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KINETIC THEORY OF PLASMA IN A MAGNETIC FIRT

John C. Price

Laboratory for Space Physics
Goddard Space Flight Center

National Aeronautics and Space Administration
Greenbelt, Maryland 20771

ABSTRACT

The Krylov-Bogoluibov transformation is used to simplify the

guiding center equations for a charged particle in electric and

magnetic fields. The resulting transformation of variables is then

applied to the Vlasov distribution function, yielding a magnetic

Vlasov equation which describes the low frequency behavior of a

system with no statistical effects. The equation is generalized

to include effects of high and low frequency fluctuations by a

procedure developed by Klimontovich and Dupree. A consistent

treatment of the conservation laws and Maxwell's equations is given

to complete the kinetic description.

I. INTRODUCTION

Many experiments dealing with plasmas in a magnetic field take place in

_	 the difficult regime where the collision mean free path of a particle is

comparable to, or longer than, the characteristic scale lengths (gradient,

curvature, etc.) of the system. For these situations it is desirable to have

a theory which contains both a partial solution of the equations of motion

of a single particle and the corrections due to statistical fluctuations, in-

cluding collisions due to particle discreteness.

The standard method of solving the particle equations for motion for
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r ()	 N)	 introduces complications when a strong magnetic field is

present, for the rapid oscillation about the field line produce a lengthy

expression for the orbit. This in turn causes great complexity in the stat-

istical theory of many particles, even for the most simple geometry.'

Recently, Wilson has carried the analysis of guiding center motion

through order Cr , and has written the conservation equation for guiding

centers. This work is conceptually similar to his, and to that of Hastie

and Taylor 3, but with considerable simplification in detail and with a

development which connects with earlier work in statistical kinetic theory.'

In addition, Wilson  has reviewed much of the guiding center work to date.

In Section II by using the Krylov-Boglouibov expansion technique and

several modifications of the definition of initial guiding center variables

we produce economical expressions for single particle motion. The Krylov-

Bogoluibov method has the virtue that the new variables are defined to be

equal on the average (over the phase angle about the magnetic field) to the

old variables, so that an intuitive identification is possible.

In Section III this change of variables is applied to the Vlasov

equation, yielding a magnetic Vlasov equation which is valid for low frequency

disturbances if statistical effects may be ignored. Because the definition

of the distribution function is precise we are able to identify the charge

and current for Maxwell's equations without the need to carry auxiliary

moment equations as in Wilson's work.°

Section IV develops the effect of statistical fluctuations, including

the definition of the statistical transformation of variables, and the

equation of motion for fluctuations. Although the method described
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earlier4 is now applicable, we defer evaluation of the kinetic equation

until a specific problem makes further approximation possible.

II. SINGLE PARTICLE MOTION

The motion of a particle of charge 	 and mass rn is described by the

equations

r - tir

r = --L fic E(r' 4) +

where the fields are in Gausian units and C = m 	 In the usual way7

we wish to expand in-C- , treating the revolution about the magnetic field

lines as the lowest order effect. Throughout the paper we work'dnly to first

order in E , so that we may omit the explicit resealing of time+ which limits

the guiding center theory to frequencies far below the cyclotron'frequ6nc' 8

We define the: guiding- center variables (R, U;,^'U'^ , Q )

r R + ^ = [/V (R 	],f) Cos 8 - M (R, 0 s; D	
f)

6(Rik) .	 (R't)

2=
l̂ V) ^^t

= tQ n+ ^ ,^^ ' N(R,t),-y^ M (R,^)^ 	 ^,;W^'trt,	 V''= '►t'- ^t
r

(1)
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Here L , M , Al are orthogonal unit vectors with ^ ( R, f)	 parallel

to the magnetic field at R , and M and Al chosen in any convenient way

with &,: L K M	 The vector u satisfying	 Q remains to be

determined.

