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ABSTRACT
 

.This report presents an evaluation of the Auxiliary
 

Propulsion System 90-Day Recycle Capability Test,
 

Module III that was conducted at the Sacramento Test
 

Center from 2 December 1968 to 25 February 1969. The
 

test was conducted to verify the capability of the
 

Auxiliary Propulsion System propellant tanks and helium
 

pressurization line to withstand simulated flight
 

vibrations and shock loads while loaded with propellants.
 

This test program was conducted under National
 

Aeronautics and Space Administration Contract
 

NAS7-101, Change Orders 1671 and 1987.
 

DESCRIPTOR
 

Saturn S-IVB/V Stage Auxiliary Propulsion System Module 

Complex Gamma Test Facility Sacramento Test Center 

Complex Alpha Test Facility 
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PREFACE
 

This report documents the evaluation of the Auxiliary
 

Propulsion System 90-Day Recycle Capability Test on
 

Module III as performed by MDAC-WD personnel at the
 

Sacramento Test Center. The test was initiated on
 

December 2, 1968, and completed February 25, 1969.
 

The purpose of the test was to demonstrate the
 

capabilities of the S-IVB/V Auxiliary Propulsion
 

System propellant tanks and helium pressurization
 

line to withstand simulated flight vibration and
 

shock loads while loaded with propellants.
 

This report, prepared under National Aeronautics and
 

Space Administration Contract NAS7-101 (Change Orders
 

1671 and 1987), is issued in accordance with line
 

item FQ-L-70 or report No. SM-41412, General Test Plan.
 

REVISION A
 

The failure analysis report that was prepared by the
 

Bell Aerosystems Company on the defective bladder
 

found in Module II has been published as Supplement I
 

to this report.
 

PRECEDING PAGE BLANK NOT FILMED. 
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1. INTRODUCTION
 

This report presents the results and evaluation of the S-IVB/V Auxiliary
 

Propulsion System vibration tests, module III, that were conducted at
 

the Sacramento Test Center, Complex Gamma and Alpha test facilities.
 

The test program consisted of a series of vibration tests and a partial
 

disassembly and inspection.
 

The information contained in the following sections documents and
 

evaluates the test program that was initiated on 2 December 1968 and
 

completed 25 February 1969. A test schedule is presented in figure 1-1.
 

1.1 Objective
 

The purpose of the test was to verify the capability of the APS module
 

propellant tanks and helium pressurization line to withstand simulated
 

flight vibration and shock loads while loaded with propellants.
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Figure 1-1. APS Module III Test Schedule
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2. SUT4hARY
 

The APS module III was subjected to vibration tests as presented in the
 

S-IVB/V Auxiliary Propulsion System 90-day Recycle Capability Test Plan,
 

DAC-56590E. The tests, conducted at the Sacramento Test Center, verified'
 

the capability of the APS module propellant tank assemblies and helium
 

pressurization line to withstand simulated flight vibration and shock
 

loads while loaded with propellants.
 

The APS module III consisted of the reworked module II. The rework consisted
 

mainly of the replacement of the propellant tank assemblies and associated
 

mounting brackets, and the helium pressurization line.
 

The following paragraphs describe the failures and anomalies that were
 

noted during the tests.
 

A failure is defined as any discrepancy which could possibly cause loss of
 

mission or delay of launch. An anomaly is defined as a discrepancy which
 

is undesirable and not normal but which would not cause loss of mission
 

or delay of launch.
 

2.1 Vibration Tests
 

The loaded APS module was installed in a vertical position and subjected
 

to vibration and shock tests (as outlined in the Formal Qualification
 

Test Procedure 1T31583) to simulate launch and flight vibration.
 

Results of the vibration tests indicate that no failures or
 

anomalies occurred and the propellant bladder leakage experienced on
 

modules I and II did not recur on this module.
 

The bladder leak noted in module II was thought to be linked to the protu­

berances,found on the diffuser standpipe welds. Module III was subjected
 

to special care to ensure the removal of all such weld defects. Since no
 

bladder leaks occurred in module III, this supports the theory that the pro­

tuberances did cause the module II bladder leaks. However, folds occurring in
 

the bladder could equally well result in a bladder rupture. At this point,
 

the evidence is inconclusive.
 

The bladder vendor (Bell) has conducted an analysis of Module II bladder
 

failure mode and its cause. This analysis is published in supplement I to
 

this report
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Since module III was the same module used for the module II vibration tests,
 
it was significant in demonstrating the structural integrity of the system
 
to endure two test programs.
 

2.2 Disassembly and Inspection
 

After completion of the vibration tests, the APS module propellant tank
 
assemblies were removed and transported to the Complex Gamma Maintenance
 
and Assembly Building'for disassembly and inspection on 11 February 1969.
 

