/'
UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

(ACCE.‘;SIONN 7 O = 3 6 7 6 é
J /? (T/HRU) }]

(PAGES) (CODgE

(CA~//2367

o a } —,__ R Beproduce -
(NASA CR OR TMX OR AD NUMBER)_ {CATEGORY) r NATIONZETE&C‘?:'N]CAL
gﬂNFORMATION SERVICE

— ——— o,

FACILITY FORM 602

o ——

i Sptingfield, 'Va, 22151
. ringhold, Va, 22

f
|

—_—————

N70-36769

AN 10CS ALGORITHM FOR MICROPROGRAMMING

Jetfry W. Yeh

University of Maryland
College Park, Maryland

July 1970

This document has been ppruved for public release and sale.

Distributed ... *to foster, serve
and promoie the nation’s
economic development

and technological

advancement.’

U.5. DEPARTMENT 0F COMMERCE

qi'fcbni'cal' Réeport- 70-124 : July 1970
GrR-21-002-206 :

An IT0CS Algorithm for Microprogramming

by

-Jeffry W. Yeh

Thig research was supported in part by Singer—Link
Research Assistant Scholarship in Computer Science and
by Grant NGR-21-002-206 from the National Aeronautics and
Space. Administration.

Abstract

An Input-Output Control System (IOCS) initiates and controls the
input and output processes of an operating system, thereby making it
unnecessary for the user to recode any of these processes. Input-~Output
Control Systems usually. perform the following funcgtions: -(l)‘filq
and buffer handling for the creation and maintenance of the file, thé“"
buffering of the input-output data, and the blocking or deblocking of
the records; (2) input-output scheduling for the examination of the
result of an I/0 activity and the determination of the next I/0 activity;
(3) generation of the actual I/O programs, igc%gding the channel programs.

This report presents a tree-structure design of aﬁ JOCsS, using
double-buffers. The design includes a set of macro instructions and
a set of algorithms. The;e are three levéls in the tree-structure:
the first level deals with file handling and buffering; the second
level with I/0 scheduling; and the third level with the device drivers.
Special emphasis is placed on the design of the file and on buffering,
employing double buffers for files, variable lengths for buffers, and
a rotation method for buffer usage. All algorithms are presented in
the form of flow charts, including an overall flow chart for the IOCS
and 16 flow charts for individual algorithms. The purpose, the major
cbjectives, the input and output, as well as the calling sequences,

- are stated for each flow chart.

The algorithms are prepared as to be easiiy convertible into
sequence charts which in turn can be described in terms of Computer
Design Language (CDL) statements for simulation bg.the CDL simulator

and eventual implementation by microprogramming.

« Table of Conpents

Abstract

Summar§

Overview of an Input—-Output Control System (T0CS)

2.1 Purpose

2.2 Advantages

2.3 Terminology

.3.1 Scftware terminology

2
2.3.2 Hardware terminology
2.3.3 Terminology used to describe Input—Output techniques

2.4 Functions

1 TInput-Output Buffering Routines

.2 Input-Output Scheduling Routines

3 TUnit Interpretive Routines (or Unit Drivers)

.4 Communications Among Routines

A Simplified TOCS (SIOCS) for Microprogramming

3.1 Design Principles

1.} Simple yet extensible and machine independent
1.2 Restrictions and assumptions

.1.3 Levels within an I/0 system

1.4 Buffering algorithms

3.2 Macro~Instructions and examples

3.2.1 The HMacro-instructions in SIOCS
3.2.2 Some examples which use SIOCS

The Functions of SI0CS

4.1 The File and Buffering

4,1.1 Defining a file
Opening a file
Closing a file
Redefining a file

4.1.2 Buffering
Buffer area
Buffer cycles
Buffer allocation ,.
Non System buffering

4.1.3 I/0C Request
Data transmission request
Non—-data request

4,2 The Input-Output Schedyling

.2.1 1/0 initiation

.2.2 I/0 completion

4.3 The Unit Interpretive Routines

4.4 The Elemients of SIOCS and the Communication among elements

1 Files and File Control Blocks

.2 Bufférs . .

.3 TUnits and Unit Control Blocks

4 Channels and Channel Control Blocks
5 Communication among control blocks

The Algorithms of SIOCS

5.1 The Overall Diagram of SIOCS

5.2 The Algorithm of each Routine
- N . mnp - * - -

5.2.1 The file and buffering routines
The file declaration routines
The L1/0 request routines
5.2.2 The I/0 $cheduling routines
The I/0 initiation routines
The I/0 completion routines
5.2.3 The wit interpretive routines

Discussion

6.1 Discussion on the Designing of SIOCS
6.2 Discussion on the Expansion of SIOCS
6.3 Discussion on the Microprogramming of SIOCS

Acknowledgement

Bibliography

An TOCS Algorithm for Microprogramming

Jeffry W. Yeh

1. Summary’

This paper is a report on a study of an Imput-Output Control System
(I0CS). An overview of the 10CS is presented in Section 2.. The purpose, ad-
vantages, and functions of IOCS are presented in this Section. From the studies
of several Imput-Output Control Systems, such as the Input-Output Control System
of the IBM 7000 - series, the IBM 1400 series, and CDC 3000 series, a Simplified
Input-Output Control System (SI0CS)has been designed. This design is presented
in Sections 3 through 6.

In Seection 3, the design goal and principles of SIOCS are discussed in
detail with special emphasis on the evolutionary development of SI0CS. The macro-
instructions of SI0CS is discussed together with several concrete examples.

Section & presents the functions of SIOCS. These functions are separ-
ated into three parts based on their levels of tree-structure. These are: the
file and buffering algorighms, the I/O‘scheduling algorithms, and the unit inter—
pretive algorithms. This section places the greatest emphasis on the file and
buffering algorithms. The concept of the file and buffering and the algorithms
used in handling double buffering are described in detail. The structures and
formats of internal control blocks and I/0 ‘tables are presented together with a
sample network of these tables and blocks.

The algorithms of SIOCS are presented in Sectlon 5. 1t consists of an
overall diagram for the algorithms of SIOCS together with a series of flow charts
for all algorithms in SIOCS. For each flow chart, the purpose, the major object-
ives, the inputs and outputs, and the calling sequences of the algorithm are des-
cribed in detail. These alébrithms are devided into three parts according to the
functions of the SIOCS, and so presented that they could be converted into sequence
charts for eventual implementation by microprogramming.

In Section 6, -a discussion of this study is presented. This discussion

includes the remarks on the designing and microprogramming of the 5I0CS.

2. Overview of Input-Output Control Systems

In the simplest digital computers, input or output operations cause com-
puter processing to be suspended while .the input/output (I/0) is in progress.
In this case, no problem of synchronization or overlap of I/0 time with com—
puting time need concern the programmer. There is no way to conduct more

than one I/0 operation at a2 time on such an elementary machine configuration.

Most modern computers are- much more sophisticated and powerful. - They have
data channels that allow one or more I1/0 operations to be processed simul-
taneously with the Central Processing Unit (CPU). However, this is possible
in those programs which have segments of code that perform the following ~
functions before an 1/0 operation is executed:

(a) Test and determine whether the I/0 device is busy or ready to be used.

(b) 1If the I/0 device is busy, then either transfer control to the proper

-routines or keep waiting uwntil the I/0 device is free.

(e)- If the I/0 device is free, then initiate an I/0 operation and jump back.

to continue processing.

(d) When the I/0 operation is finished, notify the user of this fact.

The programmer must be assured.that the piece of data to be used in a com-
putation has élreadf been read in before the computation is initiated. It is
quite obvious‘that the programming required to produce this assurance will in-
crease the IL/0 preparatlon time and the problem of making input/output execu-
tion efficient will become much more compllcated A solution involves, at
least, answers to the following questions:

(a) How can the total I/0 operation time (including the device preparation

and data transmission time) be minimized without wasting core storage?

(b} Under what circumstances and with what techniqugs Ean operations be i

made asynchronous?-

(e) When 1s the proper initiation time for an I1/0 operation?

The answers to,these qu@stlons involve sophisticated programming and are
required in order to get maximum use of the hardware.y Since_these,prograﬁs
ought to be available to every programmer, and since it is beyond the need and/
or skill of an average programmer to provide b;s.own solution, a centragized
solution has been developed. That is, to provide the programmer with an In-
put /Output Control System (IOCS) Which would be core resident and always

available to every program.

2.1 Purpose

The I0CS eliminates the time and expense invelved in writing special
I/0 routines and allows programmers to concentrate their efforts on the pro-
cessing of data. The programmer need not concern himself with the intriecacies
or increasingly complex input/output hardware. Instead, he is free to
write his internal process as efficiently as possible. He need only see the

records that are made available to him when he issues simple requests.

The I0CS may be considered as an interface between the input/output
devices and the processing program. It provides the following features:
(a) Simple manner for handling complex I/0 operations,

(b) Reading/writing of data records on input/output wmits concurrently
with processing,

(c) Scheduling the I/0 operations and I/0 devices.

The relationship of 10GS to the operating system and input/output

devices is snown in Figure 1.

2.2 Advantages

In addition to those which we mentioned above, I0CS offers the following

significant advantages:

(4) 1/0 operations which are easy to learn and to program

I0CS provides standard input/output routines and formats. A programmer
with little training in the capability of data channels, buffering techniques,
or other techniques which make input or output operations efficiemt, can still
write efficient I/0 programs by using I0CS. The following example indicates
the steps needed for iniating an I/0 operation within the program, where (1) the
I0CS is not used, and (2) the IOGCS is used.

Examples:

(1) The steps needed to initiate an I/0 operations within a program not
using L10CS:
{(a) assign a unit to be used
(b) select a channel

{(c) test the channel status

PROCESSING

PROGRAMS
o ¥
CONSOL
_ DISPLAY
- T
LT \”‘_‘ ’,Tl
l r
)

? /
Lol |
10CS /
{jrr:::fL//
B _/ | \

Ve ~ , 5
" caRp
CARD READER DRUM

; PRINTER
| . | PUNCH

The Relationships of I0CS to the Processing

Fig. 1.
Programs and the I/0 Devices.

(d) if the channel and unit are available for this program then connect
it, otherwise either wait or transfer control to some proper
routine,

(e) set up the I/0 imstructions and channel program,

(f) initiate the I/0 instructions (set up by step (e) }, when the

channel and wit are connected by step (d).

(2) The steps needed to initiate an I/0 command within a program using IO0CS:
(a) open a file, declare the file name, f£ile type, and device type,

(b) issue a simple I/0 macro—~instruction (e.g., READ, WRITE,...)

(B) TI0CS Provides for Asynchronous Operations

By using an input buffering technique, I0CS allows the system to read
ahead on input devices, thus diminishing waiting time. Output buffers are
usaed to store records to be transmitted to devices currently in use without
holding up computation. Alsc, with the assistance of the I/0 interrupt rou-
tines, creation of fully overlapped I/0 buffering is allowed without re-—

quiring waiting loops to process the buffered operations.

{C) Symbolic Addressing of Files and Units

Symbolic addressing allows the user to communicate with I/0 devices in
a very convenient way. The user creates a file by telling the system the
file name and the devices which are associated with that file. Future I/0
references to the file need only specify the file name. The system will
mat ch names and then will perform the 1/0 operation. The symbolic addressing
of units also allows for flexibility when the program must be executed

under a different configuration.

(D) I0CS Affords Flexibility of Operation

If a specific input-output device which a program is expected to use
is out of commission or not available at the time the program is to be
executed, the IOCS assigns an alternate device to it. Also, if a program
expects a particular type of device to be used and does not care which
actual physical unit it is, IOCS will assign an appropriate available

unit to it.

2.3.

Terminclogy

In order to discuss the functions of Imput-Output Control System in

some detail, the terminclogy used in the description of an input-output sys-

tem first must be introduced and then defined with precision. Then, the

general aspects of an Input-Output Control System'can be discussed briefly.

The terminology presented in this section is in common use and can

be interpreted reasonably precisely in the case of any given machine. These

terms are classified under three major groupings:

2.3.1.

(a)

(b)

(o)

(d)

Software Terminology

Random and sequential input/output calls: Sequential calls include
calls for the next record, message, character, etc., as well as calls
for spacing and backspacing. Random calls include calls for data in
nonsequential order. For example, a call fo backspace the tape flle

is a random call.

Record and block: The information is often written as a sequence of
words or characters separated by gaps. These contiguous sequences
will be called a record. A record of maximum sige (when such a
maximum exists) is called a block. A logical record is the sequence

of related data items that the program logic treats as a record.
A physical record is a set of adjacent data characters terminating with

an end-of-record indicator.

Blocking and umnblocking: Blocking is a method of compressing data
that would normally appear in several physical records into a single
physical record. It is normally used in transcribing data from one
physical medium te another. For example, punched cards as a primary
input to a system normally is transferred immediately upon reading to
an auxiliary memory device, such as magnetic tape or drum. These
latter devices have characteristics that favor larger physical records
than the 80 celumn punched cards. Thus, the information in several
cards (perhaps 10) is combined, this is blocking. Unblocking is the

reverse process.

File: A group of recoxrds is called a file. When reading input, end-
of-file is the condition that is recognized as the end of the group;

for output, the end-of~file condition is written in ovrder to delineate

2.3.2.

an output group. Since the word file is also used in a logical
sense, we need two terms, logical file and physical file. These

are defined analogously to the leogical record and physical record.

Hardware Terminoclogy

A block diagram of an input-output hardware configuration as shown

in Fig. 2 will assist in the clarification of the meaning of the subsequent

hardware terminology.

(a)

(b)

()

2.3.3.

(a)

(b)

Channel: A channel is a hardware device which is employed to trans-
mit both control information and data between a controller and the
computer. The channel must be able to inform the processor of error
conditions or termination of an operation. Note that the channel is

parallel computer.

Controller: A controller is a hardware device which is used for
selecting a satellite unit, and relaying the control orders to this
particular unit .‘ (e.g., rewind, eject sheet, read forward, position
access mechanism to a given address, ete.), and transmitting data
between the selected unit and the channel. It must also be able to
relay exceptional or normal conditioms (e.g., parity error, end-of-

record, wmit busy, etc.) back to the machine via the channel.

Unit: A unit (I/0 unit) is that part of the computer system which
introduces data into or extracts data from data storage. TFor example,
magnetic tape unit is used to send data from tape to memory ox to

record data from memory onto tape.

Terminology Used to Describe Input/Output Techniques

I/0 instrucfion, Thannel command, or Control order: I/0 instructions
are those instructions which are interpreted and executed by the cen-
tral processor. Channel commands are those words that initiate and
contrdl the ‘action of the channel itself. Controller order are those

words .that. initiate and control the action of a controller.

Channel Program: A channel program consists of one or more channel
commands that control a specific sequence of channel operations.
Execution of the specific sequence is initiated by a single start

I/0 instruction.

o i ' l
CHANNEL | CHANNEL | CHANNEL
A : { B : C
i ‘ { !
1 T 1
! - |
i 1
|
A = £ 2 T .
; ! ‘
. CONTRL | CONTRL ' CONTRL !
; 1 2 | 3 {
— e . . . 1
? 1 T
I I S o Y R
R
UNIT UNIT | UNIT . UNIT © UNIT | | w1z
Al A2 | Bl | i c1 c2 | 03
H i 1
- : A _,: L R - - ' ’
4> DATA LINE
Fig. 2. An Example of The Flow of Information Through

The Input=-Output Hardware

]

i
H

{c) Buffering: Ain area of memory which is used to store temporary
data during a transfer of information to or from an I/0 deviece is
called a buffer. Buffering is a technique which uses the storage
buffers to compensate for a difference in data handling rates when
transmitting data from one device to ancther, or to compensate for
the difference in physical size natural to different hardware de~

vices. Note that blocking is a form of buffering.

(d) Synchronous and asynchronous input/output: These are two basic
operating modes for any particulaxr input/output system. In the
synchronous I/0 system, the physical transaction associated with
a user's input/output statement (or instruction) is carried out
during the statement's execution. Control is mot returned to the
program until the actual transaction is completed. In an asyn-—
chronous system, the physical input/output transactions are not
necessarily synchronized or interlocked with the execution of a

user's input/output statement.

