations (74) and (75)

Fig. 6.




CONCLUSION

This paper has been in essence an attempt to deal
with many topics in optimization theory from an algo-
rithmic viewpoint suitable for computer solution. Such an
approach is especlally useful in‘complicated engineering
systems where the only analytically feasible solution
requires simplifications that make the results meaning-
less.

It should be pointed out that many other research
topics which are appropriate for Stochastic Approximation
methods have not been presented. Some of these subjects
are pattern recognition,random-rounding computer errors,
quantal responsé in biological systems, learning control
systems, inertial and non-inertial non-linear system
identification and control, process control, estimation
in radar and radio astronomy, trainable thresheld logic
and probabilistic automata. In addition, the Stochastic
Approximation algorithms considered contain the Potential
Function method of Aizerman, Braverman, and: ROzonoer as
37

& specilal case.

In closing, areas of fubture research will be

cited. A few of these are: development of a

72
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(1) Stochastic Approximation Newton-Rapson
Method
(2) Stochastic Approximation Conjugate Gradient
Method
(3) and extension of Stochastic Approximation
Methods to function spaces as has been done
for steepest ascent methods.
A forthcoming paper on self-adaptive filtering and pre-
diction will describe original results which are a direct

consequence of this study.
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ABSTRACT

In this report the problem of self-adaptive optimal
estimation of a sampled stochastic signal observed in random noise

is formulated and an engineering solution is‘ggveloped. Chapter I

"

introduces the topic and reviews the results of recent research.
Chapter II gives the necessary background material from estimation
theory. Chapter III develops the learning criterion and derives the
adaptive stochastic algorithms.from it. The learning criterion is
based on the principle of orthogonality of Chapter II. Chapter ‘IV
presents the expefimental results obtained by applying the learning

criterion and associated algorithms to specific systems.
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CHAPTER I
INTRODUCTION

11 Prologue

Recently considerable attention has been directed toward self-
adaptive (or self-learning} optimum systems. The basic idea is quite
simple: one wishes to design a system to pérform efficiently in an
unknown or changing environment without the necessity of direct human
intervention. Such systems are extremely important in the context of
control and communication theory where it is then impreptical or impossible
to obtain the a priori information required to specify the optimum system.
In this report the goal is to provide a self-adaptive solutiom to
the problem of optimal filtering, prediction, and detection of stochastic
signals imbedded in random noise. However, before discussing the prin-

cipal results, a historical survey of this topic is appropriate.

1.2 Background and Historical Survey

~

One of the most important topics im control theory is the stochastic
control problem. Here one is required to determine:the optimum controller
for a given plant without precise knowledge of the state x(t) of the
plant. The stochastic approach to optimum cont;ol is motivated by the

fact that in general -

1) Some of the state variables are not available for measurement,

’

2) the measurements contain noise,
¥

3)  the plant is subject to random input disturbances.



By using the state transition representation, a linear dynamic system
model of the plant can be described by
§Cn+1) = &x(n) + Du(nj + w(n) (1.1)
and the measurements of the state x(n) by
y®) = Ex(m) ¢ v (1.2
where
§(n) is the system m x 1 state vector
pu(n) is the & X i control vector“
w(n) is thp'm x 1 white perturbation noise input vector _
® is the one;step m X m state transition matrix--~
D is the m x £ control matrix ‘
-g(n) is the p x 1 measurement vector

v({n) is the p x 1 white measurement noise vector

H is the p.-x m observation matrix.

The approach (Lee,'1964) generally used to attack this problem is to
first estimate the state f(n). Then this estimate‘%(na is used as if it
were the actual state to calculate the optimum control employing determin-
istic methods such as the maximum principle. In other words the stochastic
control problem islsepa;ate&,into two phases,: referred to as estimation and
control. It has been provéd that for linear.systems with a quadratic per-
formance index aﬁd'subjected_to white Gapssian ﬁoise inputs, the optimal
sto;hastic controller consistsﬁof an oéfimai eséimétor (filter) in cascade
with an optimal deterministic controller (Joseph and'Tou, 1961). This result
is known as the Separatioﬁ Théorem?‘ In this thesi§;.on1y‘the estimation

phase is considered because the deterministic control solution is well known

{Shultz and Melsa, 1967 or Sage, 1968). In communication theory an equally

'._2...'



Lmportant topic is the stochastic detectioh problem. Here one is required to
letermine the optimal receiver for detecting the presence of a stochastic signal
i

§(t) imbedded in additive random noise v(t). Assuming the signal x(t) has a
rational spectrum, it is possible fo represent it as the state of a linear
iynamic system ﬁith a white noise input (Kalman, 1960). The linear dynamic
system i1s called the signal generating process, and in state transition repre-
sentation is described Ey

§(n41) = @§(n) + g(n) (1.3)
and the measurements of the signal §(n) by

y(n) = Hx(m) + v(n) ) (1.4)
The notation is the same as that of eguations (1.1) and (i.z). The signal
generating process (1.3) is identical to the control plant process (1.1},
except for the control input g(n). However, the Separation Theorem states
the control term can be disregarded in the estimation phase. Therefore, the
estimation problem and its solution are identical for both control and com-
muntication theory.

Also; there exists an analogous Separation Theorem solution to the stochastic
detection problem (Kailath, 1963) which states that for a Gaussian signal with
rational spectrum observed in white additive Gaussian noise, the optimal sto-
chastic detector consists of an optimal estimator (filter) in cascade with
the optimal detector for a deterministic signal,’i.é., the output of the
filter is considered to be the actual signal, Again, only the estimation

phase is considered since the deterministic detection solution is well known

(Hancock and Wintz, 1966, or Van Trees, 1968). .



Because of the identical mathematical framework of estimation in a
control or communication context, no distinction between the two areas is
made in the text that follows.

Wiener (1949) and Kolmogorov (1941) are credited with the solution for
a single input-single output system. Wiener formulated the problem in texms
of finding the optimum (in a minimum mean-square error sense) linear filter.
He showed that a necessary and sufficient §ondition for optimality was that
the filter.satisfy the Wiener-Hopf equation, and developed a method (spectral-
factorization) for solving this equation for signalé with a known stationary
rational spectrum and for noise with a known stationary white spectrum.

Following Wiener's pioneering work, there developed an extensive liter-
ature which interpreted, simplified, modified, and extended his results.
Detailed éibliégraphies may be found in Stumper (1955) and Balakrishman
(1963).

However, the case of a non-stationary multidimensional signal -in non-
stationary multidimensional noise remained unsclved in an engineering sense
until 1960-~1961 when Kalman (1960) and Kalman ané Bucy (1961) published their
fundamental papers. Instead of seeking a solution to the Wiener-Hopf equation
in the frequency domain with the attendant problem of spectral factorization,
Kalman combined the concept of state variable representation of dynémic systems
with the orthogonal projection in a Hilbert space representation of linear
filtering to obtain a direct solution in the time domain. In contrast to the
Wiener's method, Kalman's results are in recursive foxm and therefore ideally
suited to real-time sequential digital computation. However, both the Wiener
and Kalman theories require complete knowledge of the message generating and

observation noise covariance matrices, denoted by Q and R respectively,

=~ 4 -



in the real world such extensive a priori information is generally
not available. The consequence of not knowing R and/or Q is a suboptimal
filter, i.e., an increase in the error covariance matrix. In some cases
the increase is unbounded (Sorenson 1966). Detailed investigations Sf the
suboptimal performance caused by insufficient a priori information have been
widely reported in the literature, e.g., Soong-(1965),'Heffes (1966) , and
Nishimura (1966, 1967). In addition, the inverse of R must exist to perform
the Xalman filter computations. The presence of either noiseless measurements
or correlated observation noise can render R singular. In practice R is
often ill-conditional simply because one measurement is an order of magnitude
more accurate than the others. Thus the Kalman filter formulation can gener-
ate application difficulties. Bryson and Johansen (1965) and Bryson and
Mehra (1968) have modified the Kalman framework to handle this particular
problem, but their technique necessitates state augmentation which increases

the dimension of the filter and the computation time’

1.3 Statement of the Problem and Previous Results

The inadequacy or absence of a priori knowledge leads naturally to the
consideration of adaptive or learning approaches to optimum estimation.
Specifically, a self-adaptive solution to the sampled data, stationary op-
timum filtering and prediction problem is sought which does not require a
priori specification of R and Q and retains the récursive features of Kalman's
formulation. ‘

Previous adaftive techniques ‘can' be divided iqto,two types. The first
due to Magill (1965) -assumes that the parameters of R and Q beleong to a finite
ensemble of a prioxi known possibilities. An optimum Bayesian pattern recog-

nition algorithm for Gaussian distributions is used to learn which sampled

-5 o



data process is being observed. With this knowledge, Q and R are uniquely
specified. Magill's method is valid only for a scalar observation process
and is cumbersome to apply. For example, given N unknown elements of Q with
the single unknown element R, and M possible values for each variance, there
are (N+1)M combinations. Each cowbination requires the implementation of
the corresponding Xalman filter‘equations. Hilborn and Lainiotis (1969)
extended Magill's technique to a vector observétion process and prove me;n’
square and probability one convergeﬁce.

The second approach is to estimate directly the components of R and Q.
Shellenbarger (1966) showed how to use the Iikelihood principle to ac-
‘complish this estimation under the assumption of Géussian distributions
and other more restrictive requirements which limit its utility. As a
result, Shelienbarger (1967) developed a more general least-squares learning
method to determine R and Q. Proof of convergence is not considered. It is
importént to note that both of these approaches require the determination of
both the R and Q matrices, and the existence of the inverse of the estimated
R matrix. Then the entire set of Kalman's equations‘must be solved for thel.

estimated optimum filter each time the estimates of R and Q are updated.

w

1.4 Approach to the Problem

2* *In this report; an unsupervised learning criterion is formulated
from which self-adaptive algorithms are derived. These algorithms learn
the optimum discrete time stationary Kalman filter directly. This elimi-
nates both the necessity of estimating é and Q asién.intermediate step and
the need to solve the entire set of'filtering equations. The number of
parameters to be determined and the computation‘time is also reduced. In
addition, the problem associated wiéh the existence and computation of

- A -



R is avoide@. Satisfaction of- the learning criterion is showm to be a
necessary and sufficient condition for optimal filtering. Thelstochastic
algorithms developed for estimating the optimum filter Eonverge in a mean-
square and with probability one. The results are valid for scalar and

vector valued signal and noise processes.

1.5 Organization of the Revort

'

The second chapter presents a comparison of Wiener and Kalman filter
theory which serves also to introduce the notation to be used. Thé‘review
of Kalman's theory lays the foundation for the motivation of the ;earning
criterion.

Chapter III formulates the learning criterion and proves its necessity
and sufficiency for optimum filtering. The stochastic algorithms required
for performing the adaptation indicated by the learning criterion are then
presented. The theory of Stochastic Approximation is invoked_to pro;e the
convergence of the algorithms. An extension to time~varying signal and noisc
statistics is suggested.

Chapter IV applies the theory of Chapter III to specific problems and
presents the results of simulations which illustrate the success of this
self-adaptive method for (1) different initial values of the filter matrix
with R and Q held constant and (2) different values of R and Q with the
initial choice of the filter matrix fixed.

Chapter V contains conclusions along with recommendations for further

research. .



CHAPTER II

OPTIMUM FILTERING

2.1 Introduction and Organization
The objective of this chapter is to present several of the more
important results from the theory of optimal estimation. The application
of these results to the engineeriné prqblem of ektracting a2 stochastic
signal Lrom n01sy observaL1ons or estimating the state of a conorol system
leads to the Wlener and Kalman theories which are developed and compared.
At this point it is necessary to specif} exactly what is meant

by filtering, and prediction, of a stochastic signal x(t) observed in

additive noise v(t).

Definitloﬁ: Observe the sum z(nT) = x(nT) of the two random processes
x(t) an& v(t), representing the signal and noise respectivély,
over the discfete‘time interval ((n-m)T, nT), n > m. Filtering
is the estimate of x(7) at t = nT. .

Prediction is the estimate of x(t) for t » nT.

+

Both cases will be dealt with in the succeeding pages, but the
creaeesL emphasis is placed on filtering because it is the key operation.
Note that even though x(t) and v(t) may be continuous functions of time,
the data z{nT) is observed only at discrete times.‘ That is, in this

thesis only sampled data is considered.



2.2 Optimal Estimation: Bayesian Approach

To discuss optimality, a criterion of optimality must be defined.
Sﬁppose that a random variable x is to be estimated from the set of data
z={z(1), ..., z(n)}. Then X will be called the optimal estimate of x

given‘Z if and only if the average loss
E {(2(x-X)} E, {E_ (x| 2} = E, {L(x|2)} (z.1)

is a minimum, where R(X-ﬁ) is an appropriately defined loss function.
In equation (2.1) the expectation with respect to Z is not dependent

upon. x; therefore, it sufficés to choose X such that

L(x|2) = E, {2Gx-x) |2} (2.2)

is minimized. A solution based om minimizing (2.1) or, equivalently,
(2.2) is called a Bayes estimator. It has been shown (Sherman, 1955,
1958) that for a rather general class of loss functions'g(-) and a

posterior densitiés that the Bayesian estimator is, the conditional
x = E {x|z} (2.3)

THEOREM 2-1. Let S = {&(°): & is symmetric and convex}. If the a
posteriori density p(x[Z) is symmetric about its conditional mean
E {x Z}, then the conditional mean E {xIZ}is the optimum estimator

of x given Z in the sense that it minimizes.{2.2) for all 2.S.



Proot:
2{e} = 2(-e)
z(ael & bez) < a z(el) + b z{ez) 4%fe1, e2
where 2a + b =1, a e (0,1)
and p(y|2) = p(~y|2)
vhere y = x - E{x|Z}
L(x]z)-

1k

Ex{z(x-§)|z}

it

E {£(%-x) ]2}

Ey {2k ~E x|z - »izn

]

B, {e(x -E x|Z2 + y)|2}

~

E, {2 x|z - %~ y[Z}

il

1

E, {4(E X|Z  -x ) |z

Ey'%z(y -{ Ex|z - x»]z}

4

FELG +{ B x|z - %)+ 10y

-{E x|z - x|z}
iﬁu%.x+w x|z %) + 1y
-{E x|z -x})|2}

= E{2(y)|Z} with equality iff X = E{x|Z}

The class S can be greatly extended if we add two restrictions to the -

conditional density.

