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A UNIVERSAL SOLUTION OF ]LAMBERT'S PROBLEM

by

E. R. Lancaster
R. H. Estes

ABSTRACT

The problem of Lambert is reduced to the solution of a single equation
which is valid for elliptic, parabolic, and hyperbolic motion. The equation has
no singularity for 180* transfers, holds for any number of revolutions, and ex-
presses a normalized time of flight as a function of one parameter and a uni-
versal two-body variable.
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N_
A UNIVERSAL SOLUTION OF LAMBERT'S P11OBLEM

I. INTRODUCTION

Consider a particle moving in a gravitational, inverse-square, central force
field and let f and r be respectively the true anomaly and the distance of the
particle from the center of attraction at time t. If subscripts 1 and 2 indicate
values at times t and t 2 , Lambert's problem assumes that r , r , and f - f1	 2	 1	 2	 2	 1

_-	 are known and seeks to find some parameter of the motion such as the semi-
major axis a which will enable us to compute directly the velocity components
at times t l and t 2 , provided the plane of motion is known.

The problem of Lambert is reduced to the solution of two equations in two
unknowns by Battin (1964) and Pitkin (1968). These equations are universally
valid for the three types of conic motion. Battin (1964) reports the work of
Deyst, wherein the problem is reduced to one universally valid equation but with-
out provision for more than one revolution during the flight time t 2 - t i . Pines
(1965) has independently derived the equation of Deyst, with a modification which
allows for any number of revolutions. The equation of Deyst and Pines expresses
the time of flight as a function of two parameters and a universal variable.

In this paper Lambert ' s problem is reduced to a single universal equation
.,	 which is simpler than the equation of Deyst and Pines. It expresses a normalized

time of flight as a function of only one parameter and a universal variable.T

We will first present: separate equations for the elliptic and hyperbolic cases.
We will then combine these equations into a single universal equation.

II. ELLIPTIC AND HYPERBOLIC CASES

For elliptic motion we have

r = all - e cos E),	 (1)

(µu3)1/2 (t - t p ) = E - e sin E,	 (2)

r 1/2 sin	 f = [a(1 + e)] 1 ^ 2 sin 2 E ,	 (3)

rii2 ms f = [a(1 - e)] 1^2 oos I E ,	 (4)
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where µ is a known constant, a is the semi-major axis, E is the eccentric
anomaly, t  Is a time of periapsis passage, and a is the eccentricity of the
orbit. We define

a = 2( E2 - El)

cv = e cos 2 (E1 + E2)

Place subscripts 1 and 2 on r and E in (1) and add the two resulting
equations to obtain

(r1 + r2 )J 	= 1 - w cos a .	 (5)

Place subscripts 1 and 2 on t and E in (2) and subtract the resulting
equations to obtain

	

2 (,U/a3`1/2 (t2 — t1) = a — co sin a .	 (6)

Place subscripts 1 and 2 on r, f, and E in (3) and (4) and combine the
resulting equations to obtain

(r 1 r2 ) 1/2 COs 1f2
 

(f2 - f 1)	 a(ct)s a - co) .	 (7)

If we define

T = ( )1/2 (t2 - t1) / ( 
r1 + r2) 3/2

Q = L2 
(r1r2)1/2/ (r1 + r 2 )1 CDS 2 \ f2 - f1)

and eliminate a and w from (5), (6), and (7), we get

2



i

sue,_
ice=

"	 T = (-1)'" (1 - q cos a)1 /2 [q + (rti - sin a cos a) (1 - q cos a)!sin3 .a]	 (8)

where m is the number of complete revolutions which occur during the time of
flight. We note that

AiW'l'

An equation similar to (8) has been derived by G )dal (1961) from formulas
due to Gauss, but with the flight time expressed as a function of two parameters
and the eccentric anomaly difference.

Eliminating ; from (5) and (7) gives

(r1 + r 2 ) ( 1 - q cos a) = 2a sine a	 (9)

for the calculation of a after a has been found from (8).

'.	 If q is near 1, it may be desirable to replace 1 - q cos a by
2 sine 2 x + (1 - q) cos a in (8) and (9) for better numerical accuracy.

9,-
Kepler's equation for elliptic motion can be written in the form

2 (A,23)1/2 
(t2 - t 1 ) = a + [r1r1/(pa)1/2] sing a - (1 - r 1/a) sin a cos a, (10)

where r 1 = dr/dt at time t 1 . Having found a and a, we can obtain i' 1 from (10).

In a similar manner we obtain for the case of hyperbolic motion

T = (1 - q cosh 8)112 [q - (8 - sinh 8 cosh 8)(1 - q cosh 8)/sinh 3 8] ,	 (11)

where q and T have the same definitions as before and

1
_ T (H2 - H,)

H being the usual hyperbolic parameter. The analogue of (9) is

a

P
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(r I + r 2 ) ( 1 - q cosh 8) _ -2a sinh 2 J3.	 (12)

We note that we have adhered to the sign convention for the semi-major axis a,
i.e., a > 0 for an ellipse and a < 0 for a hyperbola.

Kepler's equation for hyperbolic motion can be written in the form

2 ( al) 1,12 (t2 - t1) _ ,8 + [( r I i 1 f(-µa)1/2]sinh2,0 + (1 - r l /a) sinh,3msh,8,(13)

from which i, can be obtained.

The following formulas for the eccentricity, semilatus rectum, and the
component of velocity perpendicular to the t l radius vector are valid for all
forms of two-body motion:

e2 = ( 1 - r l/a) 2 + ( r l i l ) 4a,	 (14)

:	 p = 2r1 - r l 2	- (rl i l ) 2//l ,	 ( 15)

ul	(,Up)1/2/r 1 	 (16)

Ill. THE UNIVERSAL FORM

We begin by defining two series

Co	 Co

S(y) _ T (-i) iyi/(2i + 3)!,	 T (-W-/i/( 2i + 2)! ,	 (17)
i = 0	 i=0

convergent for all values of -/.  With these series we can write

sin a = all - yS),	 cos a = 1 - yC if y = a2 ,	 (18)

sink /3 = 3(1 - yS),	 -)osh 13 = 1 - yC if y = R2 .	 (19)
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Substituting these expressions into (8) and (11) gives

T = (-1) my l/2 [q + y ( Cx + S)/x 3]	 (20)

x = 1 - yS, y = 1 - q ( 1 - ),C ) = YC + ( 1 - q )( 1 - >C ) -

Equation (20) replaces ti8) and (11) if we impose the convention that y > 0 for
elliptic motion and y 0 for hyperbolic motion. Equation (20) becomes truly
universal if we agree that y = 0 for parabolic motion. Of course m = 0 for
hyperbolic and parabolic motions. y is the universal two-body variable used in
the universal solution of the two-body initial-value problem as described by
Battin (1964).

Substituting (18) and (19) into (9) and (12) gives

a - 2yx2z

where

Z	 y/1 r  + r2)
AS
A°

Substituting (18) and (19) into (10) and (13) gives

r l r l = µ(t 2 - t l) z - ( - 1 )m (µ/'2z) 1/2 [(Cx + S)/x3 + 2r 1 (1	 (22)

The following identities are useful for computing the C and S functions for
large values of y

2C( 4,y) _ [1 - yS( y )] 2,

4S( 4y ) = S( y ) + C(y) [1 - ys(y)]

Since the C and S functions are evaluated so frequently, it is worthwhile to
develop approximations that minimize the number of arithmetical operations

G 5
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required. Herron, et al. (1968) have developed several such approximations,
based on theories of Chebyshev and Knuth, with bounds for the errors incurred
when using them.
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