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Abstract
 

An Input-output Control System (IOCS) initiates and controls the
 

input and output processes of an operating system, thereby making it
 

unnecessary for the user to recode any of these processes. Input-Output
 

Control Systems usually,perform the following functions: (l)'file
 

and buffer handling for the creation and maintenance of the file, the -"
 

buffering of the input-output data, and the blocking or deblocking of
 

the records; (2) input-output scheduling for the examination of the
 

result of an I/O activity and the determination of the next I/O activity;
 

(3) generation of the actual I/O programs, including #e channel programs. 

This report presents a tree-structure design of an IOCS, using
 

double-buffers. The design includes a set of macro instructions and
 

a set of algorithms. There are three levels in the tree-structure:
 

the first level deals with file handling and buffering; the second
 

level with I/O scheduling; and the third level with the device drivers.
 

Special emphasis is placed on the design of the file and on buffering,
 

employing double buffers for files, variable lengths for buffers, and
 

a rotation method for buffer usage. All algorithms are presented in
 

the form of flow charts, including an overall flow chart for the IOCS
 

and 16 flow charts for individual algorithms. The purpose, the major
 

objectives, the input and output, as well as the calling sequences,
 

..are stated for each flow chart.
 

The algorithms are prepared as to be easily convertible into
 

sequence charts which in turn can be described in terms of Computer
 

Design Language (CDL) statements for simulation by the CDL simulator
 

and eventual implementation by microprogramming.
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An IOCS Algorithm for Microprograming 

Jeffry W. Yeh
 

1. Summary' 

This paper is a report on a study of an Input-Output Control System
 

(IOCS). An overview of the IOCS is presented in Section 2.. The purpose, ad­

vantages, and functions of IOCS are presented in this Section. From the studies 

of several Input-Output Control Systems, such as the Input-Output Control System 

of the IBM 7000- series, the IBM 1400 series, and CDC 3000 series, a Simplified 

Input-Output Control System (SIOCS)has been designed. This design is presented
 

in Sections 3 through 6.
 

In Section 3, the design goal and principles of SIOCS are discussed in
 

detail with special emphasis on the evolutionary development of SIOCS. The macro­

instructions of SIOCS is discussed together with several concrete examples.
 

Section 4 presents the functions of SIOCS. These functions are separ­

ated into three parts based on their levels of tree-structure. These are: the 

file and buffering algorighms, the I/0 scheduling algorithms, and the unit inter­

pretive algorithms. This section places the greatest emphasis on the file and 

buffering algorithms. The concept of the file and buffering and the algorithms 

used in handling double buffering are described in detail. The structures and 

formats of internal control blocks and I/0 'tables are presented together with a
 

sample network of these tables and blocks.
 

The algorithms of SIOCS are presented in Section 5. It consists of an
 

overall diagram for the algorithms of SIOCS together with a series of flow charts
 

for all algorithms in SIOCS. For each flow chart, the purpose, the major object­

ives, the inputs and outputs, and the calling sequences of the algorithm are des­

cribed in detail. These algorithms are devided into three parts according to the
 

functions of the SIOCS, and so presented that they could be converted into sequence
 

charts for eventual implementation by microprogramming.
 

In Section 6, -a discussion of this study is presented. This discussion
 

includes the remarks on the designing and microprogramming of the SIOCS.
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2. 	Overview of Input-Output Control Systems
 

In the simplest digital computers, input or output operations cause com­

puter processing to be suspended while the input/output (I/0) is in progress.
 

In this case, no problem of synchronization or overlap-of I/0 time with com­

puting time need concern the programmer. There is no way to conduct more 

than 	one I/0 operation at a time on such an elementary machine configuration.
 

Most modern computers are- fuch more sophisticated and powerful. -They have
 

data channels that'allow -one or more I/0 perations to'be processed simul­

taneously with the Central Processing Unit (CPU). However, this is possible
 

in those programs which- have segments of code that perform the following 

functions before an I/0 operation is executed:
 

(a) 	 Test and determine whether the I/0 device is busy or ready to be used. 

(b) 	If the' I/O device is busy, then either transfer control to the proper 

-routines or keep waiting until the I/O device is free. 

(c)-	 If the I/O device is free, then initiate an I/O operation and jump back. 

to continue processing. 

(d) 1hen the I/O operation is finished, notify the user of this fact. 

The programmer must be assured.that the piece of data to be used in a com­

putation has already been read in before the computation is initiated. It is
 

quite obvious that the programming required to produce this assurance will in­

crease the I/O preparation time and the problem of making input/output execu­

tion efficient will become much more complicated. A solution involves, at
 

least, answers to the following questions:
 

(a) 	How can the total I/O operation time (including the device preparation 

and data transmission time) be minimized without wasting core storage? 

(b) 	 Under what circumstances and with what techniques can operations be 

made 	asynchronous?
 

(c) 	When is the proper initiation time for an I/0 operation?
 

The 	answers to.these questions involve sophisticated programming and are
 

required in order to get maximum use of the hardware. Since these programs
 

ought to be available to every programmer, and since it is beyond the need and/ 

or skill of an average programmer to provide his .own solution, a centralized
 

solution has been developed. That is, to provide the programmer with an In­

put/Output Control System (IOCS) Which would be core resident and always
 

available to every program.
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2.1 	Purpose
 

The IOCS eliminates the time and expense involved in writing special 

I/O routines and allows programmers to concentrate their efforts on the pro­

cessing of data. The programmer need not concern himself with the intricacies 

or increasingly complex input/output hardware. Instead, he is free to
 

write his internal process as efficiently as possible. He need only see the
 

records that are made available to him when he issues simple requests.
 

The IOCS may be considered as an interface between the input/output 

devices and the processing program. It provides the following features: 

(a) 	Simple manner for handling complex 1/0 operations,
 

(b) 	Reading/writing of data records on input/output units concurrently 

with processing, 

(c) 	Scheduling the I/O operations and I/O devices. 

The relationship of IOCS to the operating system and input/output
 

devices is shown in Figure 1.
 

2.2 	Advantages
 

In addition to those which we mentioned above, IOCS offers the following
 

significant advantages: 

(A) 	 I/O operations which are easy to learn and to program 

IOCS provides standard input/output routines and formats. A programmer
 

with 	 little training in the capability of data channels, buffering techniques, 

or other techniques which make input or output operations efficient, can still 

write efficient I/0 programs by using IOCS. The following example indicates 

the steps needed for iniating an I/0 operation within the program, where (1) the 

IOCS is not used, and (2) the IOCS is used. 

Examples:
 

(1) 	The steps needed to initiate an I/0 operations within a program not 

using lOCS: 

(a) 	 assign a unit to be used 

(b) 	select a channel
 

(c) 	test the channel status
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(d) 	 if the channel and unit are available for this program then connect 

it, otherwise either wait or transfer control to some proper 

routine, 

(e) 	 set up the I/0 instructions and channel program, 

(f) 	 initiate the I/O instructions (set up by step (e) ), when the 

channel and unit are connected by step (d). 

(2) The steps needed to initiate an I/0 command within a program using TOCS: 

(a) open a file, declare the file name, file type, and device type, 

(b) 	issue a simple I/0 macro-instruction (e.g., READ, WRITE,...)
 

(B) IOGS Provides for Asynchronous Operations
 

By using an input buffering technique, IOCS allows the system to read 

ahead on input devices, thus diminishing waiting time. Output buffers are 

used to store records to be transmitted to devices currently in use without 

holding up computation. Also, with the assistance of the I/0 interrupt rou­

tines, creation of fully overlapped I/O buffering is allowed without re­

quiring waiting loops to process the buffered operations. 

(C) Symbolic Addressing of Files and Units 

Symbolic addressing allows the user to communicate with I/O devices in 

a very convenient way. The user creates a file by telling the system the 

file name and the devices which are associated with that file. Future I/O 

references to the file need only specify the file name. The system will 

match names and then will perform the I/O operation. The symbolic addressing 

of units also allows for flexibility when the program must be executed 

under a different configuration. 

(D) IOCS Affords Flexibility of Operation
 

If a specific input-output device which a program is expected to use
 

is out of commission or not available at the time the program is to be
 

executed, the IOCS assigns an alternate device to it. Also, if a program
 

expects a particular type of device to be used and does not care which
 

actual physical unit it is, IOCS will assign an appropriate available
 

unit to it.
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2.3. Terminology
 

In order to discuss the functions of Input-Output Control System in
 

some detail, the terminology used in the description of an input-output sys­

tem first must be introduced and then defined with precision. Then, the
 

general aspects of an Input-Output Control System'can be discussed briefly.
 

The terminology presented in this section is in common use and can
 

be interpreted reasonably precisely in the case of any given machine. These
 

terms are classified under three major groupings:
 

2.3.1. Software Terminology
 

(a) 	Random and sequential input/output calls: Sequential calls include
 

calls for the next record, message, character, etc., as well as calls
 

for 	spacing and backspacing. Random calls include calls for data in 

nonsequential order. For example, a call to backspace the tape file
 

is a random call.
 

(b) Record and block: The information is often written as a sequence of
 

words or characters separated by gaps. These contiguous sequences
 

will be called a record. A record of maximum size (when such a 

maximum exists) is called a block. A logical record is the sequence
 

of related data items that the program logic treats as a record. 

A physical record is a set of adjacent data characters terminating with
 

an end-of-record indicator.
 

(c) 	 Blocking and unblocking: Blocking is a method of compressing data 

that would normally appear in several physical records into a single 

physical record. It is normally used in transcribing data from one
 

physical medium to another. For example, punched cards as a primary 

input to a system normally is transferred immediately upon reading to 

an auxiliary memory device, such as magnetic tape or drum. These 

latter devices have characteristics that favor larger physical records 

than the 80. column punched cards. Thus, the information in several 

cards (perhaps 10) is combined, this is blocking. Unblocking is the 

reverse process.
 

(d) 	File: A group of records is called a file. When reading input, end­

of-file is the condition that is recognized as the end of the group;
 

for 	output, the end-of-file condition is written in order to delineate 
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an 	 output group. Since the word file is also used in a logical 

sense, we need two terms, logical file and physical file. These
 

are defined analogously to the logical record and physical record.
 

2.3.2. Hardware Terminology
 

A block diagram of an input-output hardware configuration as shown
 

in Fig. 2 will assist in the clarification of the meaning of the subsequent
 

hardware terminology.
 

(a) 	Channel: A channel is a hardware device which is employed to trans­

mit both control information and data between a controller and the
 

computer. The channel must be able to inform the processor of error
 

conditions or termination of an operation. Note that the channel is
 

parallel computer.
 

(b) 	Controller: A controller is a hardware device which is used for
 

selecting a satellite unit, and relaying the control orders to this
 

particular unit. (e.g., rewind, eject sheet, read forward, position
 

access mechanism to a given address, etc.), and transmitting data
 

between the selected unit and the channel. It must also be able to 

relay exceptional or normal conditions (e.g., parity error, end-of­

record, unit busy, etc.) back to the machine via the channel. 

(c) 	Unit: A unit (I/ unit) is that part of the computer system which
 

introduces data into or extracts data from data storage. For example,
 

magnetic tape unit is used to send data from tape to memory or to
 

record data from memory onto tape.
 

2.3.3. Terminology Used to Describe Input/Output Techniques
 

(&) I/0 instruction, Channel command, or Control order: I/0 instructions 

are 	those instructions which are interpreted and executed by the cen­

tral processor. Channel commands are those words that initiate and
 

control the 'action of the channel itself. Controller order are those 

words .that. initiate and control the action of a controller. 

(b) Channel Program: A channel program consists of one or more channel 

commands that control a specific sequence of channel operations. 

Execution of the specific sequence is initiated by a single start 

I/O instruction. 
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(c) Buffering: An area of memory which is used to store temporary 

data during a transfer of information to or from an I/0 device is
 

called a buffer. Buffering is a technique which uses the storage
 

buffers to compensate for a difference in data handling rates when
 

transmitting data from one device to another, or to compensate for
 

the difference in physical size natural to different hardware de­

vices. Note that blocking is a form of buffering. 

(d) Synchronous and asytichronous input/output: These are two basic 

operating modes for any particular input/output system. In the 

synchronous T/0 system, the physical transaction associated with 

a user's input/output statement (or instruction) is carried out 

during the statement's execution. Control is not returned to the 

program until the actual transaction is completed. In an asyn­

chronous system, the physical input/output transactions are not 

necessarily synchronized or interlocked with the execution of a
 

user's input/output statement.
 

(e) Interrupt: An interrupt is a break in the normal flow of an
 

instruction sequence such that the flow can be resumed from that 

point at a later time. An interrupt is usually caused by a signal
 

from a source external to the Central Processing Unit. The inter­

rupt causes an automatic transfer to a preset storage location,
 

where action is or where some other appropriate action is taken.
 

(f) 	Trap: A trap is an automatic transfer of control to a known
 

location. This transfer occurs when a specified condition is de­

tected by hardware. A trap is different from an interrupt in that
 

it is caused only by the Central Processing Unit, the program, or
 

some internal event. When a trap condition is detected and the 

corresponding trap is called for, a transfer of control to a hard­

ware-designated location occurs. Simultaneously the location from 

which the trap occurred is recorded. The hardware-designated loca­

tion usually contains a transfer to the proper trap-handling routine,
 

or it may ignore the trap instruction. 
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2.4. Functions 

Having introduced the terminology, the functions of IOCS can now be
 

described.
 

2.4.1. Input-Output Buffering Routines 

The input-output buffering routines is based on the characteristics 

of the following:
 

(a) A standardized set of physical and logical formats.
 

(b) A set of internal tables describing the current status of internal
 

buffers and the buffers themselves.
 