(e) Interrupt: An dnterrupt is a break in the normal flow of an
instruction sequence such that the flow can be resumed from that
point at a later time. An interrupt is usually caused by a signal
from a source external tc the Central Processing Unit. The inter-
rupt causes an automatic transfer to a preset storage location,

where action is or where some other appropriate action is taken.

(f) Trap: A trap is an automatic transfer of control to a known
location. This transfer occurs when a specified condition is de-
tected by hardware. A trap is different from an interrupt in that
it is caused only by the Central Processing Unit, the program, or
some internal event. When a trap condition is detected and the
corresponding trap is called for, a transfer of contrel te a hard-
ware—-designated location occurs. Simultaneously the location from
which the trap occurred is recorded. The hardware-designated loca-
tion usually contains a transfer to the proper trap-handling routine,

or it may ignore the trap instruction.

10

2.4, Functions

Having introduced the terminology, the functions of IOCS can now be

described.

2.4.1. TInput-Output Buffering Routines

The input-output buffering routines is based on the characteristics
of the following:

(a) A standardized set of physical and legical formats.

(b) A set of internal tables describing the current status of internal
buffers and the buffers themselves. ‘

(e) A set of management routines maintaining the information contained in
the interpal tables. The block diagram in Figure 3 shows how the
characteristics of the items described fit into the flow of the buffer-

ing routines.

Figure 3 illustrates the interactions within the buffering system, where
the parameter names are explained in Table 1. Now, let us consider some
typical operaticns as they might occur. The user's program obtains information
from input unit A-2 (e.g. channel A unit 2) by calling the READ subroutine.
Information is cobtained from the input-processing buffer immediately. If
this buffer does not contain all the information requested, it is emptied
(i.e., all the data is transferred from the processing buffer into use's
working area) and the next quiet buffer is called up to replace the present
processing buffer and the remaining information raquired is obtained from
this buffer. Meanwhile, the present processing buffer is placed in the
available buffer pool. At this time the DISPATCHER may be notified by the
"critical amount of buffers' (sometimes called the CRITICAL BUFFERS) routine
that another buffer is ready for input data from a device. Note that the
DISPATCHER is the routine which manages the status of the buffers in the
system. The CRITICAL BUFFERS routine is used to manage the status and the

number of the quiet buffers in the quiet buffer pools.

On the other hand, the. user's program may send the information to the
output unit B-2 (e.g. channel B unit 2) by calling the WRITE subroutine.
Information is transfer;ed to the output-processing buffer immediately (see
the right half part of Fig. 3). If this output—processing buffer cannot
hold all the information requested, the buffer is filled and then place it

11

USER'S

AERR. . yomeivg VRITS
ARFAS ,
i
i
.
— A
INPUT | . QUTPUT
PROCESSING I\ ¢/ PROCESSING
BUFFER | BUFFER
- __E !" T
N] 1
. AVATLAR : ! _
INPUT QUIET s, AVEILADLE ' QUTPUT QUIET
BUSFER POOL ; DOOL. ' BUFFER POOL
e . .
INPUT OUTPUT
BUFFER | BUFFER
IN u-r I/O !-ﬁﬂ . QU..T___......
| UNIT |
- INFORMATION FLOW -—-- --~

BUFFER FLOW - - -

Figure 3, Block Diagram of The Buffering System

12

Table 1. Terms of the buffering system in Fig. 2

Explanation

Working storage

A ise

That area utilized by the customer
for program data, intermediate and

final results.

Processing buffer

A buffer unit to or from which the
user's program is in the process of !
4

transmitting data.

Input (output) buffer

A buffer unit currently being operatedg

upon (read into ro out of) by one .

of the channels. i

Quiet Buffer

e ——————

A buffer unit containing current
information coming from or being
sent to one of the physical input-
output units but which is currently

activation.

Available buffer

A buffer unit not currently employed.

13

into the output—quiet buffer pool. Meanwhile, the next available buffer is
called upon to hold the rest of the information. After the completion of the
above operation, the DISPATCHER may be notified by the GRITICAL BUFFERS
routine that another buffer is waiting for output. Note that the CRITICGAL
BUFFERS routine activates the DISPATCHER only when the buffers in the input

(output) quiet buffer pool reach a predetermined critical amount.

2.4.2. Input-Output Scheduling Routines

The input-output scheduling routines can be divided into two parts,
namely, the I/0 initiation routines and the I/0 completion routines (or L/O

Executor) .

The I/0 initiation routines are activated when an I/0 operation is
required by a user's program (this includes the supervisor's routines). The
I/0 initiation routine determines the nature of the I/0-request, and checks
the availability of the requested I/O device. If the I/0 facility is avail~
able to perform that function then the I/0 action is initiated. If the L/0
facility is not available, then one of two actions c¢ccur, either the system
waits until the facility is available or it puts the I/0 request into a wait-
ing queue for initiation at a later time. Note that the term ' to initiate
an 1/0 action' in this section means 'first comnect the required I/C device,
select the proper unit interpretive routine and then pass control to that

routine'.

The I/0 completion routines (I/0 Executor) is the TRAP Supervisor
which takes over control during trapping and finally surrenders its control
back to the program which was using the input-output system. The I/0 Executor
determines when an I/0 operation has just ended, checks for detected errors,
determines which I/0 operation is to be performed next, and initiates the

new action.

A typical I/0 Executor is shown in-Fig. 4.

2.4.3. Unit Toterpretive Routines (or Unit Drivers)

Unit interpretive routines are hardware dependent, and hence every
type of I/0 devices has a unit interpretive routine associated with it. The
wmit interpretive routines are-called by the I/0 initiation routines. If a

unit interpretive routine is activated, it first checks the function code of

14

—1/0
EXECUTOR.

DETERMINE WHICH
I/0 OPERATION
JUST ENDED

Y ;
RETURN OUTPUT
CHECK ___ - | BUFFER TO
LAST 1/0 OUTFUT AVATLABLE POOL
, é L _
1

{ PUT THE INPUT
BUFFER INTO THE
INPUT QUIET POOL

1
DETERMINE THE 1/0 ;
OPEBATION TO BE L : 1

PERFORMED NEXT

TEST

AVAILABILITY

OF CHANINEL & UNIT '

~ FOR THE 1/0 NO
.. OPERATION

. /‘
¥BS -

CONNECT UNIT
WITH CHANNEL

_TPUT " §/o M- OUTROT

rm—————————

Y i) 1

l GET OUTPUT BUFFER

UT BUFFER
Fggg igiILABLE POO |{FROM WAITING LIST
: | IN THE QUIET POOL

¢

b v
.

SET UP INTERRUPTED I,
ADDRESS OR CONDITION

! Pigure 4. The flow chart fo

y ‘ an 1/0 Executor
{ EXIT

15

the I/0 request and then:

(a)
(b)

(c)
(d)

2.4.4.

(a)

(b)

Sets up the I/0 instructions for that I/0 request,

Forms a list of channel commands (i.e. forms a channel program) to be
performed on the unit,

Issues those 1/0 instructions, and

Returns control to proper routine.

A typical unit interpretive routine is shown in Fig. 5.

Communications Ameng Routines

The file for communication between the user's program and the input-

output control system

A file is a complete set of logical recerds which a user may
treazt as a logical entity. All files must be defined and opened before
they can be processed. Similarly, a file must be closed when activity
in the file is to be terminated. There are two routines, READ and
WRITE, which serve as communication between the file system and the
buffering system. The READ routine reads the information out of the
input-processing buffer into the user's working area, while tﬁe WRITE
routine puts the information into the output-processing buffer. HNote
that a buffer can be treated as a logical record of a file. In addi-
tion, each file has a File Control Block (FCB) associated with it.

The File Control Block contains several items of information about
the file., This information imcludes the present status of the file,
the processing buffer which is currently in use by this file, and the
address of the TUnit Control Block (UCB) of the wmit to be used by the
file.

The use of tables for communication within the input—output control

gystem

At the present time, most of the input-output systems are able
to refer to I/0 units by symbolic names. A symbolic assignment of
input-=output units has at least three advantages:

(1) Object programs refer to storage cells rather than to sbsolute
wmit address,

{2) Unit assignments are made by the system and need not be known

16

Unit
Interpretive
Routine

| Tnitialization for
| processing upon
L;:e_—;e_ni:r_z

o

Set up the I/0 in-
struction codes
which initiates the.
channel program

i

Set up the channel
program and store
it in some fixed
area in core

v
g

Tssuing of the I/0
instructions at
most K times

efthere any \f>¥e Sjstémfor

error ? User's
. Error routine
No
]
T
Return

control to
processing program

Fig. 5. The Flow Chart of an Unit Interpretive Routine

17

by the programmer in advance.
(3) In case the full system is not working, 1/0 activity can be
continued, albeit at reduced efficiency. This dis an example

of what is called graceful degradation of the system.

In order to be able to refer to an I/0 unit symbolically, use
is made of a symbolic unit table. This table-contains entries for all
the symbolic names of the wmits. Each .tabfl.e. nerit‘ry contains the address
of a Unit Control Block which is assoﬁia;gd‘wiﬁh‘each name. In Ehe
general case, several symbolic units can ge asSociated with one Unit
Control Block, while each physical énif'hag ‘only one Unit Control Block
associated with it. The Unit Control Block "contains the unit address
as‘ﬁell és<the‘unit Statug, types of inférmation in it and wmit posi-
tion information. In addition, for each channel there is an associated
Channel Control Block (CCB). A Channel Control -Block contains the chan-
nel status, the interrupt address, and the address of the Unit Control

Block for the unit which is Eurrently connected to this particular

channel.

A more graphic description of the input-output system communication

is given in Fig. 6.

.Buffer Systen _, S
o ']
!

i
i
i

" FCB <

18

File Systen
"READ

v . R

|

WORKING AREA

- e :
1

 WYRITE | 1/0 Scheduler

|
READ : ‘ . UGB |
L . ' S T l
. INPUT OUTPUT . ' .’ SELECT i
i

RUFFER BUFFER | . CCB[*:_ . e
S TN T b In v oUT ¢
TDISPATCHER ~ =---
mrmm—— e —em 1
_Unit Interpretive Routines
.
TR ; + . et

INPUT '] o g

UNIT . Ty e :
i I . R

o L . . |

,’ § o E

{ QUTPUT ; _ f

P UNIT s~ - e

1 . g

o CONTROL FLOW
DATA FLOW

Figure 6. Input-Output Communication

19

3. A Simplified I0CS (SI0CS) for Microprogramming

Unified hardware-—software design is the main goal of this research
(See Reference [50] for detail). This paper presents one of the initial
studies of this resecarch, namely extracting the algorithms from a piléce of
software and presenting it in some form which is suitable for eventual micro-
programming. The following sections (Sections 3 through 6) describe an Input-
Output Control System named a Simplified Input-=Output GControl System (SIOCS),
where the functions of I0CS are defined precisely in terms of their level of
tree—structure. The algorithms are so presented that it is able to convert

to sequence chart for eventual microprogramming.

3.1. Desdign Primciples

A major consideration in the design of SIOCS is to make it simple yet
at the same time extensible and machine independent, with a minimum number of
extra restrictions and assumptions. Two basic aspects of the design of SIOCS

are:

(a) The assignment of functions of an I/0 system to levels in a tree-
structured (or hierarchical structured system).
(b) The use of a double buffering technique.

3,1.1. Simple yvet extensible and machine independent

STOCS was chosen for the initial study of the Input—Output Comtrol System
and its implementation as a micro~program. The first consideration for de-
signing SIOCS was to make it simple but, at the same time, extensible. STOCS
contains all the tables and control blocks which most conventional systems
use. TFor example, SIOCS contains the channel control word for each channel,
thus permitting several I/0 devices to share the same channel at different
times (see 3.1.2., this feature has not been implemented yet in 510CS). The
design philosophy follows the common features of the IBM 7000 series, IBM 1401,
1410, and CDC 3000 series, since these are the most popular batth processing
systems. SIOCS consists of three major parts: the file and buffering system,
the I/0 scheduler, and the wnit interpretive routines. The first two parts
are emphasized and described in detail, while for the last part, only the al-

gorithm is presented. The algorithm is designed to generate a machine

20

executable code for any particular I1/0 device. SIOCS is completely defined for
a given particular computer system configuration whenever the unit interpretive
routines and the I/0 function tables are provided, this makes SIOCS machine

independent.

3.1.2. Restrictions and ASsumptions

SI0OCS assumes that every I/0 device is connected with cne chamnel at all
times. This assumption frees SIOCS from the necessity of checking and scheduling
the chammel and commecting the channel with the proper I/0 dewice every time am
I/0 operation is requested. SIOCS .also assumes only one mode and that no auto-
matic label is used. This mode may be considered as Binary-Coded Alphabetic
(BCD, EBDIC, or Field Bata). This assumption results in the necessary restric-
tion that every tape file should be able to fit into the one physical tape reel.
S8ince SIOCS does not check the label for each file, no file protection is
implemented in SIOCS. At the present stage, only the tape operating system is
implemented in SIOCS. That is, no random-access mass storage is used in the
hardware configuration. One hardware constraint that should be mentioned here

is that the central processor must have the ability to process I/0 interrupts.

3.1.3. Levels within an If0 system

The concept of a tree-structured operating system has been proposed by
Pijkstra. The important aspect of this oxganization is that all activities
are divided into sequential processes. A trée structure of these sequential
processes results in an hierarchical or ring organization. ZEach procedure in
the system is given its level, or place in the hierarchy. Each call may be
downward only. Thus, if at each level, procedures are organized about an ex—
panding set of relevant states, the system can be exhaustively tested and proved
to work. As Diﬁkstra.and others have suggested, this may be the only way to

make certain that a system can be debugged before the hardware is obsolete.

The hierarchy of levels of SIOCS to be presented in this paper cam be
divided into two classes: one is the levels pertaining to the I/0 devices and
the other is the levels of I/0 programs themselves. Fig. 7 illustrates the
three levels of 1/0 units, they are: File, Symbolic Unit, and Physical Unit;
and four levels of I/0 programs, they are: User's Program, Buffering Routines,

I/0 Scheduling Routines, and Unit Interpretive Routines.

+

__ LEVEL OF 1/0 UNIT

———

FILE .

o e

R

~ - =P ey

SYMBOLIC -
UNIT |

———— e ama 1

Erd
L]
'

i

PHYSTCAL
DEVICE

- LEVEI, OF T/0 PROGRAMS __

1

USER

e =

[om—

T

BUFFERING
BOUTINES

'
¥
4 - —

g ————

SCHEDULING

|
! I/0
!
' ROUTINES

|

T

767 (o~ 1o,
' I R

J—

UNIT
INTERPRETIVE
ROUTINES

Figure-7. The Levels of I/0 System

-

'S _PROGRAM. . . . |

21

22

The notion of levels can best be introduced by the following example.
Consider a user using SIOCS to perform I/0 operations. At the user's level
(User's Program), the computer is viewed as a CPU with a main memory, and several
tape units for input-output purposes. Each tape wmit has its own symbolic
name, for instance, cardreader, printer, disk,..., etc. Whenever a user wants
input (or output) from some particular tape device, he may achieve this sdimply
by opening a file, and by assigning it to that particular tape uwnit. This
can be thought of as dssigning a name to a reel of tape and mounting this reel
of physical tape to the desired tape device. Similarly, closing a file can be
imagined as dismounting that reel of tape from the device. By using a simple
READ or WRITE request, the user can read out, or write into that reel of tape.
On. the other hand, the system programmer who wrote the buffering system, at
the level of Buffer Routines, need not have had any knowledge of the file system.
He might view the computer as a Buffering Machine. Whenever the output buffer
is full, it will automatically empty it. The buffering routine is just as simple
as a routine used to assign the proper status for each file when it changes.

In this manner the user need not have any specific knowledge of the internal
operation of filling or emptying a buffer, but only the way in which he can
interact with it. Similarly, the system programmer who wrote the I/0 Scheduling
Routines may assume that the user will request I/0 operations very frequently
and that the duties of the I1/0 Scheduler are: (1) to keep the I/0 devices

as busy as possible; (2) to respond to the I/0 request as quickly as possible;
(3) to report to the user immediately whenever the L/0 request is finished.

In the lowest level of I/0 programs, the unit interpretive routines, only

the knowledge of how to genmerate I/0 instructions and channel commands is

required of the programmer.