THEOREM 2-2, Let 8§ = {&("): & is symmetric and z(el) 3_2(&2) > 0 for

2

-l'O -—

symmetry

convexity

symmetry

by (a)

by (c)

by (a)

by (¢)

by (b)

Q.E.D.

e, > e, >0, £(0) = 0}. If the a posteriori density p(x}z) is

(a)
(b)

(c)



(1) symmetric and monotone nonincreasing about its

conditional mean.
{(2) decreasing rapidly enough so that lim 2(y) p(y[Z) = 0,
‘where y = x - E{ x|z}
then E{ x|Z} is the optimum Bayes estimate.

proof: see Viterbi (1966).

Some examples of the () ¢S, arc

1
K, e [> x
L(e) =
0, le > x
2(e) = K |e}
2L = K [1~exp (e®]

Note that under the conditions of Theorem 2 the conditional mean E{ x]Z}
coincides with the maximum a posteriori estimate.
In general what follows will concern vector-valued random

processes x(n). Equation 2.2 then becomes

LG 2@) = B fo flxw - 5[] 2m 2.4)

where Z{n) = {z(1), ::., g(ni) and [|- ||denotes the norm of the
vector. Theorems 2-1 and 2-2 extend readiiy to include this case
(Kelman, 1960).

If the error'squared is chosen as the loss function, then
restrictions (1) and (2) of Theorem 2-2 on the a posteriori density are

unnecessary.

-11 -



mEOREH 2-3. tet ¢ (|| xm) - x| = 1] xm -z} = [ - %an] !
{%(n) - %(ni‘ , then E'{%(n) ]Z(n)} minimizes (2.4) without any

restraints on p{x(n) [Z(n)).

Proof:

T - AT A AT
N I R e A A
2107 G- Bix )« B x| 2 ) [ x2)] Bx(m

B {xx |7} - B {x [z}} T w2

PO

"o

(x - E {

Lt

v

with equality iff ;_(n) = B{ x(n)| Z(n)} - Q. E. D.

2.3 - Principle of Orthogonality and the Wiener-Hopf Equation

The contents of theorems 2-1,- 2-2, -and 2-3 give the "in princi-
pal' solution of the Bayes estimation problem for a wide class of loss
functions and probability structures. However, the explicit computation .
of this optimum estimate E{x(n) Ztn)} is formidable except in the
important case when {f(n)} and'{;(n)} are (Gaussian. Here we have the
well known result that E{ x(n) |Z(n)} is a linear function T [Z(n)] of the
observations z{-), e.g.; see Deutsch (1965). The optimal linear operator

T {%(ni! can be determined using the orthogonal projection theorem

THEOREM 2-4. Let {x{(n)} and {z(n)} be zero mean random sequences. Let
Z(n) represent the closed linear manifold1 generated by the data

{B z(i) ..., z{n) }where B is the general m x p generator matrix

for 7m0

- 12 .-
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either

() the random sequences {x(n)}, {z(n)} are gaussian or

(ii) the estimator x(n) is required to be a linear function

-3

[?(nﬁ of the date {z(i), ..., 2(m)} and ¢ ||x(m) - x(n)||

it

[ [x(m) - ﬁ(n)l|2 . Then the optimal estimate %(n) of x(n)
is such‘that the ervor e{(n) - x(n) - %(n) is orthogonal to
z2(n), I.e.,

- ) N )
G@) - x@m), B2(3)) = El x() - x(n) Bz (3)}

= 0 Bz(j)ez(n) (2.5)

T T
where (*,*) is the inner product induced on Z by E{(') (3.

Proof: see Kalman (1960)

COROLLARY 2-5  (x(n) - x(n), x(n)) = E ¢ {=(n) - x(m) X(m)y = 0

whezre 32(11) =T [Z(n::)j

Under condition (i) of the theorem, the orthogonal projection of xi(n)
on Z{n) is identical to the conditional mean E{x(n)[ Z(n)}. Thus, this
theorem implies that the optiﬁum lincar estimator éan not be improved
upon unless the random phenomenon are non-Gaussian and, ‘even then,

only by assuming knowledge of at least third order probability distri-
bution f’unctions.2 Consequently we know the general form of i(n) in
the sampled-data case is

~ n )
@ = Tzm] = oz AGWZMm (2.6)
V=

1

2

Given any random sequence, there exists a unique Gaussian random
sequence with the same mean and covariance.

13 -



where A(n,v) is anm x p filter matrix. 1If the data acquisition rate
is high enough to be considered continuous, then (2.6) becomes an
integral equation. Regardless, A(n,v) is chosen to satisfy the
orthogonal projection theorem. This is the method employed by Kalman
{1960) to solve the optimai filter problem.

Kalman and Bucy (%961) used this theorem, i.e., the orthogo-
nality of e(n) and Z(n5, to derive the multidimensional Wiener-Hop#

equation. The Wiener-Hopf equation is given by the outer product

ke - x@] ) e - B[ - 2e3] o

1

[}, Wz «zm 2.7

Since %(n) is given by (2.6), (2.7) can be written

n T . T .
E{ Ix(n) - = A(n,ui] z(v). z ()} = E{x(n) =z (7)1}
~ v=i ~ - - ~ (2.8)

i
[ e B

v=i

A B z6) 2 () = [0, e ez

If i = -» in (2.8), the sum is assumed to be uniformly convergent so
the order of summation and integration may be interchanged. For the
scalar case it is ogvious that the result given by orthogonal
projection thgorem equation (2.5) and the Wiener-Hopf equétion‘(2.7)
are identical. To show this equivalence in the random vector case, a ‘

dual space approach was used. The result is summarized in Theorem 2-6.

C 14 -



THEOREM 2-6: A necessary and sufficient condition for

B [xm - xm] TG = [o] Mz e zem @7
~ n
where x(n} = I A(n,v) z(v)

is that A(n,v) be cﬁosen such that
Exm - x@ [ Tey = 0 MeG) e 2w (2.5)
Proof: see Kalman (1960} and Kalman and Bucy (1961)

COROLLARY 2-7: E{[}f(n) i {c(nzl {cT(n)} =[ o}

This thcorem and the accompany corollary provides a common framework for

the filter theory of Wiener and Kalman.

2.4 VWiener and Kalman Filter Theory -

The purpose of this section is to present the results of Wiener
and Kalman for comparison. The reader is referred to the appropriate
references in section 1.2 for a’ complete derivation. The model used

is given by equations (1.3) and (1.4)

X ) = ¢ x(m) + wn) (1.5)

z(n) = H {(n) + Y(n)

with “E{w(m) wi(m)} = q(m) (1.4)

E{v(n) v' ()} = R(n)

15.~
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Wiener's approachJ uses the frequency domain4 and the solution is
given in terms of the Z-transform R(Z) of the m x p filter matrix
A(n- ) as illustrated in FIGURE 1. The problem of synthesizing the
filver remains. Employment of the frequency domain requires the

following restriction.

(&3] The system & and observation matrix H are time invariant.
(2) . The statistics of w(n) and v(n) are stationary.
(3 The data z(n) are known for past time, i.e., 1 = -« in

equation (2.8).-

Under these conditions, equations (2.6) and (2.9) become

;(n) Aln-v) z(v) (2.9)

I
[ 2 =

... }

v

gnd

3

To the author's knowledge, the first ‘general technioue for
determining the optimum multiple input---multiple output discrete
filter using Wiener's method was given by Motyka and Cadzow (1967).

4
Since only sampled data is considered, frequency domain means
the Z-transform domain.

- 16 -



ahd

T .. n T, .
E {x(m) z°(§) } - z Aln—v) E {z() z (§) 3}
N z v = - N :
n
=R (-3) - £ A(n~) Rzz(y-j)
v -— D
=[roJ s J& -ws; .-., D : (2.10)

By a change of variable (2.10) can be rewritten

R (o) -
Xz . .

A R (o) = [o:], ae{0, ...,=} (2.11)

IlMé

0
The cross-spectral (generating function) matrix representation of

(2.11) is

6 (D -y (DA @ = [o] : : (2.12)
Xz ZZ -

Since each element of (2.11) is zero, each element of (2.12) is a
polynomial in positive powers of Z only. Thus each polynomial element .
must converge for all Z inside the unit circle. Assuming ¢ZZ(Z) has

a spectral factorization of the form

. _ -1, T
6, (2 = a4z 41 (2)

where A(Z_l) isapxp matri¥ whose element§ represent the Z-trans-

form of stable, linear, casual systems (i.e., polynomials containing

a constant and positive powers of Z) and have no poles inside the unit
_circle, then a physically realizable Wiener filter exists. The frequency

r

domain expression for this optimum filter is -

17
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T T 71 1 1
A (2) =[A (z)} [{A Y h 6, (Y = 4 Ll 6, (2)) J (2.13)

where { .}c is a matrix whose elements are constants and { }+ is a
matrix whose elements contain only poles inside the unit circle. The
“in principle' solution given by (2.13) is not easy to synthesize,
and is not suited to machine computation.

Kalman'"s time domain approach not oﬁly eliminates these two
difficulties, but also the three restrictions listed on page 9 . He

used the orthogonal projection theorem to obtain the following recursive

set of equations for optimum filtering and prediction:

X(n) = & x(n-1) + K(n) [z(n) -H ;“c(n-l):‘ (2.14)
=E {x(n) | Z(»)} for Gaussian noise

K(n) = £(n) HR *(n) ) - (2.15)
= Z{n[n-1) HY [% £ (n|n-1) HT + R(n)] -}
= Kalman filter matyrix

I(n) = Cov {x(m) | 2z(m)} (2.16)

~ - T
=E{ [%(n) - x(nl,ltx(n) - f(ni] I Z(n)}
T ( T -1
= r(nfn-1) ~ z(n|n-1) H [Ei % (nfn-1) H =+ R(n{] Hi (m]n-1)
= Error Covariance matrix -
Z(n+l|n) = E {[x(n-!-l) -5 E(n)] [x(m-l) oy %(n)] T zm L (2.17)

= ¢ 3(n) &° + Q(n+L)

= One-step prediction error covariance matrix



1]

X(siln) = & x(n)

One-step prediction of x{(n+1)

E {x{(n+i) [ Z(n)} for Gaussian Noise

The block diagram for the Kalman filter is shown in Figure 2.2. Note
that it is in the form of a closed-loop feedback system. The necessity
.of knowing the covariance matrices Q(n) of the white plant perturbation
{signal generating) noise and R(n) of the white cobservation noise is
obvious from inspection of (2.15) - (2.17).

¥hen restrictions (1} - (3) required for the Wiemer approach are
satisfied, the Xalman filter is equivalent to the Wiener filter. This
must be true from Theorem 2-6. However, the computational superiority
of Kalman's method is still evident. It is interesting to determine
efactly how the Kalman filter matrix K is related to the optimum
Wiener filter A(n-v). For this case

Aln-¢) z(e)

—C0

n o3

Q(n) = ¢ ;En—I) + K [}(n) - H 9 ;(n—l)] =

From Theorem 2;6

B { Lx(n) - ;:(n)] zT(n) } =K {[x(n) - ;c(n)] [xT(n) HT - \)T(ni]} =[O]

3{ [xm - %(ni} )} B = B |x(n) - %(ni] v ()} (2.19)

or

T
The left hand side of (2.19) is z(n) H from Corollaxry 2-7, and the
T .
right hand side is E {X(n) v (n)} since v(n) is independent of x(n).

Therefore,
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T -~ T
@) H =E {x(@) v (n)}
n T
=8 { z A(n-a) z(a)v (n)}
o = = b - -~
n T
=E { I . lA(n—a) [H x(w) = v(ai] v (n)}
o = - -~ -~ -~
n T
= b A{n-¢) E {v(e) v (n)
o = - -~ -~
= A(O)R

which implies

A(0) = z(n) H R

>

Thus the impulse response of the optimum Wiener filter matrix evaluated

at time equal to zero gives the optimum Kalman filter matrix.

.5 Summary

3]

This chapter has reviewed some of the fundamental concepts oi
estimation theory and its application. It was shown that for
Gaussian noise the optimum estimator is linear. For a given system
this important result yields the f£filter theory of Wiener and Kalman

which was reviewed and compared.



CHAPTER TIY
FORMULATION OF THE LEARNING CRITERION AND

THE ASSOCIATED STOCHASTIC ALGORITHMS

3.1 Introduction and Organization of the Chanter

In Chapter II some of the important concepts of estimation
theory were reviewed, and the results of Wiener and Kalman filcer
theory were presented and comparad. There it was shown that for
optimum filtering the estimator must satisfy the Wiener-Hopf egqua-
tion. This equation is also the fundament of the learning criteriom
to be developed in this chapter. Stochastic algorithms, based on -
this criterion, are derived which asymptotically converge to the
optiﬁum filter. Stochastic Approximation techniques are invoked to

prove this convergence.

3.2 The Learning Criterion

The purpose of the learning criterion is to provide a necessary
and sufficient condition for an adaptive solution to the optimum
filter problem when the signal and noise covariance matrices Q and R
are unknown. In addition, this criterion must have two additional
characteristics.

(1) It must be a function of measurable and/or calculable

quantities.

(2) It must provide information from which convergent algorithms

can be derived.
Othizrwise, the criterion is meaningless from an engineering point of

.
Ve,



THEQOREM 3-1.
Given the dynamic system -

x(ntl) = @ x(n) + w(n) (1.3)

the observation process

z(n) = H x(n) + v(n) (1.4)

and the filtering equation

X(n) =ek(m-1) + K [2() - Ho k(n-1)] (2.14)
o 1T -
1t Ln = Kopt
T T -1
= I H [ﬁ T H =+ é]
That is, K0pt is the optimum Kalman filter matrix.
Then,
T L L . =

B {8y 8335 (50 6332 0¥ 3% (3.1)
where,

83 =z(3j) ~H ¢ i(j], and conversely.

This theorem is important because it implies that when K is not the optimum
n

filter matrix, the residual process {Gh} is not orthogonal.

THEOREM 3-2. The Learning Criterion

If E {an1 §j =0 -~/ i*n  and E{Xo} = O,

then,

E (5, 63 3= [0] 3%,

and conversely.

