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John C, Price
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ABSTRACT

The Krylov-Bogoluibov transformation is used to simplify the
guiding center equations for a charged particie in electric and
megnetic fields, The resulting transformation of variables is then
applied to the Vlasov distribution function, yielding a magnetic
Vlasov equation which describes the low frequency behavior of a
system with no statistical effects, The equation is generalized
to include effects of high and low frequency fluctuations by a
procedure developed by Klimontovich and Dupree. A consistent
treatment of the conservation laws and Maxwell's equations is given
to complete the kinetic description.

I. INTRODUCTION

Many experiments dealing with plasmas in a magnetic field take place in

the difficult regime where the collision mean free path of a particle is

comparable to, or longer than, the characteristic scale lengths (gradient,

curveture, etc.) of the system. For these situations it is desirable to have

& theory which contains both a partial solution of the equations of motion

of a single particle and the corrections due to statisticel fluctuations, in-

cluding collisions due to particle discreteness,

The standard method of solving the particle equations for motion for



r*(() ,’V’(f) introduces complications when a strong magnetic field is
present, for the rapid oscillation about the field line produce a lengthy
expression for the orbit. This in turn causes great complexity in the stat-
istical theory of meny particles, even for the most simple geometry.l

Recently, Wilson® has carried the enalysis of guiding center motion
through order € , and has written the conservation equation for guiding
centers. This work is conceptually similar to his, and to that of Hastie
and Taylor3, but with considerable simplification in detail and with a
development which connects with earlier work in statistical kinetic theory.%
In addition, Wilson® has reviewed much of the guiding center work to date.

In Section II by using the Krylov-Boglouibov expansion technique and
several modifications of the definition of initial guiding center variables
we produce economical expressions for single particle motion. The Krylov-
Bogoluibov method has the virtue that the new variables are defined to be
equal on the average (over the phase angle about the magnetic field) to the
0old variables, so that an intuitive ldentification is possible.

In Section III fhis chaﬁge of variables is applied to the Vlasov
equaticn, ylelding a magnetic Vlasov equation which is valid for low frequency
disturbances if statistical effects may be ignored. Because the definition
of the distribution function is precise we are able to identify the charge
and current for Maxwell's equations without the need to carry auxiliary
moment equetions as in Wilson's work,®

Section IV develops the effect of statistical fluctuations, including
the definition of the statistical transformation of variables, and the

equation of motion for fluctuations, Although the method described
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earlier? is now applicable, we defer evaluation of the kinetic equation
until a specific problem makes further approximation possible,
II. SINGLE PARTICLE MOTION

The motion of a particle of charge Z and mass M is described by the

equations

L
r = v

Y _é_[(_ E(r,¢)+ 4715(0-‘-')]

’V:

. . me
vhere the fields are in Gausian units and € = ‘3{' . In the usual way’

we wish to expand in- € , treating the revolution about the magnetic field

lines as the lowest order effect. Throughout the paper we work only to first

order in € , so that we may omit the explicit rescaling of time which limits
the guiding center theory to frequencies far below the cyclotron'frequéncy;8

We define the:guiding' center variables (’e, Un, Vi ,é; )
i
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Here L , M , N are orthogonel unit vectors with L (R,+¢) parallel
to the magnetic field at R , snd M and N chosen in any convenient way

with A= LxM . The vector [{ satisfying [{j=( remains to be

determined,

These variables satisfy the equations
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The parallel component of £ 1is assumed %o be of order € s loeo, L(RE)EMRL)" (r‘(@-)

We now choose u such that the perpendicular component of A equals () .

Thus [{= U, € U - . where

A
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Also we Taylor expand 4 about R using the relation r-R- B-‘-‘(/Vc:-,é‘ 'Ms“'é)

in order to eliminate ., For the accurscy we require it is sufficient
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to keep angle independent terms through order € , and periodic terms through
order 1.
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The order € part of  is lengthy but will not be needed. Also, the

angle independent terms of Vi are equal to('\&. /28) %

We now use the Krylov-Bogoluibov methodl©s1l to define new variables
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where all quantities on the right are located at P | e.g. L (P,+). These

variables satisfy the f independent equations
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where [{= U, + e, U= & Eff’,f();i)(/’,f)
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These transformations of variables lead to considerable simplification in

the kinetic description of a plasma,



III. MAGNETIC VLASOV EQUATION
If the distribution function g( r, v, €) normalized to

volume V satisfies the equation

| 127
.99?4 veF - 'é“lc.E*VlB]--;;— 0

(6)

where the fields satisfy the restriction of Section II, then the trans-
formations (1), (4) produce a different functicnal form. Because of

equation 5¢ and the fact that Z is positive we mske the further substitution
2
M- 3 /ZB(P,f) , and define

