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AN ALGORITHM FOR INTEGRATING

SIMULTANEOUSLY THE RESTRICTED PROBLEM AND

ITS FIRST VARIATIONS IN THIELE'S COORDINATES

R. H. Estes

ABS'rRA.0 T

In the search for periodic orbitb in the planar restricted prob-
lem of three-bodies, it is of interest to integrate simultaneously
the orbital and variational equations in regularizing coordi-
nates.2 Estes and Lancaster  bave presented an efficient algo-
rithm for the integration of the equations of motion of the
restricted problem in Thiele's variables and it is the purpose
of this note to extend the algorithm to include the variational
equations.
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AN ALGORITHM FOR INTEGRATING

SIMULTANEOUSLY THE RESTRICTED PROBLEM AND

ITS FIRST VARIATIONS IN THIELE'S COORDINATES

EQUATIONS OF MOTION AND VARIATION

The Lagrangian for the plar:,r restricted three-body problem in Thiele coordi-
nates with the origin at the midpoint between the primaries and the x-axis passing
through both primaries while rotating with the mean motion may be written

_	 (u . 2 + v 2) 	
R (u' sinh 2v + v' sin 2u)	 (1)

where

11 =
1	 4t' (2" -1	 1	 )
2 (coshv - [2µ -1^ coscosu) + $ ` 2	 su cosh v- J - 4 [cosh 2 v+ cos2u]

1
t' = 

1
(cosh 2 V - COS 2 u) = r l r2

1
r l = 2(coshv- cos u)

1
1 2 = 2 (cosh v + cos u)

u12 +v' 2 = 2Q = r 1 r 2 ((1	 )r1 + ^` r 2 + 
2( 
r 

µ) 
+ r4 - J)1	 2

and where µ is the ratio of the mass of the smaller primary (assumed to be to
the left of the origin) to the sum of the two primary masses. Here prime ac-
cents indicate differentiation with respect to a regularizing pseudo-time T, r 1
and r 2 represent the distances between the primaries and the infinitesimal third
body and J represents the Jacobi constant of motion. The variables u and v
are related to the Cartesian coordinates by the transformation
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1
x = 2 cos u cosh

(2)

y = - 2 sin u sinh v .

The Lagrangian equations of motion become

u" - 2 t l V = a 0
au

(3)

_
v"+ 2 t'u'	

an
2v

where

y

a ^	 sin u
a u	 16 

(R (2µ - 1) - 4J cos u + ( 2µ - 1) cosh v ( 3 oos 2 u - cosh 2 v) + 2 cos 3u]

a ^	 sinh v
^ v	 16	 (8 - 4J cosh v + (21.L - 1) cos u (3cosh'° v - cos y u) + 2msh 3 v] .

The solution of Equations (3) depends upon initial conditions and the parameters
µ and J. Thus

U - u (T ; uo , voI uo. VO" P. J)

V = v(T; u o . Vol uo, vo, At J)

)enoting u, = a E, v, = c F, etc., where a represents one of the parameters or
nitial conditions, the first variational equations of the system (3) become

!uE - 4t' vE = u E S cos u I ( 2µ - 1) - 2 cos u + (2µ - 1) cosh v ( 3cos 2 u - cosh 2 v)

t
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+ 2 COO u + 2 sin u 
v' + 3(2µ - 1)	 2

4	 cosh v (cos u - 1)

3	 3 1	 1	
_ \3 

+ 2J )	 z+ 4 cos u+	 cos u^

+ v e { sinh v f 2v' cosh v - 
3 (2µg- 1) 

sin u (cosh 2 v - COS 2 u)
J r

+ µE 1 2 sin u + 
sin u cosh v 

( 3 cos t u - cosh 2 v) r

1
- 2 J E sin u cos u

2vE + 4t' uE - V. i cosh v ^1 - 2 cosh v + (24 - 1) cos u (3 cosh 2 v - cos 2 u)

t	 + 2 cosl-13 V. sinh v u' + ' 2µ4 1) cos u (cosh 2 v - 1)

+ 4cosh3 v + 2 J -
\ 3 42J) cosh 2 v

J

Ir
	

11
+ u E j sin u 1- 2 u' cos u - 

3( 2µg 
1) Binh v ( cosh 2 v - cos 2 u) J }

sin u sinh v
+ µE	 4	 (3 cosh 2 v - cos 2 u)

1
r
	 2 J  sinh v cosh v	 (4)

POWER SERIES SOLUTION

We now extend the notation introduced in Reference [4] . Let
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kl
k l = 2µ - 1. k 2 = - -T, k 3 = -k4 = - 3k 3 	 (5)

a = sin u, b = cos u, c = sinh v, d = cosh v 	 (6)

p	 b2+ q= d2, w= q - p	 (7)

r = k 4 d + b/4, s = k 4 b + d/4	 (8)

	

f = k l + k 2 b + rp + k 3 dq	 (9)

	

g = 1 + k 2 d + s q + k 3 by	 (10)

	

u' = a, v' = /, uE = a,, v; - Of	 (11)

	

y = f + 2 a 8 + 4 by + 2k 4 d(p - 1)	 (12)

X = 2pd-k 4 aw	 (13)

p = g - 2 c a + 4 dq + 2k 4 b(q - 1)	 (14)

Q = - 2ba - k 4 cw	 (15)

h = d(3p - q), z = b(3q - p) 	 (16)

k 2 - ( 4 - k 2) p + by	 (17)