No failures or anomalies were noted.
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AUXILIARY PROPULSION SYSTEM
 



3. AUXILIARY PROPULSION SYSTEM
 

ine auxmLnary propulsion system (APS) provides attitude control of the 

stage during all operational phases of S-IVB flight. The system also
 

incorporates a propellant settling capability for damping mainstage
 

propellant transients at the end of the first JA2 engine burn, and for
 

J-2 engine restart after coast. Figure 3-1 is a schematic of the APS
 

and instrumentation.
 

Subsystem components are contained in two separate modules placed 180 deg
 

apart on the aft skirt. Each module (figure 3-2) contains hypergolic
 

liquid bi-propellant engines, a positive expulsive propellant feed sub­

system, and a helium pressurization subsystem.. The fuel used by the
 

APS is monomethyihydrazine (MMH) and the oxidizer is inhibited nitrogen
 

tetroxide (N204). Propellants are stored in two separate tanks equipped
 

with positive expulsive teflon bladders for propellant feed during zero g
 

conditions.
 

Prior to launch countdown operations, each module is loaded with pro­

pellants through connections in the aft end of the module. During
 

loading, the expulsion bladders must initially be in a fully expanded
 

position against the tank wall. A differential pressure is maintained
 

during the preparatory operations to assure that this condition is
 

satisfied.
 

Propellant loading and recirculation are accomplished simultaneously.
 

Propellant flow is established through the propellant control module
 

transfer valve. The flow then divides, with a portion going to the pro­

pellant tank, and a portion circulating through the engine manifolding
 

to eliminate gas from the system. After a full tank is achieved, pro­

pellant flow is continued for a short time to assure complete gas 

elimination. The propellant tank ullage is then established by of 

loading the required amount of propellant through the transfer valve.
 

Helium used for propellant expulsion is loaded into the module through
 

a pneumatic service line connected to the stage through the fly-away 

stage umbilicals.
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The APS modules are enabled in flight after the second stage retrorockets
 

have been ignited. The APS provides stage roll control during S-IVB J-2
 

engine burn. Commands for operation of the APS engines are provided by
 

the instrument unit. Output from a guidance platform indicating measured
 

vehicle attitude is received in the instrument unit (IU), and a comparison
 

is made with the desired or programmed attitude. If a deviation exists,
 

the IU gives the required commands (via a control relay package) to the
 

APS engine injector valves for thrust duration proportional to the
 

magnitude of the'deviation.
 

At J-2 engine cutoff, the APS pitch and yaw controls are activated, and
 

all controls (pitch, yaw, and roll) remain active throughout the coast
 

phase. At J-2 engine restart, the pitch and yaw modes are deactivated.
 

The pitch and yaw modes are reactivated after J-2 engine second-burn
 

cutoff to maintain 3 axes attitude control.
 

The APS ullage (propellant settling) engines (one in each module) are
 

enabled during the J-2 engine first-burn cutoff transient to prevent
 

undesirable stage propellant movement. Firing continues through the
 

engine cutoff transient decay and the activation of the LH2 tank
 

continuous propulsive vent system. The APS ullage engines are again
 

fired at the end of orbital coast to provide propellant settling during
 

J-2 engine restart.
 

3.1 Engine Systems
 

Three 150-lbf thrust attitude control engines and one 70-lbf thrust
 

ullage engine are employed in each APS module. The 150-1bf thrust
 

engines are manufactured by TRW Systems Group. The 70-lbf thrust
 

engine was designed, developed, and manufactured under NASA contract
 

by Rocketdyne Division of North American-Rockwell for the Gemini
 

Program. The 150-lbf thrust engines employ quadruple injector valves
 

for redundant valve action. The 70-1bf Gemini (ullage) engine employs
 

single valves on both the fuel and oxidizer lines.
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3.1.1 150-lbf Thrust Attitude Control Engines
 

Three 150-lbf thrust engines (figure 3-3) are employed in each APS
 

module, and have quadruple propellant injector valves for redundancy.
 

The thrust chamber is an integral part of the engine, and is composed
 

of a combustion chamber, a nozzle throat section, and a nozzle expansion
 

cone.
 

The injector consists of 12 pairs of unlike-on-unlike doublets arranged
 

to minimize hot spots in the combustion chamber. The valve side of the
 

injector is filled with a silver braze heat sink to reduce injector
 

operating temperature.
 

The engine was qualified for a total pulse operation of 300 sec. During
 

the 300-sec life requirement, the external wall temperature does not
 

exceed 1,060 deg R, and the maximum valve body external temperature does
 

not exceed 625 deg R. The maximum expected duty cycle requirements on
 

the S-IVB/V is approximately 90 sec.
 

Engine propellant flow is controlled by a valve assembly which consists
 

of eight solenoid valves arranged in two quad-redundant series-parallel
 

valve arrangement to preclude any operational failure due to a single
 

valve malfunction. A dual failure, such as two valves "failed open" in
 

series or two valves "failed closed" in parallel, must occur to cause
 

a failure.
 