24 ~



Thus, the lack of orthogonality, when Kn is not equal to K is
opt

reflected in a non-muil correlation matrix between the residuals,

B S, 830 TCmi X o] (3.2)

C(n+i.j) could be used as a basis for learning Kop if a technique can

t

be devised to utilize this correlation between 6n+1 and,ﬁn to adjust X
; n

2

such that Kn 5 Kopt asn ,®
Note fifst, the fact that the correlation between § L and §
: n+ n
can be represented by the stationary Markoff. sequence
8 =P & + e : (3.3}

where {%1} is a zero mean random sequence, Post-multiplying both sides

. .
of (3.3) by 6n and taking the expected value gives

- T T’
E{s_, s Ty = ProyBl68 "3+ E{®nsn }

or

C(1) =P C0) +E{l e & 73
e

-1
Choosing the state transition matrix P = C(1) C{0)

forces E-{<STI GnT} = [OJ . P represents the correlation between Sn:and

8,.1- I£ P can be forced to approach [E] as n approaches «, then from

theorems 3-1 and 3-2, Khhl approaches K . Thus an algorithm is required

op .
which uses P to adjust Kp such that P +§:6] as n > «». Equivalently,

+1

the adjustment must force 8hey ~ &y @S R

- 25 _



3.2 Development of the Adaptive Algorithms

In the derivation of this algorithm the measurement matrix H is

assumed to be invertible so that P can be written in the form

P=H®dA Kn+1

where AK1'1 is an arbitrery matrix chosen to satiéfy equation (3.4).
il~

Let the initial value of the filter matrix be Kno, then
.Y - -1 ’ .
x{n) =@§c?§:1;—1) + Knol:z(n) -Ha }fo(ml)—i

Rewriting eq (3.3)
0

= i P 6n
‘n _6n+1 © 0

= z(n+l) - Hox{n-1) - H & A K°~__1 l:z(n)' -H o Sécﬁn-l)]

Substituting (3.5) into (3.6) gives

e =z{n+l) - H ® { @g?n~1) + Kn0 z(n) - H @ ;o(n-lil}

H

RS ECREE ;%n-n]
»

(3.4)

(3.5)

(3.6)

= z(n+l) - H {2 ;%n—lj + (Kno - AKn21) z{n) - H ¢ £?n~iﬂ }
= z{n+l) - H @{@\i%n-l) + Knil !—z(n) -H 3 i%n—li]}

~

1
= z(n+l) - H & x(n)

1
- 5n+1
Equation (3.7} implies that P = 0 in the equation
' 1
§ =P . 86%+e =0
n+1 1 n n n

and since

] H o x( 1_IT}~[0]
E {en chn) - H o ?c{n— )J = )
- T P
E {LZ(le} - H o ?ci(n)‘l [z(n) ~H® :T:O(n-l)t } = .(0 ]

- 26 -~
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o
From Theorem 3-1 and 3-2, AKn+1 is the correction to Kn required to

satisfy eqn (3.8). Therefore, under steady-state conditions

K+ 0K =K
n n+l opt

. . T . T .
However, since the E { § § } and E{§ &_ } are unknown, AK can not
n+¥l q n n n+l

be calculated. .

But Pn+ and, therefore Kn+ can be estimated by using the method of -

1 1,
stochastic approximation (Dvoretzky 1956).. A detailed survey of
stochastic approximation is contained in Hampton 1969.

To provide insight into the derivation of the stochastic-algorithm,
the problem of determining P is reformulated in a performance index
framework. Lgt L(P) be the expected value ¢of the éerformance index
to be minimized,

~

L(P) = B {L (5, = &,,7)) (3.9)

~

< +T . - .
where 2(6n+1 '5n+1) = (6n 1" P Sn) (§ =P Gn?’ is the performance index.

n+l

+

When L(P) is known (tﬁe deterministic case), equation (3.9) can be mini-

mized by solving

[t}
o

v L(P0 h) ©{3.10)

P pt

iteratively

(3.11)

1

P =P +vy_L(P)B
n+1 n VP _(Pn) N+

under appropriate convergence conditions.
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In the case at hand L(P) is not known. This condition is precisely the
motivation for stochastic approximation which states that (3.11) may be

replaced by the random matrix sequence -

- ~

Pre = pn * p 2(6n+1 = 8h41) Bras (3.12)
where Bn+1 = opel Wn+1
{an} is a sequence of real numbers such that
> - =
S0, ta =<« and I a T @
an =0 N n=0 n
and {wn} is a sequence of uniformly bounded linear matrix operators.
Under the above conditions the random sequence genera%ed by (3.12)
converges to POp in mean square and with probability one.
Choosing 2 = 1/n and remembering Pn =H & A Kn > then (3.12)
" becomes
o - o _ o o oT
PnT1 = Pn + {(6n+1 P 6n ) 8, } wn+1 (3.13)
n+l
~ D > ’ ~ 0 T
=P + {|z(m+sl) ~-HEex(m) | ~P jz(n) -H& x(n-1){} & w__
n n |- _ n E%%
n+

T
o
n et

=P+ {z(n+1) - HI} X(R) #A fcn (2, - H @%(?1-1)):}}5
oy

I
v
o+

H
e
+

n+l

'{z(nglj -H¢ ;(%)} ‘[}(n) - H.Q ;(g-lg}T}qEEE

- i oT 5
=Ho aK + 8ol (an) Wn+1 {3.14)
n+1

= 28 -

~ 0 ~ "‘, ~ O ‘0
{z(n+l) - H & [% x(n-1) =+ (Kn + AKh) (z(n) - H o x(n—lﬁ]}ﬁn

fn+1
n+l



and

AK =gt (HTH)'l H' P
n+1 n+l

In eguation (3.13) the expression in braces is the gradient of the
pverformance index and determines the direction of the correction term.
Wn+1 is a weighting matrix and determines the magnitude of the correction
term. The choice of Wn+1 is vitally importgnt since it determines the
rate of convergence_of the algorithm, From a computational viewpoint it
is more efficient to let Wn+i'be a constant matrix for 211 n. For tﬁis

choice the correction term merely follows the local gradient at each stage

of iteration. From a statistical viewpoint it is more efficient to let

-1 -1 o ofT . '
1 . )
=, + 6_ (8 3.15
Wm— LT T {nW_ o G n) } ‘ (3.15)
. . . T
i . nxl _ Of - T ) ©
.Jm_l = {wn wn an n +(5n) wn an (§n ) wn}

For this choice the correction term is such that the performance index is
minimized at each iteration stage. Thus, intuitively (3.15) should converge

more rapidly, but at the expense of computation -time.

Instead of estimating popt and then calculati?g AK as is required in
using the sﬁochastic algorithm of (3.14), it would be desirable to estiﬁate
KO . directly.  This can be accomplished by re-defiﬁing the performance

[ v i
inzex 2(*)}. Let

>
l

- -1 L.
= ot am T HT l:z(m-l) - H #8 x(n-1)

(=]
i

z(n).- o g(n) an@

- 29



- T
2{A - K = - ) -
( n+1 n+1 an (An+1 Kn+1 6n) (An+1 Kn+1 6n)
Then
Ko =K * T LKD) B, (3.16)
= 12 + { A - & s 18 T )
T n+l n n n n+l
n+1 )
1

If H = exists (3.16) becomes

K=K +( o | 2(ne1) - o0 ;(n-l)] - f<n E(n) -0 Q(ﬂ}s; W
n+l

- . 1. n T
{ & z(n+ll - & x{(n-1) - Kﬁ z(n) - & x(n-£§l}6n W

b4
>

]
-~
+

= K -+
T
~ _1 ~ T
=K + & z - & x(n 8 W
n n+l (n) n n+l
, n+l
- -1 T
= " .1
Kn N n+l Gn n+l (3.17)
n+1
where
-1 -1 T
W= b twtes s (3.18)
n+l1 T F N n n
n+l

Equation (3.17) with W£ defined as in (3.18) satisfies the convergence

| converges to

K ¢ the optimum Kalman filter matrix, in mean square and with
op

probabiiity one.

conditions of stochastic approximation. Therefore, Kn+

30 -



3.3 Estimation of I, L, R, and_g

By including an estimate of C(0) in the computational routine,
convergent algorithms for fﬁe error covariance T'; the one-step
prediction error covariance L; the plant perturbation noise covariance
Q, and the observétion noise covariance R, are easily derived. These

algorithms are

C =C (0)+ |8 8T-¢ (0) (3.19)
n n-1 n}n n n-1

* where o is chosen to satisfy the requirements of stochastic approximation,

¥ =X 0 .2
LK 0 . (3.20)
ro= (- K3 (3.21),
o~ A—l Lol

= T .
Ro=K T (3.22)
~ ~ o~ _,_’I‘
Q=1 -ere (3.23)

Equations (3.20) through (3.23) are valid for H = I. Analogous

results hold for H # I.

In Chapter IV the experimental success of the algorithms derived in

this Chapter are presented.
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CHAPTER IV

NUMERICAL SIMULATION OF THE SELF-ADAPTIVE

FILTERING ALGORITHMS

4.1 Introduction

In Chapter III, the learning criterion for self-adaptive filtering
was formulated and several convergent stochastic algorithms for pexrforming
this adaptation wexre derived. In this Chapter these algorithms will be
applied to specific systéms. The experimental .results were oﬁtained on
The University of Arizona's CDC 6400, using the FORTRAN IV language. In
interpreting these results it should be pointed out' that double precision

arithmetic was not used.

4.2 Experimental Results

Given the system defined by

Xp1 = ® X+ Wn {1.3)
z = H xn * v, (1.4)

with @ and R unknown, the optimum estimate of X is computed with a
1 .

Kalman filter of the form

”~ ~

}:n+1 = (I) xn + K Zn+1 - Ho Xn C2.14)

Since Q and R are not known the optimum value of XK can not be calculated.

i

However, Kbnt can be.learned using the algorithm
~ ~ _1 . T
X =X+ ¢, ] .
K SO 6n+1 Sn 1n+1 (3.17)
n+l

= 32 =



with

-1 1 -1 . T
W = .

n+1 n+l !nwn ¥ §n Gn (3.18)
EXAMPLE 1: 1st Order Plant

$=1/2, H=1,Q=1, R =1

Xe1 = 1/2 x +w

For this ist order case, it is easily shown that

1/2,

2
_ .2 -Q/R-1 4+ /(1 + Q/R - @2)2 + Q/R
K - 4 . 2

opt 2¢ 2 4 o Q

0.53

0

Figure 4.1 illustrates the adaptive process for an initial value of the
Kalman filter

K =0.0
o]

which corresponds to the one extreme of assuming the measurements are

just noise, i.e., they contain no information., As can be seen X, as
determined by (3.17) has essentially convergeé to Kopt within 2@0-
iterations, with K_ Kopt as n o+ @, T,'E, Q, and R were also estimated
using equations (3.18) through (3.24). These results for 1,000 iterations
are compared with their actual values in FIG. 4.1

FIGURE 4.2 illustrates the adaptive process .for an initial value of X

egual o

which represent the other extreme of assuming the measurements contain no noise,
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FILTER — K {n |
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i.e., they are perfect. Again Kn has essentially convérged to Kopt within
600-iterations. This indicates that algorithm (3.17) is not sensitive to
the initial value of Ko.

Other Ist order problems were considered with ¢ being varied from
0.2 to 1.0 {(the threshold of instabilify), and with the values Q and R
also being varied. In all cases considered Kn converged to K;ﬁt within

2,000- -iterations.

EXAMPLE 2: 2nd Order Plant

0.966  0.000 1.441  0.738
®= lo.155 o.804f, 7 1l0.738 0.610
H=1 , R= 1

For this case

— )
5 2.00 1.00
1.00 1.00
and .
¢ _ 0.600 0.200 - k11 k12
opt 0.200 0.400 k k
e ' 21 22

For this example KO was chosen to be

K = 0.40 0.%?}

o 0.00 0.60
The results of the adaptation process is shown in FIG. 4.3 (a) through
FIG. 4.3 (c). Again the process has essentially converged in 1,000
iterations. Note that symmetry was forced on klz(n) and k21(n)‘
The adaption process fb? the same syétem and Ko Withoup forcing

symmetry is illustrated in FIG. 4.4 (a) through 4.4 (d).
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The random sequences {wn} and {v,} used for simulating the adaptive
process were Gaussian in all examples presented. Analogous results were

obtained for uniformly and triangularly distributed sequences.
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"CHAPTER V

CONCLUSION

This report has presented a self-adaptive technique for learning
the optimum Kalman filter matrix in zan enviro#ment ﬁhere the covariance
matrices of the plant and observation noise are unknown a priori. A future
paper will describe this technique in greater depth and extend its appli-
cation to nonlinear systems and present the experimental results for higher

order systems.
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TIE CONTIROL OF NONLINEAR STOCHASTIC

CONTROL SYSTEMS UNDER DISCOUNTED PERFORMANCE CRITERIA

Iniroduction

Systems described by difference equations (state eauations) and
subject to uncertainty as to how they will evolve are of interest in
many fields including engineering and economics. The optimal control
of such systems was first formulated by Bellman in 1958, and major
contributions were subsequently made by Howard (1960), Derman (1964),
Blackwell (1962, 1965), and Veinott (1969). Howevér, while much
attention has been given to the existence of a solution under various
gonditions, little work has been directed toward the development of a
practical algorithm. It is the purpose of this report and the author's
dissertation to develop such an algorithm for discounted performance
criteria. A fundamental study of stochastic control systems is made

in Chapter II, which establishes the basis for the development of the

algorithm in Chapter III. This report comnsists of these chapters and a

summary of the example problems worked to date with a brief explanation

of a proposed nuclear rocket control study.

iii



CHAPTER 2

THE CONTROL OF FINITE MARKGV CHAINS

1.1 Introduction

A meaningful analytical examination of the stochastic control problem
is found in considering the control of finite Markov chains. Dynamic plant
equations and plant noise are modeled by a set of transition probabilities
over a finite state space. ZEach control law is associated with a set of
transition probabilities,and a cost function is defined. It is found that
the cost function may be minimized by either.dynamic Qrogramming or Howard's
policy iteration. This chapter examines both these methods and the propertie

of the cost function under various control laws.

