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TRIANGULAR. DECOMPOSITION

AS AN AID IN DETERMINING EIGENVALUES

OF LARGE-ORDER BANDED SYMMETRIC MATRICES

Edward F. Puccinelli
Test and Evaluation Division

SUMMARY

In determining a subset of eigenvalues of the eigenspectrum of a real symmetric
matrix one can not always be sure that all the eigenvalues in a certain region of
the real axis h2 been found.

This report describes how triangular decomposition, an essential step in many
eigenvalue solution methods, can form a Stiirm sequence. By forming two Sturm
sequences the number of eigenvalues in any region of the real axis can be
determined.

First, matrix decomposition is discussed followed by a description of how a
symmetric matrix decomposition (i.e. a decomposition which preserves eigen-
values) can always be made. Next it is shown how the diagonal terms of the U
matrix in a symmetric LU decomposition form a Sturm sequence and finally how
this information can be used in conjunction with the determinant method of
eigenvalue solution

A
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TRIANGULAR DECOMPOSITION
AS AN AID IN DETERMINING EIGENVALUES

OF LARGE-ORDER BANDED SYMMETRIC MATRICES

INTRODUCTION

In finding a subset of the eigenvalues of real symmetric matrices, determining
that all eigenvalues in a certain interval have been found is often a problem.

The most obvious solution to this problem is to determine the complete eigen-
spectrum. However, depending upon the order of the matrix, this approAch may
not be feasible economically.

Another solution to the problem is use of the Stilrm sequence method (Refer-
ence 2, p. 245) for finding eigenvalues. This method determines one eigenvalue
at a time and simultaneously reveals how many eigenvalues occur in a given
interval. However, for large-order matrices, most of the computational work
used by this method involves tri-diagonalizing the matrix. Tri-diagonalization
requires about as many computations for a banded matrix as it does for a full
matrix, so analysts frequently use methods which require fewer computations:
for banded matrices.

Examples of simpler methods are the determinant and the inverse power with
shifts methods (Reference 3, Section 10). Both of these methods use triangular
decomposition rather than tri-diagonalization. Dependent upon the number of
eigenvalues sought and the order and bandwidth of the matrix, these two methods
may prove faster because the triangular decomposition procedure takes advan-
tage of the bandedness of the matrix. That is, fewer computations are required
to decompose a banded matrix than to tri-diagonalize it.

Although for banded matrices such procedures may prove to be less expensive
computationally, these procedures do not include determination of the number of
eigenvalues in any given interval of interest.

This report shows how a little-known consequence of symmetric matrix decom-
position can reveal the number of eigenvalues in any given region. The determi-
nant method of eigen-:alue solution included in this report may serve as a model
for application to other single-extraction algorithms.

The decomposition algorithm is a relatively simple tool for gathering information
for finding the eigenvalues of a matrix. For matrices which are small enough to
allow calculation by hand, triangular decomposition is an easy method not only of
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determining the number of positive and negative eigenvalues of a matrix, but
also of determining the multiplicity of an already known eigenvalue.

In the rest of this report, all matrices referred to are assumed to be real and
symmetric unless otherwise specified.

TRIANGULAR DECOMPOSITION OF MATRICES

Definition

A lower triangular matrix is a square matrix C = (c ; ^) such that c ; = 0 for
i < j

If c; i = 0 for i > j then C is call :sd upper triangular.

If c i i = 1, c i i = 0 for i < j (for i > j) then C is lower (upper) unit triangular.

Theorem 1

Given a real symmetric matrix A of order n, none of whose principal minor
matrices Ak composed of the first k columns and rows ( k = 1, 2, ..., n - 1) has
a zero determinant, a unique lower-unit triangular matrix L = (@ ; ^) and a diago-
nal matrix D = (di i) exist such that LDLT = A. Moreover:

f

n

det (A) _	 di i
i=1

Theorem 1 establishes the existence of the matrices L and D when A does not
have any singular principal minors. Theorem 1 also reveals a simple means of

3	 finding the determinant of A.

The elements of D and L are given by:

d ii	 aii	 ^eik dkk	 (1)

k-1
i

*Proof of this theorem is in Reference 1, p. 27.

2
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[ai ;	 ik d kk F ik /d11
k'1

i > j
	

(9)

I.