V4
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By chain rule differentation F satisfies the equation
DF - - u. '2£ P I"af' = O
o+ Paf + 9 N 92
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(8)
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where {he coefficients ~f the derivatives are given by 5, valid to order €
Typically we assume Fy varies slowly in time, so that the E term may be
dropped.

Equation 8 plus Mexwell's equations describe the behavior of a system
vhere the initial conditions are known and for times short enough so that
statistical fluctuations are not important. In order to complete Maxwell's
equations w¢ require the charge density and current, which may be developed
from 7 in the following way.

We carry out the velocity irrl:e,:.;ff'a:t;:I.orx""2 in the original guiding center

variables 'V_l/'\«"., e .

Charge density K (r-t)

|
z Yn
T(ri¢) va v 5

LLRY

Current density

/
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Her< 7,  is the system average deasity.

2
Now we expand F about the variables v, v m= 1l , 4] . Thus
! 2B(r¢t)
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where the order € quantities (P-r) (- v.) , etc., are
glven by the transformation equations 1 amd 4 and the definitions of 9» and
m o, andF(f;‘U’..,M,QJ{") is simply a relabeling of F(P,c)'/,
I, é: t) . Since F  is periodic in £ it may be
expanded in Fourier serles; the requirement that fields vary slowly in time

N4
means that the contribution to K and v from F, ¢ must venish.
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Finally we rename the dummy variables of integration?”l ,3‘/ B f in order
to produce a notation consistent with 8., This is not a further change of

variables, but simply a relabeling. We have
K(v.¢)= &n*igBIn®) |dTn ad Flr, %, 9, 4)
Tlr,+) =" fﬂz;’z B(cf)}m d?—/Z[U«&‘HL b EM(MN-N M)

+ 2—63211Kv6" C—%L"(L'°‘-)]F+ .G%L’WFE

(11)
where in both cases F is the angle independent (average) part of the total
distribution. Maxwell's equations in r , + are given by

L JE R
vB=T % 280
1 9B
wE =" 5 9-E-K
(12)



IV, STATISTICAL THEORY
A, Conservation Laws
In reference L4 a procedure was developed for treating the
Klimontovich-Dupree hierarchy of equations. In order to correct a defect
in the conservation properties of that work we write the equation for the

single particle distribution of species M neglecting electromagnetic

effects in the fluctuating fields, i.e., ¥8:0.

S A P R CF RGN T

(13)

Here the brackets < ) mean a statistical or ensemble average. Alwhough
we shall change varigbles in order to eliminate rapid phase dependence,
equation 13 as written is convenient for developing conservation of energy and
momentum in the system. In this paper the state of thesystem is described by
the one particle distribution, and by the distribution of electrostatic energy

in local modes, i.e., fluctuations in which the perturbed electric field may be

approximated locally by /<Z /fﬁc) exP («‘ K v -.iuk’e)

with W= Qp « 4 % . Thus we assume knowledge of 1[(&’, v ¢)
and ¢ S (r, wet)D , 8t the initial time €-C  , end for all

time on any physical boundaries,
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Multiplying the right side of 13 by M.V eand 5 M V'’ ,

integrating by parts, and using Maxwell's equations in the longitudinal

approximation yieldsl4

< §€, JEK)) Z. Y o ”MZ [/t"(dq[ (i) §€, >

s J(k f(-x>
()= 2 (522) - B,
F.:« el

drsciefeness

=S Ywn. Zk‘};/«m" IR0 S‘En>

(14)

We adopt these equations for the determination of {lx and Vk
instead of determining them from the dielectric function. 1In the homogeneous
field free case these equations reduce to the imaginary and real parts of the
usual dielectric function.!S These relations guerantee momentum and energy

conservation in the system, where the energy is given by f/\r +my? '{ +

K ""’"

B, Statistical Variables

In this section we utilize the transformations of Section II to develop
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the statistical theory of plasma in a megnetic field, Because of fluctuations
in the electric field we define average variables before following the pro-
cedure of Section III.