A = cX, S = ao , 	(18)

R = -k 2 - ( 4 -k 2) q+ d p	 (19)

h	 c

	

H = a (2 + 4 L= 4 z	 (20)
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Equations (3) and (4) then become

2a' = a f + wA	 (21)

2 Q' = c g- w a	 (22)

2 a,E	 u^ T + v e A + w,8c + A, H - 2 J E a b	 (23)

2,5; = v,R+u,S- wa, +µ,Z-2J,cd.	 (24)

Assume the solutions of (7) - (24) can be represented by the power series

OD	 CO	 W

U =	 U  T i , V =	 Vi T i , t =	 ti T1

i = 0	 i=0	 i =0

	

OD	 OD

r	
U^ =	 Uf 

i 
'T, VE _	 VE

t
 Ti

	

i = 0	 i=0

and similar series for a, b, c, d, p, q, w, r, s, f , g, y, X , p, u, h , z	 A,
R , S, H, and Z in a neighborhood of T = 0. Substituting these series into
(7) - (24) and equating the coefficients of each power of T gives, for i ? 0

Pi = L bi b i - j , qi = L d  
d i - j , wi = qi - p i	 (25)

i = 0	 1=0

	

ri = k4 di + b i /4, s 	 = k4 bi ^ d i /4	 (26)

	

i	 i
f i = kl 8i0 + kz bi 

+ /T. r  P i - j + k3 /T dj qi-j	 (27)

	

i = 0	 i=0
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i

gi = s io + kz di + / rs j q i _ j + k 3 Z] b j pi_j	 (28)

j ' o	 j•o

i

2(i + 1) 
a i +l -	 (aj f l- j + wj ^i_j)

	
(28)

j n o

i

	

2(1 + 1) 8i +l = T (c j gi-j - wj ai_j)
	

(30)
j-o

( i + 2) u i +2 = a i+l, ( i + 2) Vi+Z = 8i + 1 , 4(i + 1) ti+l = wi (31)

i	

3 
y i = fi - 2k4 

di + 2	 aj Pi-j + q	 bj p i -j + 2k4	 d; pi-j (32)

p i	 =	 gi - 2k 4 bi - 2 
L 

bi ai _ j
3

+ 4

i

E d
j q i _ j + 2k4 	 bj qi -j	 (33)

j-o j=o j-o

i	 i	 i	 i

ki = 2 
E 

d.	 - k
4
	

w. a. _ . Q. 	 - 2 ^ b, a. _ . - k
4
	

w. c. _ . (34)
 '	 i-j	

4	 '	 ' i'	 '	 i	 ' i	 4	 ,	 ' ,
, ' o	 j'o	 juo	 Jao

i	 i	 i	 i
hi = a	 dj pi _ j - L dj qi 	 z i = 3	 bj qi _ j -	 bj p i-j (85)

j=o	 juo	 j=o	 j=o

i

kz S io - (I- 
k 2) p i + 2: 	 yi - j	 (36)

j-o

	R. 	 k S .	
\ 3 - k)
	 +	 d.	 37

	

a	 z ,0 - g	 2 qi	 pi- i 	( )

j'0
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A i - L c j X i - j 1 S i =	 aj ai-j	 (38)
j n o 	 j-o

H 1 = 2 ai + 4	 a  h i - j I zi = 4	 cj Z i-j	 (39)

j n o	 j-o

i
r 	 l j,,	

i
2(i 

+1)a`1 ' 1	 µ`Hi+	 Cp`i w, 1 +U. ri-j +V ci A l 1, 	 Z] a1 b l- 1 (40)

	

j n o	 j-0

i	 1	 i

	

2(i
+1)A,i

+^ = 
A l Z1 +^ [v e, R i - j -a,iwi.-j +uc,Si-jJ - 2 J e	 cj d i _ j (41)

	

j •o 	 J	 j n 0

(i + 2) Ua1 +2 = 
a61+1 ' (i + 2) V,1+2 = a"1+1	 (42)

(i + 1) a i + 1 = L b  a i-j , ( i + 1 ) bi+1 = -	 a  ai _ j	 (43)

j = o	 j-o

	

i	 i

(i + 1) C i+1 
= E dj'5i-j I ( i + 1 ) di+1 = E C  ^3i -j 	 (44)

j = o	 j=o

Here S i o is the Kronecker symbol which equals one if i is zero, and zero
otherwise. Given the initial conditions u o , v o, ao = u 1 , ,30 = v 1 , t o , u C , ve ,
at = u . 1 and 6, = v, 1, (6) may be solved for ao , b o , c o , d o and the algo-
A m (25) - (44) w111 then give aK higher order coefficients in terms of the pre-
ceding coefficients, so that the F Aution may be extended optimally by analytic
continuation using a variable step size and a variable number of terms in the
power series expansion for each integration step . 4 It is to be noted that the
equations of motion may be computed independently by deleting Equations (32) -
(42) from the above algorithm.



As an example of applicability this algorithm may be used in conjunction with
the well-known predictor-corrector technique for the numerical computation of
natural families of periodic orbits.l. 2 Following this method we set 4, = 0 and
the predictor variational equations would have J, = 1, resulting in the expected
nonhomogeneous system of linear equations. The iterative correcting procedure
is isoenergetic so that J, = 0 and the homogeneous system of variational equa-
tions yielding the corrected periodic orbit gives the characteristic stability
exponents as eigenvalues of the numerically integrated matrizant at the end of
the fundamental period.3
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