Note that only the wit interpretive routines are hardware dependent,
since it is in this lowest level that the actual code for the channel programs

will be generated and executed.

There are several advantages to this hierarchical organization. The
most important is logical completeness at each level. It 1s easier for the
system designers and implementers to understand the functions and interactions
of each level and thus the entire system. Another advantage is debugging
assigtance, since whenever an error occurs it can be localized at a level and
identified easily. As has been mentioned before, it may be the only method

of debugging the system.

23

3.1.4. 3Buffering Algorithms

The basic characteristics of the buffering algorithms used in SIOCS are:

(a) Each file is associated with two équal—size buffers (double buffers),
(b) The buffer size is dependent upon the I/0 device,

(c) Each processing buffer has a critical number associated with it.

As mentioned above, each file in SIOCS is associated with two equal-size
buffers. One of these two buffers is used as amn input (or output) buffer
into which data is read in (or written from). The other is used as a processing
buffer where current data are cbtained. Fig. 8§ shows the ideal model of this

buffering scheme.

In Figure 8, the shaded areas represent the portions of the buffers which
contain the data, while the blank areas represent empty areas of the buffer.
The arrows below the two double buffers in this figure indicate the direction
of the rotation of the double buffers. In the illustration above, an input
device is filling the buffer A, while the buffer D is being emptied into an
output device. Meanwhile, the user's program READs information from buffer B
for processing. After processing, it WRITEs the information into buffer C.

In this case buffer A is the input buffer, buffer B is the iInput-processing
buffer; buffeér C is the output-processing buffer, while buffer D is the output
buffér. Whenever buffer A is filled and buffer B is emptied, they are inter-
changed. At this time, buffer B is called the input buffer and buffer A is

called the input—processing buffer. Similar treatment occurs for buffers C and D.

Figure 8 shows an ideal model which assumes that the time-interval
required for filling an input (or output-processing) buffer is equal to the time-
interval required for emptying the input-processing (or output) buffer. TUn-
fortunately, these conditions usually do not hold. Some basie principles to
be applied for solution of this prdblem are: '

(a) When inputting data, a sufficiently large buffer must be made avail-
able for input transmission well ahead of the active routine's
immediate redquirements.

(t) During output, a sufficiently large buffer must be supplied to

contain the potentially large amounts of data that can be generated.

One way to apply the above mentioned two principles is illustrated as
follows. Consider that a program requests input from an input device, UNTI.

Let Tf be the time-interval required for UNT1 to tramsmit one physical record

24

MEMORY .
i
INPUT B — OUTPUT" [
USER'S E :
PROGRAM i ,
BEAD‘/‘ /
o
————— e ! _), e :
. INPUT |. A ; WRITE N ;
| DEVICE l w7 B\“ [N e
T . a4 e ' DEVICE
"--_..,-< . p . ‘ e e —
N~ .7 f__//

| Figure 8. Ideal Model

of

The Buffering System

25

into the input buffer. Let Te be the average time required for the program
to request a physicalﬁrécord from the input-processing buffer and then process
it.

It is clear that Tf is fixed and is dependent on the hardware device,

while T may vary from one program to the next.

£
. equal to the-I/0 time), we must consider the ratio between the I/0 ipnitiation

In the case where Tez;T {(that is, the processing time is greater than or
time and the actual data transmission time. Let Ti be the average time required
to initiate an input operation of UNTl. As shown in Fig. 9.1, if Ti is smaller
in comparison with Tf, then it will be better for the buffer size to be a small
multiple (i.e., one or two) of the physical record. On the other hand, as

shown in Fig. 9.2, if T, is much larger than Tf, a large multiple of the

physical size is requirid.

In addition to the above considerations, we must evaluate the current
request and decide the best time to initiate the next input operation. We
don't want to transfer data toe far in advance of when the active routine will
actually process that data. This could mean wasting core storage or wasting
time due to the #£act that the data may never really be required by this active
routine. One way to insure sufficient READ AHEAD is to set up a critical
améunt indicator for the input-processing buffer. Whenever the available data
in the input-processing buffer is less than the critical amount, the next
input operation 1is initiated. Note that by setting up the critical amount
indicator we permit the data to be transferred into the input buffer before

the input-processing buffer is emptied.

An example for assigning the buffer size and the critical amount of

data indicator for the processing buffer is as follows.
Let T./ T = m/n
£ e

Then set . buffer .size = n* (size of physical record)

critical amount = m* (size of physical record)

Thus Tf *n o= Te *n as shown in Fig. 9.3

In the case where Té:T program X requests input data from UNTL1l very

expeditiously. Even though Uﬂii continuously transfers the data into buffers,
the program X still -has to wait for data. -In.this .case, we only need to set
the buffer size equal to the size of physical record. This makes the total
execution time as small as possible. From Fig. 9.4, one may easily see the

difference between two execution times.

26

£ .
(A) T, < T
Example : Te-S*t ,Tf-Z*t ,'Ti-tlfa, t = time slice
(1) Buffer Size = 3 * physical record
+ -
1/0 ! - oy -
i 1 2 3 4 5 6
' 1 . 2 3 ; 4 ; 5 , & .
CPU L Ly + T T —
. T, T, T, \
t TIME
* =
2 Ti+3*Tf+6_*'i‘e 24.5 ¢
(2) Buffer Size = 1 #* physical record
i
! .
L ———t b b] jee—
e ity 2 3 4 5 6
s G S SR 5o
CPU \ "‘"":‘—" v- +—+4 % , 1
T, ,—-S(TB

]' " TIME
6*T +T _+6*T = 21.5 t
i ~f e

Fig. 9.1-A timing chart for an example of case Te>/rf and 'l'i-< Tf

Exapple @ Te-3*t N Tf==1*: ,‘1‘1=2*t , t = time slice
{1) Buffer Size = 3 * physical record
éﬁ._—-_—-q e e e
i/o 12 3 4 5 6
1 2 At 3 _ & : El , 6
CPY frayssioiind = t i £ t + -:
Ti Te Ti '
. I TIME
€ * " AT = g
2 T:L+3 Tf+6 T 25t
2) Buffer Size = 1 * physical record
1/0 -—Ef' r— — — — —
-1 2 . 3 4 5 6

/1_"- ,/Z\‘)//,3 e /,/4\‘~. 1/.5'-""-.5/-46—-—-.1

CPU periss ;,H__,,,_E_.a_w.: . : - t
Ty i 1 1 1 T,
e i TIME

t * kT &
. 6*T 4T 4657 = 31 ¢

Fig. 9.2 A timing chart for an example of case Te>’TE and 1‘12 T,

27

Example 1, Tf- 2k, Te- 3%¢ , t=gime slice

Te / T, = 2/3

., Let:r. - Buffer Size = "3 * physical record
pmr—re—we—s Critical amount = 2 * physilcal record

i - T T / .

E e e —— L--—-;——-—o——;-l e = e
1 2 3 ' - - [5 6 7 8
' T R S N | S o
L . i, L T b F
1 |
X Te Ti)
1
: ; ' TIME
Example 2. '1'f = 14 'I‘e = 3k . tetime slice
Tf / Ie = 1/3 .
Bufier
Let . _ Buffer Size = 3 * physical pecord
R Crirical Amount = 1 * physical record
SIZE .
e] =
45 6 7 8 9
- - N : -
- 23 4 005 .4 8, 7
T T t :
-1 i ']
: TIME-
Fig. 9.3 An example for assigulng the buffer size and tne eritical amount indicator,
CASE 2 Te <Tf
. Example: Te=2 % ¢ . Tf=3*%¢ . t= time slice
(1) BUFFER SIZE = 3 .%*.Physical record
Tf ’) *)
1/0 M ' —_— :
1 2 3 4 5 6
CPU sl =2 3 —_— 5 B
At e 1
Ti - - T Te {
1
! TIME

TL 4+ 6% Tf+ 3 * Te = 24t + TE

@ BUFFER SIZE = 1 * Physical record
F
IIO 5 t — t e t 4
1 2 3 4 5 6
CPU s 1 " 2 3 opit A st m 5 ,__&___.'
TL Te :
I TIME

Ti+ 6 * Tf + Te = 20c + TL

Fig, 9.4 An timing chart for an example of case T, < 'l'f

28

The problems of output buffers have similar characteristics to those of
the input buffers. However, note that the input-processing buffer requires a
critical amount indicator while the output-processing dces not. This distinction
is because there is-no possibility of WRITING AHEAD (that is, there is no

possibility of sending out some information which has not yet been processed).

Different computer installations may have quite different collections of

I/0 devices, and different user patterns. After some statistical studies, an
assumption can be made about user characteristics in order to fix the buffer
size and the critical amount parameter associated with each I/0 device. The
buffering system of SIOCS was designed under the assumption that for every L/0
device there is a fixed buffeI-' size and there is a critical amount indicator
associated with it. These two items of information are stored in the symbolic
unit table which is generated at the system generation time. They can be

changed by the system programmer.

Besides the buffering system mentioned above, SIOCS allows the user to
establish his own buffering routine without reference to the-SIOCS buffering
system. Through these means, a user is free to play with any buffering scheme

that he may choose.

29

3.2 Macro—instructions and Examples

3.2.1 The Macrp-instruciions in SIOCS

(1) File handling

(a)

(b)

OPEN —— initiate processing of a file

The OPEN macro-instruction has the following format:

FILENAME OPEN TYPE, DEVICE (REWIND)

FILENAME is the name of the file to be opened. (i.e., the.symbolic address
of the File Control Block to be opened.)
TYPE is the one of the following file types which is to be assigned to
the file.
IN —— dnput file
QUL —- output file
NONBUF ~— non system buffering file
DEVICE is the device type or symbolic name of a particular unit which is
to be used by the file. Such as the fellowing:
TAPE ~- magnetic tape
CARDREAD -- cardreader
PRINTER -~ line printer
CARDPUNCH —- card punch
SYSUT n ~- system utility unit n
SYSIN n —- systenm input unit n
SYSOU n ~- system output n

REWIND is the tape rewind operation, This field is optional.

CLOSE —— terminate processing of files

The CLOSE macro-inscruction has the following format:

et T I e

CLOSE (OPTION) ' NAMEL, NAME2, ..,

r 1

As an option, one of the following can be specified for closing a list
of files:

REWIND -~ close and rewind the tape

UNIOAD —— close and remove the tape from the UNILIT

30

The NAME n is the name of the file (i.e., the symbolic address of the File
Control Block) to be closed. Several files can be closed by using one
macro-instruction, note that the option field applies to every file in
the list (e.g., if UNLOAD option is specified, then every file in the

list is closed and unlcaded).

(c) BEDEF —- reassign the file type to the file

The REDEF macro-instruction has the following format:

P e e —— —-.

REDEF , FILENAME, TYPE (REWIND)

1 c -

FILENAME is the name of the file (i.e., the symbolic address of the File
Control Block) to be redefined.

The TYPE is one the following types of the file to be assigned to the file.
IN ~-- designates an input file
OUT —— designates an output file
-NONBUF — don't use system buffering for this file

REWIND —- This is a rewind operation. This field is optiomnal.

(2) Data Handling

(a) READ —— read data

The READ macro-instruction has the following format:

i- - r PO

READ :FILE, ERR, EOF, INTRUP, 1°° ADDR., N

\

FILE is the name of the file which the -data 48 to be read from.

ERR is the address of the user's error recovery routine. If this field is
blank, the system error recovery routine is assumed.

EOF is the address of user's end-of-file detection routine. If this field
is blank, the system error checking routine is assumed.

INTRUP is the address of the user's interrupt routine. If this field is
blank, the system interrupt routine is assumed.

15t ADPR., is the address of the first woxrd where the data are to be stored.

N is the number of words ta be read in.

(b) WRITE -- write out the data

(o)

31

The WRITE macro-instruction has the following format:

B eI L PSR E

WRITE | FILE, ERR, INTRUP, 1°% ADDR., N

FILE is the name of the file to be written into.

ERR is the error retufﬁ addreés. If this field is blank; the address of
syste;n error recovery routine is assumed. '

INTRUP is the address of user's interrupt routine. If this field is biank,

then the address of the system interrupt return address is assumed.

Nondata request

There are four non-data request macro-instructions, namely, REWIND, MOVE,

BKSP, and WEOF. The formats of these four macro—instructions are as follows:

o o = e[T e e P

i JREWIND ' FILENAME

' 1 '
!

i MOVE ~ , FILENAME, FN

1, ‘ 1 i
‘---——-«--—;—--— ———— ‘l. —

L_ 'BKSP ' FILENAME, RN

| ; : .

| 'WEOF . FILENAME

!

FILENAME is the name of the file.
FN is the number of end—of file markers to be used.

BN is the number of en-of record markers to be used.

T 32

3.2,2 Some examples which use 5I0CS

Example 1:

The following program, in the IBM 7090, will read a deck of 10

cards and copy it onto magnetic tape, After that, it writes am

end-of-file on tape and rewinds it.

on the card-punch and the line-printer.

Then the program copies the tape

The output will be 10 cards,

each card consists of the first 60 colummns of the original input card.

A listing of the input cards will also be given.

CARDS OPEN
TAPE OPEN
AXT
READ
WRITE
TIX
WEOF
REDEF
PRINT OPEN
PUNCH OPEN
LOOP READ
WRITE
WRITE
TRA
EOF CLOSE
CALL
ERR TRA
RECORD BSS
Example 2:

This program parforms the following operations:

IN, CARDREADER
QUT, TAPE

10,1

CARDS, ERR,,, RECORD, 14
TAPE, ERR,, RECORD, 14
x-3,1,1

TAPE

TAPE, IN, REWIND

OUT, PRINTER

OUT, CARD-PUNCH

TAPE, ERR, EOF,, RECORD, 14
PUNCH, ERR,, RECORD, 10
PRINT, ERR,, RECORD, 14
LOOP

CARDS, TAPE, PRINT

EXIT

SYSBMP

14

{a) Reads a deck of caxds.

.OPEN CARD INPUT FILE
,OPEN TAPE OUTPUT FILE
.READS ONE CARD AND
.COPY IT TO TAPE

JWRITE END-OF-FILE
.REWIND AND REDEFINE
.OPEN PRINT OUTPUT FILE
.OPEN PUNCH OUTPUT FILE
.READS 14 WDS FROM TAPE
.PUNCH 1ST 10 WDS
.PRINT 14 WDS

.CLOSE ALL FILES

+SYSTEM DUMP ROUTINE

{(b) Copies 50 words from card-images onto two tapes.

(c) Writes an end-of-file and then rewinds both tapes.

33

(d) Reads tdpe 1 without a system buffer while it sets a counter to count

how long the read operation will take.

(e} If the read operation is completed, it prints out the counter and

the data on the tape, otherwise it prints out the I/0 status and

the counter only.

(f) Reads tape 2 using the system buffering scheme. Also, it sets -up a

counter to count how long the read operation will take.

(g) Prints out in the same manner as step 5.

CARD
TAPE 1
TAPE 2

PRINT
IN

LOOP

INTRUFP

OPEN
OPEN
OPEN
READ
WRITE
WRITE
WEOF
WEOF
REDEF
OPEN
READ
STZ
STZ
CLA
ADD
STO
ZET
TRA
TRA
NOP
STO
CLA
5T0
CLA
TRA

IN, CARDREADER
OUT, TAPE, REWIND
OUT, SYSUT 1, REWIND
CARD, ERR, EOF,, RECORD, 50
TAPE 1, ERR,, RECORD, 50
TAPE 2, ERR,, RECORD, 50
TAPE 1
TAPE 2
TAPE 1, NONBUF, REWIND
OUT, PRINTER
TAPE 1, ERR, EOF, INTRUP, RECORD, 50
FLAG
COUNT
COUNT
=1
COUNT
FLAG
CHECK
LOOP
:STATUS: ADDRESS:
TEMP
=1
FLAG
TEMP
INTRUP

+OPEN CARD INPUT FILE
.OPEN WITH REWIND
.OPEN, REWIND SYSUT 1
-READS 50 WDS

.COPY ON TAPE 1

COPY ON TAPE 2
.WRITE END-OF-FILE
.WRITE END-OF-FILE
+REWIND AND REDEFINE
+OPEN PRINT FILE
.READS 50 WES

.SET FLAG=0FF

.RESET COUNTER=0
.INCREASE COUNTER
.BY ONE

+FLAG=?