(c) A set of management routines maintaining the information contained in
 

the internal tables. The block diagram in Figure 3 shows how the
 

characteristics of the items described fit into the flow of the buffer­

ing routines. 

Figure 3 illustrates the interactions within the buffering system, where 

the parameter names are explained in Table 1. Now, let us consider some 

typical operations as they might occur. The user's program obtains information 

from input unit A-2 (e.g. channel A unit 2) by calling the READ subroutine.
 

Information is obtained from the input-processing buffer immediately. If
 

this buffer does not contain all the information requested, it is emptied
 

(i.e., all the data is transferred from the processing buffer into use's
 

working area) and the next quiet buffer is called up to replace the present
 

processing buffer and the remaining information required is obtained from
 

this huffer. Meanwhile, the present processing buffer is placed in the
 

available buffer pool. At this time the DISPATCHER may be notified by the
 

'critical amount of buffers' (sometimes called the CRITICAL BUFFERS) routine 

that another buffer is ready for input data from a device. Note that the 

DISPATCHER is the routine which manages the status of the buffers in the 

system. The CRITICAL BUFFERS routine is used to manage the status and the 

number of the quiet buffers in the quiet buffer pools. 

On the other hand, the. user's program may send the information to the 

output unit B-2 (e.g. channel B unit 2) by calling the WRITE subroutine. 

Information is transferred to the output-processing buffer immediately (see 

the right half part of Fig. 3). If this output-processing buffer cannot 

hold all the information requested, the buffer is filled and then place it 
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Table 1. Terms of the buffering system in Fig. 2
 

Term 	 Explanation
 

Working storage 	 That area utilized by the customer
 

for program data, intermediate and
 

final results.
 

Processing buffer 	 A buffer unit to or from which the
 

user's program is in the process of
 

transmitting data.
 

Input (output) buffer 	 A buffer unit currently being operated!
 

upon (read into ro out of) by one
 

of the channels.
 

Quiet Buffer A buffer unit containing current
 

information coming from or being
 

sent to one of the physical input­

output units but which is currently
 

activation.
 

Available buffer 	 A buffer unit not currently employed.
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into the output-quiet buffer pool. Meanwhile, the next available buffer is 

called upon to hold the rest of the information. After the completion of the 

above operation, the DISPATCHER may be notified by the CRITICAL BUFFERS 

routine that another buffer is waiting for output. Note that the CRITICAL 

BUFFERS routine activates the DISPATCHER only when the buffers in the input
 

(output) quiet buffer pool reach a predetermined critical amount.
 

2.4.2. Input-Output Scheduling Routines 

The input-output scheduling routines can be divided into two parts, 

namely, the I/0 initiation routines and the I/0 completion routines (or I/0 

Executor). 

The I/0 initiation routines are activated when an I/0 operation is
 

required by a user's program (this includes the supervisor's routines). The 

I/0 initiation routine determines the nature of the I/0-request, and checks 

the availability of the requested I/0 device. If the I/0 facility is avail­

able to perform that function then the I/0 action is initiated. If the I/0 

facility is not available, then one of two actions occur, either the system
 

waits until the facility is available or it puts the I/0 request into a wait­

ing queue for initiation at a later time. Note that the term ' to initiate
 

an I/0 action' in this section means 'first connect the required I/0 device,
 

select the proper unit interpretive routine and then pass control to that
 

routine'.
 

The I/0 completion routines (I/0 Executor) is the TRAP Supervisor 

which takes over control during trapping and finally surrenders its control
 

back to the program which was using the input-output system. The I/0"Executor 

determines when an I/0 operation has just ended, checks for detected errors,
 

determines which I/0 operation is to be performed next, and initiates the 

new action.
 

A typical I/0 Executor is shown in-Fig. 4.
 

2.4.3. Unit Interpretive Routines (or Unit Drivers)
 

Unit interpretive routines are hardware dependent, and hence every 

type of I/0 devices has a unit interpretive routine associated with it. The 

unit interpretive routines are: called by the I/0 initiation routines. If a 

unit interpretive routine is activated, it first checks the function code of 
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the 	 I/0 request and then: 

(a) 	Sets up the I/0 instructions for that I/0 request, 

(b) 	 Forms a list of channel commands (i.e. forms a channel program) to be 

performed on the unit, 

(c) 	 Issues those I/0 instructions, and 

(d) Returns control to proper routine.
 

A typical unit interpretive routine is shown in Fig. 5.
 

2.4.4. Communications Among Routines 

(a) The file for communication between the user's program and the input­

output control system
 

A file is a complete set of logical records which a user may
 

treat as a logical entity. All files must be defined and opened before 

they can be processed. Similarly, a file must be closed when activity 

in the file is to be terminated. There are two routines, READ and 

WRITE, which serve as communication between the file system and the 

buffering system. The READ routine reads the information out of the 

input-processing buffer into the user',s working area, while the WRITE 

routine puts the information into the output-processing buffer. Note 

that a buffer can be treated as a logical record of a file. In addi­

tion, each file has a File Control Block (FCB) associated with it. 

The File Control Block contains several items of information about 

the 	file. This information includes the present status of the file,
 

the 	processing buffer which is currently in use by this file, and the 

address of the Unit Control Block (UCB) of the unit to be used by the 

file.
 

(b) The use of tables for communication within the input-output control 

system
 

At 	 the present time, most of the input-output systems are able 

to refer to I/O units by symbolic names. A symbolic assignment of 

input-output units has at least three advantages: 

(1) Object progrbms refer to storage cells rather than to absolute 

unit address,
 

(2) Unit assignments are made by the system and need not be known 
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by the programmer in advance.
 

(3) In case the full system is not working, I/0 activity can be
 

continued, albeit at reduced efficiency. This is an example
 

of what is called graceful degradation of the system.
 

In order to be able to refer to an I/O unit symbolically, use
 

is made of a symbolic unit table. This tabi, contains entries for all
 

the symbolic names of the units. Each table, entry contains the address 

of a Unit Control Block which is associated-withleach name. In the 

general case, several symbolic units can be associated with one Unit 

Control Block, while each physical unit has only one Unit Control Block 

associated with it. The Unit Control Block 'contains the unit address 

as well as the-unit status, types of information in it and unit posi­

tion information. in addition, for each channel there is an associated 

Channel Control Block (CCB). A Channel Control-Block contains the chan­

nel status, the interrupt address, and the address of the Unit Control 

Block for the unit which is currently connected to this particular 

channel. 

A more graphic description of the input-output system communication
 

is given in rig. 6.
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3. A Simplified IOCS (SIOCS) for Microprograming
 

Unified hardware-software design is the main goal of this research
 

(See Reference [50] for detail). This paper presents one of the initial
 

studies of this research, namely extracting the algorithms from a piece of
 

software and presenting it in some form which is suitable for eventual micro­

programming. The following sections (Sections 3 through 6) describe an Input-

Output Control System named a Simplified Input-Output Control System (SIOCS), 

where the functions of IOCS are defined precisely in terms of their level of 

tree-structure. The algorithms are so presented that it is able to convert
 

to sequence chart for eventual microprogramming.
 

3.1. Design Principles
 

A major consideration in the design of SIOCS is to make it simple yet
 

at the same time extensible and machine independent, with a minimum number of 

extra restrictions and assumptions. Two basic aspects of the design of SIOCS 

are: 

(a) 	The assignment of functions of an I/0 system to levels in a tree­

structured (or hierarchical structured system).
 

(b) 	 The use of a double buffering technique. 

3.1.1. Simple yet extensible and machine independent
 

SIOCS was chosen for the initial study of the Input-Output Control System 

and its implementation as a micro-program. The first consideration for de­

signing SIOCS was to make it simple but, at the same time, extensible. SIOCS
 

contains all the tables and control blocks which most conventional systems
 

use. For example, SIOCS contains the channel control word for each channel, 

thus 	permitting several I/0 devices to share the same channel at different
 

times (see 3.1.2., this feature has not been implemented yet in SIOCS). The
 

design philosophy follows the common features of the IBM 7000 series, IBM 1401,
 

1410, and CDC 3000 series, since these are the most popular batch processing
 

systems. SIOCS consists of three major parts: the file and buffering system,
 

the I/0 scheduler, and the unit interpretive routines. The first two parts
 

are emphasized and described in detail, while for the last part, only the al­

gorithm is presented. The algorithm is designed to generate a machine
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executable code for any particular I/0 device. SIOCS is completely defined for
 

a given particular computer system configuration whenever the unit interpretive
 

routines and the I/0 function tables are provided, this makes SIOCS machine 

independent.
 

3.1.2. Restrictions and A~sumptions
 

SIOCS assumes that every 1/O device is connected with one channel at all
 

times. This assumption frees SIOCS from the necessity of checking and scheduling 

the channel and connecting the channel with the proper I/ de~ice every time an 

I/O operation is requested. SIOCS .also assumes only one mode and that no auto­

matic label is used. This mode may be considered as Binary-Coded Alphabetic
 

(BCD, EBDIC, or Field Data). This assumption results in the necessary restric­

tion that every tape file should be able to fit into the one physical tape reel.
 

Since SIOCS does not check the label for each file, no file protection is
 

implemented in SIOCS. At the present stage, only the tape operating system is
 

implemented in SIOGS. That is, no random-access mass storage is used in the 

hardware configuration. One hardware constraint that should be mentioned here 

is that the central processor must have the ability to process 1/O interrupts.
 

3.1.3. Levels within an I/0 system
 

The concept of a tree-structured operating system has been proposed by 

Dijkstra. The important aspect of this organization is that all activities 

are divided into sequential processes. A tree structure of these sequential 

processes results in an hierarchical or ring organization. Each procedure in 

the system is given its level, or place in the hierarchy. Each call may be 

downward only. Thus, if at each level, procedures are organized about an ex­

panding set of relevant states, the system can be exhaustively tested and proved 

to work. As Dijkstra and others have suggested, this may be the only way to 

make certain that a system can be debugged before the hardware is obsolete.
 

The hierarchy of levels of SIOCS to be presented in this paper can be 

divided into two classes: one is the levels pertaining to the I/O devices and 

the other is the levels of I/0 programs themselves. Fig. 7 illustrates the 

three levels of I/O units, they are: File, Symbolic Unit, and Physical Unit; 

and four levels of I/0 programs, they are: User's Program, Buffering Routines,
 

I/0 Scheduling Routines, and Unit Interpretive Routines. 
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Figure-7. The Levels of I/0 System
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The notion of levels can best be introduced by the following example.
 

Consider a user using SIOCS to perform 1/0 operations. At the user's level
 

(User's Program), the computer is viewed as a CPU with a main memory, and several
 

tape units for input-output purposes. Each tape unit has its own symbolic
 

name, for instance, cardreader, printer, disk,..., etc. Whenever a user wants
 

input (or output) from some particular tape device, he may achieve this simply
 

by opening a file, and by assigning it to that particular tape unit. This
 

can be thought of as assigning a name to a reel of tape and mounting this reel
 

of physical tape to the desired tape device. Similarly, closing a file can be
 

imagined as dismounting that reel of tape from the device. By using a simple
 

READ or WRITE request, the user can read out, or write into that reel of tape.
 

On the other hand, the system programmer who wrote the buffering system, at
 

the level of Buffer Routines, need not have had any knowledge of the file system.
 

He might view the computer as a Buffering Machine. Whenever the output buffer 

is full, it will automatically empty it. The buffering routine is just as simple
 

as a routine used to assign the proper status for each file when it changes. 

In this manner the user need not have any specific knowledge of the internAl 

operation of filling or emptying a buffer, but only the way in which he can 

interact with it. Similarly, the system programmer who wrote the I/0 Scheduling 

Routines may assume that the user will request I/0 operations very frequently 

and that the duties of the I/0 Scheduler are: (1) to keep the I/0 devices 

as busy as possible; (2) to respond to the I/0 request as quickly as Possible; 

(3) to report to the user immediately whenever the I/0 request is finished. 

In the lowest level of I/0 programs, the unit interpretive routines, only 

the knowledge of how to generate I/0 instructions and channel commands is 

required of the programmer. 

Note that only the unit interpretive routines are hardware dependent, 

since it is in this lowest level that the actual code for the channel programs 

will be generated and executed. 

There are several advantages to this hierarchical organization. The
 

most important is logical completeness at each level. It is easier for the
 

system designers and implementers to understand the functions and interactions
 

of each level and thus the entire system. Another advantage is debugging
 

assistance, since whenever an error occurs it can be localized at a level and
 

identified easily. As has been mentioned before, it may be the only method 

of debugging the system. 
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3.1.4. Buffering Algorithms
 

The basic characteristics of the buffering algorithms used in SIOCS are:
 

(a) 	 Each file is associated with two equal-size buffers (double buffers), 

(b) 	The buffer size is dependent upon the I/0 device,
 

(c) 	 Each processing buffer has a critical number associated with it. 

As mentioned above, each file in SIOCS is associated with two equal-size
 

buffers. One of these two buffers is used as an input (or output) buffer 

into which data is read in ( or written from). The other is used as a processing 

buffer where current data are obtained. Fig. 8 shows the ideal model of this
 

buffering scheme.
 

In Figure 8, the shaded areas represent the portions of the buffers which 

contain the data, while the blank areas represent empty areas of the buffer. 

The 	 arrows below the two double buffers in this figure indicate the direction 

of the rotation of the double buffers. In the illustration above, an input
 

device is filling the buffer A, while the buffer D is being emptied into an 

output device. Meanwhile, the user's program READs information from buffer B 

for processing. After processing, it WRITEs the information into buffer C. 