The injector valves provide positive on/off control of propellant flow
 

upon command from an external power source. Four valves, integral in
 

an assembly, are capable of simultaneous operation and are synchronized
 

to open or close within 3 ms of each other. The opening time for each
 

valve assembly, defined as the time from initiation of open signal to
 

fully open valve package, does not exceed 23 ms.
 

3.1.2 70-1bf Thrust Ullage Engine
 

Propellant settling is accomplished by a 70-lbf thrust film-cooled ullage
 

engine (figure 3-4). Propellant flow to the engine is controlled by
 

single solenoid valves: one for fuel and one for oxidizer. Engine
 

operation has been qualified for continuous burn time of approximately
 

640 sec.
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3.2 Propellant Feed System
 

The propellant feed system (figure 3-5) consists of separate fuel
 

and oxidizer propellant tank assenblies, propellant control
 

modules, and propellant manifolds for distribution of propellants to
 

the engines. Filling of each tank assembly is accomplished through the
 

outer (perforated) tube; the inner (solid wall) tube allows entrained
 

gases in the bladder to be exhausted from the tank as the bladder is
 

filled. Positive expulsion of propellants is accomplished by pres­

surizing the ullage space between the tank and the bladder.
 

3.2.1 Propellant Tanks
 

Each propellant tank (fuel and oxidizer) consists of an outer titanium
 

pressure vessel (cylindrical shell with hemispherical ends of approxi­

mately 4,100 cu. in. capacity), an internal teflon bladder, and stand­

pipe assembly (figure 3-5).
 

The bladder is fabricated of fluorinated ethylene propylene teflon
 

laminated to polytetrafluoroethylene using a spray process resulting in
 

a one-piece seamless unit with a nominal wall thickness of 6 mils. The
 

bladder provides a separation membrane between the pressurization gas
 

(ullage) and the propellant, and also provides a method of transferring
 

propellant under zero g environment. The ullage space between the tank
 

and the bladder is pressurized with helium gas to provide the expulsion
 

pressure necessary for propellant flow.
 

A concentric tube stan'dpipe assembly is located axially in the center
 

of the tank assembly within the bladder. Propellant passes through
 

perforations in the standpipe during expulsion as well as during
 

filling operations. A vent tube is located within the standpipe
 

assembly to allow removal of gas from inside the bladder.
 

3.2.2 Propellant Control Modules
 

The propellant control (figure 3-6) module provides for loading and
 

recirculation of propellants and purging of the propellant systems.
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The propellant transfer valve is a direct-operating, normally-closed
 

solenoid valve. The transfer valve cannot be opened by application of
 

power if the subsystem pressure exceeds external pressure by more than
 

10 psi, and-the transfer valve will not close or remain closed if the
 

external pressure exceeds subsystem-pressure by more than 40 psi.
 

The propellant recirculation valve is a direct-acting, normally-closed 

solenoid valve with two independent poppets and seats. The two-poppet
 

design isolates the engine recirculation line from the tank recirculation
 

line, and all propellant flowing to the engine passes through a 10-micron
 

nominal and 25-micron absolute rated filter.
 

3.2.3 Recirculation In-Line Filter
 

The filter assembly (figure 3-7) consists of a body with two in-line
 

male tube fittings containing a filter element. The element is a welded
 

assembly of a perforated support tube covered with corrugations of dutch
 

twill weave wire cloth to provide an absolute filtering of particles
 

greater than 25 microns.
 

Two filters are used in the fuel and oxidizer propellant recirculation
 

lines to provide filtering of propellant or purge gas flowing through
 

the propellant control module recirculation valve.
 

3.3 Helium Pressurization System
 

The helium pressurization system consists of two check valves in series,
 

a helium storage tank, a helium pressure regulator assembly, two quad­

ruple chetk valves, two filters, and two low pressure helium modules.
 

The helium storage tank stores helium at an initial pressure of
 

3,000 +200 psia. This pressure is reduced to 196 +3 psia for propellant
 

tank ullage pressurization through a two-regulator module. These regula­

tors are connected in series, and function by sensing the regulator down­

stream pressure.
 

Since a common pressurization subsystem is used, quadruple check valves
 

are employed between the regulator and propellant tankage for added
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assurance that hypergolics will not mix as the result of leaks or normal
 

permeation. The low pressure helium modules provide ground venting
 

capabilities of propellant tank ullage pressure, and a means of estab­

lishing pneumatic control of the expulsion bladders during loading and
 

checkout. Command venting capabilities during flight are not provided,
 

although the propellant tanks are protected from overpressurization by
 

relief valves in the low pressure helium modules. All helium entering
 

the regulated pressure area of the subsystem is filtered upstream of the
 

regulators.
 