These variables satisfy the equations

•	 ^/^+a)xL 	
L

1
R = 	 ;, L +	 + E 1,1 (Mcoso *w 5iMO)'' L 

+a) L

	

^^	 F

	

^y	 l C-C	 f'AlS n Q
E

a _ -

(A + 4)

where for a quantity C (R, 4,) d'.++ R 0 CXat

©= C I -C 	t) - E'Ol '4 -r ,,-x j (3(r,t) - Q(R,4

old LL
A: c E (R, -6) .• t! K 3(R,f)	 F j X r''r, 

dt]

( 2)

and
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The parallel component of F is assumed to be of order E , i.e. , L (P, f ) • F(ie o _ C (e)

We now choose (,^ such that the perpendicular component of A equals U

Thus l.^ = ^/^ t F Gl, ` 	 where

c E CR,-t) x 1. (R, f >

t ^^ C L (/^ 4 'X i d U. , I, d

Also we Taylor expand z about R using the relation r- R ^ ^(	 G	 0)Nc^ • ^ -M s

in order to eliminate ►'	 For the accuracy we require it is sufficient-

to keep angle independent terms through order E , and periodic terms through

order 1.

R - ^^ ^ ti". ^ ^ ^ tl L X a^

L 
+ !1 ^^ g ^. O(•t f ^11L(NIA%  	 _(ltilti. o^.)C^'lAr ^1^^ +

^+	 6

Nr1 I 	 ,	 «(MAIt NAJ): y;. s', ►, ^G^z L (^lM-tiu)^ vi. GrSz^
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'^^ = Q [- G L 0x E * (Gt' L;. G) 913,	 it ^MM-Njll^' 0/U+'V L) ccs -1) +

(AIAJ+ AIM) ! Q (If -f ir. L.) Si, 201

_ .! 
rtN .dm .. z L Qx /6/* O — gj (Ncos	 +

1 ^MN^Nr^). o(U +^;, c) CO S,

-+ ^o

The order E part of 6 is lengthy but will not be needed. Also, the

angle independent terms of -VI are equal to (X. 1213 ) A`r

We now use the Krylov-Bogoluibov method io , 11 to define new variables

Vim, 0)	 ( P. 14, ^ j f)

R^ P

(3)
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.-^r^ - ^ •- ^^I
m
l v(u+^► ^)s;^^ - NL 'v(Gt+`)4t) cosh	 +

2	 .

E — 1 t ►̂ M- NN)
y$

( (MM-ti'N)'v(U+)4L) s;.,2 — (Mv,A;Al). o(Uf `1^l G) rv;:^^^
Iq6 L

Y B£ C NS-^^ +^?cc^^ )•o(3 ° 9g [^M"^ NM) 
^ru+^1) s ;h.1^ +

(NI M- JVJV) : o l U+ 71 0 cr s 
1 fJ

where all quantities on the right are located at P , e.g. , ( P, fl . These

variables satisfy hey 	 independent equations

p= G( +	 Lx '0 8 	 ^aza)

A	 2	
j

5+6

_7_
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IL' dB
(c)

(d)

where 14 Z! Cho + E If, C E-(P,+) JAL

d ►
^.•d ^ = ^ 1 p• ^

ts)

These transformations of variables lead to considerable simplification in

the kinetic description of a plasma.
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By chain rule differentation

III. MAGETIC VLASOV EQUATION

If the distribution function	 normalized to

volume V satisfies the equation

*9-4?t

(6)

where the fields satisfy the restriction of Section II, then the trans-

formations (1), (4) produce a different functirmal form. Because of

equation 5c and the fact that ;E is positive we make the further substitution

Z ' /213M ) and cWine



where the coefficient :^ ^,f the derivatives are given by 5, valid to order F

Typically we assume F varies slowly in time, so that the 	 term may be

dropped.