In this case buffer A is the input buffer, buffer B is the input-processing 

buffer, buffer C is the output-processing buffer, while buffer D is the output 

buffer. Whenever buffer A is filled and buffer B is emptied, they are inter­

changed. At this time, buffer B is called the input buffer and buffer A is 

called the input-processing buffer. Similar treatment occurs for buffers C and D.
 

Figure 8 shows an ideal model which assumes that the time-interval 

required for filling an input (or output-processing) buffer is equal to the time­

interval required for emptying the input-processing (or output) buffer. Un­

fortunately, these conditions usually do not hold. Some basic principles to
 

be applied for solution of this problem are:
 

(a) 	When inputting data, a sufficiently large buffer must be made avail­

able for input transmission well ahead of the active routine's
 

immediate requirements.
 

(b) 	During output, a sufficiently large buffer must be supplied to 

contain the potentially large amounts of data that can be generated. 

One way to apply the above mentioned two principles is illustrated as
 

follows. Consider that a program requests input from an input device, UNTI.
 

Let Tf be the time-interval required for UNT to transmit one physical record
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into the input buffer. Let T be the average time required for the program
e 

to request a physical record from the input-processing buffer and then process
 

it.
 

It is clear that Tf is fixed and is dependent on the hardware device,
 
while Te may vary from one program to the next.
 

In the case where te T f (that is, the processing time is greater than or
 

equal to the-I/O time), we must consider the ratio between the I/0 initiation
 

time and the actual data transmission time. Let TI be the average time required 

to initiate an input operation of UNT1. As shown in Fig. 9.1, if T. is smaller 

in comparison with Tf, then it will be better for the buffer size to be a small 

multiple (i.e., one or two) of the physical record. On the other hand, as
 

shown in Fig. 9.2, if Ti is much larger than TfV a large multiple of the
 

physical size is required.
 

In addition to the above considerations, we must evaluate the current
 

request and decide the best time to initiate the next input operation. We
 

don't want to transfer data too far in advance of when the active routine will
 

actually process that data. This could mean wasting core storage or wasting 

time due to the fact that the data may never really be required by this active 

routine. One way to insure sufficient READ AHEAD is to set up a critical
 

amount indicator for the input-processing buffer. Whenever the available data 

in the input-processing buffer is less than the critical amount, the next 

input operation is initiated. Note that by setting up the critical amount
 

indicator we permit the data to be transferred into the input buffer before 

the input-processing buffer is emptied.
 

An example for assigning the buffer size and the critical amount of 

data indicator for the processing buffer is as follows. 

Let Tf/ T= m/n 

Then set . buffer.size = n* (size of physical record) 

critical amount = m* (size of physical record)
 

Thus Tf * n = Te * n as shown in Fig. 9.3 

In the case where T<Tf, program X requests input data from JNTIl very 

expeditiously. Even though UNTi continuously transfers the data into buffers,
 

the program X still-has to wait for data. -In-this ,case, we only need to set
 

the buffer size: equal to the size of physical record. This makes the total 

execution time as small as possible. From Fig. 9.4, one may easily see the
 

difference between two execution times.
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The problems of output buffers have similar characteristics to those of 

the input buffers. However, note that the input-processing buffer requires a 

critical amount indicator while the output-processing does not. This distinction 

is because there is-no possibility of WRITING AHEAD (that is, there is no 

possibility of sending out some information which has not yet been processed). 

Different computer installations may have quite different collections of
 

I/O devices, and different user patterns. After some statistical studies, an
 

assumption can be made about user characteristics in order to fix the buffer 

size and the critical amount parameter associated with each I/O device. The 

buffering system of SIOCS was designed under the assumption that for every I/O 

device there is a fixed buffer size and there is a critical amount indicator
 

associated with it. These two items of information are stored in the symbolic
 

unit table which is generated at the system generation time. They can be
 

changed by the system programmer.
 

Besides the buffering system mentioned above, SIOCS allows the user to 

establish his own buffering routine without reference to the-SIOCS buffering 

system. Through these means, a user is free to play with any buffering scheme 

that he may choose. 
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3.2 Macro-instructions and Examples
 

3.2.1 The Macro-instructions in SIOCS
 

(1) File handling 

(a) OPEN -- initiate processing of a file
 

The OPEN macro-instruction has the following format: 

[FILEN OPEN :TYPE, DEVICE (REWIND) 

FILENAME is the name of the file to be opened. (i.e., the.symbolic address
 

of the File Control Block to be opened.)
 

TYPE is the one of the following file types which is to be assigned to 

the file.
 

IN -- input file
 

OUT -- output file
 

NONBUF -- non system buffering file
 

DEVICE is the device type or symbolic name of a particular unit which is 

to be used by the file. Such as the following: 

TAPE -- magnetic tape 

CARDREAD -- cardreader
 

PRINTER -- line printer 

CARDPUNCH -- card punch
 

SYSUT n -- system utility unit n
 

SYSIN n -- system input unit n
 

SYSOU n -- system output n
 

REWIND is the tape rewind operation. This field is optional. 

(b) CLOSE -- terminate processing of files
 

The CLOSE macro-inscruction has the following format: 

CLOSE (OPTION): NAMEl, NAME2, ... -

As an option, one of the following can be specified for closing a list
 

of files:
 

REWIND -- close and rewind the tape
 

UNLOAD -- close and remove the tape from the UNIT
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The NAME n is the name of the file (i.e., the symbolic address of the File 

Control Block) to be closed. Several files can be closed by using one 

macro-instruction, note that the option field applies to every file in
 

the list (e.g., if UNLOAD option is specified, then every file in the 

list is closed and unloaded).
 

(c) REDEF -- reassign the file type to the file
 

The REDEF macro-instruction has the following format: 

REDEF. FILENAME, TYPE (REWIND) 

FILENANE is the name of the file (i.e., the symbolic address of the File
 

Control Block) to be redefined. 

The TYPE is one the following types of the file to be assigned to the file. 

IN -- designates an input file
 

OUT -- designates an output file
 

NONBUF -- don't use system buffering for this file
 

REWIND -- This is a rewind operation. This field is optional.
 

(2) Data Handling 

(a) READ -- read data
 

The READ macro-instruction has the following format: 

i s t READ -FILE, ERR, EOF, INTRUP, ADDR., N 

FILE is the name of the file which the -data is 'tobe read from. 

ERR is the address of the user's error recovery routine. If this field is 

blank, the system error recovery routine is assumed. 

EOF is the address of user's end-of-file detection routine. If this field
 

is blank, the system error checking routine is assumed. 

INTRUP is the address of the user's interrupt routine. If this field is 

blank, the system interrupt routine is assumed. 

is t 
ADDR. is the address of the first word where the data are to be stored.
 

N is the number of words to be read in. 

(b) WRITE -- write out the data 
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The WRITE macro-instruction has the following format:
 

-----------.. ­.
 

WRITE FILE, ERR, INTRUP, 1s t ADDR., N
 

FILE is the name of the file to be written into. 

ERR is the error return address. If this field is blank, the address of 

system error recovery routine is assumed. 

INTRUP is the address of user's interrupt routine. If this field is blank, 

then the address of the system interrupt return address is assumed. 

(c) Nondata request 

There are four non-data request macro-instructions, namely, REWIND, MOVE, 

BKSP, and WEOF. The formats of these four macro-instructions are as follows:
 

~------------.....---


REWIND FILENAIC
 

MOVE FILENAME, FN
 

L BKSP FILENAME, RN 

I 'WEOF FILENAME 

FILENAME is the name of the file. 

FN is the number of end-of file markers to be used.
 

RN is the number of en-of record markers to -be used. 



32 

3.2.2 Some examples which use SIOCS
 

Example 1:
 

The following program, in the IBM 7090, will read a deck of 10
 

cards and copy it onto magnetic tape. After that, it writes an
 

end-of-file on tape and rewinds it. Then the program copies the tape
 

on the card-punch and the line-printer. The output will be 10 cards, 

each card consists of the first 60 columns of the original input card.
 

A listing of the input cards will also be given.
 

CARDS 	 OPEN IN, CARDREADER . OPEN CARD INPUT FILE 

TAPE 	 OPEN OUT, TAPE .OPEN TAPE OUTPUT FILE 

AXT 	 10'1 

READ CARDS, ERR,,, RECORD, 14 .READS ONE CARD AND 

WRITE TAPE, ERR,, RECORD, 14 .COPY IT TO TAPE 

TIX 	 *-3,1,1
 

WEOF TAPE .WRITE END-OF-FILE 

REDEF TAPE, IN, REWIND .REWIND AND REDEFINE 

PRINT 	 OPEN OUT, PRINTER .OPEN PRINT OUTPUT FILE
 

PUNCH 	 OPEN OUT, CARD-PUNCH OPEN PUNCH OUTPUT FILE 

LOOP 	 READ TAPE, ERR, EOF,, RECORD, 14 .READS 14 WDS FROM TAPE 

WRITE PUNCH, ERR,, RECORD, 10 .PUNCH 1ST 10 WDS 

WRITE PRINT, ERR,, RECORD, 14 .PRINT 14 WDS 

TRA 	 LOOP 

EOF 	 CLOSE CARDS, TAPE, PRINT .CLOSE ALL FILES
 

CALL 	 EXIT
 

ERR 	 TRA SYSDMP .SYSTEM DUMP ROUTINE
 

RECORD 	 BSS 14
 

Example 2:
 

This program performs the following operations:
 

(a) Reads a deck of cards.
 

(b) Copies 50 words from card-images onto two tapes.
 

(c) Writes an end-of-file and then rewinds both tapes.
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(d) Reads tdpe 1 without a system buffer while it sets a counter to count
 

how long the read operation will take.
 

(e) If the read operation is completed, it prints out the counter and 

the data on the tape, otherwise it prints out the I/0 status and 

the counter only. 

(f) Reads tape 2 using the system buffering scheme. Also, it sets-up a
 

counter to count how long the read operation will take.
 

(g) Prints out in the same manner as step 5.
 

CARD OPEN IN, CARDREADER 

TAPE 1 OPEN OUT, TAPE, REWIND 

TAPE 2 OPEN OUT, SYSUT 1, REWIND 

READ CARD, ERR, EOF,, RECORD, 50 

WRITE TAPE 1, ERR,, RECORD, 50 

WRITE TAPE 2, ERR,, RECORD, 50 

WEOF TAPE 1 

WEOF TAPE 2 

REDEF TAPE 1, NONBUF, REWIND 

PRINT OPEN OUT, PRINTER 

IN READ TAPE 1, ERR, 

STZ FLAG 

STZ COUNT 

LOOP CLA COUNT 

ADD =1 

STO COUNT 

ZET FLAG 

TRA CHECK 

TRA LOOP 

EOF, INTRUP, RECORD, 50 


INTRUP NOP :STATUS: ADDRESS: 

STO TEMP 

CLA =1 

ST0 FLAG 

CLA TEMP 

TRA INTRUP 

.OPEN CARD INPUT FILE
 

.OPEN WITH REWIND 

.OPEN, REWIND SYSUT 1
 

.READS 50 WES
 

.COPY ON TAPE 1 

COPY ON TAPE 2 

.WRITE END-OF-FILE
 

.WRITE END-OF-FILE 

.REWIND AND REDEFINE 

.OPEN PRINT FILE
 

.READS 50 WES 

.SET FLAG-OFF
 

.RESET COUNTER=0 

. INCREASE COUNTER 

.BY ONE
 

.FLAG=?
 

. FLAQ=ON 

. FLAG=OFF 

.STATUS WORD IN HERE 

. SAVE AC 

.SET FLAG=ON 

.RESET AC 

.GO BACK TO PROCESS 
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CHECK CLA INTRUP .CHECK STATUS WORD 

CAS COMPLT 

TRA INCOM .1/0 IS INCOMPLETED 

OUT WRITE PRINT, ERR,, COUNT, 51 .1/0 COMPLETED, PRINT 

TRA AGAIN-3 .OUT 

INCOM WRITE PRINT, ERR, COUNT, I .PRINT OUT COUNTER 

WRITE PRINT, ERR,, INTRUP, 1 .PRINT OUT STATUS WD 

CLA INTRUP 

PBT =1 .CHECK UNIT 

TRA EOF .UNIT IS SYSUT 1 

AGAIN REDEF TAPE 2, IN, REWIND . OTHER UNTIL, REDEFINE 

CLA AGAIN .CHANGE FILENAME OF 

STA IN .THE READ STATEMENT 

TRA IN 

EOF CLOSE CARD, PRINT 

CLOSE, U TAPE 1,. TAPE 2 .CLOSE WITH UNLOAD 

CALL EXIT .SYSTEM EXIT ROUTINE 

ERR TRA SYSDNP .SYSTEM DUMP ROUTINE 

TEMP BSS 1 

COUNT PZE 0 

RECORD BSS 50 

FLAG BSS 1 

COMPLT OCT =.... .1/0 COMPLETED 
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4. The Functions of SIOCS
 

4.1 The File and Buffering
 

4.1.1 Defining a File
 

(A) 	Opening a File 

A FILE is a collection of related records treated as a unit. All 

files must be opened before they can be processed. The OPEN macro 

instruction opens a file and describes, in detail, an, individual file 

(Example 1). An OPEN macro instruction must declare the file name, file 

type, and device used, rewind option for each file processed by IOCS. 

Example 1: 

Label Operator Operands 

Name I Type, Device, (Rewind)
 

FILEA OPEN NONBUF, CARDREADER
 

2 DRUMA OPEN IN, DRUM 

I1 

3 OUTAP OPEN I OUT, TAPE, REWIND 

Line 1: The OPEN macro instruction opens a card inputfile named FILEA.
 