The d i i s are called pivots. The procedure described by Equations (1) and (2) is
analogous to Gaussian elimination. If at some stage i, a d i i is equal to zero,
Equation (2) cannot be computed. To solve this problem, interchange row i with
some row t, (t > i), where a t i ^ 0. Such a row must exist because theorem 1
ensures decomposability.

ENSURING DECOMPOSABILITY WHILE PRESERVING EIGENVALUES

The decomposition procedure breaks down when the A  principal minor has a
zero determinant, because Equation (1) yields d kk = 0 and Equation (2) requires
division by dkk.

Because the results included in the following sections apply to decomposable
matriceb, a useful tool would be a process which could alter the given matrix
(while preserving its eigenvalues) and permit a decomposition.

In decomposition procedures, interchanging the rows of a matrix when a zero
pivot is encountered permits continuation of the decomposition procedure. How-
ever, row interchanges alone generally alter the eigenvalues of the original
matrix.

Interchanging the corresponding two columns in addition to interchanging two
rows is effectively a similarity transformation on the original matrix and, there-
fore, does not change its eigenvalues. This method also preserves the symmetry
of the original matrix, which is crucial in the proofs of the following sections.

Theorem 2

Given a real symmetrix matrix A of order n, at least one of whose principal
minor matrices Ak composed of the first k columns and rows (k = 1, 2, ...,
n- 1) has a zero determinant, c procedure exists for forming a similarity
transformation of that matrix such that this similar matrix may be expressed as
the product of a lower-unit triangular rnatrix L and an upper triangular matrix U.

PK!22f

Let Pi; be an elementary matrix which interchanges rows (columns) 1 and j
when A is multiplied on the left (right) by P i; . Then Pi; A Pi is similar to A

3

_	 i



6

and differs from A only in that rows i and j are interchanged and columns i
and j are interchanged.

Applying this proof to the decomposition procedure, when a zero pivot exists in
position i, (di i = 0), interchange columns and rows i and j, which puts a zero in
position a^ .. Choose the number j, so that a i is the last non-zero term on the
diagonal of A. In general j = n, even if several similarity transformations must
be made.

However, a string of zeroes can occur in positions ( i, i), (i + 1, i + 1), ...,
(n, n) in the final D matrix.

In this case the U = U r matrix would have the form shown in Figure 1 at some
stage of the decomposition.

If this should occur, do not interchange rows and columns but use a different type
of similarity transformation. A feasible type of similarity transformation to use
would be the 45-degree plane rotation in the ( i + 1, j) plane, where j is such that
element (i + 1, ±) ^ 0.

uii	 u12	 . . . u1i

U 22	 u2i

u..i

u 1 +1	 uln

u 2,i +1	 u2n

u i,i + 1	 ui,n

r

0	 xx...x

x0 x. ..x

xx0...x

xxx...0

Figure 1. A possible Decomposition Form
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The transformation matrix would appear as:

1

1

1

a a
- a a

1

i

^y

^--^ i + 1

—i +2 = j

1

1

where

a = r212

1

This would alter Figure 1 to be

U 11	 U12	 Uli i Y Y U 1 i+3 U1 n

U 22	 U 2 j Y
i
I

Y U2 i+3 U2

I
I
i Y

- -
-uii Y U i	 i+3 Ui	 n

------
jY 0

----Y —
Y
--

f
f0
f

Y Y Y

;Y

I
i

Y 0	 .	 . .	 X

I

fY Y X	 .	 . .	 0
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k.

The (i + 1, i + 1) pivot is now non-zero and the decomposition algorithm can
proceed. If zero pivots occur again, reapply the similarity transformation logic
already described (row-column interchanges first and then plane rotations, if
necessary). Figure 2 is a. simple flowchart of the procedure.

Therefore, in determining the eigenvalues of a matrix, that particular matrix or
a similar one is always decomposable.

DETERMINING THE SIGNS OF EIGENVALUES

Lemma 1

Given an n x n real symmetrix matrix A which has a zero eigenvalue of multi-
plicity m, if A is decomposable into the product of a lower-unit triangular
matrix L and an upper triangular matrix U, the number of zeroes on the diagonal
of U is M.