Equation 8 plus Maxwell's equations describe the behavior of a system

where the initial conditions are known and for times short enough so that

statistical fluctuations are not important. In order to complete Maxwell's

equations wL require the charge density and current, which may be developed

from 7 in the following way.

We carry out the velocity integ ation 12 in the original guiding center

variables Ar,

Charge density	 K (r {)	 I

= yin` 
I 

dr

Current density	
[T7 (r,+

d^	 y	 r ,f •,r M^j4^ 603^ E'N^,4'^Sti^e)^

Here h, is the system average density.

s
Now we expand rr about the variables r^ 

y'h 
y^, _ V4 „	 Thus

z8f^1

_lo_



i

K	 ^
y r 7 y 8^I-,t) 0^^ b-" d

[F(P%v,^k'O t-) +
2Z-3(,, ^^ + (P r) .,^^'1trf)Ccs ' A.'/r, f)s^M^]

(OM- ") â- + cW -	 Fj

(lo)

Where the order E quantities (P-r), ( °N- 'V;, )	 , etc., are

given by the transformation equations 1 and 4 and the definitions of `jh and

m , and F ( r, V„, m, J f)	 is simply a relabeling of F ( P, 9-6

^•1^ t^	 Since	 is periodic in 6f it may be

expanded in Fourier series; the requirement that fields vary slowly in time

:h
means that the contribution to K and 'r from P,, -e 

9	
must vanish.
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Finally we rename the dummy variables of integration 9ly7 ,W , 1 in order

to produce a notation consistent with 8. This is not a further change of

variables, but simply a relabeling. We have

K l r f'^ = 4 T/'' It 16 (r.., i-)fdgm d l/ F (3i r 3,n• l

3̂  f^ _	 2h 
1

13(r,0J 
dIq d M [u fWL +	 VM)

{ 2E`h'► ixvt3_ c-' 41 00-oL)jr +	 LXIF
a.

(11)

where in both cases F is t he angle independent (average) part of the total

distribution. Maxwell's equations in r , `E' 	 are given by

^ x /3= -r C	 8-U

=K

(12)
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IV. STATISTICAL THEORY

A. Conservation haws

In reference 4 a procedure was developed for treating the

Klimontovich -Dupree hierarchy of equations. In order to correct a defect

in the conservation properties of that work we write the equation for the

single particle distribution of species AA , neglecting electromagnetic

effects in the fluctuating fields, i.e.,

13

(13)

Here the brackets < > mean a statistical or ensemble average. Al-,hough

we shall change var3ebles in order to eliminate rapid phase dependence,

equation 13 as written is convenient for developing conservation of energy and

momentum in the system. In this paper the state of the system is described by

the one particle distribution, and by the distribution of electrostatic energy

in local modes, i.e., fluctuations in which the perturbed electric field may be

approximated locally by	 e ex^ (1 ^' ' Wx
K 

with G,,k = 52,E + ' YK	. Thus we assume knowledge of -((?; V,

and < VKZ t r - 0	 , at the initial time	 U	 , and for all

time on any physical boundaries.
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Multiplying the right side of 13 by M,,,V and 1 h?,V 2	 ,

integrating by parts, and using Maxwell's equations in the longitudinal

approximation yields14

^fk d.^.*	
-	

yes ^µ `
	 1r	

r fM (IC) SCk .

C	 )M	 ^	 d	 >

Pr
^^ S fi•Ffo+^^ ss

rUUM

(14)

We adopt these equations for the determination of .-(4- and Yk

instead of determining them from the dielectric function. In the homogeneous

field free case these equations reduce to the imaginary and real parts of the

usual dielectric function. 15 These relations guarantee momentum and energy

conser ration in the system, where the energy is given by r^v i i+ ► v' {

< 9^k 5^	 J

B. Statistical Variables

In this section we utilize the transformations of Section II to develop
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the statistical theory of plasma in a magnetic field. Because of fluctuations

in the electric field we define average variables before following the pro-

cedure of Section III.