Line 2: The OPEN macro instruction opens a drum input file named DRUMA.
 

Line 3: The OPEN macro instruction opens a tape output file, named OUTAP.
 

This file must be rewound before opening.
 

(B) Closing a file 

When activity on a file is to be terminated, it must be closed. At 

closing, all I/0 activity on a file ceases. The CLOSE macro instruction 
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closes a list of files or a single file (Example 2)
 

Example 2:
 

Label Operator Operands
 

Name 1, Name 2... 

1 CLOSE FILEA 

2 CLOSE DRUMA, OUTAP 

Line 1: The CLOSh macro instruction closes a file which is named FILEA.
 

Line 2: The CLOSE macro instruction closes a list of files which contains
 

DRUMA file and OUTAP file.
 

(C) Redefining a file
 

There are three different type of files, namely, IN (input file),
 

OUT (output file) and NONBUF (non-buffered file). Every IN and OUT file
 

is associated with a double-buffer, while a file which was declared
 

nonbuf means that the file is to be read from or written onto a device
 

without using any system buffering routines. (for details of a buffering
 

technique used in SIOCS see the next section 4.1.2) The REDEF macro
 

instruction is used for the redefinition of a file which was opened previously
 

(Example 3). The advantage of using a KEDEF is that it allows a file to
 

be defined first as one type and then changed to another type later.
 

One need not declare a change in the 1/O device associated with the file.
 

It also allows IN/OUT files to share the same buffers.
 

Example 3:
 

Label Operator Operands 
F .. .Name, Type, (Option) 

1 REDEF I FILEA, NONBUF 

2 -. REDEF DRUMA, OUT 

3 REDEF OUTAP, IN, REWIND 
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Line 1: 	 The REDEF macro instruction redefines the file FILEA as a
 

NONBUF file. If this file was so defined previously, then this
 

macro statement is treated as a no operation.
 

Line 2: 	 The REDEF macro instruction redefines the file DRUMA to be an
 

OUT file. The operation of this macro statement are:
 

Old Type Operations of the macro statement
 

OUT No operation
 

IN 1. Redefine DRUMA as an output file
 

2. Use the same buffets which were used before.
 

* NONBUF 	 1i. Redefine DRUMA as an output file
 

2. Allocate a buffer area for this file
 

Note: Old type means previous defined type of the file
 

Line 3: 	 The REDEF macro instruction redefines the file OUTAP to be an
 

input file with rewind operation. The operations of this macro
 

statement are:
 

SOld type Operations of the macro statement
 

OUT 1. Redefine outap as an input file
 

2. Use the same buffers which were used before;
 

3. Rewind 

IN Rewind only 

NONBUF I 1i. Redefine OUTAP as an input file 

2. Allocate a buffer area for file outap
 

1 3. 	Rewind 

4.1.2 	 Buffering
 

4.1.2.1 	 Buffer Area
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Every file, except a nonbuffered file, is associated with a double­

buffer. A double-buffer is a pair of equal-size blocks in core storage.
 

It is referred to by two pointers TOBUF and PROBUF, and is used for inter­

mediate storage of input/output data. (figure 10)
 

Whenever an IN/OUT file is opened or redefined, the SIOCS allocates
 

two equal-size contiguous core storages, and assigns them as double­

buffers for this file. The buffer size is equal to N*(physical record
 

size of that device) depending on the device used by the file, where N is
 

an integer factor which depends on the device data transmission rate and
 

the memory data transmission rate. As soon as a file is closed, the double­

buffer associated with it is, released. 

4.1.2.2 Buffer cycles
 

When the double-buffer is used for an input file, it can be considered
 

as an input double-buffer, although the input status may be only temporary. 

Similarly, when the double-buffer is used for an output file, it can be
 

considered as an output buffer.
 

(A) 	Input buffer cycle
 

The logic flow for the input buffer cycle is shown in Figure 11.
 

IOBUF: A pointer which points to the current I/0 buffer
 

IOBUFR: The current I/O buffer
 

PROBUF: A pointer which points to the processing buffer
 

PROBUFR: The current processing buffer
 

CRTCL: The critical number of items in the PROBUF buffer 

AVECT: A counter of the number of available items in the PROBUF 

buffer 

(1) At first the IOBUFR buffer (the buffer pointed by IOBUF) and the 

PROBUFR buffer (the buffer pointed by PROBUF) are empty, and AVBCThO
 

(2) 	The IOBUFR buffer is filled with data from an input unit
 

(3) 	 If the AVBCT=O, then the pointer IOBUF is exchanged with the 

pointer PROBUF. RESET the AVBCT to buffer size and start to 

process the new PROBUFR buffer.
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IOBUFR IOBUF
 

buffer
 

PROBUFR PROBUF
 

buffer
 

Fig. 10. An Example of a Double-Buffer
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Fig. 11. The Logic for Input Buffer Cycle
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(4) If the AVBCT is less than CRTCL, then set up input unit for the
 

IOBUFR buffer and start to fill with data at the suitable time. 

Go to step 2.
 

(B) 	Output buffer cycle
 

The 	logic flow for output buffer cycle is shown in Figure 12.
 

Where the definitions of IOBUF, IOBUFR, PROBUF, PROBUFIR, AVBCT are the
 

same 	 as in input buffer cycle. 

(1) 	At first the IOBUFR buffer and the'PROBUFR buffer are empty, 

and the PROBUFR buffer is waiting to be filled with data. 

(2) 	 When the PROBUFR is full (i.e. AVBCT=O), exchange the pointer 

PROBUF with the pointer IOBUF.
 

(3) Set up the output unit for the IOBUFR buffer and then output 

data 	from the IOBUFR buffer to unit. Meanwhile, fill the
 

PROBUFR buffer with data, and go back to step 2. 

4.1.2.3 Buffer allocation
 

As has been mentioned before, double buffers are used for each file 

except the NONBTF file. All buffers which are used by SIOCS are initially 

linked in the available buffer chain. The Available Buffer-Chain Entry 

Table (ABC Entry Table) contains all the entries for the available buffer 

chain. This becomes one push-down stack. Each buffer is one stack frame. 

This feature of an SIOCS allows a programmer to define a file as an 

internal file (i.e. the core memory of the primary high speed store).
 

An internal file has many extra advantages for the programmer of complers.
 

In the linguistic processors, (FORTRAN, COBOL, etc.) all the push-down
 

stacks with variable length stack frames may now be maintained through SIOCS. 
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empty and AVCT-0O 

Write information into
 
PROBUFR and increase
 

AVBCT counter
 

+AVBCT? 
= 0 

If IOBUFR is free
 
then exchange the
 
pointer IOBUF with
 
the pointer PROBUF,
 

Write out all infor­
mations from IOBUFR
 
buffer to output
 

device
 

Fig. 12. The Logic Flow for Output Buffer Cycle
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A PUSH-DOWN means write and a POP-UP means read. There is one entry
 

in the ABC entry table for each of the buffers on any one size.
 

Whenever a file is opened or redefined, the SIOCS searches the available
 

buffer chain, obtains two buffers of proper size from one of the buffer
 

chains and assigns them to that file. When these'two buffers are no
 

longer used, the SIOCS release them and returns them to the available
 

buffer chain.
 

An example of the available buffer chain and the ABC entry table 

is shown in Figure 13. The entry to this chain is in the ABC entry table.
 

The LINK field of this entry as shown in Figure 13 contains the address
 

of the first buffer of this buffer chain.
 

The SIZE field of this entry describes the size of the buffer.
 

Note that all the insertions and deletions to the chain are made at the
 

leftend or top of stack (i.e. the end which is-pointed to by the entry
 

in ABC table).
 

4.1.2.4 Non system buffering
 

There are several different buffering techniques .thdt have been
 

built into our input-output buffering system. As described in the previous
 

sections. The SIOCS buffering system employs: double buffers for files,
 

variable lengths for buffers, and a rotation method for buffer usage. In
 

order to allow the programmer to use any buffering technique which he
 

considers more efficient, the SIOCS allows him to use hls-own buffering
 

routine without referring to SIOCS -buffering routifies. This is on the
 

assumption that a good programmer will know more about the I/O characteristics
 

of his job than any system program could. For most cases a programmer
 

will rely upon SIOCS. However in certain places he will, for specified
 

files, switch over to his own, buffering system by declaring those files
 

as NONBUF files.
 

4.1.3 I/O request
 

I/O requests can be separated into two distinct types, data transmission
 

requests and non-data requests.
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Available-buffer­
chain Entry Table
 
SIZE LINK
 

Available-buffer-chain
 

Fig. 13. 	 The Structure of the Available Buffer Chain
 

and the ABC Entry Table
 

/C _PROBUF 

W
1 

st Wfl
N 	 i___-

AVBCT 


CLU( Ist WD ) +N-1 

OBUF 

Fig. 14. Reads Input File Under Conition:
 

AVBCT>N and CRTCL(AVBCT-N)
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4.1.3.1 Data transmission request
 

Figure 8 shows the data transmitted into and out of the computer. 

SIOCS accomplishes the actual transmission 6f records from the input unit 

to the input buffer and from the output buffer to the output unit. The 

macro instructions used for data transmission requests are:
 

LABEL OPERATOR OPERANDS 

READ FILENAME, ERR, EOR, INTRUP, IST WD ADDR, N 

WRITE FILENAME, ERR, INTRUP, 1ST WD ADDR, N 

The READ macro instruction reads N words from the file and transfers 

it into consecutive memory locations (1st word address) through (1st word 

addres s+N-l) 

The WRITE macro instruction writes the data from consecutive memory
 

locations (1st word address) through (1st word address+N-1) to the file
 

specified.
 

(A) 	 Read input file 

There are four conditions which can possibly occur when reading an
 

input file
 

(1) 	 Figure 14 shows the first condition AVBCT>N, and CRTCL>(AVBCT-N) 

when the -READ macro instruction is given. 

After processing this READ macro instruction, AVBCT is decreased 

by N.
 

(2) 	Figure 15 shows the second condition CRTCL greater than or equal
 

to (AVBCT-N)
 

After processing this READ macro instruction, two more actions take 

place: 

(a) 	 Decrease AVBCT by N 

(b) 	 Set up an input unit for this file and initiate an input 

operation to fill data into the IOBUFR buffer. 

(3) The third condition is that AVBCT less than N and N is less than
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BUFFERS 
./ ,/ 

- PROBUF USER'S 
WORKING AREA 

AVBCTW 
CRTOL -

______(1 

- 1st WD 

s t WD)+N-I 

'V-IOBUF 

Fig. 15. Reads Input File Under Condition:
 

CRTCL >'(AVBCT-N) 

BUFFERS -PROBUF
 

USER'S
 
1' WORKING AREA 

AVBC AVBCT Ist WD
 

IOBUF--

N-AVBCT '1( 1 st WD)+N-1 

Fig. 16. Reads Input File Under Condition:
 

AVBCT<N4-AVBCT+SIZE
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or 	equal to&AVBCT + (buffer'size). That is, N can be contained
 

in 	the total buffer space available. If this condition occurs
 

when 	the IOBUFR buffer is empty (i.e. AVBCT CRTCL), then the
 

central processor unit is forced to wait until the IOBUFR buffer 

is 	filled with data. Figure 16 shows the operations after the
 

IOBUFR buffer is filled with data. After processing the READ
 

macro instruction, SIOCS does the following:
 

(a) 	 Exchange IOBUF with PROBUF 

(b) 	 Reset AVBCT equal to (buffer size-(N-AVBCT)) 

(4) 	 When the condition Nt-AVBCT+(buffer size) occurs, then the follow­

ing 	algorithm is applied:
 

(a) 	 If the IOBUFR buffer is empty, then the CPU is forced to 

wait until the IOBUFR is filled with data 

(b) Transfer AVBCT words from the PROBUF buffer to working
 

area
 

(c) Exchange the pointer IOBUF with the pointer PROBUF and
 

reset
 

* AVBCT equal to (buffer size), 

t 	 t
* 	 1s WD ADDR equal to (15 WD ADDR+AVBCT), 

* 	 N equal to (N-AVBCT) 

(d) Go to step A, B, C, or D depending on the conditions:
 

* 	 AVBCT>N and CRTCL>AVBCT-N ---Go to step (1) 

* 	 AVBCT>N and CRTCL,AVBCT-N --- Go to step (2) 

* 	 AVBCT< N and N<AVBCT+(buffer size) --- Go to step (3) 

* 	 N>AVBCT+(buffer size) --- Go to step (4) 

respectively. 

(B) 	Write output file
 

There are three conditions that can possibly occur when the WRITE
 

output file macro instruction is given.
 

(1) 	When AVBCT >N occurs, SIOCS transfers N words from working area 

to output buffer, as shown in Figure 17. 
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(2) 	 When the condition AVBCT<NCAVBCT+(buffer size) occurs, SIOCS 

t-ansfers AVBCa words from working area to the PROBUFR buffer. 

Now test if the buffer pointed to by IOBUF is free, if it-is
 

then the remaining words are transferred from working area to
 

to the IOBUFR buffer. However, if the OPBUFR buffer is busy, 

SIOCS forces the CPU to wait until the IOBUFR buffer is free, 

and' then transfers data to that buffer, as shown in Figure 18. 

After processing the data transmission, SIOCS does the 	following:
 

(a) 	 Exchanges the pointer PROBUF with the pointer TOBUF 

(b) 	 Resets AVBCT equal to (buffer size)-(N-AVBCT) 

(c) 	 Initiates a write command to the channel to output data 

from the IOBUF buffer to output unit.
 