Proof

Because of its form L is non-singular, and therefore the rank of U is equal to
the rank of A. By the hypothesis, the rank of A is n - m. Therefore, the rank of
U is n - m, and the matrix U must have m zero eigenvalues. But the eigenvalues
of IT are simply its diagonal elements because of its form. Therefore U has in
zero diagonal elements.

Lemma 1 provides the means for determining the multiplicity of any known eigen-
value .X of A, if the decomposition of A - X i is possible. The previous section
shows that such a decomposition. (or at least an identical decomposition of a
similar matrix) is always possible.

Theorem 3

If an n x n real symmetric matrix A is decomposable into the product of a lower
triangular matrix L with unit diagonal and an upper triangular matrix U, the
number of positive terms on the diagonal of U is equal to the number of eigen-
values of A which are greater than zero. Furthermore, the number of zero
terms on the diagonal of U is equal to the number of zero eigenvalues of A.
(Note that this implies that the diagonal terms of the matrix U form a Storm
sequence.)

6
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Figure 2. Decomposition Procedure Flow Chart
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Proof

The proof* follows by induction on the order of A.

For n = 1, the theorem is trivially true.

Assume the theorem is true for Ak - I where k - 1 = n, and let a 1 < a2 <	 <
ak- I be its eigenvalues.

Let

a, k

Ak

Ak

ak- 1, k

a k, I . . .	 ak k-I	 a kk

and

UI,k I
Uk- 1

Uk

U k-I k
 i

0	 .	 .	 .	 0	 U kk

Let X I < x 2 L . . . < X k be the eigenvalues of Ak.

* The author developed this proof for another proof, see Reference 4.

8



ak-2	 ak-1

6

By the bordering property (Reference 2, p. 244), ki < a  < Xi + 1 for i = 1, 2,
..., k - 1. By assumption, the number of a i 's greater than zero is equal to the
number of u i i s greater than zero.

Case 1—Suppose p of the a i ' s are greater than zero and none of the a i ' s equal
zero, as in Figure 3. The problem is to determine where kk-p+1 falls (is Xk-p+1
greater than, equal to, or less than zero).

0
ak -P- 	 ak -p	 ak -p +1	 ak -p +2

Xk-p	 1-k-p+i ?	 "k-p +2

0

Figure 3. Eigenspectra of Ak and Ak_1

By Lemma 1, if ukk = 0 then '\k-p+1 = 0. Suppose ukk > 0. Since det (Uk)
det ( Uk-1) x ukk , then sign det (Uk) = sigh det ( Uk - 1). Now

k-1

det (Uk - 1 ) 	 ai

i=1

k

det (Uk)	 IT X,
i=1

Because the signs are the same, kk-p+1 must be greater than zero. Similarly,
if Ukk is less than zero, the signs must be opposite; hence, Xk-p+1 must be less
than zero.

Case 2—Suppose p of the a i ' s are greater than zero and r of the a i ' s equal
zero (r = 1, ..., n - p). If Ukk = 0, then by Lemma 1, kk-p+1 = 0.

9
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suppose 
ukk 

i O,then

UkAl
+ I

+
I

p	
I
II
I

+
I

-	 I
i

k-1-p-r
I

Uk _	 I

0
I

0	 I
I

r

•	 I
i.	 I

01

ukk —

with ukk > 0 or ukk < 0.

Note that the terms on the diagonal of U k _ 1 can be arranged as in Figure 3 by
similarity transformations on Ak which interchange appropriate rows and
columns. Uk may not be upper triangular (nor will Lk be lower triangular), but
the characteristic that det (A,) = det (U j ) is preserved because matrices P used
for interchanging rows and columns have a determinant of minus 1.

Next, interchange one more row and column so that ukk is in position (k - r, k - r)

and the zero which was in that position goes to position (k, k). Hence:

PAk  P = T"k P) TUk P) =	 UkAk =

10
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k-1-p-r
where Uk =

Ukk	 14	 row k - r

0
0

r

0

Because similarity transformations were made only on A k , A k has the same
eigenvalues. Consider the principal minors Ak_ r and Ak' _ r _ I of Ak, composed
of the first k - r and k - r - 1 rows and columns of Ak.

det A k-r-i	 Uk -r - I

det Ak_ r = det Uk_ r = det Uk-r -1 X Ukk

hence:

det Ak_ r = det Ak- r -1 X Ukk

Let Q; be the eigenvalues of Ak 	 and y; be the eigenvalues of Ak _ r . Then;

11
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k-r	 k-r-1

TT y i	 Tr f3 i ' Ukk

i = 1	 i=1

The bordering property shows that:

y; "' R; _'^ y i + 1	 i = 1, ... , k-r-1

Hence, at least as many negative (positive) eigenvalues exist in A' k _ r as the num-
ber of negative (positive) eigenvalues existing in A'k-r-1' If U kk is greater (less)
than zero, the extra eigenvalue of A' k _ r is also greater (less) than zero.