. FLAG=0N

+ FLAG=0FF

+STATUS WORD IN HERE
.SAVE AC

.SET FLAG=0N

.RESET AC

.GO BACK TO PROCESS

34

CHECK

OUT

INCOM

AGATN

EOF

ERR

TEMP
COUNT
RECORD
FLAG
COMPLT

CLA
CAS
TRA
WRITE
TRA
WRITE
WRITE
CLA
BRT
TRA

REDEF

CLA

STA

TRA
CLOSE
CLOSE, U

CALL

TRA
BSS
PZE

" BSS

BSS
OCT

INTRUP
COMPLT

INCOM

PRINT, ERR,, COUNT, 51
AGATN-3

PRINT, ERR, COUNT, 1

PRINT, ERR,, INTRUP, 1

INTRUP

=1

EOF

TAPE 2, IN, REWIND
AGATIN

IN

IN

CARD, PRINT
TAPE 1,. TAPE 2
EXIT

SYSDMP

"1

0
50
1

N

.CHECK STATUS WORD
.I/0 IS INCOMPLETED
.I/0 COMPLETED, PRINT
LOUT

.PRINT OUT COUNTER
.PRINT OUT STATUS WD
.CHECK UNIT

.UNIT IS SYSUT 1
.OTHER UNTIL, REDEFINE
.CHANGE FILENAME OF
.THE READ STATEMENT

.CLOSE WITH UNLOAD
.SYSTEM EXIT ROUTINE
.SYSTEM DUMP ROUTINE

.1/0 COMPLETED

35

4, The Functions of STIOCS

4.1 The File and Buffering

4.1.1 Defining a File

(A) Opening a File

A FILE is a collection of related records treated as a unit, All
files must be opened before they can be processed. The OPEN. macro
instruction opens a file and describes, in detail, an. individual file
(Example 1). An OPEN macro instruction must declare the file name, file

type, and device used, rewind option for each file processed by IOCS.

Example 1:
Label Operator Operands
1 . e e e
| Name t | Type, Device, (Rewind)
L ’ ; -
i] I
1 | FILEA + OPEN | NONBUF, CARDREADER
H
e
2 ' DRUMA ! OPEN ! iN, DRUM
i !
. = l
3 ! oUTAP OPEN ' OUT, TAPE, REWIND
i . [
Ll s a4 nrumam s amma

Line 1: The gpgn macro Instruction opens a card inputfile named FILEA.
Line 2: The JPEN macro instruction opens a drum input file named DRUMA.
Line 3: The OPEN macro instruction opens a tape output file, named OUTAP.

This file must be rewound before opening.

(B) Closing a file

When activity on a file is to be terminated, it must be closed. At

closing, all I/0 activity on a file ceases. The (CI,0SE macro instruction

36

closes a list of files or a single file (Example 2)

Example 2:

-, L L L P

Label Operator Operands

Name 1, Name 2.4,

. —— s b —— t

1 ; : CLOSE ' FZELEA

s e LT “ . x - PP LU T

; : CLOSE " DRUMA, OUTAP

Line 1: The CLOSk macro instruction closes a file which is named FILEA.
Line 2: The CLOSE macro instruction closes a list of ﬁileg which contains

. DRUMA file and OUTAP file.

c) Redefining a file

There are three different type of files, namely, IN (input file),
OUT (output file) and NONBUF (non-buffered file)., Every IN and OUT file
is associated with a double-buffer, while a file which was declared
nonbuf means that the file is to be read from or written onto a device
without using any system buffering routines. (for details of a buffering

technique used in SIOCS see the next section 4.1.2) The REDEF macro

instruction is used for the redefinition of a file which was opened previously

{(Example 3). The advantage of using a KEDEF is that it allows a file to
be defined first as one type and then changed to ancother type later.
One need not declare a change in the I/O device associated with the file.

It also allows IN/OUT files to share the same buffers.

Example 3:

. Label Operator . Operands
Ir_j“_“__mmm__'“_” o : . Name, Type, (Option) ;
RODEF ! FILEA NONBUF E
) "~ mEpEF - DRUMA, our i

l
|
b e e e
l
i

REDEF ' OUTAP IN REWIND

37

Line 1: The REDEF macro instruction redefines the file FILEA as a

NONBUF file. If this file was so defined previously, then this

macrao statement is treated as a no operation.

Line 2: The REDEF macro instruction redefines the file DRUMA to be an

OUT file. The operation of this macro statement are:

. NONBUF

E 0ld Type ! Operations of the macro statement :
] ouT 1 No operation
IN ? 1. Redefine DRUMA as an cutput file o
i 2. Use the same buffers which were used before.
% o ; 1. Redefine DRUMA as an output file o
i
1

2. Allocate a buffer area for this file

Note: O0ld type means previous defined t&pe of the file

Line 3: The REDEF macro instruction redefines the file OUTAP to be an

input file with rewind operation. The operations of this macro

statement are:

]

{
1
]
b
N
4
i
H
'
i
rae r————

(75ld type Operations of £he macro statement
[oUT 1. Redefine outap as an input file
i 2. Use the same buffers which were used before;
, 3. Rewind
I
I IN Rewind only
NONBUF

A

4.1.2 Buffering

4.1.2.1 Buffer Area

i
1
|

1. Redefine QUTAP as an input file :
2. Allocate a buffer area for file outap i

3. Rewind ;

—— — e v

38

Every file, except a nonbuffered file, is associated with a double-
buffer. A double-buffer is a pair of equal-size blocks in core storage.
It is referred to by two pointers IOBUF and PROBUF, and is used for inter—

mediate storage of input/output data. (figure 10)

Whenever an IN/OUT file is opened or redefined, the 5I0CS allocates
two equal-size contiguous core storages, and assigns them as double-
buffers for this file. The buffer size is equal to N#*(physical record
size of that device) depending on the device used by the file, where N is
an integer factor which depends on the device data transmission rate and
the memary data transmission rate. As soon as a file is closed, the double-

buffer associated with it is released.

#4.1.2.2 Buffer cycles

When the double-buffer is used for an input file, it can be considered
as an input double-buffer, although the input status may be only temporary.
Similarly, when the double~buffer is used for an output file, it can be

considered as an output buffer.

(A) Input buffer cycle

The logic flow for the input buffer cycle is shown in Figure 11.

IOBUF: A pointer which points to the current I/0 buffer

IOBUFR: The current I/0 buffer

PROBUF: A pointer which points to the processing buffer

PROBUFR: The current processing buffer

CRTCL ; The critical number of items in the PROBUF buffer

AVBCT: A counter of the number of available items in the PROBUF
buffer :

(1) At first the IOBUFR buffer (the buffer pointed by IOBUF) and the
PROBUFR buffer (the buffer pointed by PROBUF) are empty, and AVBCT=0

(2) The IOBUFR buffer is filled with data from an input unit

(3) If the AVBCT=0, then the pointer IOBUF is exchanged with the
pointer PROBUF. RESET the AVBCT to buffer size and start to
process the new PROBUFR buffer.

11

TIOBUFR .\ I0BUF

buffer

PROBUFR PROBUF
buf'fer

Pig., 10. An Example of a Double=Buffer

All buffers are
empty and
AVBCT=0

fills data into IOBUFR

1

Waite until IOBUFR

s full, then ex-

change the IOBUF
and set

AVBCT 4= SIZE

L
-

|

Read from LOBUFR
buffer, and

decreasing AVBCT

Fill IQBUFR
buffer,

AVBCTSCRTCL
if possible

VBCT=0
ees after IOBUFR buffer

Exchange the polnter
IOBUF with pointerxr
PROBUF and set

AVBCT €-- SIZE

}

[

is full

Fig, 11. The Logic for Input Buffer Cycle

39

40

(4) 1If the AVBCT is less than CRTCL, then set up input unit for the
TOBUFR buffer and start to fill with data at the suitable time.

Go to step 2.

(B) Output buffer cycle

The logic flow for output buffer cycle is shown in Figure 12.

Where the definitions of IOBUF, IOBUFR, PROBUF, PROBUFR, AVBCT are the
same as in input buffer cycle. ‘
(1) At first the TO0BUFR buffer and the PROBUFR buffer are empty,
and the PROBUFR buffer is waiting to be filled with data.

(2) When the PROBUFR is full (i.e. AVBCT=0), exchange the pointer
PROBUF with the pointer IOBUF.

(3) Set up the ocutput wit for the IOBUFR buffer and then output
data from the IOBUFR buffer to unit. Meanwhile, £ill the
PROBUFR buffer with data, and go back to step 2.

4.1.2.3 Buffer allocation ~

As has been mentioned before, double buffers are used for each file
except the NONBUF file. All buffers which are used by SIOCS are initially
linked in the available Euffer chain. The Awailable Buffer;Chain Entry
Table (ABC Entry Table) contains all the entries for the available buffer
chain. This becomes one push-down stack. Each buffer is one stack frame.
This feature of an SIOCS allows a programmer to define a file as an
internal file (i.e. the core memory of the primary high speed store).

An internal file has many extra advantages for the programmer of complers.
In the linguistic processors, (FORTRAN, COBOL, etc.) all the push-down

stacks with variable length stack frames may now be maintained through S5IOCS.

All buffers are
empty and AVBOT=0

r

Write information into
PROBUFR and increase
AVBCT counter

<}

Fig. 12, The Logic Flow for Output Buffer Cycle

AVBCT=? £0

If TOBUFR is free
then exchange the
pointer IOBUF with
the pointer PROBUF,

1

Write out all infor=-
mations from IOBUFR
buffer to output
device

41

42

A PUSH~-DOWN means write and a POP-UP means read. There is one entry

in the ABC entry table for each of the buffers on any one size.

Whenever a file is opened or redefined, the SICCS searches the available
buffer chain, obtains two buffers of proper size from one of the buffer
chains and assigns them to that file. When these two buffers are no
longer used, the 8IOCS release them and returns them to the available

buffer chain.

An example of the available buffer chain and the ABC entry table
is shown in Figure 13. The entry to this chain is in the ABC entry table.
The LINK field of this entry as shown in Figure 13 contdins .the address

of the first buffer of this buffer chain.

The STIZE field of this entry describes the size of the buffer.
Note that all the insertions and deletions to the chain aré made at the
leftend or top of stack (i.e. the end which is pointed to by the entry
in ABC table).

4,1.2.4 Non system buffering

There axe several different buffering techniques :that hawve been
built into our input-output buffering sysfem. As desééibed in the previous
sections. The SIOCS buffering system émploys: double buffers for files,
variable lengths for buffers, and a rotation method for buffer usage. In
order to allow the programmer to use any buffering technique which he
considers more efficient, the 5I0CS allows him to use ﬁ§§-own buffering

routine without referring to S$10CS buffering routines. This is on the

assumption that a good programmer will know more about the I/0 characteristics

of his job than any system program could, For most cases a programmer
will rely upon SIOCS. However im certain places he will, for specified
files, switch over to his own, buffering system by declaring those files

as NONBUT files.

£,1.3 1/O request

I/0 requests can be separated into two distinct types, data transmission

requests and non~data requests.

Available-~-buffer-
chalin Entry Table
SIZE LINK

T
1
'
1
]
]

43

Availlable-buffer-chain

1 1

i

-

N

—

Fig. 13. The Structure of the Available Buffer Chain

and the ABC Entry Table

!’ 7

| Ny

AVBCT
CRTCL |

Fig, 14. BReads Input File Under Conition:

AVBCT>N and CRTCL>{AVBCT-N)

15t yp

(15T WD) +N-1

bé;

4.1.3.1 Data_;ransmission request

Figure 8 shows the data transmitted into and out of the computer.
SI0CS accomplishes the actual transmission of records from the input unit
to the input buffer .and from the output buffer to the outpﬁt mit. The

macro instructions used for data transmission requesits are:

LABEL OPERATOR OPERANDS
READ . FILENAME, ERR, EOR, INTRUP, 1ST WD ADDR, N
WRITE . FILENAME, ERR, INTRUP, 1ST WD ADDR, N
e e = e - - 1 o — ————— .

The READ macro instruction reads N words from the file and transfers
it into consecutive memory locations (1lst word address) through {(1st word

address+N-1)

The WRITE macro instruction writes the data from consecutive memory
locations (lst word address) through (1st word address+N-1) to the file

specified.

(A) Read input file

There are four conditions which can possibly occur when reading an
input file
(1) Tigure 14 shows the first condition AVBCT”N, and CRTCL){(AVBCT-N)

when the -READ macro instruction is given.

After processing this READ macro instruction, AVBCT is decreased

by N.

(2) Figure 15 shows the second condition CRTCL greater than or equal
to (AVBCT-N)

After processing this READ macro instruction, two more actions take

place:

(a) Decrease AVBCT by N
(b) Set up an input unit for this file and dinitiate an input
operation to fill data into the IOBUFR buffer.

P

(3) The third condition is. that AVBCT less than N and N is less than

45

BUFFERS - PROBUF USER!'S
ANeTA WORKING AREA

/’ / /f/
, L L —~]
f 15t yp

_Avscr, '\’ ~

CRTCL . . .
4 < (15% wD)+N-1

!" YomUF T e

Fig. 15. BReads Input File Under Condition:

CRTCL F{AVBCT-N)

U EFERS ~——PROBUF

i
/ USER'S
' WORKING AREA

I
’ .

f
- ¢ -

AVBCT{ } AVECT - 18t yp

e

IOBUF—"1 ‘$
st

~—— (1 WD)+N~1

Fig. 16. BReads Input Pile Under Condition:
AVBCT<{N<AVBCT+SIZE

or equal-’ tor-AVBCT + (buffer size). That is, N can be contained
in the foéai 5ﬁffer space available. If this condition occurs
when the ;OBUFR.buffer is empty (i.e. AVBCT CRTCL), then the
central processor wmit is forced to wait until the IOBUFR buffer
is filled with data. TFigure 16 shows the operations after the
IOBUFR buffer is filled with data. After processing the READ

macro instruction, 5I0CS does the following:

{a) Exchange IOBUF with PROBUF
(b) Reset AVBCT equal to (buffer size-—(N~AVBCT))

{4) When the condition N >AVBCT+(buffer size) occurs, then the follow-
ing algorithm is applied:

(a) If the IOBUFR buffer is empty, then the CPU is forced to
wait wntil the TOBUFR is filled with data

(b) Transfer AVBCT words from the PROBUF buffer to working

arca

(c) Exchange the pointer IOBUF with the pointer PROBUF and

reset

% AVBCT equal to (buffer size),
* 1°% YD ADDR equal to (1°° WD ADDR+AVBCT),
* N equal to (N-AVBCT)

(d) Go to step A, B, €, or D depending on the conditions:

% AVBCT>N and CRTCL > AVBCT-N ———Go to step (1)

% AVBCT>=N and CRTCL £ AVBCT-N —-Go to step (2)

* AVBCT< N and NS AVBCTH(buffer size) ——Go to step (3)

* N> AVBCI+(buffer size) ’ ———Go to step (4)
respectively.

(B) Write output file

There are three conditions that can possibly occur when the WRITE

cutput file macro instruction is given.

(1) When AVBCT >N occurs, SIOCS transfers N words from working area

to output buffer, as shown in Figure 17.

47

(2) When the condition AVBCT ¢ N< AVBCT+(buffer size) occurs, SIOCS
t.ansfers AVB(CT words from working area to the PROBUFR buffer.
Now test if the buffer pointed to by TOBUF is free, if it-is
then the remaining words are transferred from working area to
to the IOBUFR buffer. However, if the OPBUFR buffer is busy,
STOCS forces the CPU to wait wmtil the IOBUFR buffer is free,

and then transfers data to that buffer, as shown in Figure 18.

After processing the data transmission, STOCS does the following:
(a) Exchanges the pointer PROBUF with the pointer IOBUF
(b) Resets AVBCT equal to (buffer size)-(N-AVBCT)
{c) Initiates a write command to the channel to output data

from the IOBUF buffer to output unit.