(3) 	 The other condition is ABC+(buffer size)4N. When this condition 

occurs, the following algorithm is applied:
 

(a) 	 Transfer AVBCT words from working area to the PROBUFR 

tbuffer and reset N equal to (N-AVBCT), increase i s WD 

ADDR by AVBCT 

(b) 	 If the PROBUFR buffer is busy, then the CPU is forced 

to 	wait intil it is free
 

(c) 	 Exchange the pointer PROBUF with the pointer IOBUF, and 

set AVBCT equal to buffer size
 

(d) 	Go to case A, B, or C depending on the conditions:
 

* 	 AVBCT>N ---Go to case (1) 

* 	 AVBCT<N-<AVBCT+(buffer size) ---Go to case (2) 

AVBCT+(buffer size)< N --- Go to case (3) 

respectively.
 

(c) 	READ/WRITE a non-buffer file
 

To execute a READ/WRITE to or from a NONBUF (non-system-buffered) 

file is to read or write data directly from an I/O device into working
 

area, as illustrated in Figure 19.
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Fig. 17. Writs Output File Under Condition:
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Fig. 19. 	 Read/Write an Non-Buffer File
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4.1.3.2 	 Non-data request
 

There are four macro instructions used for 1/0 requests which do
 

not refer to data, these are:
 

1. REWIND:
 

Label 	 Operator Operands
 

REWIND FILENAME
 

2. BKSP: Backspace N records
 

Label 	 Operator i Operands 

BKSP FILENAME,N 

3. MOVE: Move forward and pass N end-of-file markers 

Label I 	Operator Operands. .
 

MOVE FILENAME,N
 

4. WEOF: Write an end-of-file marker
 

Label i Operator Operands
t 

WEOF_ FILEMAME
 
I -~.-----.-.-.----.-- .. .--. --. ---- - -.---.---. 
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4.2 The Input-Output Scheduling 

Some of the functionswof the I/0 Scheduler are handling I/0 interrupts, 

scheduling the operations on I/0 units and channels, and checking for 

correct functioning of all I/0. The main purpose of this I/0 Scheduler 

is to keep the input/output devices as busy as possible and to insure 

that the I/0 operations are as efficient as possible.
 

Whenever an I/O operation is required by user's request or required 

by SIOCS, an I/O request-entry is generated. This I/O request-entry 

contains all the necessary information for that I/0 operation. This 

I/0 operation will probably not be able to be executed immediately be­

cause the channel or unit in question may be busy. In this case, the I/0 

request entries on each unit will be constructed. The I/0 initiation 

routine inspects these queues when a new I/0 operation is to be started on 

a unit. 

When all I/0 operations associated with one of the currently
 

executed request-entry are completed, or an error or abnormal condition
 

has been detected, an interrupt occurs. The I/0 interrupt routine iden­

tifies the interrupted channel and records an I/0 status descriptor. ProT 

the information which is stored in the I/O status descriptor, all the 

I/0 control blocks are updated. After that, the I/O initiation routine 

is again called to start the next I/O operation as quickly as possible. 

4.2.1 I/O Initiation
 

(a) I/O Request entry
 

The I/O request entry is a group of contiguous fields which 

are generated for-each I/O operation requested by the IOREQU 

macro instruction. These fields (namely, the function code, the 

file name, the interrupt address, the first word address, the
 

error reject address, and the number of words transmitted) contain 

the information needed to define a specific input/output opera­

tion on a particular I/0 unit. The format of an I/O request 
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2 

PRVSIO NEXTIO
 
I I 

F.C., FILENAME INTRUP
 

N 1 ADDR. ERR
 

Fig. 23. The Format of an I/0 Request Entry
 

indexed I/O QUEUE ENTRY TABLE 

by unit LAST FIRST 
number
 

I/0 QUEUE 

II 

I/0 REQUEST I/0 REQUEST
 
ENTRY ENTRY 

i
 

Fig. 24. An Example of' I/0 Request Queue 
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entry is shown in figure 23.
 

In the figure, note that the PRIVIO field of the 1/0 request-entry
 

is used to stored the address of the previous I/O request for
 

the same I/O unit, while the NEXTIO field is used to store the
 

address of the next I/O request for the same I/0 unit.
 

(b) I/0 Request queue 

The I/O request queue is a list of I/O request entries
 

which are currently awaiting service by a particular physical
 

device. Since an I/0 request entry generated by an IOREQU
 

macro instruction may not be able to executed until all the
 

previous I/0 requests are finished. The I/0 request queue is a
 

holding queue for I/0 service. For each physical device there
 

is one I/0 request queue. An example of the I/0 request queue
 

is shown in figure 24.
 

The I/0 request queue entry table is used to stored the
 

addresses of the first and the last I/0 request entries of each
 

I/O request queue. The unit number is used as an index number
 

of this table. These queue are arranged on a first-in-first out
 

basis. Refering to figure 24, the FISTIO field of the table
 

entry points to the first I/0 request entry in queue. This
 

entry is the most critical entry and will be serviced first when
 

this queue is activated. The LASTIO field of the table entry
 

points to the last entry in the queue, and all insertions to the
 

queue are made to this end of the queue.
 

(c) I/0 Functional table 

The I/0 functional table is provided for the purpose of
 

defining the operations of a given set~of I/0 fuictions with
 

respect to a given set of I/0 devices. SIOCS was designed
 

to be as general as possible and still be simple.
 

Thus, this table could be expanded as future I/0 equipment
 

is added and there is no necessity for a modification to the logic
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of SIOCS. For'the version of SIOCS, present the I/0 request
 

functions are: READ, WRITE, REWIND, MOVE, BKSP, and WEOF,
 

while the I/O devices are: tape, cardreader, printer, cardpunch,
 

and the console typewriter. Figure 25 is an example of an I/0
 

functional table.
 

4.2.2 I/O Completion
 

(a) I/O Interrupt
 

When there is an interrupt signal for an I/O channel, an
 

immediate attempt is made to activate the I/O interrupt routine.
 

During the initialization of SIOCS, the program for the I/0
 

interrupt routine is loaded into main memories and remains
 

resident in the memory through out all the time. If there is no
 

other interrupt being processed, then the I/0 interrupt routine
 

for the current interruptgivan-control immediatly. However, if 

there is another interrupt routine in processing then the cur­

rent I/O interrupt signal is inhibited or placed in the waiting 

queue. 

The major functions of the I/O interrupt routine are as
 

follows:
 

(1) Identify the interrupted unit and channel,
 

(2) Record the I/O status descriptor,
 

(3) Check the I/O request queue for the interrupted unit,
 

and initiate the first I/O request in queue, in case when the
 

queue is not empty,
 

(4) Call result analysis routine to analysis the I/O reult
 

and update the I/O control blocks,
 

(5) Pass control back to user's interrupt routine, If
 

the user's interrupt address is specified and
 

(6) Return control to user's program.
 

(b) I/O status descriptor
 

The I/O status descriptor can be implemented either by
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DEVICE CATA CARD fCONSOL 

EADER PUNCH fYPEWRITER
FUNCTION TAPE 'R 

Read forward Read IllegalIllegal Read unti 

READ one record nea not busy 

2 [it fWrite PunchWHT rit e forwardIllegal one Write
 
WRITE one record Illga card
 

3 Rewind 
N I Rewid Illegal Illega Illegal Illegal

i REWVIND tape ___ 

4 !Space forwarIllegal IllegalIllegal Illegal 
MOVE Jpass EOF marh 

BKSP Boe rcrd Illegal IllegaIllegal IllegalL-BiSP I one recor 

6 Write EOF llegal Eject Punch
 

WEOF i mark ipage card
 

Fig. 25. An Example of I/O Functional Table
 

I/O Status Descriptor 
emory C' Unit Error 

ddress count number field
 

where
 
Memory Address : the memory address at
 

which the I/O is terminated
 
Character count : how many charaters
 

or how many words read in or write
 
out
 

Unit number : physical unit identification
 
Error -field : error indicator
 

Fig. 26. The Format of the I/O Status descriptor
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hardware or by software. Here we assume that this descriptor is
 

in a channel register. This descriptor has four fields which in
 

turn contain the information which describes the current status
 

of the I/O operation. These four fields are memory address,
 

word count UCB addres, and error field. The memory address
 

field contains the memory address of the point at which the I/0
 

was terminated. The word count represents the number of words
 

has been transmited, while the error field indicates the error
 

conditions which is detected in the channel or the unit. The
 

error field may subdivided into several fields such as the
 

standard error field, and unit error field. The standard I/0
 

error field is used to indicate the standard I/0 error such as
 

parity error, address error, end-of-file mark encountered,...
 

etc. The format of the I/O status descriptoris shown in figure
 

26.
 

4.3 The unit interpretive routines
 

For each type of I/0 device, there is an associated unit interpretive
 

routine. The unit interpretive routines are hardware dependent, so that
 

there is no point in having one general-purpose interpretive routine. In
 

what follows, the algorithm for the unit interpretive routine is not
 

intended for use on any one particular device, but rather for the
 

presentation of those operations which must be performed by any unit
 

interpretive routine. These operations are as follows:
 

(a) Initialization for processing upon re-entry.
 

(b) The set up on the I/0 instruction code. This I/0 instruction
 

can be an intiation of a sequence of channel commands which
 

are generated by step (c) and which are executed directly
 

by the data channel.
 

(c) The set up of the channel program. This channel program must
 

be stored in some fixed area in core and will be executed
 

directly and independently by the data channel when the I/0
 

instructions which initiate this channel program is issued.
 

(d) The issuing of the I/O instruction which is set up in step (b)
 

(e) The return of control to the user's program.
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4.4 The Elements of SIOCS and the Communication among elements
 

4.4.1 Files and File Control-Blocks
 

A file is a collection of related records treated as one unit.
 

Before the 1/0 is activated for a file, that file must opened. Similarly,
 

after all I/O is completed for a file, that file must be closed.
 

(A) File Types
 

An item buffering scheme is specified by selecting one of three
 

possible types of files. Those are: IN (input), OUT (output), and
 

NONBUF (nonbuffering)
 

j Type Buffering schema 

INDouble-buffer
 

OUT Double-buffer 

NONBUF No system-buffering
 

(B) File Control Block (FCB)
 

For each file used in SIOCS, a File Control Block is established in
 

core storage. It keeps the file and the buffer information, and-also
 

links the buffer area used by the file to a Unit Control Block (UCB).
 

The following figure shows the format and information included in the FCB.
 

FCWl FILE NAME 

FCW2 OC! TYPE UCB ADDRESS 

FCW3 IOBUF PROBUF
 

FCW4 
SIZE - CRTCL BUSY EOF AVBCT 

Where TYPE: file type 

UCBADD: Address of the Unit Control Block (UCB) used by this file
 

IOBUF: A pointer which points to the IOBUFR buffer
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PROBUF: A pointer which points to the PROBUFR buffer, 

OC: An open-close indicator, 

SIZE: Buffer size,' 

CRTCL: Critical number of the input probuf buffer, 

AVBCT: Available counter which counts the available words remaining 

in the PROBUFR buffer, 

BUSY: A buffer busy indicator, 

EOF: An end-of-file indicator, 

The File Control Block (FCB) is generated by the OPEN macro instruction
 

and released upon termination of the run.
 

4.4.2 Buffers
 

A buffer is a block of core storage used to compensate for the
 

difference in data handling rates when transmitting data from device
 

to core or vice versa. There are two buffers for each IN or OUT file in
 

SIOCS. These two buffers have the same size and are pointed to by the
 

pointers OBUF and PROBUF that are stored in the third work of the FCB.
 

The third and fourth words of the FCB contain information about this
 

double-buffer. Figure 20 shows the format of these two buffers.
 

4.4.3 Units and Unit Control Blocks
 

A unit is an I/0 device attached to a computer. SIOCS uses symbolic
 

assignments to allow flexibility in assigning physical input/output units.
 

When a program is written, a symbolic unit is assigned to a file. At
 

run time, a proper physical unit is assigned to the symbolic unit. At
 

system generation time, the number of units of each physical type is
 

specified and the symbolic unit table is built accordingly. Also, at
 

system generation time, all physical units are assigned to a symbolic
 

unit by linking the unit control blocks to the symbolic unit table. The
 

format and linkage relation between the Unit Control Blocks with symbolic
 

unit table is explained in figure 21.
 

4.4.4 Channels and Channel Control Blocks
 

A channel is a hardware device (a small computer) designed to be
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FCB
 

I / 

IOBUF PROBUF-


ISI7E:!_R CL AVBCT' BUFFER
 

IOBUFR
 

BUFFER 

Fig. 20 The Format of Double-buffer 

Symbolic Unit Table 
-smbo°ll-a-na=me , I .. .... 

_______] Unit Control Block(UCB) 

Device Type I Status 
t1era e :CCB address 

SB'GB PT Unit address 

where UB is a indicator which indicates
 

whether the unit is busy or not,
 

CB is a indicator which indicates
 

the channel is busy or not,
 

PT is a indicator which indicates
 

the unit is been protected by the
 

system or not.
 

Fig. 21 The Format and the Linkage between the UCB and the Symbolic Unit Table 
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operated in parallel with the CPU and carry out input or output operations.
 

Each channel is associated with one Channel Control Block (CCB) in SIOCS.
 

The Channel Control Block defines channel status and interupt selections.
 