We assume that instruments which measure electric fields are able to
disregard or average over high frequency (LW > & ) or short wavelength
fluctuations, but that they respond to fluctuations which meet the require-
ments of the guiding center theory. Then we may define ensemble average
variables by splitting the electric field £ (measureq)= <& > 5e, é

vhere  §E. is the fluctuating guiding center field. We define

3
S
[
1
bt
m“'\
=
m

o
\\

la )
\
Q)
N

¥y

(15)

We shall disregard terms which lead to results of order ¢ < SCG Jé(>
in the final equations.
v »
As in Section II we calculate (R)/ ( ;;") , etc., and

use the Krylov-Bogoluibov transformation to define new variables ( /’ » 15 0 yé)
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These satlsfy the equations of motion
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where the notation indicates simply the relasbeling of the right side of
equation 5. However, the electric field is the sum of the average field and

fluctuations which satisfy the guiding center restrictions, We ensemble

average 17 to find

@ - (gl « %ZLXQB

! %{lﬂﬂll.w/“‘ﬂ‘)} * [éﬁ][l-oxlﬁ

- . ¢ 4B
C2* 35 &

€,
. B /\/.d"hil.-w/”"?‘)]' <—J“§’£
pr=-[2 M7 2e8
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oo th LI, = ¢ <E;(f'41')>" L//"J’)
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By subtracting (18) from (17) and defining S;, T f - <("> , ete.,

L . cS6L

S(' 3, / 2 e

. oc(JExt)-oB - LAY} CJF,;;L)
Joo DL T w(Fg)en L [

(19)
C. Statistical Equations

We now use the method developed by Klimontovich and Dupreel? and the
transformations developed in this paper to write statistical equations de-

scribing the behavior of a plasma in & magnetic field., The exact one particle
distribution

, N
Flovt)= 3 2 Slrvae) Il m)

A

-
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satisfies the equation

JF F -
G vof s k(e 20

Here E 1is the exact electric field, including, for example, particle
discreteness effects and high frequency collective fields S‘EN
Defining F z {e) »d€s +JEy and using the zhange of

1
variables 15, 16, followed by/“ - ’/2 5’/:.() we have

[%+ (;‘V - %:’ ‘ &*%'JF((,/ '7/'“)@{) tC S""N (ﬁ"‘:(%:(”hl"%¢),{>.

LxoF [ F L (Nomg -Mand) JF ' Meosd +Hoim ¢)

(20)
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We define the ensemble average to have no 4 dependence
<F RANE wf(,o,*),u,f‘)

and take the average of 20, assuming high frequency and low frequency modes

are separable (e.g., by Fourier analysis) so that F' F= JIC; + 5.'F/v

[, ROARR A FERRE RS SR G 2

-<52}“L'V#~>-‘ <$iz___'; 27_5%&> B < $£~(A}(m€¢v§‘5‘"—£) %ﬁgy

' a SEuxL-98 7e | SEn (Mceod t Momd) ?‘gk>
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(21)



where
S 560 (pr €IF fuoponm )

In the notation of reference L we subtract to find the equations for

the fluctuations,

[/ +</o> or <% Ity 2 - B of -4 S

7
(22)
. ) | §€w L
[2 4 <prae <oy -<HF 1ot = - fep. of
— [§€-L of _ lv—/t lffﬂ)i”“’-’f" Nacn @) /&W] ?.-'P
€ o e
(23)



Maxwell's equation way be developed as in Section III, For the

longitudinal fluctuations we require only the charge density,

ERITYE ‘?71’;'8 B/"l(')jd,. 1/47 /{1(6,(',.“/'7,{)>

0 146, = ‘/m’iz Bfnf)jéu/ﬁ/fif‘fA; (r,an,8,4)

We may now use methods developed earlier®’18 to solve equations 22 and 23
by integration along the characteristics, and insert the results into 21, The
low frequency terms represent a generalized form of Dupree's worﬁ? vhile the
high frequency terms generalize the result of Rostoker!. Because of the
great length of the resulting equation we omit the expression until

application to a specific problem makes further approximation possible.
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