2.2 TFinite Markov Chains

Let (Q,J, Prob) be a probability triple with @ the set of elementary

events, #;EF, the U—algébra of subsets of @ and Prob the probability

J .
measure on . The finite set of real numbers,fiz= { 1X, zx, see “x } is

called the state space and constitutes the range of the random variable x

mapping {4 onto X. A stochastic process is a sequence

v o= {x \n__o‘\'?_‘..«}
X =\

of random variables.

The stochastic process X is said to be a Markov chein if for
i~

tﬂ € SI with En= & U-'l\ ?—c\.‘“(@) = ;7‘3 ;";(. G X} 3

-
.

'P\‘Ob K_Eh\_é-o [\E‘ QE-L e (\E. \’\—\-\': ?\"'3‘-0‘;. Ehlt""“:\& 3

b ]

whenever Prob[ENEME,**NE ] # 0. That is
0 2 n-1



' [ s b _fj 4 \ -
?ro\o[ ?&Tﬁ ﬁ—x\ 75:_'5-.: Koy W, = 2L, e ]“;*':““_‘ ;}C:\. = \pb\oij:r;.‘_,: < :’E-_‘n—\ x

A‘ . -,
= <ty (‘ﬁ'} 4

where the pij{n) are the transition probabilities defining the chain. The

transition (stochastic) matrix for the chain is

Py = [ pegemi] n=ou,

The transition probabilities are related by the Chapman—-Kolmogorov equation

3 .
bl
1P¢ (m,‘-nh.... ,(_:{ ‘{Jihi M) P,&A}(?\n\g y MLcLn (2.1)
2=y
. & 5 e — . @
where PL) Conyd) = Yool K jac,\ Ko = 7"»1 o NEN

A chain is said to be homogeneous 1if

P(“\-_—_ F\? = Comﬁ‘\‘ccﬁ}\'_

. -y e Y
men (o= Lijlomil= PN
Let ;(Jf‘}-_(n) = P{“Qb [éy‘:’— J.? ] be the 2 priori probability

that the chain is at state j?( at time 1 , and let
fA )y = C/u,fn}g l) Mz ()

be the row vector of zll a priori probabilities at time ¥! , then
Aln = peey Plo,ad

and, for homogeneous chains ;

n
M(n)—; /L/i(o')rpﬂ



The states are classified as
(a) é?( is persistent if Prob [_ En & é'DC. -?ua— Tt ‘ﬁ_&: 3. N

* . I
(b) 9 is tramsient if Prob ‘_-:::w\ = 1% for Sowe \'\—X < 4

4
{(c) A is aperiodic if

i

g ee i“\ Pas(n) ?oﬁ‘g. =1,

and

(a) *2f  is ergodic if it is persistent and aperiodic (for fimite
chains) o

A chain is said to be ergodic if all states are ergodic. Examp'les of
state classification are givem in Figure 2.1, where the tramsition
probabilities are represented by arrows.

The following theorem will be useful in examining the control of

Markov chains.

Theorem 1: For a finite homogeneous ergodic Markov chain with transition
matrix ?, there exists a unique stationary probability distribution/u s

and

‘Pci{;ﬂ\l-v,é:{) 83 N-w oo geometrically fast.

Or in matrix form,

"
P -——'F:*_E_M-:.

(Doob (1953), Ch. 5 §2).

geometrically fast

Thus,

' /',((n) = fA(0) ?n-—> JALOY 1;4 .



b

Figure 2.1 a) ergodic chaiﬁ, b) non-ergodic chain, State 1
is tramsient, and State 2 is persistent, ¢) non—ergodic chain,
States 1 and 2 are persistent but chain is not aperiodic.



or

M(Y\\“—‘?M as n-—y o0

and /(,( = /L(P’

2.3 Contrelled finite Markov chains

The dynamic system to be controlled has a finite state space
, X - {L:C\Z':(.) ce s )T—;c_‘ts
and is observed periodically (at every discrete time period). At each
time period a control, § , which influences the behavior of the system is
applied from a set of possible controls A. As a re;ult of 1£he applicatic;n

of the control &, €A with the system in state %, €& X at time W
k2 R

there is a time independent,

(1) stage cost 0 < ﬁ(’fk,%{)( oo incurred, and
(2) tranmsition of the system from Ly at time ¥ =k to Xp,eX -

at time t =4\ with

P () = Beolo | o= Joe | =lae e | »

There is also a discount factor, !g , 0% i%<\ ; whereby, the cost ‘
43(3(,0(} for being in state X and applying a control & T\ pericds into
the future has a discounted cost of F“ /{(‘X_,LL) at the present.

Let 1J denote the set of control functions U from X into A
(i.e., Ke U implies ‘u('x.}é A f?r all %6& X Y. A policy,,."ﬁ”, specifies
a sequence of control functions for =21l time; W = i Vo Wy yeee 7] .

Thus, at time \Z » With the system in state Xk’ the control q\ze [:\



is applied. A stationary policy is a policy foxr which U,=U s AT, e

i.e., W ’-'-'ivhu;"“ha éu‘m
Let | () = ‘i. f( =%, u( ,C)\ RN 74 x u( ﬂ}
= [ -1?1(‘-&‘) iz("’t}) et .Jé-r(u}"‘

be the column vector representation of the stage cost for all states

under the control wuelU . Let P(‘«‘\) be the FxT Markov transition

matrix for. the control {4 in the Markov chain established by the policy % .

Play = L pijud]

Thus, by the Chapman-Kolmogorov equation, the transition matrix from time

t=0 o =M is

Plam = PLlud Doy e o Plady s
For the policy W and the initial state »{c the total expected cost vector

N\T
is \N®) = ( L)y U2, R) 5 eve, U *s;x\‘ﬂ

where

U‘(in\—\:‘ iZ f,L(vcw, (:wﬁ\ u} (2.3)

N
or

= L (w) -:-ﬁ ﬁf 7/3 (><muw<m\\7< *A:TT}

/‘éi (o) o /55;;5{%— P j(‘xh Uh(éw%l\"*“?}- =% ;ﬂg

&
f . S’ »
= A /35( Uz, ®) \%ﬁ"x,uo}
where ":i:*: iul\q?ﬁ{“'—&

11
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. -
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http:B!eck.al

Let , W (ozjzﬂix,o:)ﬁ-ﬁ, %_, Py =) U for any o € I\ .

Obviously, l?a (dyy O . Thus, the set \\Qi(a\!)\,‘c{rf: FJ&
has a lower bound of zero and hence a greatest lower bound for say OXieA,

The control function 4’— such that ;(ch Y= AL satisfies the lemma.

Theorem 2 (Blackwell) If there is an optimal policy T\“#: iua,uh““‘i s
there is an optimal policy which is stationary.

Proof. By hypothesis,

Viw*) € N for a11 W

NG = (ug' ..~=,. mq\m ;
where TV, =$\“nuz Jeew
also,  \J(w”) $N(RY
mus,  VAT) 7 Lo+ p VLU Vi) .

By the lemma, there exists a QQU such that

V) 7 LE) RO NET)
and \C‘.\%c\'\ﬂ‘ } )
N (xe), LO+ pPE [Liua st Pla V)]

L@ 5 P Tty + pP) NS

7 L) + RO L L@+ AP NG

7 L~ T‘é”\?@\_f@ " (3} PV



By continuing this pr?cess, N

iy ~ -

n=e } . - . %
As N~ o FSN’P-(%) \‘;k-“-ﬁi__,;,e since ﬁ{‘g and Y (£ )
is a2 stochastic matrix. )
Thus, as N —» O ‘

V(T 3 V()

but since ¥ is opt:unal

Vix*) = V(§7)

and 7‘1 is a optimal statiomary policy.

Theorem 3 '(Blackwell) Let W oo i \ha \u.\ MR ‘\
—
and T = E% uo)ub,m, 3 o If
V(-ﬁ-.} 5\/{‘3‘{”’ for all ‘{3 & \|J 5
then {\ is optimal.
Proof. By hypothesis

L('?) -\-Fo(fr}\f@) b/ VE) for all ¥+ € v

O, m-*\r_u\qv )

L(F v B PHHVIR) Y VIRY  for ail £ U
LG M) S (5?(1%-—\\ \KT\) /] \,(T\) foif_all 'FM-\ eJ

LGy 3 PR VR ZNE)  heal §,€7

Thﬁs,

LESY = @?(‘t \li.\_(g \’r)%\ o \\i(\ﬁ‘x \]“‘533
LU+ PPEI ) R P, YR S0 Y V) 5, NG

or

Continuing this substitution process for the policy —‘g"”; i_!fl
: T “.";glhl}'u‘clu“o no}
LOsY s pPORNLCR) « - (5 TPCE) P RIS
or + F —')( ¢ )-“ o F)(-gm\ \;(""\'\ _3

“‘”}‘7, Niw) |



sgain as  N—w o FMP(R)?@%)'HP(FH)\/(W)—_:-,Voo

Each ‘?C. is an arbitrary element of v ; thus as N oo \/(TT”} becomes

the cost of any policy. That is .

\!(“3 $VCTY for any % .

Thus W is optimal.

Theorem 4 (Blackweil) Let Y :{UQ,G‘ e 'i and
3

— ' T
b= {-F,uolu,,nw}, If Yy <N y then

o0 .
for the statiomary policy £ » \/(‘foo)< \K"ﬁ\ . { < means ((
for all elements with ¢ for some element)

Proof. By hypothesis,

L() & BPEAVETY <N ()
L)+ B R L PV ] < Nig),

thusg

L)AL + f PUANGT) < V(T

Continuing this substitution process,
oy
. Nt ,
%_u Kg\?“(%)\.(?) & (S Pt'(-ﬂ\[@ < V)
=@

Once again, as .M”;;m , /6” PN(‘?)V(-\T) —_— O )C-.v"-&

V(=) = 2, A"PTALE) < e,

completing the proof.
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Theorem 5 (Howard) If A is finite, then there is an optimal stationary
policy.

oo .
Proof. Consider any stationary policy % , then either

@ 1(‘:%,0<L)+FZ"\:>:3 (a;)w(j.j”)?u"(i.f) for al1 €A
) . . - - =

or

(b)-_f(‘l O—k(éza?u(wdu'()g)‘(U(“ %)

for some ‘A< E,P\

-

and some U
- O bt e ot
If (a) holds, then for any '{1 e U y ‘J"( )5 & 3. the policy
i . ‘ : . - v .
w = (—F, 3,3, v oo \ is more costly than the stationary policy 9 , 1.e.,
! (22 )
VEg™) ¢ viw’)
[~ o<
and by Theorem 3 3 is optimal. On the other hand, if 9 is not
optimal, i.e., there is some ) for which (b) holds, ‘_t:hen a new control

" function, L\ , is defined such that for all 1,

(* ) 3( ‘%Y ., for case (a)
UlTx) =

°<t. , for case (b).

Then by the construction of U , for the policy -'\-\-U\ - iu“%\cﬁ‘o o ‘,'_1&

N W) < VST

By Theorem 4,

V) < NCF.

Thus, we have a policy, \» , which improves upon 3 . Since is

finite, there are only a finite number of stationary policies. Thus,

there is one which has no improvement and is optimal.

*
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The motivation for restricting the class of control laws studied to
those that are stationary is contained in Theofem 23 it is seen that any
optiﬁél policy may be replaced by a stationary optimal policy. Theorem 5
lays the basis for a constructive method of finding this optimal stationary

“policy, Howard's iteration in policy space. In the next section this
procedure is explained. The set of adﬁissible control policies is taken

v
to be statiomnary; thus, for notational convenience the policy W = SL"-"‘ U, ""‘73

and the control function W €\J are considered to be equivalent, and

oy =N

2.5 Howard's policy iteration for 0O< A< A

]

Before the method of policy improvement contained in the proof of

Theorem 5 can be applied, there must be a means of obtaining the expected
cost vector, \[(u\ , for any W\ ¢ . Consider any stationary policy, & ,°

over Y\ stages, then let1

Un(“-u“\.':%: 2 ié Fhﬂ(?ﬁ—tz.‘»u(?f_vﬂ)\%"': Lx} . =
e et

< (2.6)
= Ll F 21 p;&(\u.\ LTW\L).UA ) '
J

or in matrix form

Vol = LD A FRENSD
o L) @?(%\ KNG /& P?\L\

The stage cost function ,QCL'X,U(E‘-\\) is bounded for all :c, by

‘definiti.on. Let this bound be Wi . Then
. : : . W "
Volu) € WA & @P(&ML* N +(3 oMl

VR QTR
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VnCa) € (g oo s +8IMA
<M o4 L el o)

P
It is apparent that the sequence
Vs () Un 0 L, ooy Gl 400
is monotonically increasing: for all L. Since U (4 U\_) is bounded,
it follows that the limit exits.

Say, 0 U () = LW
: Y\ =2 09 . _

This limit is

. oo ) o
A ks : ] —_—
Ui = E{ @ Maﬂ,m.uﬁ%n)ﬁ\%a‘ .“:‘R 3
or the total excepted cost of applying the policy \gke'-U from (2.3) .-

Again taking the'_limit as y \\——% ©° from ('2.6);.

UL L 1 F oG
.or o \j( w) = L_(ut‘)‘ + F'P(u\\/(k'\) )
B R L O OE

* and

. . -1
V(W = [x-pPe] b,

(2.10)

if the.inverse exists.

To establish the existence of the inverse, consider an arbitrary.
stochasfic matrix © . LI"f;P—l:! exists if and omnly if
Ae_-\- Y:S-"‘ FP}’Y{O , Or v;\(-?,‘l( K_?\I--’P-lﬁio Wherg -).’-::‘\'F ‘3 Fi\:o . Howre.ver,

. for a stochastic watrix 'P all eigenvalues are of magnitude equal to
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or less than ome. Thus, det Y_)\I_—?l‘-’-’O on'ly if AMNg&L, but
OSR<)  mplies \M>L . Therefore, det[AIT-~Pl¥0 ., or
equivalently de%{-:f.- lﬁ’]ﬂf O, and the inverse exists.