(3) The other condition is AVBCI+(buffer size)dN. When this condition

occurs, the following algorithm is applied:

(a) Transfer AVBCT words from working area to the PROBUFR
buffer and reset N equal to (N-AVBCT), increase 1St WD
ADDR by AVB(CT

(b) 1If the PROBUFR buffer is busy, then the CPU is forced

to wait mmtil it is free

{(c¢) Exchange the pointer PROBUF with the pointer IOBUF, and
set AVBCT equal to buffer size

(d) Go to case A, B, or C depending on the conditions:

% AVBCT >N -~Go to gase (1)

* AVBCT S W< AVBCI4+(buffer size) ---Go to case (2)

% AVBCTH(buffer size)< N —-=Go to case (3)
respectively.

(C) READ/WRITE a non-buffer file

To execute a READ/WRITE to or from a NOMBUF (non-system-buffered)
file is to read or write data directly from an I/0 device into working

area, as illustrated in Figure 19.

48 :
USER!'S
WORKING AREA
M

15t yp

(15% wpyem-1_.

L
-yAVBCT
~ I0BRUF

Fig. 17. Urits Output Flle Under Condition:

AVBCTON
BUFFERS, PROBUF
/
USER'S /
WORKING AREA
—— ") ’
15% yp , S,
VBC
| avmer | Jarscr
. O P 1
.- {
(15% wpy+N=1 —— : \r IO0BUF
WN—AVBC' o
Fig, 18. Writs Output File Under Condition:
AVBCTSN<AVBCT+SIZE
USER'S
WORKING AHEA
15% WD —|- -)
' }"W‘\ Lo
ot j SN
(15t WD) +N-1—» " WRITE i DEVICH
- i

n/_-_-_—-\—"-'
Fig. 19. Read/Write an Non-Buffer File

4.1.3.2 Non-data request

There are four macro instructions used for I/0 requests which do

not refer to data, these are:

1. REWIND:

2. BKSP:

3. MOVE:

4. WEOF:

T T T :

Label + Operator ' Operands :

; ;

' REWIND : FILENAME .

: : : i
Backspace N records

Label -+ Operator | Operands i

| : - s

! . BKSP ! FILENAME,N]

Move forward and pass N end-of-file markers

| T 1 o -
Label |+ Operator ' Operands
i 1

e e a ot Fmbm ma Ame vas s tamer and— e o
!
1

. MOVE * FILENAME,N

P et v

Write an end-of-file marker

T —— e

¥

Label

— L ..

1 Operator : Operands
1

[
[

WEOF. . FILEMAME

49

50

4.2 The Input-Output Scheduling

Some of the functions of the I/0 Scheduler are handling I/0 interrupts,
scheduling the operations on I/0 units and channels, and checking for
correct functioning of all I/0. The main purpose of this I/0 Scheduler
is to keep the ipput/output devices as busy as possible and to insure

that the I/0 operations are as efficient as possible.

Whenever an 1/0 6peration is required by user's request or required
by SIOCS, an I/0 request-entry is generated. This I/0 request-entry
contains all the necessary information for that I/0 operation. This
I/0 operation will probébly not be able to be executed immediately be-
cause the channel or unit in question may be busy. In this case, the 1/0
request entries on each wnit will be constructed. The I/0 initiation
routine inspects these queues when a new T/0 operation is to be started on

a unit.

When all I/0 operations associated with one of the currently
executed request-entry are completed, or an error or gbnormal condition
has been detected, an interrupt occurs. The I/0 interrupt routine iden-
tifies the interrupted channel and records an L/0 status descriptor. From
the dinformation which is stored in the L/0 status descriptor, all the
1/0 control blocks are updated. After that, the I/0 ipitiation routine

is again called to start the next I/0 operation as quickly as possible.

4.2.1 I/0 Initiation

(a) I/0 Request entry

The 1/0 request entry is a group of contiguous fields which
are generated for each I/0 operation requested by the IOREQU
macro instruction. These fields (namely, the function code, the
file name, the interrupt address, the first word address, the
error reject address, and the number of words transmitted) contain
the information needed to define a sPecific'input/output opera-

tion on a particular I/0 wmit. 'The format of an I/0 request

PRVSIO ! NEXTIO
1 1
F.C.| FILENAME ! INTRUP
T LI
N ! 15% appr. | EmR
| H

fig.

-indexed

St

23. The Format of an I/0 Request Entry

1/0 QUEUE ENTRY TABLE

T ,.........I!

N ~

by wnit LAST FIRST
number Y
1 1
2 1 1/0 QUEUE
1
]
I e 1 /
- f 7 llq// :
1 1/0 REQUEST
‘ ENTRY
1
!
H]
]
‘W

1I/0 REQUEST
ENTRY

Fig. 2, An Example of I/0 Request Queue

entry is shown in figure 23,

In the figure, note that the PRIVIQ field of the I/0 request-entry
is used to stored the address of the previous I/0 request for
the same I/0 unit, while the NEXTIQ field is used to store the

address of the next I/0 request for the same I/0 unit.

(b) 1/0 Request queue

The I/0 request queue is a list of I/0 request entries
which are currently awaiting service by a particular physical
device., Since an I/0 request entry generated by aﬁ IOREQU
macro instruction may not be able to executed until all the
previous I/0 requests are finished. The I/0 request queue is a
holding queue for I/0 service. For each physical device there
is one I/0 request queue, An example of the I/0 request queue

is shown in figure 24.

The I/0 request queue entry table is used to stored the
addresses of the first and the last I/0 request entries of each
1/0 request gueue. The unit number is used as an index pnumber
of this table. These queue are arranged on a first-in-first out
basis. Refering to figure 24, the FISTIO field of the table
entry points to the first I/0 request entry in queue. This
entry is the most critical entry'and will be serviced first when
this queue is aectivated. The LASTIO field of the table entry
points to the last entry in the queue, and all insertions to the

queue are made to this end of the queue.

{¢) I/0 Functional table

The I/0 functional table is provided for the purpose of
defining the operations of a given set.of I/0 furctions with
respect to a given set of I/0 devices. SIOCS was designed

to be as general as possible and still be simple.

Thus, this table could be expanded as future I/0 equipment

is added and there is no necessity for a modification to the logic

53

of SIOCS. For the version of SIOCS, present the I/0 request
functions are: READ, WRITE, REWIND, MOVE, BKSP, and WEOF,

while the I/0 devices are: tape, cardreader, printer, cardpunch,
and the console typewriter. Figure 25 is an example of an 1/0

functional table.

4.2.2 1/0 Completion

(a) L/O Interrupt

When there is an interrupt signal for an I/0 channel, an
immediate attempt is made to activate the L/0 interrupt routine.
During the initialization of SI0CS, the program for the I/0
interrupt routine is loaded into main memories and remains
resident in the memory through out all the time. If there is no
other interrupt being processed, then the I/0 interrupt routine
for the currentinterruptgiVven-control immediatly. However, if
there is another interrupt routine in processing then the cur-
rent I/0 interrupt signal is inhibited or placed in the waiting

queue,

The major functions of the I/0 interrupt routine are as

follows:

(1) Identify the interrupted unit and channel,
(2) Record the 1/0 status descriptor,
(3) Check the I/0 request queue for the interrupted unit,
and initiate the first I/0 request in queue, in case when the
queue is not empty,
{(4) Call result analysis routine to analysis the I/0 reult
and update the I/0 control blocks,
(5) Pass control back to user's interrupt routine, If
the user's interrupt address is specified and

(6) Return contrel to user's program.

{b) I/0 status descriptor

The I/0 status descriptor can be implemented either by

54

DEVICE CARD - L,bAﬁD CONSOL
TAPE
FUNCTION AP READER PUNCH [FYPEWRITER
1 . Read forward Regd | T11egaiT1legal ig:dbzzti
| READ one record lonecard:. y
| 2 ‘Irtte forward Write {Punch W
i one rite
WRITE one record |18l one card
o
3 Rewind T1legal| I1legallllegal| T1legal
REWIND tape
“ ppace forwardf,, ...l T11egalTllegsl| 11egal
. HOVE pass EOF mark ’
5 Back space 11egall T11eral i 1
i BXSP one record & lleg Tllegal| Illega
! ' Write EOF Punch
' 6 - Write &1legal Eject (Fiug Tllegal
WEOF | mark page card
Pig, 25, An Example of 1I/0 Functional Table

1/0 Status Descriptor

Erroxr
field

emory | Char, | Unit
pddress , count . number
where

Hemory Address :

Character

out

count :

the memory address at
which the I/0 is terminated
how nmany charaters

or how many words read in or write

Unit number : physical unit ldentification
Error field : error indicator

Fig. 26. The Format of the I/0 Status descriptor

55

hardware or by software. Here we assume that this descriptor is
in a channel register. This descriptor has four fields which in
turn contain the information which describes the current status
of the I/0 operation. These four fields are memory address,
word count UCB addres, and error field. The memory address
field contains the memory address of the point at which the I1/0
was terminated. The word count represents the number of words
has been transmited, while the error field indicates the error
conditions which is detected in the channel or the unit. The
error field may subdivided into several fields such as the
standard error field, and unit error field. The séandard I/0
error field is used to indicate the standard I/0 error such as
parity error, address error, end-of-file mark encountered,...
ete. The format of the I/0 status descriptoris shown in figure
26,

4.3 The unit interpretive routines

For each type of I/0 device, there is an associated unit interpretive
routine, The unit interpretive routines are hardware dependent, so that
there is no point in having one general-purpose interpretive routine. In
what follows, the algorithm for the unit interpretive routine is not
intended for use on any one particular device, but rather for the
presentation of those operations which must be performed by any unit

interpretive routine. These operations are as follows:

(a) Initialization for processing upon re—entry.

(b) The set up on the I/0 instruction code., This 1/0 instruction
can be an intiation of a sequence of channel commands which
are generated by step (c¢) and which are executed directly
by the data channel,

(¢) The set up of the channel program. This channel program must
be stored in some fixed area in core and will be executed
directly and independently by the data channel when the I/0
instructions which initiate this channel program is issued.

(d) The issuing of the I/O instruction which is set up in step (b)

(e) The return of control to the user's program.

56

4.4 The Flements of SIOCS and the Communication among elements

4.4.1 Files and File Controli -Blocks

A file is a collectidon of related recoids treated as one unit.
Before the I/0 is activated for a file, that file must opened. Similarly,

after all I/0 is completed for a file, that file must be closed.

(A) File Types

An item buffering scheme is specified by selecting one of three
possible types of files, Those are: IN (input), OUT (output), and
NONBUF (nonbuffering)

- Type : Buffering schema

Cm | . Dowle-buffer |

- our | Doublebuffer |
NONBUF No system-buffering

(8) File Control Block (FCB)

For each file used in SIOCS, a File control Block is established in
core storage. It keeps the file and the buffer information, and also
links the buffer area used by the file to a Unit Comtrol Block ‘(UCB).

The following figure shows the format and information included in the FCB.

FCW1 : FILE NAME
FCW2 i oc! TYPE ! , UCB ADDRESS ,
1 f ' M
i_,_______‘ i ere Mot e A g - ———— — : - m——— ‘—"‘""':
FCW3 IOBUF . PROBUF ;
h Cem e e e e e g e e e —
FCW4 . ' : * :

STZE CRTCL © BUSY . EOF AVBCT

3 R e . s t— g = - -

Where TYPE: file type

UCBADD: Address of the Unit Control Block kUCB) used by this file
IOBUF: A pointer which points to the TOBUFR buffer

57

PROBUF: A pointer which points to the PROBUFR buffer,

0cC: An open-close indicator,

SIZE: Buffer size,

CRTCL: Critical numbér of the input probuf buffer,

AVBCT: Awvailable counter which counts the available words remaining
in the PROBUFR buffer,

BUSY: A buffer busy indicator,

ECF: An end-of-file Indicator,

The File Control Block (FCB) is generated by the OPEN macro instruction

and released upon termination of the run.

4.4.2 Buffers

A buffer is a block of core storage used to compensate for the
difference in data handling rates when transmitting data from device
to core or vice versa. There are two buffers for each IN or OUT file in
SI0CS. These two buffers have the same size and are pointed to by the
pointers OBUF and PROBUF that are stored in the third work of the FCB.
The third and fourth words of the FCB contain information about this

double-buffer. Figure 20 shows the format of these two buffers.

4.4.3 Unite and Unit Control Blocks

A unit is an I/0 device attached to a computer. SI0CS uses symbolic
assignments to allow flexibility in assigning physical input/output units.
When a program is written, a symbolic unit is assigned to a file. At
run time, a proper physical unit is assigned to the symbolic unit. At
system generation time, the number of units of each physical type is
specified and the symbolic unit table is built accordingly. Also, at
system generation time, all physical units are assigned to a symbolic
unit by linking the unit control blocks to the symbolic unit table., The
format and linkage relation between the Unit Control Blocks with symbolic

unit table is explained in figure 21.

4.4.4 Channels and Chamnel Control Blocks

A channel is a hardware device (2 small computer) designed to be

58

FCB
] e s /1
' /"‘;‘ ”’JJ /’//
1 :’//"/ {-.
IOBUF ; PROBUF__ — < $ROBTFRY
I 1 }
SIZE ' CRTCL + ! | AVBCTT “~—»¢| BUFFER
H N) [I
i 3, ’
{ \\\\
{
N -

\Q IOBUFR

BUFFER

Fig., 20 The Format of Double-buffer

" Symbolic Unit Table

-symbolic—name ——r——UCB-ABER.

Unit Control Block(UCB)
T

"] Device Type ; Status

6&§eggﬁggss {CCB address

{ 1
B 1CB PT | !Unit address

I
H
i
{
1
I
I
l
I
!

where UB is a indicator which indicates

?

whether the unit is busy or not,
CB is a indicator which indicates
the chamnnel is busy or not,
PT is a indicator which indicates
the unit is been protected by the

system or not.

Fig. 21 The Format and the Linkage between the UCB and the Symbolic Unit Table

59

operated in parallel with the CPU and carry out input or output operations.
Each channel is associated with one Channel Control Block (CCB) in SIOGCS.
The Channel Control Block defines channel status and interupt selections.

The format of CCB is:

— ,
 CB UNTADD A INTRUP
O

Where UNTADD is the address of UCB of the current (or last) unit

using this channel

CB is a indicator which indicates whether the channel is

busy or not

I is the interrupt indicator which indicates whether the

interrupt is selected by the user or not

INTRUP is the entry of the user's iﬁterrupt routine

4.4.5 Communication among control blocks

As shown in Figure 22.

60

File Control Block (FCB)

‘ File Name
Double.—BuE{er oc| TYPE ‘UCB address FIIE nad BUFFERING
\, I0BUF . PROBUF -
. i =
TOBUFR crrer |BHy Eor javeer |

T
- SIZE ;
v 1
- l'J \"—"—-‘\/‘_“*-—/ - .:' / :

- t
o] o e

- s - f

PROBUFR 1/0 SCHEDULING]

- : Symbolic Unif T ﬁg_ , -
TU B {

Name 13 ess! - . 1‘
. SURURE FIL N A '
y - |
. - -—-.l-r..—— -l—- e ot et 5
1 h 4
] ; i
_;L | - Channel Program l
1)
1
N
1 ¢ - !
. '
z/—"‘\w.
. [.
£
Unit Control Block {(UCB))
Device Type Status ’ Channel Contirol Block (CCB)
- _Alternative :
T UCB_address _ CCB_address —r——-*(B |UCB address | I | INTRUP address
yg ' CB !PT | Unit number

Unit Control Block (UCR)

61

5. The Algorithms of SIOCS

5.1 The overall diagram of the STOCS

The SIOCS is.an intexface between the operating system and the
input—outpﬁt devices associated with that .System. All requests made by
the operating system for input-cutput operations are directed to this
interface. The SIOCS analyzes each request and takes appropriate action.
This action consists of scheduling input-output operations, setting up
the I/0 areas associated with the I1/0 operations and, in general, handling
all of the many and various functions needed in reading and writing tape,
card, and printer, and their records. After a request has been serviced,
the STOCS returns contreol to the user routine. An overall fumctional
block diagram of SIOCS is shown in Figure 27. The overall algcrithm of

S510CS is shown in Figure 28,

62

lI?Suﬁ;éuest Macro Instructlons File Definlng Macro Instructions| yggres
| READ REWIND MOVE OPEN REDEF " PROGRAMS
i WRITE BESP WEOF CLOSE fﬁ
N . T . o
Bufferlng System . .| . File Systen
1.M11ccate and release buffers 1.Inltlate or termination of FILE
for file, file, "~ AND
2.Transfer data between user © |2.Correspond the symbolic unit|BRUFFERING
working area and-buffers . to a physical unit, SYSTEM
3.Detect the logic error of 3.Manage the status of file . ¢ :
1/0 request, «—| ' and the informations in FCB
4, manage the buffer switching 4 ,Perform the mount or dis-
schemn, mount tape operations.
5.Initiate the read ahead. op=- . .
eration,.
6.,Initiate output operations .
1/0 Schduler Result Analysls Rourine
1.Manage the I/0 request queue 1.,Record the I/0 status des-
2.Check and determine whether criptor, I/0
the device accept this re- 2.Update FCB, SCHEDULING
quest or not, B 3.HBeturn control to using pro- ROUTINES
3,Check and determine unit, gram, if in case of normal -
and channel status, : exit,
4 ,Check and perform gystem b ,Analysis the error condition
protections,. and return control to op-
5.Manage the informations in erating system, or user's
UCR, and CCH, error routine,
6.Frecessing I/0 interrupt
pProcess.
L4 A W __.L....._.._. —_ _....__.__! __________ e e = e = o
Unit Interpretive Houtlnes UNIT
1.Set up channel command codes INTERPRETIVE
2.Place word address, word . ROUTINES
count into I/0 instruction,
if it is a data request,
3.Execute the channel progran
L ,Detect the physical error.