Let ^ i (k-r- ' ) be the eigenvalues of A'k-r-j • In particular,

^ i (k)	 = ki

(k-r-1) = 8

^ j ( k -r)	 = I,1

Consider A'k-r+1 • The U'k _ r+1 matrix shows* that the addition of the row and
column to A' k _ r which forms A'k-r+1 introduces a zero eigenvalue to the eigen-
spectrum of A'k _ r+ 1. By the separation theorem, as many positive and negative
eigenvalues still exist in A' k _ r+ as the number existing in the A'k_r matrix.
That is, the number of ^ i ( k-r+1 ^ > 0 (< 0) is equal to the number of ^ i (k-r) > 0
(< 0). The logic is the same for each row and column added until the original
is formed.

Figure 4 is a pictorial description of this phenomenon where a is positive or
negative depending on the sign of Ukk . Hence, by lemma 1, Ak has r zero eigen-
values and by the above argument, if Ukk > 0, then Ak has p + 1 positive eigen-
values. If ukk < 0, then A k has k - p - r negative eigenvalues.

*By lemma 1

k
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0

e
^' k-r)	 - yi

i(k -► fl)

Figure 4. Eigenspectra of Principal Minors

This theorem provides a simple means of determining the number of eigenvalues
of the matrix A in any interval [a, b] of the real axis. First, translate the
eigenspectrum of A, using a and b as shift values. Then decompose the two
matrices A - aI and A - b I (or similar matrices) into the product of triangular
matrices La U. and Lb Ub respectively. As indicated in theorem 2, observe the
signs of the terms on the diagonal of U. and then of U  to determine how many
eigenvalues occur in (a, b), For instprce, if U. has r positive terms on its
diagonal and U  has s positive terms on its diagonal, then I r - s I eigenvalues
exist in (a, b). The number of zeroes on the diagonal of U. indicate the number
of eigenvalues at point a, and the number of zeroes on the diagonal of U  indi-
cate the number of eigenvalues at point b.

For example, consider the matrix

5	 2	 4	 7

2	 1	 3	 8

A =

4	 3	 8	 5

L7 8 5 3J

To determine the number of eigenvalues between -2 and +4, decompose the fol-
lowing:

r.	
7 2 4 7

2 3 3 8

A+ 21	 =
4 3 10 5

7 8 5 5

13
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Its U matrix is,

7 2 4 7

0 17/7 13/7 6
U_ 2 	 =

0 0 107/17 -61/17

0 0 0 -15,712

1819

Next decompose:

1	 2	 4	 7

	

-3	 3	 8
A- 4I =

4	 3	 4	 5

7	 8	 5	 -1 J

Its U matrix is:

1	 2	 4	 7

0	 -7	 -5	 -6
U 4 =

0	 0	 -59/7	 -131/7

0	 0	 0	 -1365/413

U_ 2 has three positive diagonal terms, and U 4 has one positive diagonal term
indicating two eigenvalues in (- 2, 4). Because no zeroes appear on the diagonal
of either U matrix, only two eigenvalues occur in f -2, 4].

The eigenvalues of A, to two decimal places, are:

-7.10------.72

1.36
3.56----.:+4

19.18

14
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If a zero had occurred on the diagonal of U . or U  , -2 or +4 would had to have
been an eigenvalue.

DETERMINANT METHOD OF EIGENVALUE SOLUTION

The determinant method of eigenvalue solution is based on the concept of finding
the roots of the characteristic polynomial of a given matrix. The characteristic
polynomial of A may be expressed as:

det (A - XI) = (k-X 1 ) (X -Y ... (^-\n),

where X 1 , X 2
9
 .. ., X. are the eigenvalues of A.