Another useful result follc;ws immediately. For a figed policy

we U the cost \ILLA) is a continuous function of P . Consider

\,[(u_):.i]‘_ _.F}’P(u‘).\_:“ () e

It is apparent that the elements of the inverse are ratiomal functioms of ﬁ
with no singularities for o0g2B<{. Thus lu’({,,u"} is a continuous function ofﬁ
) ' _6 * B

Howard's policy iteration is a two-stép iterative process as
follows:
(1) for a given stationary'policy weU geternine
N = [T pRadl LW,
and go to step 2 with V-T V(U) H
(2) for the co-st function \{= (U'\‘\T-;,--‘ . }seleclt WEU such that
1BV E’L)é A minimizes ] | -
(e, wl ) ﬁ 21 o uGNUy =T
and repeat s.tep 1. 4
The pi:ocess is terminated when step 2 yields no further improveme-znt.
Tl}e result:;_ng U is -t‘he optimal stationary policy by Theorem 4 for a
finite control set A. The last V generated by the process is the total
‘expected cost vector for the optimal policy “* . The policy iteration
procedure can be started at either step 1 ox step 2. If there is no
y
convenient policy to assume for initiating the process, that is, if

there is no policy suspected to be near the optimum, then it is attractive
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to let Y-=O initially. This results in the first policy iteration
:i'.mproving upon the stage cost--a reasonable procedure if no additiomal

.knowledge is available about the optimum.

2.6 Direct dynamic programming

" An .alternative to considering the infinite duration process with a
station'ary control jus.t solved by policy iteration ‘is to examine a
finite duration process. An optimal control sequence which minimizes the
expected cost over Y\. time periods is sought. The conventional dynamic
programming fumnctional equation results, and taking the limit a:s N 9
the same c_ontrol is obtained as by polic;y_ iteration. Consider )

SPVEA = e { P *Eﬂ-é fkﬂ.(%muh(%u})\ Lo ® R E

{Ua.t%“--...'u“'ls
AR e P

“.o..+ ,ﬁ\w\i «QJ“ (u“_‘) .“{7 Z\ ug'.)a ) “-\\)K‘nmiﬁ)“(dn\‘z -k

Unll) = W\&f& \J\i NONEN f SZPHW%\( 5\73 g @

P

where | U, {(i)= L?{ is an arbitrary terminal cost, =1, , .
. . 3

As before, the set of cost functions

{ S, (L\)'J‘(D. NI O;‘(\,\"S is bounded for all
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L= byewe, T _since

T o< Oul <M(‘*F’° «-JS ) < 2

vhere M = enase L (Cx L&)
' CReN
Let \-1\ L"’-x)-: \J\/_}g for \ = Vye0e \T ;Jfor this

terminal cost -u-“k'ﬂ decreases monotonically.- To show this, observe

@

that

Uoli)§ T (L)  for allh"l.

Now assume

UV\(I\-\ S \)—n_‘(lg,\ . for all

and show

@Q*\(\\-%.G“(“_ ‘ | -for all 1
Inli)= mom LA = 24 Py Tuk D
= /Q (u 3+F“:‘*°“3L“\JV\-M\ Rt

U\r\-\\(\.\ = W\W\i LG 4 P Z\ Ve 3“0 v (3\78

$ Alu) g P ()

\“_ A )+ ﬁ 1;2[ ?{,3-(_\.&"*3 Ju())

S A 6 3 ey ) )

. ’ J - )

Thus ““(_n \)'“(q , and \5“\{,) is seen to decrease
monotonically. Agaln, since the sequence g, L 'J' .
ol ) ) 1.

is monotonically decreasing and bounded below by zero, it has a limit

as V\:-ac)é , say, \J!{ \.) . Taking this limit in (2.11)
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U () = e i,@t (&) + j% Z:?Lj(.u) U"CJ'")% ‘ (2.12)
" ;

Thus, (2.12) defines the expected cost function for an optimal policy over
an infinite duration. Furthermore, it can be established that rhe solution
to the equation is unique. Assume to the contrary that two solutions, ,U'(i-)
and EELL) exist with associated control fumctions 1 and S . Then
A PG ()
v A . .

4 (0 & L (W) + f& 24 ’PL}(_U."} tj(,j} v

Subtracting yields, : )
. N ol o
. - i oy . k w 1}
\'_‘-:‘J(L).-O'(L\—k < (3: Zﬁ ?ﬁ;uﬂ} L{j{ﬁ} ~ i‘ﬁ\’ }‘; .
N

By successive substitution,

Ly@oa] § g % P o) Latid-uai]

Taking the limit as w - ¢,

Ty = Ly r;

%(L\-Q“Li\(io for all 1 .

By a symmetrical argument,

‘i(i}-\j‘(i}‘,}o for all -y

Thus,
Y= vl Y \
J
and the solution \} = ( \)’(\\3 - - )\5(‘5‘% to (2.12) is seen to be
unique, Also by letting w\-=»00 the control which results from dynamic

programming is optimal for the original cost function (2.3). Since
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ULy = v § LG 4 X P () V(i

= Riu®) -kF-SZ\" Py} OGN

say.

There exists no SeTf such that

Ailg) "’/@ Z'Pt‘j(fj)o’g\ $ A (a4 fi ?\?;-J(u*) Sy .
It is seen that the solugion to (2.12) is the same as the solution of

Howard's policy iteration procedure.' Thus, the solution of the dynamic

programming iterative equation

Nq = ‘t:\r\\.v\gl (w4 SK'P@} \f“_:‘g
AN
as n- oo yields the saﬁe cost function as does policy iteratiom. It
is also apparent that, if the limiting control function resulting from
dynamic programming is used as a stationary policy, then this policy is
the same as the ome resulting from policy iteration. .
One important question still remains unanswered.' What is the rate

of convergence of the dynamic programming solution to the stationary

optimum? As before, the sequence

UL, (L) LY e

decreases monotonically to \J(\)}.
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U “'C;\“(\ itm\% inl?“s(“’bm“ﬂl .l

= Bl s pApglayugy .

U;\\\\jw;w L Licay A g 2y pis (uw-“-.uglx
S Aut) A R Zi\pc-,w*\\:“-\k‘@

Thus,
Vn) -5y & B ?‘.m (*) \"_\r,,..(js_uu{\_
I.et) ) ’ |
€, = Mex § 3010 7o,
then)

€, & (5 €y s (2.13)

The maximum deviation of \/h from V thus decreases at a rate of
at least F . Practical experience shows that this estimate of the rate
of improvement is quite close. It is seen that for /3'less than about .7
the rate of convergence is very rapid.

The maximum error, &w , ‘is, of course, impossible to obtain dur;:.ng
the dynamic programmiz:lg algorithm since the final co-st'\/ is unknown. A
bound on €&, can however be found.

Let )

S = X § O (D -Ua@ Y 7O
As before, for' |

Uy () = 4 Cu¥) + p :;éi PLOM T )
Uy € A « F? i (U9 Uar (4)
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Thus,
Uinmy () = G (1) € 8 %‘{ Py ) Ly - Ui (3
and :
é‘n\< cg\n.-\e
However, F
E,h..:.’ S\r\-\\ - CQ\—\-\L“' o
ol pepls oo ]

or

€ § Bu P
- f
Thus the error '€y, is bounded by the observable stage difference., Sn.

The dynamic programming algorithm can be terminated when Sngets

sufficiently small.

2.7 Howard's policy iteration for =

[

The control of finite Markov chains with ﬁ-.-:] (i.e., no

A

discounting)} is somewhat more difficult to examine than the discounted,
cost ‘chains. It is convenlent to assume not only a finite set of ,
stationary coﬁtrpl laws, but also to restrict A such that for any “ &U
the resulting Markov chain is ergodic. Before defining what optimal

. control means ‘for the undiscounted costs, the behavior of the cost
function is examined,

Let,

A( a3 M(ﬁ\r«m\ Fo™ Lxlg (2.15)

’E‘,’J}fls '

\3‘?\( W= B (\ -
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be the undiscounted ‘expected cost function for the stationary poliecy, U,

applied to n- stages. Then, as before,

! s, . . Z A . , - (2.16)
Un(.x,‘u-) . ,Q. (u) v 3 F 5(“‘) m«-\iﬁ\
with OV (i)= O

or’

Va(n) = £ (W) + % pUy 4y L3 Wy % oo i %PLJ Crty 4560
In matrix form

Vil = L) 4Py Nua (W)
o “w (2.17)
o Lays PO o F T U

By Theorem 1,
W ’ ;
Ty = i}.{ @)
where @v&.(“q -3¢ as - , geometrically fast.

Consider,

_;er.ﬂ vm(U) )?l.m N Z ’P(’LQ L-(U:) s if‘the limit exists,

n-0e* . n->e?
] = duwn W Z\.‘LHLQM) + b Z;@,M(u\‘-{}&)
I-Lowev'e,r s . RV X - \=p 29
./Q\m w ZQW\“‘Q LW =o since &‘.;vv\ Q{\ (U.\ - O .
W= o - oo

Thus ,
Jirn &' V() = [l ]l
and for large 0 ,
Vo afpiedl & conscant
Vi lw) o V\g(u.\i + W) say (2.16)
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The scalar %(L-Q = ,L(L(:.Q is the stationary average.cost of the
policy W, and the vector \l\}h(l,Q‘ is called the potential of the policy.

Substituting (2.18) into (2.17) .

R L W) = LA R gty 4wy (o]

Wh (u) + 3(!-\) i = _ L) *P(w) \‘\jh;\(t’) N laese .’

with Wa (= o

In the limit as o o= ,

Wilay & (W) 1 = L)+ Peaw(w) (2.21)
A stationary policy W el is said to be optimal if

g (u®) ¢ gy fov et u e U .
That is, the optimal policy for F:\ is the one which accrues the least
average cost.
The question arises; does (2.21) determine 3(u\ and W) uniquc-i’l‘y?
To answer this, consider two solations, V\I,S and Y>O, for the same policy

W, (2.21) immediately yields,

W-Y x @)L = P@lw-v]
2 = Pwz e

where C = @__3) ,L \ Z= W~ \/

e Z=nC + P2

—s= M *LHZ. s N—» oo
However, the elements of Z are bounded as y\-»09, thus C=0 and 3‘:8.

Therefore,the stationary average cost is determined uniquely by (2.21).


http:L~l4-?VV4Lfl(2.21

Now, with C=¢), in the limit as V\=%<<,

1\[\ “

" -~ = LN P S A
Z o= Lpm? piz et A

"

The only solution to this equation is

?_L = constant.
Therefore, the potential, N(u\ , for a given policy, uﬂf s 1s
determined up to an additive constant.

Howard's policy iteration for undiscounted cost may now be specified

as follows: .

(1) for a given stationary policy, W F:_U- , determine j(u’) and

from W) from
W (u) £ q ) = L) + P WL
and go to step (2) with W = W) ')

L,
(2) for the potential function, o , select & such that w{ %]

minimizes
' ' =3 . A Sy
,@ (l’fﬁ U5 & 2l il Yl AN
J CE 3

and repeat step (1).
Again, the process is terminated when there is no further improvement in
\!\’ , or equivalently when the policy U ceases to change in step 2.
To show that the policy iteration indeed yields an optimum stationary

policy, consider any policy u&J , then

: ] TN o oo R
WL n\.-leu) = /Qe;{-%«t“ﬂa iy ::;,‘ @thtf}rw"iz;u: (2.21)

~

* v"“ . : .o PR . .
A new policy, &L} 1s generated by minimizing the right hand side of
2.21. Tt is apparent that the additive constant in \a\/ does not affect

A
Ao Wow,
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where ;
N(ilu‘\;« 3(&\ 7 LAy &+ T F\)\'S (0 W<‘:‘s‘“\)
and 7 applies for some (-

Thus,

W@ = WL Q) -{3@— 40 7 2\ ?cjtﬁ}ﬁwtm-w(y&ﬁ (2.22)
J

N ! A =
Recalling that for the stationary probability distributionm, /u , associated

. A
with W

<
Z /jk-i’)ij({a) =/“3'

fe=t
and multiplying, (2.22) by /uz' and summing yields,

~ . A -
Zi LWt —w Y] v ga- gy 20 Ew(j\%\-‘ﬁ(ﬁ!‘*ﬁ
- 3
oz (W) - q(&) >0
Y 3 )

Therefore, 8( C,)< 5(_\4} and the policy, U , generated by policy
iteration is superior to W , the policy which preceded it. Simnce there

are only a finite number of policies eventually there occurs a policy

which can not be improved upon in step (2). This policy is the optimal .

policy.

2.8 The optimal control as A-—|
/
It is interesting to consider whether the control obtained for /3<\
3
but sufficiently close to one is the same as the contrel for /@21 .

Let ﬁ(\ be a fixed policy arbitrarily close to one with an associated

+
optimal policy U . - Then call the second best policy the one with
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minimum maximum deviation from \J(u. ) 113) » where the notation includes

the dependence on /9 . Thus the second best policy is such that
g

is minimized. WNow, since for any fixed w . \/(u. F) is continuous in ﬁ
it follows that there exists a /So such that for allﬁ /§ </3< i the

cost of the policy L)~ is less than that of the second best policy.
Holding this policy fixed, a potential type function is defined for

/$o</g <\ so that the optimal policy as /3—'9! may be examined. Let,
' A L
R LN
. =3

where C?)(Uf") is the average statiomnary cost of ‘Ua for f \ , and

 Mlps “qumwf)

Since Z\ F 3(@‘31 is’ constant with respect to 1.. finding the

3}
cont_rol . such that 1y x') minimizes’ i,{ ) & Z PL,)(U«)'N' (e /%3‘3

15 the same as the control which minimizes
?K L) = Z? G0N, (4;u% p‘)i
Now examine the potential function as F..-, [,

RA5AN

Wn( Ufi F\ = F ‘_‘l Y u‘”)-{- @h’(g\*ﬂL(d’e‘) - j(uv} j\;_‘%_
\z:—aY; Eah Z % Q\t("*m—;@) T3¢0 —g

) Z ﬁQq(UJ‘(BL(u)
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In the last section
: “ ] .
lrn =i Qo) LCa) = WU
{\-—?m \zrg ‘

existed for undiscounted cost; thus‘
¢ - - ¥ N
My A W (¥, g)= W)
Newes A/ . .
and further it is apparent that,

A A W (0] = W™

2l N

Also,

. #* _ -
oo N (U™, ) = N0 £
502 , :
Since the control policy obtained by applying step two of Howard's policy
’ W .
iteration to either \/‘n(&ﬁf (f) or Wy\( U, /3.) is the same, it follows
that the optimum policy W¥ is valid f.or, }Ba( fgS \ . Thus the undiscounted

problem can be solved by solving the discounted problem for &5 = sufficiently

close to one.