Fig, 27. An Overall Functional Block Diagram of SIOCS

SI:;;MH—\ P ™
! Y —
ENTRY } X User's ~/)w- _w“,___,?
SProgram '

1. Allocate all the buffer space,
2. Set up the I/0 functional table,
3. Set up all CCBs and UCBs,
4, Set up the Symbolic Unit Table
K T T T
OP%N CLOSE REﬂEF REAT] WRI?EREWINDWEOFMOVE'BK%?
| J |
1. Create a file, 1.Terminate the 1. Redefine the type 1. Check and determine the
2. Construct a FCB file, ’ of the file, request is legal or not,
for the file, 2.Release buffer 2. allocate or re-~ 2, If it is a data request
3. Provide the area. - lease the buffer then transfer the required
buffer area, if areas, data, .
required. (See Fig.30) 3. Adjust the AVBCT in FCB.
(See Fig. 31)
(See Fig., 29) (See Figs. 32-37)
eeds | aeds ‘neefls needs
xternal ternal external ' external
T6 N, 17, D '])) Y0
TN soud

Set up an I/0 request
entry(or entries)

1!’

I/0 Initiation '
Routines Fig. 28 The Alporithm of SIOCS

64

Svstem E
" Error Renl““‘zzgz—*
.cover
routine |

_

1/0-

Initiation
Routines

[TOREQ
1. Check the device status for that
I/0 request entty,

not ready

2. If the device is ready to be
executed, then execute that re~
quest entry. Otherwise, put that
entry into waiting queue,

(See Fig. 38)

- (See Fig, 4Qf“

ready
STARTO

1. Connect the channel
with the unit,

(See Fig. 39)

INITIO.

1. Check the System protection and
user's protections,

2. Transfer control to proper unit
interpretive routine,

. [Bnitjlntéipfétiﬁe Rrutinei

. Set up I/0 instruction codes,

. Set up the channel propram,’

. Issuing the I/0 actions

« Lf an error occures then tran-
sfer control to System error
recover routines.,

(See Fig,.44)

e

momal
P

J,—JL
S User's

.. Program -
et e s

Fig. 28 The Algorithm of STIOCS, Part 2. The

and Unit Interpretive Routines

1/0 Imitiation Routines

/0
\Fnterrupt

e

- __TOTNRP _

1. Identify the unit and channel
which interrupts CPU,

2, Clear the interrupt line,

3. Record the I/0 status descrip-
tor.

(See Fig. 41)

, IOFIN

1. Initiate the next I/0 request,
if there is one entry in queue.
2. Update CCB and UCB of the unit,

65

and channel,
{See Fig. 43)

1.Pick up one en-
try from the
gueue,

2.€all I/0 Initia-
tion routines to
activate that
entry

f __Resulf Analysis

. Analyze the result conditiens,

» Update the F(CB,

« Restore all saved registers,

. Report the result conditions,

. If an error occures, then either
transfer control to system error
checking routine or user's
error checking routine.

(See Fig, 42)

U b

rror
normal

§

User's
rror Checking
_Routine

System
Error Checking
- Routine

Fig. 28 The Algorithm of SIOCS, Part 3. The I/0 Completion Routines

66

[%4]
[p*]

Description of each routime

SI0CS routines can be divided into three classes. These are:
the file and buffering routines, the I/0 scheduling routines,
and the uwnit interpretive routines. The description of each routine
presented in this section consists of its purpose, major objectives,
its input and output parameters, and -the algorithm in the flow chart

form.

5.2.1 The file and buffering routines

There are nine major routines which manage the files aﬂd buffers
in 8I0CS. These nine routines can be divided into two groups. One
of the groups is the file declaration routines which includes the
OPEN routiﬁe, the CLOSE routine, and the REDEF routine. The other group
is the I/0 request routines. These consist of READ, WRITE,, BKSP, WEOF ,MOVE,
and REWIND routines,

5.2.1.1 The file declaratiocn routines

{a) The OPEN ROUTINE

Purpose: To create a file and initiate.I/0 operations for
that file,
Major 1. Generate a FCB for the file.

Objectives: + 2. Fill in the information of FCB.

3. Mount tape, if it is a tape file.

4. Allocate two buffers with proper size and store
these two buffer addresses in FCW 3.

5. Perform the REWIND operation, if the REWIND
option exists,

6. Initiate a READ operation, if it is a IN file.

Calling The OPEN routine is called by the OPEN macro
Sequence: instruction whose format is shown in Section 3.2.1.
Input: The sources of input to the OPEN routine are:

1. The parameters of the OPEN macro imstruction
"(See Section 3.2.1). Those are the TYPE of

file, the symbolic name of a device which is

Output:

67

desired, and the REWIND tépe option,

The symbolic unit table. This table resides

in core at a fixed locatiom.

The UCB's for every physical unit. Each physical
unit has it's own UCB. The addresses of these
UCB's are storedin the symbolic unit table
associsted with its symbolic names. Note that
one physical urit may associate with more than
one symbolic name,

The Available-Buffer-Chain Entry Table (or

ABC Entry Table) and the available buffer chains,
the structure of ABC entry table and the available

buffer chains are shown in Figure 13 .

The output from the OPEN routine is:

1.
2.

3.

A FCB, a FC3 is generated and assigned to the file.
The FCB contains all information about the file.
Mount tape message., A message will be sent to
operator console, if this is a tape file.

Initiating of READ AHEAD, If this is a IN file

Algorithm and Flow chart: As shown in Figure 29.

{b) The CLOSE routine

Purpose:

Major

Objectives:

Terminate the activity of files.

1.

2.

Reset the open-closed indicator to 1, to indicate
that file is closed.

Send out all the information that remains in
buffers and write an end-of-file mark, if the
file to be closed is an OUT file.

Release the buffer used by the file and return

to available buffer chains, if the file to be
closed is an IN or OUT type of file,

Clear all information in FCB except the file name.
Perform the REWIND, or UNLOAD operation, if

specified,

68

FILENAME | OPEN | TYPE,DEVICE, (REWIND)

OPE N

Generated a four words core
storage for using as a File
Control Block (FCB) of the
file

4

Store the informations of
FILENAME, TYPE and 0C
open~close) cell in FCB

r

Pind the device address
in the symbolic unit
table

Search the available unit
chain, and get an avail-
able unit and then assign
this unit to the file (
i1.,e, store the UCB address
in FCB)

Send message
to operator,
ask for tape

| mounting.

i

Walt until

operator re-
sponded sige
nal

Fig. 29. The Flow Chart of the OPEN Routine

{ and
FCB

FCW4)

[Clear the 3f -
!

d

4 words of
(i.e.FCW3,

Allocate two spaces to
be used as a double-
buffer for this file

Store this two buffer
addresses into the
I0BUF and PROBUF fields
of FCB(i.e. FCW3)

Y

' Store the informations
: about the buffer SIZE,
: CRTCL,BUSY ,EOF ,AVBCT

into FCB (i.e. FCW4)

-

-,

69

. P
_~"Re- Call \
<“quire a REWIN .{ REWIND FILENAME
“~.operation}? for seting up theREWIN

request entry

Ts

this a
buffered in--

Set BUSY « 1
indicate the buffer

‘-putqfile/ _is ready to be fi;led

< 7 T —
o l
‘ Call T
I IOREQ READ,FILENAME, ,,IOBUF,S1

_ﬁ\ﬁf set up READ request for read
ahead L

-\"«

EXIT

Fig. 29 fThe Flow Chart of the OPEN routine (cont.)

70

CLOSE (,OPTION)) FILENAME.1,FILENAME?,...

(CLOSE)

r

Initialize the list
pointer which point to
the list of file names
(i.e. operand field)

¥

Advance the list pointetf,
and get the next file
name entry from the
list

Set 0C<1, to indicate
that the file is
closed

Fig. 30 The Flow Chart of CLOSE Routine

Wait until the
IOBUFR buffer
is free

nput
rmm s Input or
™. output -~
; Fite -
! output
: Write the EOF mark and
: AVBCT « AVBCT-1
i
i Is
; the IOBUFR
; . buffer busy. S
; *\\\\i’ e
: l No
i
i Set BUSYel
indicate the PROBUFR
buffer is busy
Call
IOREQ WRITE,FILENAME, , ,PROBUF,SI1IZE-AVECT
to set a WRITE request entry
Call
I0REQ WEOF,FILENAME,
to set a WEOF request entry
1 i
R N
Release the buffer area
to the available buffer
chain
e it

Clear all informations
in FCB, except the
file name (i.e. FCWL)

'cp

Fig. 30 The Flow Chart of CLOSE Routine {Cont.)

71

72

Call
REWIND FILENAME
to set a REWIND request entr

this a dist
or tape filg

No ETOY
essage

Send message to operator,
ask for a UNLOAD operation

list
?

Fig. 30 The Flow Chart of-Close Routine (Cont.)

73

Calling The CLOSE routine is called by the CLOSE macro
Sequenc%:) instrgct%on.' The format of CLOSE macfo instruc-
tion is shown iﬁ.Section 3.2,1, Note that a list
of files may closed by a single CLOSE macro instruc-

tion.

Inquts: The inputs to the CLOSE routine are:
1. The parameters of the CLOSE macro instruction.
They are: A list of files to be closed, and
options (REWIND, or UNLUAD).

2. The FCB's for each file in the list.

3. The Available-Buffer—Chain Entry Table and

the available buffer chains.

Outputs: The outputs from this routine are:
1. Clear the FCB's. ALl FCB's of files in list are
cleared and contain no information except

the file names.

2. An end-of-file mark at the end of each QUT

type of files in list.

3. Perform the REWIND operation for every file
in list, if the REWIND option is specified.

4. Dismount tape message. A dismount message
will sent to operator console, if the UNLOAD

option 1s specified.

Algorithm and Flow chart: As shown in Figure 30.

(¢) The REDEF routine

Purpose: Switch the type of the file
Major 1. Change the file type information in FCB to the
Objectives: type declared in the REDEF macro instruction,

2. Do the necessary modification as shown in Table 2.

3. Perform the REWIND operation, if REWIND option exists.

new

is IN.

IN ouT NONBUF
old ’
Backspace N records, where| 1. Release the buffers _T
if BUSY = 0, then used by the file and
N = Buffer size , refurn them to the ABC
IN No operation Physical record size
(if file still open) Otherwise 2. Clear all buffer
- 2;‘Bu%fer cize informations in FCB
Physica} record
. size
1. Sent out all the infor- 1. Sent out all the infor-
mations that remains in mations that remains in
the buffers the buffers.
ouT 2. Rewind tape 2. Release the buffers used
.] No operation by the file and return .
3. Reset t?e AVECT infor- (if file still open) them to the ABC
mation in FCB 3. Clear all buffer infor-
maéions in FCB.
1. Allocate two buffers with proper size and store
v+ these two address into F(CB. .
2. Store the buffer informations into FCB
NONBUF 3. Initiate a READ operation; 1f the.newdtype of file No operation

(if file still open)

N 4wt

Table 2. The Actions of the REDEF macro instruction

YL

T

REDEF i FILENAME, TYPE, (REWIND)

~ ue = new
\E?ge 0

“\szjious -
type?
YP//

Nonbuf .

| Exrror

message

—

Store new type to
the TYPE field in
FCB

REOPEN;

OPEN routine

31 The Flow Chart of REDEF Routine

76

DA

Is \\\\\\\
new type = No

“S._OUTPUT?

™.

Yes

‘ @

Set

Set

TYPE<-new type

in ¥CB

J— I

Set ¥ 1,

A
and waite EFEH;(E?Ef=?
until BUsy=0| = 1

Set M = 2%
buffer size

s

4
3

BUSY=0

1
1

Set M=buffer size

Call

BKSP TFILENAME, M

to set up a BKSP request entry,

o1 TYPE< NONBUF
in FCB

Release the buffer

areas to the avail-
Iable buffer chains

4

Clear all buffer
informations in FCB

for a

REWIND oper>"
tion?

Call

REWIND FILENAME
to set up a REWIND request entry

XIT

Fig. 31 The Flow Chart of REDEF Routine (Cont.)

L

77

/Is ~._
the IOBUFR ™~ Yes |
Jbuffer busy.”

2 -
H //

-

v

ISet BUSY < 1,indicate
I the buffer is busy

-

Wait until the
TOBUFR buffer is!
L free e

Call
I0REQ

WRITE, FILENAME,,, PROBUF, SIZE-AVECT
to set a WRITE request entry

|Set

| AVBCT SIZE

Call
REWIND FILENAME

to set a REWIND request entry

JY

Is ™.

N9<ijﬁé¥Ntype =\f:> .

e -

.

?

-

lYes

Set 1
TYPE<-new type |
“in FCR___ —1

o

i
i
ﬁxf@
\

S

Fig. 31 The Flow Chart of REDEF (Cont.)

78

Note that, in Table 2 wheﬂ the file changes its
status from type IN to type OUT, a backspace
operation is performed. This allows the user
to switch input mode into output mode at any

point of his file,

Calling The REDEF routine is called by the REDEF macro
Sequence: ipstruction. The format of REDETF macro instruction

is shown in Section 3.2.1.

Inputs; The inputs to the REDEF routine are:
1. The pérameters of the REDEF macro instruction.
They are: FILENAME of the file to be changed,

TYPE to be changed,

REWIND tape option.

2. The FCB of the file.

3. The Available-Buffer—Chain Entry Table and

the abailable-buffer chains.

Outputs: The outputs from the REDEF routine are:
1. The FCB of the file--FCB contains the
information about the present status of the

file which has been redefined.

2. The Abailable-Buffer Chain Entry Table and the
available-buffer chains—-they are changed
according to the buffer allocation or freed

by REDEF routine,

Algorithm and Flow chart: As shown in Figure 31.

5.2.1.2 fThe 1/0 request routines
(a) The READ routine
Purpose: To transfer data into user's working area

Major 1. Detect the error, if the file is closed or if

Objectives: it is a type OUT file

79

2, Transfer the requested amount of data from
PROBUFR buffer into the user's specified
working area (ISt ADDR.4N-1) .

3. Initiate the read ahead operation to read in
data from input device at proper time (i.e.

when AVBCT CRTCL),

4. Switch the pointer IOBUF, with pointer PROBUF
in FCB, whenever PROBUFR buffer is empty and
TOBUER buffer is full,

5. Adjust the buffer informations in FCB, if

necessary.

6. Pass control to the I/0 scheduling routines
for requesfing data directly input from input
device intec user's area, if the file is a type

NONBUF file, , ‘

Calling The READ routine is called by the READ macro
Sequenct: instruction. The format of the READ macro

instruction is present in section 3.2.1

Inputs: The inputs to the READ routine are:
1. The parameters of the READ macro instruction

FILENAME: The name of the desired file.

ERR: The address of the user's error routine.
INTRUP: The address of user's interrupt routine.
EQF: The address of the user's end-of-file

check routine.

15C ADDR: The first location in which the

requested data are to stored.