We assume that instruments which measure electric fields are able to

disregard or average over high frequency (W > LaL ) or short wavelength

fluctuations, but that they respond to fluctuations which meet the require-

ments of the guiding center theory. Then we may define ensemble average

variables by splitting the electric field E (measured) = 	 <C>14'+ 4 EC

where	 ^^	 is the fluctuating guiding center field. We define

& a
Y 1 ,̀' -5^G aE

E

^a

(15)

We shall disregard terms which 'lead to results of order C d E^.^

in the final equations.

As in Section II we calculate M ^ ^^^	 , etc., and

use the Krylov-Bogoluibov transformation to define new variables (/ ► ,

- 15 -



R"'; r

4-	
IQL	 20

'^j- = G 
y3 

l^^M -Na'^ v (u+h L^ S%•. ^^ - ^MN^NM^: a	 Cos Z^J

At
	 NM) ;'Q (1/4-AL) S; 2 ^, -r

These satisfy the equations of motion

d =	 (^, n, O,-0

f=>`, Cr,
	

- 2018

c^7}
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where the notation indicates s imply the relabeling of the right side of
equation 5. However, the electric field is the sum of the average field and
fluctuations which satisfy the guiding center restrictions. We ensemble

average 17 to find

^D^ = ^^ -^ ^ L * Ig; ^ xv3

	

3	 L (L L +	 LO;lq -	 28	
At 4

< r's - L	 '4 L

I)KiZA	
13

cr d8
Cr	 2

^A -L 	 oxftt-e 11
f3 4A'0)	 6:
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where	 ^r + C_ U,	 W, 4-k	 ^p	 C < 

By subtracting ( 18) from ( 17) and defining dP p ^^	 , etc.,

C f^	 ^. _ c ^'F6 L

^-	 r	 "

	

CCr  ^^E6xl^'	 r,/^	 CS	 t	 (CaI0xl.
-AIC Xl ^,1 , i °X ( oz8 C g)

(19)

C. Statistical Equations

We now use the method developed by Klimontovich and Dupree 17 and the

transformations developed in this paper to write statistical equations de-

scribing the behavior of a plasma in a magnetic field. The exact one particle

distribution

I___. ^ ^^
r- ^,; if )^ ^^^ w• !r)
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satisfies the equation

Here 67 is the enact electric field, including, for example, particle

discreteness effects and high frequency collective fields FEM

Defining F s <Z) - a E6 4 J6-	 and using the change of
z

variables 15, 16, followed by	 _ a/2 6 ^r t }	 we have
l

	

^' v ' ''	 ' a^ F( , P7 , µ, ^', f) f c You • F ^ 	 P

L xaF + Lai + ( N ^o - M ) 0t 
B	 , `^	 E Z,.,g	 o f	 F

LK -9 B? ^)F8,

^r

(20)

If
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We define the ensemble average to have no ¢ dependence

and take the average of 20, assuming high frequency and low frequency modes

are separable (e.g., by Fourier analysis) so that	 ^- ^' - ^ Ĉ + afN

< LCAI	 <

AI '^CA;	 F

1 ^OTA,

4

(21)



whe re

f f - S"'V t( f E j f (utp¢ -M*:_ t) f )

In the notation of reference 4 we subtract to find the equations for
the fluctuations.

+	 Jri DIP	 ^

^f	 ^	 7

E a	
r3k,01
	 ^	 ,3_

(22)

(23)
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Maxwell's equation Lay be developed as in Section III. For the

longitudinal fluctuations we require only the charge density,

)f ;I'-

^i
r 

AA

We may now use methods developed earlier4118
 
to solve equations 22 and 23

by integration along the characteristics, and insert the results into 21. The

low frequency terms represent a generalized form of Dupree's wori', while the

high frequency terms generalize the rpn»7t of Rnntnlreri _ PP@at]RR of thn

great length of the resulting equatio:

application to a specific problem mak4
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