To determine an eigenvalue, evaluate the determinant of A - X I for various
values of X. The value which yields a zero value for the determinant must be an
eigenvalue.

The most practical method for evaluating the determinant of a matrix is to use
the result of the decomposition theorem (make the triangular decomposition A =
LDL T = LU). The determinant of A is simply the product of the diagonal terms
of U.

Several polynomial curve fitting schemes exist for tracking the roots of a deter-
minant. Wilkinson shows that little is to be gained by using polynomials higher
than the second degree.

The following is Muller 's quadratic method from Wilkinson's text (p. 435).

Choose three points ( Pk -2-  f (Pk _ 2 )) , (Pk-l'  f (pk _ 1 )) , and ( Pk' f (pk )) on the
characteristic polynomial f (k) = det ( A - ),I). Interpolate these three points
and determine the zeroes of the resulting quadratic equation. Use the zero
closest to Pk as a Pk + 1 , and repeat the process until a satisfactory zero of the
characteristic polynomial is computed (Figure 5).

A fault in this method appears when A has some very close or multiple roots.
The following graph (Figure 6) of the characteristic equation of such a matrix
shows such a fault.If Pk- 2 1 Pk- 1 1 and Pk are as shown in the graph, the process
converges to X a rather than A 1,

In calculating the determinants of A - (p k - 2 )I , A - (Pk-1 ) I, and A - (pk ) I by
using triangular decomposition as described in theorem 2, the results of

15
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f M INTERMEDIATE QUADRATIC

CHARACTERIST I C POLYNOMIAL

i	
^	 Pk+1

	

X

P k —2	 Pk-1	 Pk	 \

f(k)

Figure S. Local Plot of a Characteristic Polynomial

theorem 3 reveals how many positive, negative, and zero eigenvalues each of
the matrices have. Taking the difference of the answers shows exactly how many
eigenvalues occur between the points Pk-2 , pk 

-
 i, and pk . An example of how

this information may be useful is given in the problem described by Figure 6
where instead of the procedure predicting p k+ , on the right of pk , a modified
algorithm can force Pk + 1 to be betweenpk _ , and Pk .

However, the search logic does not need extra tests at this stage. Suppose in a
search for all of the eigenvalues in region [ a, b] , the characteristic equation

f(k)

CHARACTERISTIC POLYNOMIAL

INTERMEDIATE QUADRATIC

Pk*1^1 A2

P k —2	 Pk-1	 Pik	 q

Figure 6. Example of a Possible Failure With Muller's Method
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f(k) = :1(x - a' , ) g (N. ) (where i is such that a < A i < b) looks like Figure 7.

Figurt 7. Characteristic Polynomial Over Interval [a, b]

Suppose the search logic proceeds from left to right beginning at point a and
sweeping out eigenvalues as it proceeds. If the method ran to completion and
found all the eigenvalues, the resulting graph might appear as Figure 8.

Figure 8. Deflated Polynomial g(A) When All Eigenvolues in [a, b ] Have Been Found

However, if some eigenvalues had been missed, the curve of the deflated poly-
nomial g (k) might appear as Figure 9.

17
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0

Figure 9. Deflated Polynomial g(k) When Two Eigenvalues in [a, b ] Were Missed

In any event, the decomposition of A - a I and A - b I determines the number of
eigenvalues between a and b. If that number equals the number found, then all
the eigenvalues have been found. If the number is not equal to the number found,
then some of the eigenvalues have not been found. If the number of negative
eigenvalues for each of the decompositions of A - pk I was recorded, the record
could be searched to determine approximately where the missing roots occur.

Figure 10 is a flow chart of the proposed method for ensuring that all eigenvalues
in an interval have been found.

CONCLUSIONS

Therefore, by theorem 3, the exact number of eigenvalues that fall within a given
interval of interest can be determined without using the Sturm sequence method.
Hence solution methods more efficient than the Sturm sequence method can be
used without the risk of missing some eigenvalues in a certain range. Informa-
tion about the eigenvalues of a matrix may already be present in a solution method
which uses triangular decomposition. In this case only a few alterations to the
method are necessary to ensure that all eigenvalues are found in a given range.

18
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Figure 10. Flow Chart of Proposed Method for Ensuring That
All Eigenvalues in an Interval Have Been Found
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