The format of CCB is:
 

CB UNTADD I INTRUP 

Where UNTADD is the address of UCB of the current (or last) unit 

using this channel 

CB is a indicator which indicates whether the channel is 

busy or not 

I is the interrupt indicator which indicates whether the 

interrupt is selected by the user or not 

INTRUP is the entry of the user's interrupt routing 

4.4.5 Communication among control blocks 

As shown in Figure 22.
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File Control Block (FCB)

~ie
Name-


Double-Buffer o TE UCB address FILE nad BUFFERING" 10BUF '"PROBUF FL a UFRN
 

PROBUFR -1-f I/O SCHEDULING 

Name 
i I 

I I [ 

I Channel Program 

Unit Control Block (UCB)
 

Device Type Status Channel Con rol Block (CCB) 
-_Alteratives CCB address 1 -- UCB address II iINTRuP a dressa 

-Alternative

I UB Ca I T Unit number
 

-.Unit Control Block (UCB)
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5. The Algorithms of SIOCS
 

5.1 The overall diagram of the SIOCS
 

The SIOCS is an interface between the operating system and the
 

input-output devices associated with that -system. All requests made by
 

the operating system for input-output operations are directed to this
 

interface. The SIOCS analyzes each request and takes appropriate action.
 

This action consists of scheduling input-output operations, setting up
 

the I/0 areas associated with the I/O operations and, in general, handling 

all of the many and various functions needed in reading and-writing tape,
 

card, and printer, and their records. After a request has been serviced,
 

the SIOCS returns control to the user routine. An overall functional 

block diagram of SIOGS is shown in Figure 27. The overall algorithm of 

SIOCS is shown in Figure 28. 
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I/O Request Macro Instructions ile Defining Macro Instructions USER'S 
REWIND MOVE |READOPEN EREF PROGRAMS 

WRITE BKSP WEOF CLOSE 

IBuffering System 

l.Allocate and release buffers 

for file, 
2.Transfer data between user 
working area and-buffers 

3.Detect the logic error of 
I/O request, ­

4. manage the buffer switching 

schem, 


5.Initiate the read ahead-op­
eration,.
 

6.Initiate output operations
 

I/O Schduler 


1.Manage the I/O request queue 

2.Check and determine whether 


the device accept this re-

quest or not, 


3.Check and determine unit, 

and channel status, 


4.Check and perform system 

protections, 


15.Manage the informations in 

UCB, and CCB, 


16.Precessing I/O interrupt
 
process.
 

Unit Interpretive Routines 


I.Set up channel command codes 

2.Place word address, word 


count into I/0 instruction,
 
if it is a data request,
 

3.Execute the channel program
 
4.Detect the physical error.
 

File System
 

1.Initiate or termination of FILE 
file, AND 

2;Correspond the symbolic unit BUFFERING 
to a physical unit, SYSTEM 

3.Manage the status of file 1 
and the informations in FCB 

4.Perform the mount or dis­
mount tape operations. 

Result Analysis Rourine
 

1.Record the I/O status des­
criptor, I/O
 

2.Update FCB, SCHEDULING
 
3.Return control to using pro- ROUTINES
 
gram, if in case of normal
 
exit,
 

4.Analysis the error conditior
 
andreturn control to op­
erating system, or user's
 
error routine.
 

UNIT
 

INTERPRETIVE
 
ROUTINES
 

Fig. 27. An Overall Functional Block Diagram of SIOCS
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ENTRY,, %..p1grm _i 

. Allocate all the buffer space,
 

2. Set up the I/0 functional table, 
3. Set up all CCBs and UCBs,
 

4. Set up the Symbolic Unit Table 

OtN CLO E REF REAd W ER NDtMO4BK 

i. Check and determine the1. Create a file, l.Terminate the 1. Redefine the type 


2. Construct a FCB file, of the file, request is legal or not,
 
2. If it is a data request
for the file, 2.Release buffer 2. allocate or re-


lease the buffer then transfer the requirec
3. Provide the area. 


buffer area, if areas, data,
 

required. (See Fig.30) 3. Adjust the AVBCT in FCB.
 
(See Fig. 31)
 

(See Figs. 32-37)
(See Fig. 29) 


n eds
eeds eeds nee s 

etternalernal ternal exte nal 

0---


Set up an I/0 request
 

entry(or entries)
 

1/0 Initiation
 
Fig. 28 The Algorithm of SIOCS
Routines 




64 

1/0-

Initiation
 
Routines
 

1. Check the device status for that
 

I/0 request entry,
 
2. If the device is ready to be not ready
 

executed, then execute that re­
quest entry. Otherwise, put that
 
entry into waiting queue.
 

(See Fig. 38)
 

ready ST.RIO
 

1. Connect the channel
 
with the unit,
 

(See Fig. 39)
 

1. Check the System protection and
 
user's protections,
 

,2. Transfer control to proper unit
 
interpretive routine.
 

.Unit llnterfetrve R tine
 

1. Set up I/0 instruction codes,
 
2. Set up the channel program,'
 

System ro 3. Issuing the I/0 actions
 
rrrReError 4. If an error occures then tran-


Eror sfer control to System error
cover
 

jrDutine recover routines-.
 

(See Fig.44)
 
o al
 

,User's 

Program
 

Fig. 28 The Algorithm of SIOCS, Part 2. The I/0 Initiation Routines
 

and Unit Interpretive Routines
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I/C 

(Interrupt 

1. Identify the unit and channel 
which interrupts CPU, 

2. Clear the interrupt line, 
3. Record the I/0 status descrip­

tor. 

(See Fig. 41) 

IOFIN 

1. Initiate the next I/O request, l.Pick up one en­
if there is one entry in queue. try from the 

2. Update CCB and UCB of the unit, queue, 
and channel, 2.Call I/0 Initia­

(See Fig. 43) tion routines to 
activate that 

--...--- . . ...- e n t r y 1 

Result Analysi. 

. Analyze the result conditions, 
2. Update the FCB, 

3. Restore all saved registers, 
4. Report the result conditions. 
5. If an error occures, then either 

tkansfer control to system error 
checking routine or user's 
error checking routine. 

(See Fig. 42) 

normal rror 

4normal 

User'sCuser 
Error Checking 

rorDid User's 
prov- Progrm

edranerro 

Routineoutin 

0 

_System 
Error Checking 

Routine 

Fig. 28 The Algorithm of SIOCS, Part 3. The I/0 Completion Routines
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5.2 Description of each routine
 

SIOCS routines can be divided into three classes. These are:
 

the file and buffering routines, the I/O scheduling routines,
 

and the unit interpretive routines. The description of each routine
 

presented in this section consists df its purpose, major objectives,
 

its input and output parameters, and-the algorithm in the flow chart
 

form.
 

5.2.1 The file and buffering routines
 

There are nine major routines which manage the files and buffers
 

in SIOCS. These nine routines can be divided into two groups. One
 

of the groups is the file declaration routines which includes the
 

OPEN routine, the CLOSE routine, and the REDEF routine. The other group
 

is the I/O request routines. These consist of READ, WRITE,, BKSP, WEOF,MOVE, 

and REWIND routines.
 

5.2.1.1 The file declaration routines
 

(a) The OPEN ROUTINE
 

Purpose: To create a file and initiateI/O operations for
 

that file.
 

Major 1. Generate a FCB for the file.
 

Objectives:- 2. Fill in the information of FCB.
 

3. Mount tape, if it is a tape file.
 

4. Allocate two buffers with proper size and store
 

these two buffer addresses in FCW 3.
 

5. Perform the REWIND operation, if the REWIND
 

option exists.
 

6. Initiate a READ operation, if it is a IN file.
 

Calling The OPEN routine is called by the OPEN macro
 

Sequence: instruction whose format is shown in Section 3.2.1.
 

Input: The sources of input to the OPEN routine are:
 

1. The parameters of the OPEN macro instruction
 

(See Section 3.2.1). Those are the TYPE of
 

.file, the symbolic name of a device which is
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desired, and the REWIND tape option.
 

2. The symbolic unit table. This table resides 

in core at a fixed location.
 

3. The UCB's for every physical unit. Each physical
 

unit has it's own UCB. The addresses of these
 

UCB's are storedin the symbolic unit table
 

associsted with its symbolic names. Note that
 

one physical unit may associate with more than
 

one symbolic name. 

4. The Available-Buffer-Chain Entry Table (or 

ABC Entry Table) and the available buffer chains,
 

the structure of ABC entry table and the available
 

buffer chains are shown in Figure 13
 

Output: The output from the OPEN routine is:
 

1. A FCB, a FC3 is generated and assigned to the file.
 

The FCB contains all information about the file.
 

2. Mount tape message. A message will be sent to
 

operator console, if this is a tape file.
 

3. Initiating of READ AHEAD. If this is a IN file
 

Algorithm and Flow chart: As shown in Figure 29.
 

(b) The CLOSE routine
 

Purpose: Terminate the activity of files.
 

Major 1. Reset the open-closed indicator to 1, to indicate
 

Objectives: that file is closed.
 

2. Send out all the information that remains in
 

buffers and write an end-of-file mark, if the
 

file to be closed is an OUT file.
 

3. Release the buffer used by the file and return
 

to available buffer chains, if the file to be
 

closed is an IN or OUT type of file.
 

4. Clear all information in FCB except the file name.
 

5. Perform the REWIND, or UNLOAD operation, if 

specified.
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FILENAME OPEN :TYPEDEVICE.(REWID)
 

SOPEN 

Generated a four words core
 
storage for using as a File
 
Control Block (FCB) of the
 
file
 

Store the informations of 
FILENAME, TYPE and 00 ( 
open-close) cell in FCB
 

Find the device address
 
in the symbolic unit
 
table
 

Search the available unit
 
chain, and get an avail­
able unit and then assign
 
this unit to the file (
 
i.e. store the UCB address
 
in FCB
 

Send message 
Is-Ha sto operator, 

this a tape Yes 
< ' 

h tape be No ask for tape 
mmounting. 

Wait until
-L 	 operator re­
sponded sig­
nal 

Fig. 29. The Flow Chart or the OPEN Routine 
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OA 

[Clearthe 3 d e th'is ae 

and 4 words of~4FCB(i.e FCW3, "-NNONBUFfile?" o 

Allocate two spaces to 
be used as a double­

buffer for this file 

Store this two buffer 

addresses into the 

IOBUF and PROBUF fieldS 
of FCB(i.e. FCW3) 

Store the informations 
about the buffer SIZE, 
CRTCL,BUSY,EOF,AVBCT 
into FCB (i.e. FcW4)

N 
/ReCall 

uire a FEWIN Yes EWIND FILENAME 
operation9 for seting up theREWINV 

rre uest entry 

.,) t~isaSet BUSY -e- 1 

buffered in-- inicate the buffer 

"put9file' is ready to be firled 

40 

Call 
IOREQ READ,FILENAME,,, IOBUF,SI 

to set up READ request for read 
' ahead 

Fig. 29 The Flow Chart of the OPEN routine (cont.)
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CLOSE (,OPTION) FILENME.l,FILENAME2,...
 

Initialize the list
 
pointer which point to
 
the list of file names
 
(i.e. operand field)
 

CA
 

Advance the list pointe7,
 
and get the next file
 
name entry from the
 
list
 

cloose
 

the file is
 

No
 

~this a 

c 7NBUF
 

Fig. 30 The Flow Chart of CLOSE Routine
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GB
 

Inputo 

'" output /
 
filef-

Ioutput 

Write the EOF mark and
 
AVBCT<- AVBCT-l 

Is Wait until the 
theyTBes-U IOBUFR buffer 

,buffer busy is free 

jNo
 

Set BUSY,-l

indicate the PROBUFR
 
buffer is busy
 

Call 
IOREQ WRITEFILENAME,, ,PROBUF,SIZE-AVB
 

to set a WRITE request entry
 

Call 
IOREQ WEOF,FILENAME,
 
to set a WEOF request entry
 

Release the buffer area
 
to the available buffer
 
chain
 

Clear all informnations
 
in FCB, except the
 
file name (i.e. FCWl)
 

,D
 

Fig. 30 The Flow Chart of CLOSE Routine (Cont.)
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CD
 

Ask 
for rewind No
 

otptiesag
 

9 

Yes 

UNLOAD operationask for a 

Fig. 30 The Flow Chart of-Close Routine (Cont.)
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Calling The CLOSE routine is called by the CLOSE macro 

Sequence: instruction. The format of CLOSE macro instruc­

tion is shown in Section 3.2.1. Note that a list 

of files may closed by a single CLOSE macro instruc­

tion. 

Inquts: The inputs to the CLOSE routine are:
 

1. The parameters of the CLOSE macro instruction.
 

They are: A list of files to be closed, and
 

options(REWIND, or UNLOAD).
 

2. The FCB's for each file in the list.
 

3. The Available-Buffer-Chain Entry Table and
 

the available buffer chains.
 

Outputs: The outputs from this routine are:
 

1. Clear the FCB's. All FCB's of files in list are
 

cleared and contain no information except
 

the file names.
 

2. An end-of-file mark at the end of each OUT
 

type of files in list.
 

3. Perform the REWIND operation for every file
 

in list, if the REWIND option is specified.
 

4. Dismount tape message. A dismount message
 

will sent to operator console, if the UNLOAD
 

option is specified.
 

Algorithm and Flow chart: As shown in Figure 30.
 

(c) The REDEF routine
 

Purpose: Switch the type of the file
 

Major 1. Change the file type information in FCB to the
 

Objectives: type declared in the 'REDEFmacro instruction.
 

2. Do the necessary modification as shown in Table 2.
 

3. Perform.the REWIND operation, if REWIND option exists.
 



new 
IN 	 I OUT 

Backspace N records, where 


if BUSY = 0, then 

Buffer size 

Physical record size
IN No operation 


(if file still open) Otherwise 


' B u ifer size 


N =2*
 

Physical record
 
size
 

1. Sent out all the infor-


mations that remains in 


the buffers 


OUT 	 2. Rewind tape 


No operation 

3. Reset the AVBCT infor- (if file still open) 


mation in FCB 


1. Allocate two buffers with proper size and store
 

these two address into FCB.
 