N: The number of words required by this

macro instruction

Note that, if any of the ERR, INTRUP, EOF parameters

80

[o e e

i

; TOREQ READ,FILENAME,ERR,INTRUP,

.1st ADD,N

\to set a READ request entry

'FILENAME, ERR, INTRUP, EOF, 1lst ADDR, N

the file

closed
?

Error
essage

Call

File type = ?

¥

EXIT
‘\-/.—

)'d

ES
Is \\\\
< EOF =O0N) ‘
-‘_\ -
?
ﬁYES

Transfer AVBCT words
from PROBUFR buffer
into user's working arga

>

Set AVBCT+ Q

¥

BOF
\ EXTT

S

Fig. 32 The Flow Chart of READ Routine

Set
M<N

- 2

Transfer M words from
PROBUFR buffer to
user's working area

r

AVBCT « AVBCT-M

v

Set BUSY <,
to indicate that the
buffer is busy

¥
Call

IOREQ READ,FILENAME,,,IOBUF,51IZE
to set a READ request entry

[

- - ¥

=

Fig. 32 The Flow Chart of READ Routine (Cont.)

81

82

Set BUSY<1
indicate the
buffer is busy

T

TORUF,SIZE .

Gall
I0REQ READ, FILENAME, ERR, INTRUP,\
/
to set a READ request entry f

M<€AVBCT

Transfer M words from

the PROBUFR buffer intol -

user's working area

N _N-M

by -

Was
the IOBUFR

~buffer fill
?

YES

J 3

Wait, until the
NO____ | T0BUFR buffer
was filled

AVBCT «-STZE ,

exchange the pointer

PROBUF with the
| pointer IOBUF

|
@)

Fig. 32 The Flow Chart of READ Routine (Cont.)

Outputs:

83

.is absent, then the address of system error’ check
routine, or system end-of-file check routine will

be used, respectively.

The outputs from the READ routine are:

1. The requested data—--they are transfered into

the users working area.

2. The FCB of the file--the information in FCB
is changed according to the present status

of the file.

3. An error message-—an error message will print
out if the file is closed or it is an OUT

file.

Algorithm and Flow chart: As shown in Figure 3Z.

(b) The WRITE routine

Purpose:

Major

Objectives:

To transfer data out of the user's working area.

1.

Detect the error condition, when the file is

closed or it is an IN file.

Pass control to the I/0 scheduling routines for
sending the information directly out from user's
area to output device, if the file is a NONBUF
file.

Transfer data from user's working area (i.e.

st
location lSt ADDR. through location 1 ADDR.
+N-1) to the PROBUFR buffer.

Switch the pointer IOBUF with pointer FPROBUF
in ¥CB, whenever PROBUFR buffer is full and
I0OBUFR buffer is empty.

Inditiate an output operation to empty out the

IOBUFR buffer. That is transfer control to I/0

84

-scheduling routine’ to request an output operation

- f¥om IOBUFR:buffer to proper output device,

Calling The WRITE routine is called by the WRITE macro
Sequence: instruction. The format of this macro Iinstruction

is shown in section 3,2.1.

. Inputs: The inputs to the WRITE routine are:

1. The parameters of ‘the WRITE macro instruction.

These are, -

FILENAME: The name 6f the desired file to be

written out.

ERR: The address of user's error check

routine.

Note: 1If this field is a blank, then the
address of system error check replaces
it, That means the error return from
this routine will be sent to system

error check routine,
INTRUP: The address of user's interrupt routine.

Note: If this field is absent, then the
.address of the system intrrupt routine

is used.
2. The FCB of -the desired file.

OQutputs: The outputs from this routine are:

. 1. The requested output data——-these output data

are now in the buffer area.

2. The FCB of the file--the contents of FCB are

changed according to the status of the file.

B

5

Call

IOREQ WRITE,FILENAME,ERR,INTR

1st ADDR,,N

ifo set WRITE request entry

(Bay,

\WRITE | FILENAVE, ERR, INTRUP, 15t WD ADD.,N

85

a A
WRITE '
M

1

as
the file -
closed

- ?
~_ -

o

What
NONBUF__~~ the file

"~ type is
L
A

| our

=

i
s
,/ Is \\ ‘YES W_B"‘

~N_avBCT

s

)

——

ES E-O

f
|

o e e

Transfer M words from
the working area to
the PROBUF buffer

EVBq;g— AVBCT-M!

L,

//"

Fig. 33 The Flow Chart of WRITE Routine

86

the IOBUFR
buffer

[M<-AVBCT

Wait, until the
| LOBUFR buffer is
free

Transfer M words from
the user's working ares
to the PROBUFR buffer

4

AVBCT<-STZE ,
exchange the pointer
PROBUF with the
pointer TOBUE

r

Set BUSY<1,
to indicate that the
buffer is busy

T

Call

IOREQ WRITE,FILENAME,ERR,INTRUP,IOBUF,SIZE

to set a WRITE request entry

N« N-M

@

Fig. 33 The Flow Chart of WRITE Routine (Cont.)

87

3. An error message--if the file is closed or if
it is a type IN file then an error message

will sent out indicate the error condition.

Algorithm and Flow chart: As shown in Figure 33.

{(c) The WECF routine

Purpose: Write an end-of-file mark at the end of the file.

Major 1. Detect the error condition. Send out an error

Cbjectives: message, if the file is closed or it is a type
IN file.

2, Initiate a write end-of-file mark operation.
That is, pass control to I/0 scheduling routinesto

set up write end-of-file request.

Calling This WEOF routine is called by the WEOF macro
Sequence: instructién. The format of the WEOF macro instruction

is shown in section 3.2.1.
Inputs: The inputs to this WEOF routine are:

1, The parameter of the WEOF macro instruction—
FILENAME of the file.

2, The FCB of the file specified by FILENAME.

Qutput: The output from this routine is an end-of-file

mark delimiting the end of the file,

Algorithm and flow chart: As shown in Figure 34.

(d) The MOVE routine
Purpose: Move forward and pass end-of-file markers.

Major 1. Check and make sure that the file is not closed.

Objectives: , gend out all the information that remains in the

buffers together with an end-of-file mark, if

this is an output file,

3. Set up and initiate an I1/0 request.

88

FILENAME

WEOF

Was '
the file
. ~ =

closed L

o

this an
input file

Call
IORE(WEOF,FILENAME,N
to set a WEOF request entry

EXTIT

Fig. 34 The Flow Chart of WEOF Routine

rror
essage

(EXIT)

(e)

Calling

Sequence

Inputs:

Output:

89

4, Set up and read T/0 request, if this is an input
file.
5, Clear AVBCT information in FCB.

This routine is called by the MOVE macro instruction.
The format of the MOVE macro instruction is shown

in Section 3.2.1
The, inputs to this routine are:

i. The parameters of the MOVE macro instruction

are the FILENAME and N.

2. The FCB of the file.

If the file is already closed, then an error message

will send out from this routine.

S

Algorithm and Flow chart: As shown in Figure 35,

The BKSP routine:

‘Purpose:

Major

Objectives:

Move N physical records backward.

1. If an error condition is detected, sent out
an error message. LE the file is closed, this

is an errcr.

2. If the length of N physical record is greater

than or equal to buffer size then:

(a) Set up a request for backspace N, records,

where Nl is the smallest integer such that

N=N-(SIZE-AVBCT) /physize and N;is multiplier
of (size/physize),

(b) Set up a READ request, and
(c) Adjust AVBCT,

3. If the length of N physical record is less than
buffer size then adjﬁst AVECT only.

g0

MOVE E FILENAME;N -

Was
the file
closed ?

Error
Yes
T Timessage | °

-

Is
this an
..output file

\\\\E!///

Fo
Clear all informations
in FCW4 of FCB

Call
IOREQ MOVE,FILENAME,,,,N
to set a MOVE request entry

Call
IOREQ READ,FILENAME,,,IOBUF,SIZE
to set a READ request entry for
reading ahead

Fig. 35 The Flow Chart of the MOVE Routine

(£)

Calling

Sequence:

Inputs:

Outputs:

91

This routine is called by the BKSP macro instruction.
The format of the BKSP macro instruction is shown

in the flow chart (Figure 36).
The inputs to this routine are;

1. The parameters of BKSP macro instruction are

the FILENAME and N.
‘2. The FCB of the file.

An error message will be sent out if the file is

closed.

Algorithm and Flow‘éhart: is shown in Figure 36.

The REWIND routine

Purpose:

Major

Objectives:

Calling

Sequence:

Inputs:

Qutput:

Perform the rewind cperation.

1. Check and make sure that the file is not closed.

2. Write out all the data remaining in the buffers
and write ocut an end-of-file mark at the end,

if this is an output file.

3. Set up a REWIND I/0 request, if this is an

input file.

This routine is called by the REWIND macro
instruction. The.format of tlie REWIND macro

instruction is shown in the flow chart (Figure 37)
The inputs to this routine are:

1. The first parameter of the REWIND macro
instruction is the FILENAME,

2. The FCB of the file.

An error message will be sent out if the file is

closed.

Algorithm and Flow chart: As shown in Figure 37.

3 t
\BKSP !

FILENAME,N

Was B
the file frror , ‘@
.. ¢losed ? message |
~.

.

—

\\\INO

Set MA¥= SIZE / phycal record sizé
= (SIZE - AVBCT)/physical recoxd
S5ize

Is -
N >LB o] .| Set AVBCT =
? (LB-N) *physical reaord size

Yes

Set N &~ N -LB
Re N /MAX +1

[
Set N' & R % MAX
Re N' - N

Call
IOREQ BKSP,FILENAME,,,,N'
to set a BKSP request entr

Call
IOREQ READ,FILENAME,,,TOBUF,SIZ
touset a READ request entry for -]
reading ahead !
l

Set AVBCT < ' ' 5 ww@
R % physical record size

Fig., 36 The Flow Chart of the BKSP Routine

93

| {
} REWIND , FILENAME

Was
the file
closed ?

Exrror 2
Message §E&

Clear all informatioh
in FCW4 of FCB

Call

IOREQ REWIND,FILENAME
to set a REWIND request entry,

~
.

.. A
Is ~.. Call *,
<" this an IN “5OUT___{ IOREQ WEOF,FILENME p
\\\\gr ouTr .~ to set a WEQF request entrg/
., ? s

\/ ii
Call

I0REQ READ,FILENAME,,,IOBUF,SIZE
to set a READ request entry for
reading ahead

XIT

Fig. 37. The Flow Chart of the REWIND Routine

94

5.2,2 The I/0 scheduling routines

The I/0 scheduling routines can be divided into two groups, namely,
I/0 initiation and I/0 completion. The i/O initiation group consists
of three routines: IOREQU, STARIC, INITIO. The I/0 completion group
consists of the IOINPR routine, IOFIN routine and the RSLANL routine.

5,2.2.1 The I/0 initiation routines

(a) The TOREQU routine

Purpose: Request an L/0 operation
Major 1. Check and determine whether the device can
Objectives: accept the request.

2. Check and determine whether the unit is busy.

3. Call the STARIO routine, if the unit is ready
to accept this function. Otherwise, insert the -
1/0 request entry into I/O request queue of the

proper unit.

Calling The IOREQU routine is called by the IOREQU instruction.
Sequence: The format of this IOREQU macro instruction is

shown in Figure 3§.
Inputs: The inputs to the IOREQU routine are:

1. The parameters of the IOREQU macro instructioun.
They are: I/0 request function-—the name of

the function._

FILENAME—-~The name of the file
INTRUP --The address of the user's interrupt

routine.

Note: TIf this field is absent, the address
of system interrupt routine will be

used.

‘ERR -~The address of the user's error

check routine

Outputs:

5.

1.

2.

95

Note: If this field is blank, then the
address of .system error check routine

will be supplied,

1st ADDR.-The first location where data will be

read or written.

N —-~The number of words to be read

into ox written from memory.

Note: That N exists only when the
function is a data request (e.g.

READ, WRITE)

The FCB of the file specified by the parameter
FILENAME.

The UCB of the unit which is used by the file.

I/0 request table and I/0 request queue

{See Section 6)

The function acception table {(See Section.6)

The outputs from the LOREQU routine are:

The I/0 request is inserted into an I/0
request queue, if that request can not be

initiated right away.

An error message—-if the device does not

accept the request function.

Algorithm and Flow chart is shown in Figure 3g.

(b) The STARIO routine--

Purpose:
Major

Objectives:

Calling

Sequence:

Prepare the CCB for initiate an 1/0 request
1. Fill in all the information in the CCB
2, Call the INITIO routine.

This routine is called by the IOREQU routine,
address of I/0 request entry must be in the index

register before entering this routine,

96

T
| IOREQ FUNCTION,FILENAME, INTRUP,ERR, 1°% ADDR,N

(IOREQ)

¥

Get the UCB address
from the FCB (i.e.
_from. FCW2)

Pick up the_device
type from 1~ word
of the UCB

r

Check the device type
and function code in
the I/0 funetional
table

//ﬁbes

,//’the device
“S.gccept the

Error
message

—

Insert the entry
———=into the I/0 queue
of this unit

Fig. 38 The Flow Chart of IOREQ Routine

97

Inputs: The inputs to this routine are:

1. The I/0 request entry--its address is specified

by the register

2. The UCB of the unit required by this I/0

" request.

3. The CCB of the channel required by this I/0

request.

Qutputs: The output of this routine is a CCB with new

information in it.

Algorithm and Flow chart: As shown ia Figure 39.

(c) The INITIO routine——

Purpose; Initiate an I/0 request
Major 1. Check and determine whether the request is a
Objectives: data request. Transfer control te unit inter-

pretion routines, if it is a non-data request.
2. Check and protect the system protectional unit.

3. Transfer contrecl to proper unit Iinterpretive

routine.
Calling This routine is called by the STARIO routine,
Sequence: address of I/0 request entry must be stored in

the index register before entering this routine,
Inputs: The inputs to this routine are:

1. The 1/0 request entry——the address of this

entry is in the index register

2. The UCB of the unit requested by this I/O

request entry.

Output: The output from this routine is an error message--if
the I/0 request attempt to harm the system protection

unit.

98

(STARIO)

Get the CCB address froh
the UCB of the unit -

Did

the user

provide an in-
+errupt
outi:

Set up CCB, =and set
1 —-USER, and also
store user INTRUP
address into CCB

v}

Set up CCB, and set
I — SYSTEM.

NITI

Fig. 39 The Flow Chart of the STARIO Routine

INITIO

. : What
h
rozeziezn;t kind of pro~ SREAD ! . Error
v tection? WRITE$ hessage
ystem? - .
~7 - i
No
bnormé}
7/
S PR —

Fig. 40 The Flow Chert of the INITIO Routine

99

Algorithm and Flow chart: is shown in Figure &0.

5.2.2.2 The 1/0 completion routines

{a) The TIOINRP routine

Purpose: Process the I/0 interrupt
Major 1. Disable or inhibit other occurence of an interrupt.
Objectives:

2. Save the contents of the program leocation

counter and of all necessary registers.
3. Identify the interrupted unit and channel,
4, Clear the interrupt line.

5. Record the I/0 result descriptor (See Section
6.1.2 for the details and description of the

I/0 status descriptor).

6. Transfer control to the IOFIN routine.

Calling This routine is called when an I/0 interrupt has

Sequence: occurred.

Inputs: The input to this routine is the I/0 interrupt
signal.

Outputs: The outputs from this routine are:

1. The I/0 result descriptor, which is recoxrded

and stored in some fixed location,

2. The contents of the location counter and of
necessary registers, these are saved in

predetermined locations.

Algorithm and Flow chart: As shown in Figure 41.

(b) The result analysis routine
Purpose: Analyze the result of an I/0 operation

Major 1. Analyze the error condition iIndicated by the

Cbjective: error field of the I/0 result descriptor.

100

 JOINRP
(romee)

b

Disable or inhibit
other occurence of
interrupt

1/0 statua descriptor
T T T
Memory (Char. ! Unit Error

address! count ! number ! field

Save the current log
cation counter and

all necessary regi- .
sters (see Fig.26)

Identifies the unit
and channel which
interrupts the CPU

r

Clear the equipment
or channel interrupt
line

Records the I/0
status descriptor

OFIN

Fig. 41 The Flow Chart of the IOINRP Routine

Calling

Sequence:

Inputs:

Outputs:

101

Turn on the EOF indicator in FCB if the end-of-file

bit is 1 in the I/0 status descriptor.