CHAPTER III

A NUMERICAT, ALGORITHM FOR OPTIMAL CONTROL

3.1 Introduction

In Chapter.II the characteristics of the expected cost function were
examined, and two methods, Howard's policy iteration and dynamic program-—
ming, were developed for obtaining the optimal control of finite Markov
chains. . In this chapter stochastic systems whose state space is defined
on the continuum are considered.' However, rather than view these systems
rigorously as infinite state diffusion processes, they will be considered
as finite Markov chains with the large but finite discrete state space.

A numerical algorithm which employs a quadratic approximation to the

expected cost function for a partitioned state space will be developed.

3.2 System description

The systems to be studied are defined by a set of difference’

equations‘
Zlea = (ol o)) NI (3.1)

called the plant equation, where

R = time parameter
X = n-dimensional state vector

X = q-dimensional control vector

§ = n-dimensional random vector, plant noise

%
-ﬁ = n-dimensional wvector function.
T

The state :t=(zuag,.u,xg) is restricted to the state.space

& _ . 1 t itd out of this
A= ‘(?C\ Kot § 3¢, § e, )| 204 807 Fransition

27
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T
region under (2.1) is not considered. The control .w =th---,d%\ ig

restricted te the control space l\ . The random variable % s calle'd
.the plant noise, has a known probability density functiom, %35(23
which is time invariant,and g is independent from one time instant to
another. If it is desired to model a system with corrélation between
plant noise from one time instant to the next, it is possible to define
additioﬁal state variables and new random variables for which the plant
noise is independent (Meier 1965). Also, with no loss of generality

is considered to have zerc mean.

Stochastic constrol systems with continuous state space can be
considered, as an approximation, to be finite Markov chains by establishing
a grid on the state space iﬁi . The grid poiﬁts are states of the finite
Markov chain and the transition probabilities, ‘{X3 s defin%ng the chain
under a stationary comtrol law, are obtained by determining the probability
of a state transition from -i:‘( on the grid to & hypercube about J'J{ on
the grid. To bétter illustrate this, consider the second order system
in Figure 2-1. The transition probability ?Q(db under control o is

defined as
Juts 2..‘_}.’;" ,‘(3..)0:.\ 1xz* lé'xz"";(‘x °()

‘?L)(Uﬁ ':- g?%( ‘C;‘ N ::2-) C‘\‘S é\i&. (3.2)

3 ]
K LhxX~P0re,

Iz A 2ol

"i\( D J)sz__é_,( -f(xd‘)

The stage cost at time 13 is defined‘as before‘

O < 0= (ry . am) &M

The total expected cost function is, as in Chaptexr IIL, for a stationary

control law, U\ ,
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C S
= B "{, 2y B Az uy, ulze) \ H L) = A
‘ .

v

-

Again the control law y with U{e)N)¢ @k is sought which minimizes
V(=) for all'xeﬁisor‘for the finite Markov chain representation all =<
which are grid points.

As before,

U (=) = ‘,,Q (xu,uéxo\\ 4 FE ELT(-{T'(%,L&(_%}‘)% ‘F)Q\-lg (3.3)

3.3_ Solution by Howard's policy iteration

To find the optimal control via policy iteration it is first necessary
to model the system as a finite Markov chain. A grid must be established
which is sufficiently fine to approximate the behavior of the system

defined on the continuum. Dividing each coordinate =, into s equal

increments_&:{i wide accomplishes this for =, small enough ,
Hmox, -~ Xming -
Nl‘ - L 3(’:l“”“‘qj
Mooty
A
and defines } :'TT'PQL grid points.

=
Now to obtain transitiom probabilitie5¢i?%(yf) under the stationary

control v it will be necessary to perform the integration in (3.2)

times. Then having attained the J{J transition matrix

Py = Lpyial
step one of the policy iteration procedure (Section 2.5) requires
| T- }5’;\31

also, a “}&J matrix. In the minimization in step two, it will again be

inverting
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necessary'to evaluate (3.2) —;}—1 times for each control law considered.
The number of control laws considered will depend on the numerical
minimization technique used, but it is evident that this number could be
large even for limited control spaces. To see the prodigious labor
necessary to employ Howard's policy iteration for systems with continuous

state space, consider a second order example with

~ ) ; ,
= { L&, 2100, €2 g oo
- &
and let Anc,z Ao, = | . Then RN,=N,=tc® , and 4 =1Q . Thus

P has 16° elements as does T_I“Fv?“& . Already it is evident that while
Howard's policy iteration is a valuable technique for finding the optimal
control of finite Markov chains with very few states and a useful
theoretical tool, it is impractical to employ it on the systems defined
in this chapter. It would be necessary in the present example to store
100 miliion tramsition probabilities in computer storage and invert a
a4

tO. X \O  matrix to achieve only step one of the first iteration of
Howard's method-—clearly an overwhelming computational task. On the other
hand, it will be shown in the next section that dynamic programming as

developed in Section 2.6 offers a more palatable numetical solution.

3.4 Solution by dynamic programming
To employ dynemic programming, as before, a N-stage minimum expected

cost function is defined,

U s N o= i YN g . o e
b EU«Q‘U\H L;“—l:; {fj_g\ ]“g /( ( -}‘;{ ls':)} L},k( O K (=2, .
or a1

: _ -1
’\.}- (. —xu, M) = HPY‘IU.‘/\. { .ré‘ ( 'l‘f-’uj Uu(‘.f«;‘}') “l{'j@ .E E'C*j (—?(—‘("1 uo(j{";ﬁ'\ 3t 1Ny \\\%k kt(g’ M 3 b)
i

L
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with (%9 "O, Again a grid is imposed on the state space with N
. ¥y
increments along the W, axis and J=W ™| total grid points., It would
L=

now be possible to employ (3.2) to define the JXY transitiom matrix P ana

(3.3) would become, as in the last chapter,

-

. T . e ~
U e )= e { A% o U j@, L '\JLSQuX VIQER ‘\)3
L 352

L

for all the grid pointé. However, to avoid the difficulty of cbtaining ?D,
a more convenient approximation is to quantify the noise in a manner
similar to imposing a grid om the state space. That is, the probability
density function JF%C%\ ig approximated by imfosing a grid on the domain

of-¥%‘ and attaching a probability to each grid point. Then the noise
3

is described by the set of noise values ﬁ-‘i, L:l,“"‘1T¢§% and the
associated probabilities, ﬂ.YD(.Léﬁ ) LLQ, . }thk . Now

equation (3.3§Jbecomes,

Mg ; :
_ N - S TANEN \§
e Y= T (e e %Bi'i“,ﬁZ-Fffﬁmgw* BT e
) J:"I

. /

U 'xoy=6  for LT h11-‘}tf . Equatioms (3.1) and (3.4) describe
the dynamic programming numerical algorithm for the solution of the
stochastic control problem with discounted cost. While the dynamic
programming funectional equation (3.4) offers a solution to a wide range

of problems analytically, the computational requirements of high-speed
computer memory and computing time can become excessive except for simple
problems. The memory requi;ements are the same as for deterministic
problems while the computation time is more severe. To better observe

these difficulties and to see that Bellman's “curse of dimensionality"

not only affects memory requirements but also computing time in the



stochastic confrol problem a more detailed examination of the algorithm
is in order. '
Since it was shown in the previous chapter that _.,f_fir-a"a;i Pg ( e?&;f*j ) = U C'M—"‘)
£y B
there is no necessity to store all the cost functions ané control functions
generated as (3.4) is solved. Only the last cost function and the present
cost function,and control function that is being generated, need be stored,
Thus, 3-:_5'-_— 3N N‘L memory locations are required to store the infor-
(=1
mation vital to the iteration of (3.4). Further, for economy in
computation time, these values s:hould be stored in high-speed memory
(Larson, 1968) which for most computers is limited to about \013 words.
Thus for the second order example of Section 3.3 it would :be necessary
to have available 3“\04. high-speed memory locations. TFor a three
dimensional state space with N =100 ,=423 Y A . \Q(Q storage
lpocations would be necessary, overwhelming the capacity of nearly any
computer. This "curse of dimensionality" is a severe limitation to the
problems solvable by dynamic programming. A first order problem is shown
in Figure 3.2. To evaluate U'(;xllﬂ with the control U\({‘Lx) applied ,
it is necessary to evaluate U(T{kmkﬂ\ by intérpolation of the stored
cost function at time i?:\\ N% times where i\l% is the number of
discrete noise leévels used to approximate the probability density funcrtion
Pecg) -

For a2 second order plant with
X ey = L0 xCe),u) « SR
Koot} = —;Q_C'?ﬁ(lf.),u) + ga([e“} 5

and %i' independent of cg-g_ then both g\ and gz could be gquantified

separately into sawy M‘ and N\’ag_ levels. Thus ) N§= E»\‘T; f"‘i?_ and in general
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Figure 3.2a8 The dynamic programming numerical algorithm for first
order probilem.
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for a n " order plant N%;‘{i '\‘!\,{ ; and the cost function must be

evaluated :Y:%“hﬁé times for each iteration of (3.4). Consider each
e

noise element quantified into, say, five levels. The number of cost

function evaluations necessary for the stochastic problem as opposed to

the deterministic problem ('Pf;h£§=01=! 3 increases by a factor of

five for each increase in dimensionality. Thus the "

curse of dimen-
sionality" affects the computation time of the stochastic problem with
respect to the quantization of the-noise. It is the main purpose of
this dissertation to develop an algorithm which alleviates the high-
speed memory reguirement and long computational time intrinsic to a
straightforward application of dynamic programming to the stochastic
control problem. The next section beging' the development of this

algoricha.

. 3.5 Dynamic programming with a partitioned state space

The problem of excessive high-speed storage which is attendant to
the dynamic programming algorithm was attacked with considerable success
by Larsom (1964, 1968) for the case of a deterministic plant and
continuous time, i.e.;

Se(tys £ (el alsyty |
Larson's method, called state increment dynamic programming, took
specific a2dvantage of time being defined on the continuum. This restric-
ion and the deterministic nature of his plant equation thwart a direct
application of his technique to the discrete time stochastic problem
vnder study. However, a basic concept of Larson's method will be

employed £or the problem at hand. State space will be partitioned into
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blocks, and these blocks will be treated individually in calculating
the optimal control and cost function. The expected cost function,
ch?ﬁl over each of these blocks will be approximated by a gquadratic
surface. The effect of this partition and the quadratic surfaces is
to substentially reduce the amount of high-speed memory neccessary and
also to reduce the computation time. The price paid for these advan-—
tages is a more approximate contrel law than that achieved by
conventional dynamic programming. However, the classes of systems
examined will be restricted such that this loss of accuracy is not
substantial.

To berter illustrate these concepts, consider the second order
problem and two dimensional state space in ¥Figure 3.2. Here the
state space has been partitioned into 25 blocks of equal dimension.
There is no advantage in unequal dimensions,so for simplicity equal
dimension blocks are used for the partition. The expected cost
function is also partitioned into the surfaces above each block. In
the figure the furface partitions above blocks 0 and 5 are illustrated.
These surfaces are then to be approximated by a quadratic fit which

in the two dimensional case will be, for block A,

’ N — b .‘\ .
U = /(O B8 (0%t Y ROV GO R LS SRR
and for the Tﬁ% order system,
| 0 noL
Uy = A0+ 2y )gc-(;n:-(.; + 2, PRGOS (3.5)
1=y L=l :i:‘{

The block size is selected such that, as illustrated in

.

L
Figure 3.3, when X is under consideration and control W dis applied
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}":m

Figure 3.2b Partitioned two dimensional state space.




Figure 3.3

L
Transitions from the state X
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*}\(:71\0.\ lies in the block containing ‘% or an adjacent block. This
condition can be met easily enough by making the block size very large.
However, since the cost function or surfa_ce. over each block is to be
approximated by a quadratic surface, it is also desirable to have the
blocks small in size. Thus, a compromise must be reached, and this
compromise obviously depends upon the problem being solved. A
reilective examination of the system equations is usually adequate to
determ:ine an appropriate block size.

Consider for example that the state space in Figure 3.2 is -
A, = X Ma, = -2 § and N, s Amand, = 25 and that
DAY E AL = ! .. Thus, each block would Have 100 points in it
(includi:ng its boundaries) with 10 increments to a side. The cost
surface.above each block would be described by 6 numbers, o , F’s ,.
and3's . Since for each X a member of block _{ (< eBg) ;,p(pf)u,)
is restrained to be a member of either Bj;‘ or a bleck adjacent, it is
possib]--e to evaluate‘ (3.3) for 2il points in Bj_p with only the
parametric description of '852 and its adjacent blocks in high-speed
memory. Thus, recalling F-ig'ure 3.3, only 76 %3 high-speed memory
locations ar;: necessary to store the cost surface for the partitioned
state space algorithm. Fow.; conventionat dynamic programming 5{)?‘;‘:26‘ o
high-speed memory locations would be necessary.

Obviously, even for comventional dynamic programming it would be
possible to store the entire cost function in low-speed memory (tape,
disc, or drum storage). However, then it would be necessal:y to go to
low-speed memory for each cost function evaluation. This is a time-

¥

£ -
——— .

consuming process which would involve KT Ni¢ T M( accesses to
=] &5t
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ilow~apeed storage where K is the number of controls evaluated at each
state point. With =10 the example considered in Section 3.3 would
require 1G-I00 25 22SDCY accesses to low-speed memory. For the
partitioned state space (PSS) algorithm only  accesses would have to be
made to lcw—speed memory, where MB is the number of blocks (25 accesses

for the problem in Figure 3.2). In the next section the PS3 algorithm is

shown to reduce computation time as well as high-speed storage.

3.6 The quadratic avproximation of the cost surface

The criteria for fitting the gquadratic surface to the cost function
over a given block is taken Zo be unweighted least squares regression.