2. Store the buffer informations into FCB
 

NONBUF 3. Ititiate a READ opetation'if thenew type of file 


is IN. 


Table 2. The Actions of the REDEF macro instruction
 

NONBUF
 

1. Release the buffers
 

used by the file and
 

return them to the ABC
 

2. Clear all buffer
 

informations in FCB
 

1. Sent out all the infor­

mations that remains in
 

the buffers.
 

2. Release the buffers used
 

by the file and return
 
them to the ABC
 

3. Clear all buffer infor­

mations in FCB.
 

No operation
 

(if file still open)
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REDEF FILENAME, TYPE, (REWIND)
 

RE fiBF
 

as
 
the T Gn
file ro
 
closed orE
 
opened ­

9 9 

pen 

floes
 
previous Yes
 

I
 ,type =new 


type
 

Nosew 

at
 
is the
 

ONrreviousti
 
'typ e?> 

jNonbuf.
 

Store new type to
 
the TYPE field in
 
FCB
 

REOPEN1 OPEN routine
 

Fig. 31 The Flow Chart of RETIEF Routine
 



76 

D
DA 


IsSet 
new type = Nn TYPENONBUF 

OUTPUT? in FCB 

Yes I 

Set Release the buffer
 

TYPE<-new type jareas to the avail­
able buffer chains
 

_II 

Set F- , j_^. 

-lUsY=?land waite 

all buffer
[lear
until.... BUSY=O0 = 1 BUSY=I informations in FCB 

BUSY=O
 

Set M2* =1 F l
 
buffer size "
 

Set M=buffer size
 

Call
 
BKSP FILENAME, M
 

to set up a BKSP request entry
 

Ask 
D
No for a 


REWIND oper
 
tion?
 

Yes 

Fig. CallT 
RWIND FILENAME.ety
 

t o set up a REWIND request et
 

Fig. 31 The Flow Chart of REDEF Routine (Cont.) 
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Wait until the
 

< the -es_
- IOBUFR buffer is I 
tuffer busyxL --

No 

Set BUSY- 1,indicate
 
i the buffer is busy
 

I 
 Call 

IAVBCT SIZE I 

WIND FILENAME 
to set a REWIND request entry 

'ABTYIEtoset aEIND reuet 

DC . N-ne-- type ,i0
 

FPEe-new Itype
 

EXIt
 

Fig. 31 The Flow Chart of REDEF (Cont.)
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Note that, in Table 2 when the file changes its
 

status from type IN to type OUT, a backspace
 

operation is performed. This allows the user
 

to switch input mode into output mode at any
 

point of his file,
 

Calling 	 The REDEF routine is called by the REDEF macro 

Sequence: 	 instruction. The format of REDEF macro instruction
 

is shown in Section 3.2.1.
 

Inputs: 	 The inputs to the REDEF routine are:
 

1. 	The parameters of the REDEF macro instruction.
 

They 	 are: FILENAME of the file to be changed, 

TYPE to be changed, 

REWIND tape option.
 

2. The FCB 	 of the file. 

3. 	 The Available-Buffer-Chain Entry Table and 

the abailable-buffer chains. 

Outputs: 	 The outputs from the REDEF routine are: 

1. The F.CB 	 of the file--FCB contains the 

information about the present status of the 

file which has been redefined. 

2. 	 The Abailable-Buffer Chain Entry Table and the 

available-buffer chains--they are changed 

according to 	the buffer allocation or freed
 

by 	REDEF routine.
 

Algorithm and Flow chart: As shown in Figure 31. 

5.2.1.2 The 	I/O request routines 

(a) The READ 	 routine 

Purpose: 	 To transfer data into user's working area
 

Major 1. Detect the error, if the file is closed or if
 

Objectives: it is a type OUT file
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2. Transfer the requested amount of data from
 

PROBUFR buffer into the user's specified
 

working area (Ist ADDR.+N-1).
 

3. Initiate the read ahead operation to read in
 

data from input device at proper time (i.e.
 

when AVBCT CRTCL).
 

4. Switch the pointer IOBUF, with pointer PROBUF
 

in FCB, whenever PROBUFR buffer is empty and
 

IOBUFR buffer is full.
 

5. Adjust the buffer informations in FCB, if
 

necessary.
 

6. Pass control to the I/0 scheduling routines
 

for requesting data directly input from input
 

device into user's area, if the file is a type
 

NONBUF file.
 

Calling The READ routine is called by the READ macro
 

Sequenct: instruction. The format of the READ macro
 

instruction is present in section 3.2.1
 

Inputs: The inputs to the READ routine are:
 

1. The parameters of the READ macro instruction
 

FILENAME: The name of the desired file.
 

ERR: The address of the user's error routine.
 

INTRUP: The address of user's interrupt routine.
 

EOF: The address of the user's end-of-file
 

check routine.
 

1 st ADDR: The first location in which the
 

requested data are to stored.
 

N: 	 The number of words required by this
 

macro instruction
 

Note that, 	if any of the ERR, INTRUP, EOF parameters
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Is 
the file
closed 

YE Error 
essage 

ERR 
-'XIT 

NO 

Call 

1 IOREQ READ,FILENAME,ERR,INTRUP, File type = 
,1st ADD,N 
to set a READ request entry

7IN 

EXIT' r 

YES 

EOF =ON RC 

YE S 

Transfer AVBCT words 
from PROBUFR buffer 
into user's working ar a 

Set AVBCT-- O 

EOF 
EXIT 

Fig. 32 The Flow Chart of READ Routine 
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Set
 

Transfer M words from 

PROBUFR buffer to 
user s workingI area 
AVBCT -cAVBCT-M 

Is
 
AVBCT
 
CRTCL
 

Yes 

Set BUJSY -k-1, 
to indicate that the 
bufer is busy 

Call
 

.. ,IOBUF,SIZE
IORE RADFTLENAME, 

to set aREAfl request entry
 

Fig. 32 The Flow Chart of RAD Routine (Cont.) 
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CTCRTCLindicate the
 

? buffer is busy
 

YES
 

Call 
IOREQ READ, FILENAME, ERR, INTRUP, 
TOBUF, SIZE 
to set a READ request entry
 

Transfer M words from 1
 

the PROBUFR buffer into
 
userts working area
 

N N-H 

the Wait, until the 
NO- IOBUFR buffer 

Suffer fill was filled 

YES
 

AVBCT<-SIZE 
exchange the pointer
 
PROBUF with the
 
pointer IOBUF
 

Fig. 32 The Flow Chart of READ Routine (Cont.)
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,is absent, then the address of system error'check
 

routine, or system end-of-file check routine will
 

be used, respectively.
 

Outputs: The outputs from the READ routine are:.
 

1. The requested data--they are transfered into
 

the users working area.
 

2. The FCB of the file--the information in FCB
 

is changed according to the present status
 

of the file,.
 

3. An error message--an error message will print
 

out if the file is closed or it is an OUT
 

file.
 

Algorithm and Flow chart: As shown in Figure 32.
 

(b) The WRITE routine
 

Purpose: To transfer data out of the user's working area.
 

Major 1. Detect the error condition, when the file is
 

Objectives: closed or it is an IN file.
 

2. Pass control to the I/O scheduling routines for
 

sending the information directly out from user's
 

area to output device, if the file is a NONBUF
 

file.
 

3. Transfer data from user's working area (i.e.
 

location 1s t ADDR. through location Ist ADDR.
 

+N-1) to the PROBUFR buffer.
 

4. Switch the pointer IOBUF with pointer PROBUF
 

in FCB, whenever PROBUFR buffer is full and
 

IOBUFR buffer is empty.
 

5. Initiate an output operation to empty out the
 

IOBUFR buffer. That is transfer control to I/O
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Calling 


Sequence: 


Inputs: 


Outputs: 


-scheduling 	routine7 to request an output operation 

-from 
 IOBUFR buffer to proper output device.
 

The WRITE routine is called by the WRITE macro
 

instruction. The format of this macro instruction
 

is shown in section 3.2.1.
 

The inputs 	to the WRITE routine are:
 

1. The parameters of the WRITE macro instruction.
 

These are,
 

FILENAME: 	 The name 6f the desired file to be
 

written out.
 

ERR: 	 The address of user's error check
 

routine.
 

Note: 	 If this field is a blank, then the
 

address of system error check replaces
 

it. That means the error return from
 

this routine will be sent to system
 

error check routine.
 

INTRUP: The address of user's interrupt routine.
 

Note: If this field is absent, then the
 

.address of the system intrrupt routine
 

is used.
 

2. The FCB 	of-the desired file.
 

The outputs from this routine are:
 

1. The requested output data--these output data
 

are now in the buffer area.
 

2. The FCB of the file--the contents of FCB are
 

changed according to the status of the file.
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(WRITE [FILENAME,ERR,INTRUP lst WD ADD.,N
 

. WRITE
 

T 
-Was 
the file - EXIT
closed ,Message!
 

/9 NO
 

IOREQ WRITE,FILENAME,ERR,I NON F th file 
< stypeis 
[tO set WRITE request entry

EXIT. 
 Is YEoNE
 

NN AVECT --

Is
 
NO 

Transfer M words from
 
the working area to
 
the PROBUF buffer
 

[AVBCT<-AVBCT-M:
 

It 

FhhITE
 

Fig. 33 The Flow Chart of WRITE Routine 
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rans	fer M words from 
ser's working atr Wthe 

tthe PROBUFR buffr 

AVBCT*-SIZE,
 
exchange the pointer
 
PROBUF with the
 
nnintr IOBUF
 

L	Set BUSY<-, 
to indicate that the 
buffer is busy 

Fige Call 	 e 
IOREQ WRITE,FILENAME,ERR,

INTRUP,IOBUF,SIZ
 

to set a WRITE request entry 

The 	Flow Chart of WRITE 
Routine (Cont.)
 

Fig. 33 
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3. An error message--if the file is closed or if
 

it is a type IN file then an error message
 

will sent out indicate the error condition.
 

Algorithm and Flow chart: As shown in Figure 33.
 

(c) The WEOF routine
 

Purpose: Write an end-of-file mark at the end of the file. 

Major 1. Detect the error condition. Send out an error 

Objectives: message, if the file is closed or it is a type 

IN file. 

2. Initiate a write end-of-file mark operation.
 

That is, pass control to I/O scheduling routines to 

set up write end-of-file request. 

Calling This WEOF routine is called by the WEOF macro
 

Sequence: instruction. The format of the WEOF macro instruction
 

is shown in section 3.2.1.
 

Inputs: The inputs to this WEOF routine are:
 

1. The parameter of the WEOF macro instruction--


FILENAME of the file.
 

2. The FCB of the file specified by FILENAME.
 

Output: 	 The output from this routine is an end-of-file
 

mark delimiting the end of the file.
 

Algorithm and flow chart: As shown in Figure 34.
 

(d) The MOVE routine
 

Purpose: Move forward and pass end-of-file markers.
 

Major 1. Check and make sure that the file is not closed.
 

Objectives: 	 2. Send out all the information that remains in the
 

buffers together with an end-of-file mark, if
 

this is an output file.
 

3. Set up and initiate an I/O request.
 



WEOF FILENAME
 

TWEOF 

Was 
the file rro 
closed -egE 

Fg 4Ti an-in4put file 

WEOFJILENAME,NOREQ 
set a WEOF request 

entry

o 


The Flow Chart of WEOF 
Routine
 

Fig. 34 
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4. Set up and read I/O request, if this is an input
 

file.
 

5. Clear AVBCT information in FCB.
 

Calling This routine is called by the MOVE macro instruction. 

Sequence The format of the MOVE macro instruction is shown 

in Section 3.2.1 

Inputs: 	 The,inputs to this routine are:
 

1. The parameters of the MOVE macro instruction
 

are the FILENAME and N.
 

2. The FCB of the file.
 

Output: 	 If the file is already closed, then an error message
 

will send out from this routine.
 
I 

Algorithm and Flow chart: As shown in Figure 35.
 

(e) The BKSP routine:
 

Purpose: Move N physical records backward.
 

Major 1. If an error condition is detected, sent out
 

Objectives: 	 an error message. IE the file is closed, this
 

is an error.
 

2. If the length of N physical record is greater 

than or equal to 	buffer size then:
 

(a) Set up a request for backspace N, records,
 

where N is the smallest integer such that
 

N=N-(SIZE-AVBCT) /physize and Nlis multiplier
 

of (size/physize),
 

(b) Set up a 	READ request, and
 

(c) Adjust AVBCT.
 

3. If the length of N physical record is less than
 

buffer size then adjust AVECT only.
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MOVE FIENAME;N
 

MOVE
 

Is
 

Sthiskan 
•output

0 
fi 3. 

Clear all informations
 
in FCW4 of FCB
 

Call
IOREQ MOVE,FILENAME, ,,N
 

to set a MOVE request entry
 
Call
 

IOREQ READ,FILENAME,, ,IOBUF,SIZE
 
to set a READ request entry for 
reading ahead
 

Fig. 35 The Flow Chart of the MOVE Routine 
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Calling This routine is called by the BKSP macro instruction. 

Sequence: The format of the BKSP macro instruction is shown 

in the flow chart (Figure 36). 

Inputs: The inputs to this routine are:
 

1. The parameters of BKSP macro instruction are
 

the FILENAME and N.
 

'2. The FCB of the file.
 

Outputs: An error message will be sent out if the file is
 

closed.
 

Algorithm and Flow chart: is shown in Figure 36.
 

(f) The REWIND routine
 

Purpose: Perform the rewind operation.
 

Major 1. Check and make sure that the file is not closed.
 