Reset the busy flag to indicate that the buffer

is not busy now.

If the user's interrupt address is not specified,
enable the interrupt, restore the contents of
leecation counter and of all saved registers, and

then return control to the calling program.

If the user's interrupt routine is specified, store
the I/0 result descriptor into the first word

of the user's interrupt routine, reset all contents
of the saved registers, and then transfer

control to user's interrupt routine.

This routine is called by the IOFIN routine, the

address of the I/0 status descritor must be stored

in the index register before enterring this routine.

The inputs to this routine are:

1. The I/0 status descriptor, whose address is

stored in the index register

2. The CCB, the UCB and the FCB which are

resident in core at all times.

The outputs from this routine are:

1. If the end-of-file condition is detected,l
in the EOF dindicator of the FCB.

2. 0 in the BUSY indicator of the F(CB.

. 3. The I/O status descriptor in the first word of

the user's interrupt routine.

Algorithm and Flow chart: As shown in Figure 42.

joz

RESULT
ANALYSIS

brd
Pick up the FCB and

the IT/0 status
. descriptor

En-
counted an
EOF mark?

w BTTOT
message

——

Set Set
el BusY «- 0 EQF <— 0N
in FCB ECB

Pick up this INTRYP
address from the
CCB of that channel

interrupt addres
<._ in the CCB ?

!

Store the I/0 status

' dggcriptor into the
Enable the 17" word of the user's
interrupt signal interrupt routine

1

Restore the location

counter and ail Reset all saved

saved registers registers
] |
/ Transfer Transfer
control back to Control to user's
processing program interrupt routine

Fig. 42 The Flow Chart of the Result Analysis Routine

103

{c) The IOFIN routine

Purpose: Update the CCB and UCB
Major 1. Initiate the next I/0 request in the I/0
Objectives: request—quece for that particular unit which

interrupts the processing, if there is an

I/0 request in that queue.

2. Update the CCB and UCB of the channel and unit
which interrupts the processing, if there is

no I/0 request in that queue.
3. Pass control to the result analysis routine.

Calling This routine is called by the TOINRP routine.
Sequence: Address of the I/0 result descriptor must be stored

in the index register before enterring this routine.
Inputs: The inputs to this routine are:

1. The address of the I/0 request-queue entry

table. This address is a known parameter,

2.-The I/0 request-queues, these queues are

reside in the core memory at all time,

3. The I/0 result descriptor, whose address is
stored in the index register X.
Outputs: The outputs from this routine are:

1. If the I/0 queue is empty then CTCB and
UCB are updated.

2. If the I/0 queue is not empty then an I/0 entry

is picked up from L/0 queue.

Algorithm and Flow chart: As shown in Figure 43.

3,2.3 The unit interpretive routine

Purpose: Set up the chammnel program and initiate the proper

action.

104

(TOFIN ,

-

Pick up the list head
for I/0 queue of the
interrupted unit from
I/0 queue entry table

the I/0 queuds
for this unit is

= pty?

Pick up the top‘
| entry from that
1/0 request queuq

L

Call the STARIO
' routine for ini-

Get the CCB address tiating that re-
from the UCB of -the quested ,action
unit

Delete that entry
from the I/0 re-
quest queune

Update the CCB (i.e.
update the CB,INTRUP
ADDR. fields of the
CCB)

Update the UCB (i.e.
update the UB,CB*fields
of the UCB)

-

4

coutt)

alysi

Fig. 43 The Flow Chart of the IOFIN Routine

Major

Objectives:

Calling

Sequence:

Input:

Qutput:

1. Initialization for processing upon re-entry.
2. 8et up the I/0 instruction codes.

3. Set up the channel programs.

4, Issue the I/0 actioms.

5. Return control to the user's program.

This routine is called by INITIO

routines.

The input to this routine is the I/0 request entry

whose address is in the index register X.

An error message will send out, if the issuing of
the I/0 instruction has been rejected K times by

the hardware.

Algorithm and Flow chart: dis shown iIn Figure 44,

105

106

Unit
Interpretive
Routine

[

Initialization
‘for processing
upon re—entry

Y ' i

Set up the I/0 instruc-—
tion codes which intiatiges
the channel program

]

Set up the channel
program and store it in|
some fixed area in core

- [
Issuing that I/0
instructions

Did
a reject
occur?

it been re-
ject "K'
times

Yes bﬂErron
message

this an
external re—
ject ?

o -
c

System
Error recover
Routine

Fig. 44 The Flow Chart of the Unit Interpretive Routine

107

6. Discussion

This paper has demonstrated how an Input—Cutput Control System
can be simplified and organized as a tree-structured system. The discuss-
ions on the designing and expansion of SIOCS are presented first in this
section. Then it is followed by the distcussion on the microprogramming
of SIOCS. The microprogrammed implementation of a portion of STOCS, the
buffer allocation, has been presented in Reference [50], where the illus-
tration of an integrated software-hardware design through microprogramming

is given in great detail.

6.1 Discussion on the designing of SIOCS

(2) The tree-structure is regarded as a very important principle for
designing an operating system. 1t is both easy to understand and easy to
implement , because each level of the tree-has its own goals and its own
clear environment. To isolate the levels and to decide upon how many levels
are most important in the design. The experience gained in designing this
8I0CS indicates that the ideal solution to achieving program modularity
is to divide the I0CS into four levels. The highest level (the file system)
is accessed directly by the user, and only the lowest level (the unit
interpretive routines) is dependent upon the hardware. The middle two
levels (the buffering system and the I1/0 scheduling) are accessed only by
the system programmer. In this manner, the system programmer may change
part of the I/0 scheduling for a special hardware configuration at a later
time. Similarly, the system programmer may change a part of the buffering

system at will in order to accommodate some special user need.

(b) Tables should be used by the I0C5 to communicate within different
parts of the operating system, while explicit software should be created to
communicate to the outside. This choice is because the environment within
the system is relatively static while the environment outside the system

is always changing.

6.2 Discussion on the Expansion of SIOCS

(a) A chamel schéduler should be added into I/0 scheduler—--the

STOCS contains a Channel Control Block (CCB) for every channel, and assumes

108

that each unit is connected with one channel at all times. One may add

a channel scheduler which allows several I/0 devices to share the same -

channel .

(b) A disk and drum I/0 capsbility should be added for disk and
drum operations. Such information to enable an order such as seek address
to be implemented must be maintained in Unit Control Block for disk or

drum operations.

(¢) Internal files should be added into the file system—-one maf
introduce a fourth type of file, namely internal file, which is a list of
buffers together with pointers. The third word of presené File Control
Block (section 4.4) may be used as a list head of an internal file. With
this feature, a user may declare a particular file which is to be refeienced

very frequently as an internal file. (See References [39], [441, [45])

©

(d) One may add conversion routines into SIOCS—— This will allow 1/0
devices to perform the I/0 function under several different modes, such as

binary mode, BCD mode,...,etc. .

6.3 Discussion on the Microprogramming of SIOCS

(a) 'The computer elements which are required for implementation of
the buffer allocation routines are included in most microprogrammed comput-—
ers. This means that the buffer allocation routines could be indeed micro-

programmed.

(b} When the addréss of next micro-instruction is specified in every
micfo—instruction, there is a greater flexibility in the sharing of common
sequences of micro-instructions among different functioms. This is due to
the fact that branching does not take a separate step and successive micro—
instructions may be located anywhere in control memory. Furthermore, if the
concepts of paging or segmenting are applied in the control memory, then
a branch from page to page, or from segment to segment may be implemented

very easily,

{¢) In order to refer to an operand and to stoxe temporary results,
a LOCAL, STORE consisting of high speed registers is required. A part of
this store may be designed as a stack. This may be used for storing the
micro-subroutine return address for re-entry. A stack is most useful for

a linguistics processor or for any multiple buffering scheme.

109

(d) The basic implementation of operating system involves such
queuing techniques for control block handling, table reference, internal
sorting, peinter handling,etc. It dis found from this study that those

queuing techniques require some macro operations such as,

% Buffer allocation or general storage allocation,
% Storage release operation,
* TInsertion of an item into a chain or list (this may be any
type of linkage},
* Delete an item from a chain or list,
*# Transfer a block of data from one area into another area within
the same storage,
* Sequential search and locate an item,
* Random search and locate an item.
As demonstrated in Reference [50], the buffer allocation routine needs
only 6 control words to implement the entire operation. Thus' it may be worth
while to add the above mentioned elementary operations into the machine

language level of such microprogrammed computers as the IBM 360 family or
the RCA Spectra 70.

110

Acknowledgement

The author wishes to express his deepest appreciation to his
advisor Mr. Martin Milgram for his inspiring guidance, patience
and encouragement during the preparation of this paper.

The author wishes to express special thanks to Professor
Yaohan Chu for his inspiration and guidance in this proiect. The
aut@or also wishes to acknowledge and express his thanks to Mr. R.
Pardo and Mr. G. Lindamood for their many helpful cenversations
and sugestions.

Finally, the author,is grateful to the Singexr-Link Division
of Singer Company for their fimacial support through Singer-Link
Student Scholarship in Computer Science, and to the National
Aeronautics Space Administration for their support under the contract

NGR 21-002-~206.

111

Bibliography

The bibliography which follows includes subjects related to the

computer Input-Output Contyrol System. The bibliography is arranged by

subjects, alphabetically by author within each subject.

A, General operating system and I/0 Control System

1.

10.

11.

12,

Ackerman, W. B. Plummer, W. W.
An implementation of a2 multiprocessing computer system
ACM 1st Symp. on 0. S. Prin. (Oct., 1967)

Dijkstra, E. W.
The structure of the '"THE'-multiprogramming system
ACM lst Symp. on 0. S. Prin. (Oct. 1967)

Dijkstra, E. W.
Cooperating sequential processes
Technical U. Findhoven, Netherlands, 1966

Flores, I.
Computer Scftware
Prentice Hall, Inec 1965

Flores, I.-
Computer Programming :
Prentice Hall, Inc. 1966

. Fuchel, K. Heller, S.

Consideration in the design of a multiple computer system
with extended core storage
ACM 1st Symp. on 0. S. Prin. (Oct. 1967)

Lett, A. S. Kdnigsford, W. L.
TSS/360: A Time-Shareed Operating System
AFIP 1968 FJCC

. Mealy, G. H.

Operating Systems
Rand report P-2584; or Rosen: Programming Systems and Languages,
MeGraw-Hill pp.516-559

Mealy, G. H.
The System Design Cycle
ACM 2nd Symp. on 0. S. Prin, (Oct. pp. 1965} 1-7

Needham, R. M. Hartley, D. F.
Theory and practice in operating system design
ACM 2nd Symp. on O. S. Prin: (Oct. 1969) pp. 8-12

Poole, P. C. : Waite, W. M.
Machine independent software
ACM 2nd Symp. on O. S. Prin. (Oct. pp. 169) 19-24

Ramséﬁ, K. Strauss, J. C.
A real time priority scheduler
ACM National Meeting, 1966 pp. 1l6l-166

112

13.

14,

15.

16.

Rosen, S. (Ed.)
IBM operating system/3§0 concepts and facilities

Programming Systems and Languages, pp.598-646

McGraw-Hill Book Co.

Trapnell, E, M,
A systematic approach to the development of system programs
AFIP 1969 SJCC

Van Horn, F. C.

Three criteria for designing computing system to facilate
debugging ’

ACM 1st Symp. on O. S. Prin. (Oct. 1967)

Wirth, N. .
On multiprogramming, machine coding, and computer organization
CACM Vol. 12 No. 9 (Sept. 1969) pp.-489-498

. input-Output Control System

17.

18,

19.

20.

21.

22.

23.

24,

25,

Allen, T. R. Foote, J. E.
Input/output software capability for a man-machine
communication and image processing system

Proc. AFI? 1964 FICC pp. 387-396

Bouman, C. A.
An advanced input-output system for a cobol compiler
CACM Vol. 5 (May 1962) pp. 273-277

Bryant, P.
Levels of computer systems'
CACM 9,12 (Dec. 1966) pp. 873-876

Cohn, C. E.

Incorporation of non-standard input/output device into
FORTRAN systems

CACM Vol. 9 (May 1966) pp. 343-344

Digri, V. J. King, J. E.
The share 709 system: Input-Output Translation
JACM Vol. 6, No. 2 (April 1959) pp. l4l-144

Ferguson, D. E,
Input-Output Buffering and FORTRAN
JACM Vol. 7, No. 1 (Jan. 1961) pp. 1-9

Hassitt, A.
Data directed input-ocutput in FORTRAN
CACM Vol. 10 (Jan. 1967) pp. 35-40

Mock, O. Swift, C. J.
The share 709 system: programmed input-output buffering
JACM Vol. 6, No. 2 (April 1959) pp. 145-151

Ossanna, J. F Mikus, L. E. Dunten, 5. D.
Communications and input/output switching in a multiplex
computing system

proc. AFIP 1968 FJICC pp. 231-240

C.

26,

27.

28.

29.

30.

31.

32.

33.

34.

35,

36.

37.

113

Patel, R. M
Basic I/0‘handdling on Burroughs B6500
ACM 2nd Symp. on 0. 5. Prin. (Cct. 1969)

Roth, B.
Channel analysis for the IBM 7090
16th ACM National Meeting (Sep. 1961)

Smith, R. B.
The BKS system for the PHILC0-2000
CACM Vol. 4 (Feb. 1961) pp. 104-109

Statland, W, Hillegass, J.
A survey of input-—output equipment
Comput. Autom. 13, 7 (July 1964) pp. 16-20, 28

Sutherland, 1. E.
Computer inputs and outputs
Scientific American 215,3 (Sep. 1966) pp. 86~109

Tasini, B. B. Winograd, 8.
Multiple input-output links in computer system
IBM J. Res. Develop. 6,3 (July 1962) pp. 306-328

White, P.

Relative effects of centrol processor and input-output
speeds upon thronghput on the large computer

CACM 7, 12 (Dec. 1964) pp. 711-714

Buffering Between Input-Output and Computer
EJCC 1952 p. 02/022

SEAC input-output system
EJCC 1952 p., 02/031

RAYDAC input-output system
EJCC 1952 p. 02/070-

Operational compatibility of systems-conventions
CACM Vol. 4 (Jan. 1961) pp. 266-267

The structure of system/360 part IV channel design
considerations
IBM System J. Vol. 3-2 (1964) pp. 165-180

Reference manuals

38.

39.

40,

IBM S, R. L.

IBM 1410/7010 Operating System, Programming Systems Analysis
Guide

Form C28~0395-, €28-0396

IBM S. R. L.
IBM 709/7090 Input/Output Control System
Form C28-6100-2

IBM 5. R. L.

Input/Qutput Control System (on tape) specifications and
operating procedures IBM 1401 and 1460

Form C24-1462-2

114

41, IBM S. R. L, :
Input/Output Control System (on disk) specifications and
IBM 1401 and 1460
Form C24-1489-3

42, IBM S. R. L,
IBM System/360 operating system
Supervisor and data management services
Form C28-6646-2

43. IEM S. R. L.
IBM System/360 Operating System
Supervisor and data management macro instructions
form

44, IBM S. R. L. ‘
IBM 7090/7094 Input-Output Control System, programming systems
analysis guide
Form C28-6773

45, IBM S. R. L.
IBM 7090/7094 IBSYS cperating system, vergion 13
System Monitor, Input/Output Control System,
Form C28-6248-7, C28-6345-5,

46. CDC Computer Div.
3200 SCOPE Operating System maintenance documentation

no. M0521.0.

47. CDC Computer Div,
3100, 3200, 3300, 3500 Computer System MS0S reference manual

48. CDC Computer Div.
3100, 3200 computer system SCOPE/Disk SCOPE reference manual

D. Microprogramming and CDL {Computer Design Language)

49, Chu, Y.
A higher-order language for describing microprogrammed
computers
T. R. 68-75 (Sept. 1968) Computer Center, U. of Md.
50. Chu, Y. Pardo, 0. R. Yeh, J. W.

A methodology for unified hardware-software design
T. R. 70-107 (Jan. 1970) Computer Center, U. of Md.