For block Bﬁ recall,

n \

¥l i '

T._.. \ i s Y

Uy (3= ol )s tZ{'ft(ij_xé. +Z 2—\: G, L0022 (3.5)
:‘ L:\ )-‘ o

and the functional to be minimized is,

— — 2.
i > = F (=) - .
—LS.(D(\J;H‘. ’}g‘n’é“g e lr\ng‘ - ,,Z.,.! ( v ( ‘) 1):&(.:(')3
TJCQS'Q
A
for the W\= OXM*L  Larameters of the guadratic surface. Thus

2L - 3T .27 =0
aca - A BN

RUR Y
“which yields, 3
C Vi n o ——
2 *i o - Z.Fcau, + 2/ “jx‘ Xy = __2__ U (=) , (3.62)
,_tBi “ 1=y (_._i j:-\ ‘J{G.G{;
— < “ ':'-L_.:L -
AT g_{% A z.’.ﬁ_, Yo it Z(: .7__ U {120, (3.6b)
il ! = ) J T -

and \2_:\Il .o -\'1‘\
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L_ﬂ% & "»\zxm Tz/*w K Py % Zf} % 1’:«‘3 KKy 714‘(‘0?\-

o
= T{3.6c)
HE \Jr\.
\’-"'1: cee N -«}x’v‘ﬁt,"-‘\t-
(3.6) may be summarized in matrix form as,
DSEW = T (3.7)

. A Y

where Z(2) = (.ba’\[él{ ...!ﬁm‘\f." SN wh
-

and \(-’{) M.} (U(’Q)LnJ{.A\ by mw‘.e(’.»-i‘) "4 U(‘./‘) sty o CS'C":(}}

-:(5-'32

are \xW™\ column vectors, and Dis the ™MXM mnatrix described by (3.6)
such that (3.7) holds.. Thus, the coiumh vector, % , describing the
gquadratic surface is
-1
ZE)= S T
Tt #s not necessary to invert a S; matrix for éach block; instead, since
all blocks have_the same dimensionsig,'T-may be calculated for a block
with standard coordinates, and [TLxﬂ transformed to this block. Thus the
MMM matrix @ need be inverted only once. Further, the storage foxr the
. .
surface for %%2 and adjacent blocks is de:VB ot Ilocations. Thus,

= Na=3&

Nn="2
a=3 = Ns=o79
nsd = Nss s e

To see that the quadratic approximarion not only reduces high-speed

storage requirements but also computation time, recall (3.3)

U (e W) 2= tevine .%t (5

\..\ Lh.‘tl A
A

5 o . )
Sk AT (¥ Ko 4 ‘; ,_ ;34{%
{ .

.~
m.,.,



For the noise quantified into Mg values (3. 3) becames (3.4),

U (WY = m;ﬂ%,«‘, B AGauy 44 }’ O (e u.n\)m M
2

et

Therefore, it is necessary to evaluate a_)‘(x‘i\.-l) Ng times for each

1
control counsidered where N, will have a tendency to increase geometri-
g

5

cally with the dimension, y1. On the other hand, for PSS dynamic
programming with i(’\{ q) lying in block }? and parameters—g:,(.ﬁ) describing

U (¢ N1} . for ';fc-l‘,g s

(3

1 e
U <“:(:‘ M\, = TQ;‘\"\ ij\': o'-n.‘:}"’?
) /

“{:?::'
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Thus, only one cost function evaluat1 on must be made for each control

and the additiona}_‘ Term, i\ Z \(!K} (A\ K §C cé }’1

=y 57
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calculated using known covariances, Iz (}‘ i‘gii . The cost function
evaluation is of {}(vgNrQ rather than Yrixﬁ&ﬂ} ;s however, the compu-
tation time of the two evaluations is comparable. The qﬁadratic
approximation to the cost function, therefore, affords a significant

savings in cost function evaluations and computation time.

3.7 P85S algorithm

Once the state space has been partitioned, the PSS dynamic programming
lgorithm can be applied. A flow diagram of the basic procedure is
contained in Figure 3.4 while a more detailed flow diagram and Fortran
program listing are to be found in Appendix‘A.

A particular block is designated a; the origin block (for example,
block 1 of Figure 3.2) and the cost surface'asgociated with it is determined
gy techniques to be discussed in Section 3.9. The origin block is
generally selected to contain the minimum of the cost function over all
stzte space if possible. Tor mény problems it is easy to define the origin
plock appropriatély, such as the stochastic regulator problem where the
system is to be driven to the origin of state space.,

With the cost surface fofkthe origin block obtained, another block,
say%i , is considered for processing (Step 2). Both this block and all
adjacent calculated blocks are brought into high-speed storage. The block
being processed must have at least one calculated block next to it. This
is not a significant restriction on the method, as, in general, the blocks
are ordered in such a ﬁanner thet they radiate out from the origin block

as they are considered (Figure 3.2).
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Figure 3.4 Flov diagram for Dynamic Programming with Partitioned
State Space.
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The optimal control and cost of each point e pr\ is calculated

(Step 4) by

TR = onin SL L)t ] T (£ szmﬁasiﬂf (3-8)

where g(x‘u) e with A} known, or By, is the closest block to the
p;int %(1ﬁl) for which #Z(rd) is calculated. The iteration variable N
has been suppressed since the blocks will be stored back in the same
location after they are processed. That is, the stage identity is
destroyed. The set of costs, {U’(x}\x e%_g% » is then fitted (Step 5)
with a quadratic surface, 35(1) - For the first pass through state space
.<MODE=‘ t\ s the control for 'B{ and the parameters of adjacent blocks
are then placed in low-speed storage (Step 7) .and Step 2 is repeated. ‘
After all of state space has been considered once, the algorithm goes
into MODESZ  (Step 8). TFor all subsequent calculations ¥(xqbﬁ is
assured of lying in a calculated block for the evaluation of (3.8). Also,
a comparison of the present cost surface and the previous cost surface over
the block is made (Step 6) to determine the convergence of the algorithm.
Convergence is guaranteed for Fg< | by (2.12). The process is continued
until convergence is attained over all of state space or until a maximum

number of iterations is reached.

3.8 Block processing order

‘Before the algorithm described in the last section may be applied,
the partition of state space must be ordered; i.e., an integer must be
associated with each block which determines when it will be processed
during a pass through state space. The only westriction upon this ordering

is that each block be adjacent to a block previously processed during the



current processing sequence.' This restriction causes the blocks to tend
to radiate out through state space from the origin block as they are
considered. There is, however, reason to be more selective in the

ordering. Namely, it would be ideal if the optimal control, it , at a
point ¥ always caused 4%31&) to lie in a block which had already been
processed during that pass through state space. This could be accomplished
if the optimal control were aiready knowr:. The block ordering could be
taken opposite to the direction [4¥3¢“i§_3€§ , that is, opposite to the
direction of the expected transition from = under optimal conirol.
Obviously, if the optimal controel were kunown, the problem would be sclved;
howaver, in many problems although the optimal selution is not known,

tnere is some knowledge as to the manner in which the system should be
controlled.

This idea was made explicit by Larson with the concept of preferred

dixection of motion. The preferred direction of motion is, basically, the

expected direction in which the trajectoxies of the system tend under
oprimal control. The information used in establishing the preferred
direction is a priori and rests on an intuitive feeling for the system's
behavior. The blocks are then processed opposite to the preferred
direction.

If the preferred direction is not known, the algorithm still works
and will converge, although more iterations over state space may be
necessary. Thus a2 general technique for ordering the blocks in the
gbsence of a preferred direction is desired. This objective can be

achieved in the following way, again suggested by Larson. Let the blocks
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be desigrnated as in Figure 3.5 where '5a is the origin block and is

defined to have coordinates "{'-;.f__;:: (C:\\‘j) . The blocks 8“.. “\ Bﬁ are

said to lie in layer one (I = 7 in layer two
y ‘\-—- ‘\)3 L.w%‘ . e !Bl'lf 4

etc. These blocks have coordinates,

>

%\ - (\O\\‘)
T)'g_:—' (‘D=”\3

L3

E“'_{ = (_\“ \}

e - o

-\3%—: (::2"?“ a

The ordering is achieved by counting with 2-digits modulo ST T g
for the blocks in layer L. Take for example layer one; counting
yields 00, 01, 02, 10, 11, 12, 20, 21, 22. These numbers MOD/3 are
associated with the block coordinates (0,0), (0,1), (0,-1), (1,0),
(1.1), (1,-1), (-1,0), (-1,1), (-1,-1), respectively, and the block
ordering throu:gh the first layer is achieved. For the second layer
counting MOD/5 yields 00, 01, 02, 03, 04, 10, 11, 12, 13, 14, 20, 21,
23, 2&, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44. The MOD/5 digits are
associated with the block coordinate elements as follows:

Qwanfg = O
L vavfs = |

7 ¢Aoufs = |
BMANS{S = 2L
4 wAWAT A2
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Figure 3.5 Block oxdering for a second order system.
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Thus, the sequence of ¥MOB/5 numbers corresponds to the block coordinates
0,05, (0,1), (0,-1), (0,2), (0,-2), (1,0}, (1;1), (1,-1), (1,2, (1,-2),
(-1,0), (-1,1), (~1,-1), (-1,2), (-1,-2),(2,0), (2,1), (2,-1), (2,2), (2,-2),
(-2,0), (-2,1), (-2,-1), (-2,2), (-2,-2). Deleting those coordinates in
layers lowver than layer two results in the sequence, (0,2), (0,-2), (1,2},
(,~2), (=1,2), (~1,-2), (2,00, (2,1), (2,-1), (2,2}, (2,-2), (~1,0), (-2,1),
(-2.-1), (-2,2), (-2,-2) with the associated blocks_'%ﬁ,&wh,~‘ , oo

- 7

This counting procedure can be carried out through an arbitrary number of
L5 9| .
layers and for a ¥y order system. The v order system would reguire

counting with fN-digits ™MYS/si. A detailed flow diagram and program

listing for the ordering of blocks is in Appendix €.

3.9 Caleulating the origin block

To initiate the PSS algorithm it is necessary to calculate the
quadratic cost surface associated with the origin block for the first pass
through state space. This can be done either by dynamic programming
using quadratic approximation over the origin block or by policy iteration
also employing gquadratic approximation.

Howard's policy iteration has application in finding the cost function
of the origin block for the continuous state space stochastic control
problem. Again, let the gquadratic cost surface over the origin block be

described by

]
— < sm T A
; o T L i ST
‘\}-Cu{‘\) = K -4 f:?_“ ;’;L T {..':}.J QL) X '/) .
= Ll B T

Then for a fixed policy U, ¢\ defined for all grid points in the block,
= [ (=]

it Zs desired that
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U Y s 4 e, Uy ‘\ﬁ '"2 UL, “'0\34'% S

3

(3.9)

=

However, there are)in general}more than t91+?h\+ijgﬁg_ points in a
s . . .
block for a vt order system. Thus, 2 least square equation error criteria

is vsed to determine the quadratic fit for the cost function. That is,

the functional,

t) - /> ' éivg . .
X €T, '

X
- ) N e s
is minimized with respect to &, ﬁ“\'~\{3“‘ Q\H‘\u\\{““. This minimiza

tion determines a set of lgnear equationé which in turn define the
guadratic surface, E};Cvﬁ3, associated with éhe policy {thg . This
surface is then used in step iwo of Howard's policy iteration to determine
a new policy Lhéﬁy': The policy iteration is carried out until conver-
gence. It has been found numerically that while this procedure works
well at the origin block (containing the minimum point of the cost
surface) it does not converge well for other blocks. Thus, it can not be
usaed to £ind the cost surface for blocks other than the origin.

A second technique to find the cost surface of the origin block is
to employ dynamic programming. Assuming a terminal cost of zero, the

. . . . . C - R .
dynamic programming algorithm cam be applied to each point in D , i.e.,

. .o A ~ o
U ) s e S L) for el e ¥y
t 3
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.
This cost function dis fitted with a quadratic surface U"('}i) , then,

SN (3.3)

t._“

. . f i e G e R
iy {:;,;_} =y A ﬁ ){,(’,1’.1 ¢ {‘-, . l’} t_i U--C.-f il j i
P i

is calculated for =2ll "%e’:?)b . Again a quadratic surface i;(20is
fitted to the cost function 1J¥J and (3.3) applied. This procedure is

carried out until comnvergence with the speed of convergence described in

v

{2.13).
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EXAMPLES
1) 8Scalar examples
(2) plant equation - Creany = DY -k (™ & 5, ()
£ - — e,
stage cost - A Griwy = s
noise — 3 L)y - t a8}
discount factor J T |
state space e e s 4722 £{0
control -~ U L2
Z
(b) plant equation ¢ ey f‘%_'?i ) + ‘é‘:‘a wlr) A uy) + 0w
T x -
stage cost RS L—M\LC} o MU
noise ‘%(_*?3 - M {Q,!‘E
discount factox P
state space N e Y R
control ~2su gz

Problems (a) and (b) were solved by both dynamic programming and PSS

dynamic programming. The state space was partitioned into

e 7 g . '] <
\33': :j'—?_.‘S"-"ffZ.EI. %‘;%25_2&@,% )\?-H.%. {\2'31
' 2 NP
%";: ;\ “"L‘. ' 2_() Mgz: i WO $3C & ‘(_. ) \\\,\_ I =

The percentage differemce by the two methods in the firal cost

functions vas less than 3%, and the control functions were identical.
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2) Second order example

plart eguation : —~ 3 -
2 G = \(\Pa_.&,—\\} —_ ...-‘:e_{:’.?:.\) __,__,'::_;\_)_-:.‘?{,_'_\3
, (ead = 2 (R) -+ w0 Kl
-l ha ' 1 - ‘1‘{'1'. . R - e M \\-z‘ B
poise %ii\iw‘} G O izc‘RA mé\ g\).{,‘_;\,) ,,u“t Lo
discount factor 'i:‘;,-f‘ )
i
state space -5 & o, S8
-5 5 o, £5
1 ' ’
contro -2 £u 52,2
grid c A m Ame = oS

partition - blocks are square with side 2 units long .i.e.,
25 grid-points per block

This problem was solved by both dﬁnamic programming and PSS dynamic
programming. The percentage difference by the two methods of the
cost functions was less than 5.4%, while the control functions were
identical (within the accuracy of the search). The PSS-method took
approximately 1/5 the computation time of standard dynamic program-—
ming. Foxr the noise ?é{ﬂ%;&ga the cost functions were within 10%

of each other, while the accuracy of the control was unafiected.