Obj ectives:
 
2. Write out all the data remaining in the buffers
 

and write out aft end-of-file mark at the end,
 

if this is an output file.
 

3. Set up a REWIND I/O request, if this is an
 

input file.
 

Calling This routine is called -by the REWIND macro 

Sequence: instruction. The.format of the REWIND macro
 

instruction is shown in the flow chart (Figure 37)
 

Inputs: The inputs to this routine are:
 

1. The first parameter of the REWIND macro
 

instruction is the FILENAME.
 

2. The FCB of the file.
 

Output: An error message will be sent out if the file is
 

closed.
 

Algorithm and Flow chart: As shown in Figure 37.
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BKSP jFILENAME,N
 

TBKSP
 

Was
 
theffle? Errorgr

closed 
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LB =(SIZE - AVBCT)/physical record
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Set Ne-N -LB
 
R 4- N /MAX +1
 

Set N'- R *MAX
 
Re-N't -N
 

Call
 
IOREQ BKSP,FILENAME ,, ,N'
 

to sat a BKSP re uest en r
 

Call
 
IOREQ READ,FILENAME, ,,IOBUF,SIZ
 
tojset a READ request entry for
 
reading ahead
 

Set AVBCT e -
R * physical record size 

Fig. 36 The Flow Chart of the BKSP Routine
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__N a REWINDo set Iioo 
entr 
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Fig. -37. The Flow Chart of the REWIND Routine 
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5.2.2 The I/0 scheduling routines
 

The I/0 scheduling routines can be divided into two groups, namely, 

I/O initiation and I/O completion. The I/0 initiation group consists 

of three routines: IOREQU, STARIO, INITIO. The I/O completion group 

consists of the IOINPR routine, IOFIN routine and the RSLANL routine. 

5.2.2.1 The I/0 initiation routines 

(a) The IOREQU routine
 

Purpose: Request an [/0 operation
 

Major 1. Check and determine whether the device can
 

Objectives: accept the request.
 

2. Check and determine whether the unit is busy.
 

3. Call the STARIO routine, if the unit is ready
 

to accept this function. Otherwise, insert the
 

I/O request entry into I/0 request queue of the
 

proper unit.
 

Calling The IOREQU routine is called by the IOREQU instruction.
 

Sequence: The format of this IOREQU macro instruction is
 

shown in Figure 39.
 

Inputs: The inputs to the IOREQU routine are:
 

1. The parameters of the IOREQU macro instruction.
 

They are: I/O request function--the name of
 

the function.
 

FILENAME--The name of the file 

INTRUP --The address of the user's interrupt
 

routine. 

Note: 	 I f this field is absent, the address
 

of system interrupt routine will be
 

used.
 

'ERR .-The address of the user's error
 

check routine 
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Note: 	 If this field is blank, then the
 

address of-system error check routine
 

will be supplied.
 

1st ADDR.-The first location where data will be
 

read or written.
 

N --The number of words to be read
 

into or written from memory.
 

Note: 	 That N exists only when the
 

function is a data request (e.g.
 

READ, WRITE)
 

2. The FCB of the file specified by the parameter
 

FILENAME.
 

3. The 	UCB of the unit which is used by the file.
 

4. I/0 request table and I/0 request queue
 

(See Section 6)
 

5. The function acception table (See Section .6)
 

Outputs: The outputs from the IOREQU routine are:
 

1. The I/0 request is inserted into an I/0
 

request queue, .if that request can not be
 

initiated right away.
 

2. An error message--if the device does not
 

accept the request function.
 

Algorithm and Flow chart is shown in Figure 38.
 

(b) The STARIO routine--

Purpose: Prepare the CCB for initiate an I/O request 

Major 1. Fill in all the information in the CCB
 

Objectives: 
 2. Call the INITIO routine.
 

Calling This routine is called by the IOREQU routine,
 

Sequence: address of I/O request entry'must be in the index
 

register before entering this routine.
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st 

I-IOREQ FUNCTION,FILENAME,INTRUP,ERR,1 ADDR,N 
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from the FOB (i.e.
 

Pick up the device
 
type from i word
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Error
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igd The
Fwh 
 toIs nite
 

Fig. 38 The Flow Chart of IOREQ Routine
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Inputs: 	 The inputs to this routine are:
 

1. The I/0 request entry--its address is specified
 

by the register
 

2. The UCB of the unit required by this I/0
 

request.
 

3. The CCB of the channel required by this I/0
 

request.
 

Outputs: The output of this routine is a CCB with new
 

information in it.
 

Algorithm and Flow chart: As shown in Figure 39.
 

(c) The INITIO routine--


Purpose: Initiate an I/0 request
 

Major 1. Check and determine whether the request is a
 

Objectives: 	 data request. Transfer control to unit inter­

pretion routines, if it is a non-data request.
 

2. Check and 	protect the system protectional unit.
 

3. Transfer control to proper unit interpretive
 

routine.
 

Calling This routine is called by the STARIO routine,
 

Sequence: address of I/O request entry must be stored in
 

the index register before entering this routine.
 

Inputs: The inputs to this routine are:
 

1. The I/O request entry--the address of this 

entry is in the index register 

2. The UCB of the unit requested by this I/0
 

request entry.
 

Output: 	 The output from this routine is an error message--if
 

the I/0 request attempt to harm the system protection
 

unit.
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Algorithm and Flow chart: is shown in Figure 40.
 

5.2.2.2 The I/0 completion routines 

(a) The IOINRP routine
 

Purpose: Process the 1/0 interrupt 

Major l. Disable or inhibit other occurence of an interrupt. 

Objectives: 
2. Save the contents of the program location 

counter and of all necessary registers. 

3. Identify the interrupted unit and channel. 

4. Clear the interrupt line. 

5. Record the I/0 result descriptor (See Section 

6.1.2 for the details and description of the 

I/0 status descriptor). 

6. Transfer control to the IOFIN routine. 

Calling This routine is called when an I/O interrupt has 

Sequence: occurred. 

Inputs: The input to this routine is the I/ interrupt 

signal. 

Outputs: The outputs from this routine are: 

1. The I/0 result descriptor, which is recorded 

and stored in some fixed location. 

2. The contents of the location counter and of 

necessary registers, these are saved in 

predetermined locations. 

Algorithm and Flow chart: As shown in Figure 41.
 

(b) The result analysis routine
 

Purpose: Analyze the result of an I/O operation
 

Major 1. Analyze the error condition indicated by the
 

Objective: error field of the I/O result descriptor.
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2. Turn on the EOF indicator in FCB if the end-of-file
 

bit is 1 in the I/O status descriptor.
 

3. Reset the busy flag to indicate that the buffer
 

is not busy now.
 

4. If the user's interrupt address is not specified,
 

enable the interrupt, restore the contents of
 

location counter and of all saved registers, and
 

then return control to the calling program.
 

5. If the usgr's interrupt routine is specified, store
 

the I/0 result descriptor into the first word
 

of the user's interrupt routine, reset all contents
 

of the saved registers, and then transfer
 

control to user's interrupt routine. 

Calling This routine is called by the IOFIN routine, the 

Sequence:_ address of the I/O status descritor must be stored 

in the index register before enterring this routine.
 

Inputs: The inputs to this routine are:
 

1. The I/O status descriptor, whose address is
 

stored in the index register
 

2. The CCB, the UCB and the FOB which are
 

iesident in core at all times.
 

Outputs: The outputs from this routine are:
 

1. If the end-of-file condition is detected,l 

in the EOF indicator of the FCB. 

-2. 0 in the BUSY indicator of the FOB. 

- 3. The I/O status descriptor in the first word of 

the user's interrupt routine.
 

Algorithm and Flow chart: As shown in Figure 42.
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(c) The IOFIN 	routine
 

Purpose: 	 Update the CCB and UCB
 

Major 1. 	Initiate the next I/0 request in the I/0
 

Objectives: 	 request-queue for that particular unit which
 

interrupts the processing, if there is an
 

I/O request in that queue.
 

2. Update the CCB and UCB of the channel and unit 

which interrupts the processing, if there is 

no I/O request in that queue. 

3i Pass control 	to the result analysis routine.
 

Calling This routine is called by the IOINRP routine.
 

Sequence: Address of the I/0 result descriptor must be stored
 

in the index register before enterring this routine.
 

Inputs: 	 The inputs to this routine are:
 

1. The address of the I/0 request-queue entry
 

table. This address is a known parameter.
 

2.-The I/0 request-queues, these queues are
 

reside in the core memory at all time.
 

3. The I/0 result descriptor, whose address is
 

stored in the index register X.
 

Outputs: 	 The outputs from this routine are:
 

1. If the I/0 queue is empty then CCB and
 

UCB are updated.
 

2. If the I/0 queue is not empty then an I/O entry
 

is picked up from I/0 queue.
 

Algorithm and Flow chart: As shown in Figure 43.
 

5.2.3 The unit 	interpretive routine
 

Purpose: 	 Set up the channel program and initiate the proper
 

action.
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Major 1. Initialization for processing upon re-entry.
 

Objectives: 2. Set up the I/O instruction codes.
 

3. Set up the channel programs.
 

4. Issue the 	I/0 actions.
 

5. Return control to the user's program.
 

Calling This routine is called by INITIO
 

Sequence: routines.
 

Input: 	 The input to this routine is the I/0 request entry
 

whose address is in the index register X.
 

Output: 	 An error message will send out, if the issuing of
 

the I/0 instruction has been rejected K times by
 

the hardware.
 

Algorithm and Flow chart: is shown in Figure 44.
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6. Discussion
 

This paper has demonstrated how an Input-Output Control System
 

can be simplified and organized as a tree-structured system. The discuss­

ions on ,the designing and expansion of SIOCS are presented first in this
 

section. Then it is followed by the discussion on the microprogramming
 

of SIOCS. The microprogrammed implementation of a portion of SIOCS, the
 

buffer allocation, has been presented in Reference [50], where the illus­

tration of an integrated software-hardware design through microprogramming
 

is given in great detail.
 

6.1 Discussion on the designing of SIOCS
 

(a) The tree-structure is regarded as a very important principle for
 

designing an operating system. It is both easy to understand and easy to
 

implement, because each level of the ttee-has its own goals and its own
 

clear environment. To isolate the levels and to decide upon how many levels 

are most important in the design. The experience gained in designing this 

SIOCS indicates that the ideal solution to achieving program modularity 

is to divide the IOCS into four levels. The highest level (the file system) 

is accessed directly by the user, and only the lowest level (the unit 

interpretive routines) is dependent upon the hardware. The middle two 

levels (the buffering system and the I/O scheduling) are accessed only by 

the system programmer. In this manner, the system programmer may change 

part of the I/0 scheduling for a special hardware configuration at a later 

time. Similarly, the system programmer may change a part of the buffering 

system at will in order to accommodate some special user need.
 

(b) Tables should be used by the IOCS to communicate within different 

parts of the operating system, while explicit software should be created to 

communicate to the outside. This choice is because the environment within 

the system is relatively static while the environment outside the system
 

is always changing.
 

6.2 Discussion on the Expansion of SIOCS
 

(a) A channel scheduler should be added into T/0 scheduler--the 

STOCS contains a Channel Control Block (CCB) for every channel, and assumes 
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that each unit is connected with one channel at all times. One may add 

a channel scheduler which allows several I/O devices to share the same 

channel.
 

(b) A disk and drum I/O capability should be added for disk and 

drum operations. Such information to enable an order such as seek address 

to be implemented must be maintained in Unit Control Block for disk or
 

drum operations. 

(c) Internal files should be added into the file system--one may 

introduce a fourth type of file, namely internal file, which is a list of 

buffers together with pointers. The third word of present File Control
 

Block (section 4.4) may be used as a list head of an internal file. With
 

this feature, a user may declare a particular file which is to be referenced
 

very frequently as an internal file. (See References [39], [44], [45])
 

(d) One may add conversion routines into SIOCS-- This will allow I/O 

devices to perform the I/O function under several different modes, such as 

binary mode, BCD mode,... ,etc. 

6.3 Discussion on the Microprogramming of SIOCS
 

(a) The computer elements which are required for implementation of 

the buffer allocation routines are included in most microprogrammed comput­

ers. This means that the buffer allocation routines could be indeed micro­

programmed.
 

(b) When the address of next micro-instruction is specified in every
 

micro-instruction, there is a greater flexibility in the sharing of common
 

sequences of micro-instructions among different functions. This is due to
 

the fact that branching does not take a separate step and successive micro­

instructions may be located anywhere in control memory,. Furthermore, if the 

concepts of paging or segmenting are applied in the control memory, then
 

a branch from page to page, or from segment to segment may be implemented 

very easily.
 

(c) In order to refer to an operand and to store temporary results,
 

a LOCAL STORE consisting of high speed registers is required. A part of
 

this store may be designed as a stack. This may be used for storing the 

micro-subroutine return address for re-entry. A stack is most useful for 

a linguistics processor or for any multiple buffering scheme.
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(d) The basic implementation of operating system involves such
 

queuing techniques for control block handling, table reference, internal 

sorting, pointer handling,etc. It is found from this study that those 

queuing techniques require some macro operations such as, 

* Buffer allocation or general storage allocation, 

* Storage release operation, 

Insertion of an item into a chain or list (this may be any 

type of linkage), 

* Delete an item from a chain or list, 

* Transfer a block of data from one area into another area within 

the same storage,
 

* Sequential search and locate an item, 

* Random search and locate an item. 

As demonstrated in Reference [50], the buffer allocation routine needs 

only 6 control words to implement the entire operation. Thus"it may be worth 

while to add the above mentioned elementary operations into the machine 

language level of such microprogrammed computers as the IBM 360 family or
 

the RCA Spectra 70.
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