3) The discount factor interpreted as a reliability probability

L-!

et }5 = Prob [the system does not fail in one time period]
,}Fa.Prob [the system fails in one time period],

ard, let

‘/({Xﬂi) be the stage cost of operating, and

- be the cost of failure. Now the total expected cost is,
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D

B Q=S S
# 3 L A = -r — H -
UG = B L b e S ep 5 E AT
2} Lem o :)-:‘}J /
ey
T = «}C‘Pr 1 A s T
= B 4 B AGmpe) ey %l i
% f I i g A
v f -t

function to be minimized for the discount factor, g 5

Thus, the coest
interpreted as a reliability probability is the same as before

except fLor an additive constant E: which does not affect the

minima. Therefore, the PSS algorithm can be applied to problems of
this nature. Im particular, say, to a nuclear rocket control system

where the control, W , is applied briefly at the start of a control

period znd the rocket is zllowed to coast for some time with the

. . . 73 .
probability of a system failure being ﬁ . The study of a particular
&

Fa

system of this nature is under way presently.
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ABSTRACT

_The nonlinear equations describing nuclear reactor behaviom.:
due to reactivity feedback from wvariation of temperature and
moderator density in the core are aznalyzed. Parameter spaces are
defined, and stability boundaries for the linearized system are
determined. Analog computer solutions of the linearized equatious

are presented as verification of the stability of the system.



CHAPTER 1

INTRODUCTION

A large amount of work has been .done in the past on the problem
of analyzing a nuclear reactor with two reactivity feedback mechanisms
for stability. In a recent doctoral dissertation,(l) Schmidt
concentrated upon a system with feedback from two different temperature
regions. In his work, a parameter space is defined, and stability
boundaries are plotted. In the following paper, a method for determin-—
ing coordinates for such parameter spaces and stability boundaries
in general is demonstrated, by application te a system presented‘by
Smith and Stenning.(z)
Analog computer solutions to the linearized system equations

are pfesented in the form of state space plots of the system power ¥vs.

that system state which gives rise to the prompt reactivity feedback.



CHAPTER 2

OPEN 1LOOP SYSTEM EQUATIONS

The differential equations which describe the system to be studied
are presented in this chapter. These include the point wveactor model,
the prompt jump approximation, and the reactivity feedback model
corresponding to feedback due to a temperature variation and a gas
density or pressure variation in the coré.

The equations are normalized and linearized about an equilibrium
operating point, because the normalized form is more convenieiit to use
in the analog computer simulacion of the system, and because the
method of stability analysis to be used is applicable only to the
linearized form. The feedback loop transfer function is determined,
and its pole-zero plot is included as an aid in visuzlizing the system

dynamics.

Neutron Kinetics Eguations

The point reactor model is well known, and its derivation will
not be repeated here. In the case of one delayed group of neutrons,

the source free equations may be written

/"_%i]s ‘%'E/\H A (2-1a]
H1 .

el pr N (+15)
it 7

where N is the mean neutron deansity or power
T is the mean delayed neutron precursor concentration,

p is the reactivity of the system,



! is the neutron generation time,

m
3 is the delayed neutron fraction, 8 y B1

and =1

A is the mean weighted precursor decay constant,

AN

N,
L. - 2 By
hN 7 R
{=1

Since the derivation of this lumped parameter model assumes that
the delayed neutron precursors remain very close to the spot at which
they were created, it is not entirely applicable to the case of a
rocket engine in which the core is made of graphite, and the precursors
are said to diffuse rapidly and may be swept out with the propellant
before releasing a neutron. This difficulty may be partially circum—
vented by using a2 modified value of B, the delayed neutron fraction.

The equations are normalized about the equilibrium operating

ives ¥ and T :
values LOSJEI 0
j\&l
o ! -
ﬂ_}:”,{,' = {:‘\{\ sl Ny Pi\, (‘L"‘-—-"\\)
LT

T bl - (1 b

”»

« ., - R
where &K ~ . 1,_, N Y. B NS e Com o
P \’3 “} Lt ’\_}t. 7

<

The linearization is accomplished by expanding these equations in

T
~
¥
™

a Taylor series about the equilibrium operating point Xg» neglecting

higher order terms.



- 1 f
¢ SN

3]

P

{

Ak

" In

be

z o { - & hk) +- é;Y“ . é;fbvv

= L(g\gl__&"n\ ' ;

terms of the original system wvariables, § X =
dN . p—-B .. . . .
<— is small compared to I z N| or AT in equation 2~la, it may

dt
neglected. Equation 2-~la then yields T = EELQ°N,

Substituting this value of T into equation 2-1b and simplifying,

RN ;!
\( {\ EAT ,(‘/\\D*T{%@)N (‘LA{\E

This is the nonlinear prompt jump approximation to the one delayed

group point reactor kinetics equation. Normalizing about the equil-

ibrium point as was done previously,

. e 89
ol ) : . ny
' s (2~ )
S
v\
Linearizing,
ﬁfN\
oS e iap!
. Spto# doe (z- <]
o &1



Teedback 'Equations

The feedback system to be studied represents a proposed nuclear
rocket engine im which the reactor is u;ed to impart high energy to
hydrogen propellant, which moves through the reactor, ac?ing as coolant
and moderator, and is then expelled from the nozzle. The prompt re-
activity feedback mechanism in this system is the temperature, which
causes expansion of the graphite core. An increase in temperature leads
to an increase in hydrogen mode%ator pressure, or a decrease in density.
This is the delayed feedback mechanism.

The nonlinear equations for temperature-pressure feedback are

given below:

&

T oN- §FTA Co (T Al
HE
&ﬁiﬂ . - o=~ ) Caw q g\

v BT\ BT
i . +

-

e x rs
Q - = AT = AT s r‘:%
where 6 and ¢; have replaced the somewhat more complicated coefficients .

of Smith and Stenning. The external reactivity term is necessary to

insure that p, = 0, since the temperature and pressure are absolute
- h



quantities and are always grearer than zero.

Upon normalization,

( } \v
> e NV -2 z__\
AN ~ v (?.‘&me

¥
o< |
- “‘P‘Hw‘l

vl -y
~ Ay ¥ ¥ P‘Q""’-' (—L"c’}

vhere ¢ and 4 are defined as the normalizing constants for the equations

describing the behavior of the system variables which control the prompt

and delayed feedback mechanisms, respectively,

N . )
- To? A g _ (ﬁ:ﬁf’z _w}/'L ' .ﬁg‘x‘»f g/("";:j]/"t" Q.._ Df
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Ay = — Pr= " Ye
¢ o
The useful relation ¢9T, = ¢3P5 is discovered as an equilibrium
condition of equation 2-9b.
The normelized equations are linearized to
e Ty g Lt Py - ‘\\-':\.\\i
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In matrix form,
Lt = i l . \ &j}&
| der } 1 -0 P&?‘z+ o |
NCEN U L ]

These equations are in the standard

formk = Ax + bu, y = c'x,

with éN'as.the control input u, and the output y = &p'
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~ 4 ' N f = A~%1U.
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The feedback loop transfer function is given by



For real roots, the discriminant in equation 2-13 must be greater

than or equal o zerxo, or

&
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A pole-zero plot for the feedback system for c/d <.20 is shown in
Figure 2.1,

. TS s
.—TL'S ’dai\ - Yi"
P&'Pﬂ%

Figure 2.1 Pole-zero plot of -H(s) for Temperature-
’ ’ Pressure Feedback

Unfortunately, the position of the poles and zero is not independent
of the equilibrium point about which we choose to linearize and normalize
our equations. Had this position been detérmined only by 6 and b,
we could choose any equilibrium point and derive stability criteria valid
for every equilibrium point in the linearized system. If the system
states varied at a-feasonable rate, we could assume the system remiined
close to some equilibriu@ (not necessarily the starting equilibrium)

at all time, and their position in the parameter space relative to the

boundaries remained fixed during a short—-term perturbation.



If the quantities which define the stability curves are functions
of the particular equilibrium point, however, the effect will be to
move the stability curves around the parameter space during an excur-
sion. Whether this results in a larger or smaller region of stability

than predicted remains to be seen.



CHAPTER 3

CLOSED LOOP SYSTEM

In this chapter, the neutronic behavior predicted by a) the prompt
jump approximation, and b) the one delayed group point kinetic modei is
coupled with the feedback equations. A parameter space is defined, and
the stable and unstable portions of it are determined. The results of
analog computer solutions of the linearized equations corresponding to

various points in the parameler space are presented.
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Derivation of the Stability Planes

The linearized prompt jump equation is repeated here for .convenience:

S (- 6]
From equation 2-12,
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This is the closed loop system matrix. If its eigenvalues all have

negative real parts, the system is asymptotically stable, A necessary
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condition for this is that the coefficients of the system characteristic
equation not change sign. We will form the chavacteristic equation and
compute the Hurwitz determinants. The conditions assuring their positive-
ness will lead to the stability boundaries in the parameter space.

The characteristité ‘equation is

The Hurwitz determinants are

o)
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If we let
and set the determinants equal to zero, the curves defined will be the
boundaries between stable and unstable systems. Hj3 is the static stability
line; Ho the resonance line. The space, as it might appear when typical

operating parameters are substituted fo; b,c, and d, is shown in Fig. 3.1.
dieo g e (Fed)
e [bed) > - (:»,wam) chyt o Do (bexd) +o&[°uc{\;\ M

- U%ff %‘ocﬁ»?’%’é) %co‘((

XTI
) = \* =

o
Hg: bdx = o}

The static staBility line Hy is in this case situated on the y-
axis, which means that it is independent of the equilibriumm value we
choose to calculate ¢ and d. Furthermore, the analog computer studies
detailed in the next section show that the systeﬁ behavior is quite
ingensitive to the value of y chosen if x is held comstant. The effect
of the "moving" stability boundaries referred to im the last chapter
should therefore not be too great.

To determine the region of stability if the prompt jump model is

replaced by the one delayed groub point reactor model, we will repeat

J13
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Ha

the procedure outlined previously; i.e. find the linearized system

closed loop matrix, determine the characteristic equation, form the

Hurwitz determinants and set them equal to zero.

The resulting equations

are the stability boundaries in a parameter space whose coordinates

are the product of the feedback coefficients and any set of constants

by which they are consistently multiplied in the equations.

The system is defined by equations 2-3a, 2-3b, 2-1la, 2-11b, and

2-12.
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A

I7 the closed loop system matrix

is manipulated as before, the stability boundaries are
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Analog Compurey Simulation Results

The University of Arizona's Computer Systems, Inec. 5800 analog

computer was used to simulate the linearized equations to verify the

stability plane results. For these runs, two specific cases were

3
chosen; one corresponds to the parameters used by Wiberg and Woyski,
for which the feedback loop poles are real, and the other is a fabri-

cated case in which the feedback loop poles are complex.

Case A

A system with No

il

2000 MW, T = 2000°K, © = .2, 4 /4, = .06,

$¢,= .0745, and :\ .1 secul would have normalized time constants

Il

-

'b=.1, c=.2,d= 3.33. Since c¢/d = ¢1/¢3 = .06, condition 2-14

for real poles is met.
The parameter space with these values substituted for the inverse
time constants is shown in Figure 3.2. The values of Ai, Aé corres—

ponding to points A-L on Fig. 3.2 ave listed in Table 3.1.

Tebte  ®A
3

— [$] L
ED QA Bt B ?:}1JL gLﬁfﬁazxyﬂhﬂ- ?{
. ’ [y i N
Fovits  pn Dage. BT, 39
i —?a-z,m...”i“ Al . AR ]
A ~ A ) -
B -1
[ad ks - 5
Er 2
.E _ o
b - <
- . S‘
& -+ c
=T s
¢ 1o
\
L h =
2z 2o
Frmrr e st s -




ST

N it o e et g

¥

e
—
I~

L

€
D

baa | ossrnr i bae fueand aone };..-A.Mu-.a.-l.uarmq\nwt !..\..n....

A lse

[ERERSWENCY. XS THTEIRPL R et PP RN R p——e Syl < 1 AR Bl

Tt

P a '/‘ v / .7 ’
/fz."’;ti‘ s S A e e WAl I PIY 4

’\J



Response to a nonequilibrium N'(Q) is shown in Fig. 3.3.
As was predicted, the system is unstable for x¢0. The behavior at points
K and L indicates that the stability boundary is where it was predicted
to be. (Note, h;wever, that this space is valid only near the
operating level, and we cannot draw any conclusions from it about

very low power operation.) The system may be driven unstable, but Aé

must be very large.

Use of the stability boundary equations determined for one delayed
group neutronics results in a very slight shifting of the boundaries.
The prompt jump equation is seen to be a good approximation to the point
reactor kinetic equations in this case.

Case B

If é1/¢3 = .4, with all the other parameters remaining the same as
in‘Case A, ¢ = .710, d = 1.775, and c¢/d = .4. The poles of the feedback
loop transfer functien are now complex., The new stability boundaries
are shown in Fig. 3.;: Resonant behavior may be expected as the value
of y is increased for x)0. State space plots ﬁor'the linearized equa~-
tions are shown in Fig. 3.5. Sustained oscillations are observed in

the vicinity of point F, and the system is unstable at point G.
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Chapter 4

CONCLUSION

The nonlinear equations describing the behavior of a proposed
nuclear rocket engine were linearized and analyzed. Regions of linear
stability and instability in a parameter space were delineated, and a
general method for the determination of the coordinates of such parameter
spaces was outlined.

?wo part%cular systems were chosen for further investigation. They
corresponded to feedback system transfer functions with and without complex
poles. The system with complex poles exhibited oscillatoi:‘y behavior for
certain values of feedback coefficients, as was predicted.

Much work remains to be done on the problem of determination of the
regions of stability for this system. A digital computer code has been
written to help in the plotting of the stability"bounﬁaries. With ité
help, an-investigation of the effect of changing only thé equilibrium
power on the stability boundaries may be carried out.’

An attempt has been made to simulate thé nonlinear equations on the
analog'computer, but due to the complexity of the problem and inherent
inaccuracy of the nonlinear computing devices, the results were deemed
unreliable. However, arrangements have been made with the Electrical
Engineering Department for use of their PDP-9 digital computer. The
problem will be céded in DARE, a new digital simulation language. It
is hoped that witﬁ this tool, the nonlinear systems equations may be

solved and used to verify the predicted system stability.

-~
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