3.3.1 High Pressure Helium Tank
 

The helium tank is a welded titanium assembly consisting of a cylindrical
 

center section and two hemispherical end domes, each containing a female
 

tube fitting boss. The helium tank is a gas reservoir for the propellant
 

positive-expulsion system on the S-IVB/V attitude control system.
 

3.3.2 Helium Pressure Regulator Module
 

Helium stored at 3,000 +200 psia in the high pressure helium tank is fed
 

to a helium regulator module. The helium gas entering the module passes
 

through an internal filter and then through two regulators in series,
 

both of which sense downstream pressure. The first (or primary) regula­

tor regulates the gas pressure to 196 +3 psig while the redundant
 

secondary regulator regulates the gas pressure to 200 +3 psig. During
 

normal operation, regulated pressure is maintained by the primary
 

regulator. Should the primary regulator fail, the secondary regulator
 

then begins operation. Each regulator is of fail-open design. Ambient
 

pressure sensing ports, provided on both regulators, furnish the
 

necessary ambient pressure references. Regulator performance is
 

evaluated by pressure transducers installed immediately before and
 

after the regulators. Regulated helium is fed through quadruple check
 

valves and filters to the ullage area of the fuel and oxidizer tanks.
 

3.3.3 Quadruple Check Valves
 

Two sets of quadruple check valves are employed in the helium pressuriza­

tion subsystem; one set -in the fuel tank pressurization line, and the
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other set in the oxidizer tank pressurization line. These check valves
 

prevent contact of fuel And oxidizer vapors in the pressurization sub­

system due to permeation through the bladders during normal operation
 

or bladder leaks.
 

Eich set of check valves consist of four check valves connected in a
 

series-parallel arrangement and contained in one enclosure. Failure
 

of a check valve set requires open-failure of two check valves in
 

series or closed-failure of two check valves in parallel.
 

3.3.4 Low Pressure Helium Module
 

The low pressure helium module (figure 3-8) consists of a solenoid dump
 

valve and a relief valve. Two low pressure modules are employed in the
 

pressurization subsystem, one module connected to each propellant tank
 

ullage volume. The solenoid dump valve is a normally-closed, direct­

acting valve with a dual (redundant) coil. The valve performs no
 

flight function, and is employed only to vent or pressurize the pro­

pellant tank ullage during ground servicing and checkout operations.
 

The purpose of the relief valve is to provide overpressurization
 

protection of the propellant tankage during ground or flight operations.
 

3-7 



1,) LEGENDSK 

FILTER 

I 

~SOLVtIOIV t 
LORIFICE 

CHECKVALVE 

RICLATHRICH
PRESLIREiS'ITORPORTEE C 

wi-IK 1f-

IU 

In 

1054601- 5 HELIUMTA 

PRESSUREREGULATOR 

IC 

MORLILI 

-

151TSV"SolCHECKYATIVC 

HELMUVH1I0CLOL ECTIO 

F OTO 

LRNUICKO 
ATSEXINGPol $ 

IAEUO 
AZERE 

Low 
RIM 

LOWPRESS.MODULE SECONDR LOV PRESS, MODULE 

OVEROARRUMPVE 

4ZEXIDIZERS IIC 
BLADER OLLASE 

f 
M..--fL " BLADDERCOLLAPSE 

1R63924-505 

FLUSHVENT - ZV 
OTLETISM TZ 

T BE 
CITIS -L--
NECMILATOSFILTERRFORT 

W11Z5 OXIDIZER R ECIRCU LATIONlFO RT 

U72-OX;DZER' 
TRANSFERPONT1 

- --

FILTER 

a------

ED 

LIRELIN 

PR 
4 . ~A 

§5 

MC1,7A SAR-A 
OX---- P---RESSUREFI-EL---- R---------

MONTOR I woork PORT0 FILTER 

*-(O---l--

NOL "MM"7 
A92-L 

F ILTER 

REELN 

LN 

FLUSH& VENT 

nunsOUTLT VIOMT 
BLEED 

OUTLET 

ICtC 
I} "1! 

PURGE~~j 

4FUE 
RNFRPR 

CONTTROLMIOULE1- CONTRO-4 FDll 

OIM) I S I S 

CONTROLENGIENOSED" NEED T 

Figure 3-1. S-IVB/V Auxiliary Propulsion System and Instrumentation 



FUEL QUAD-CHECK VALVE
 
1A67912-505
 

OXIDIZER QUAD-CHECK VALVE
 
IA67912-503
 

REGEUL
HIGH PRESSURE HELIUM TANK 


- 21.IB54501-505
 

SO 
 XIDIZ E R TA N K.. 
 .......
.fl sj'.1B63924-506 

n 3 150 LB THRUST ATTITUDE
 
CONTROL PITCH ENGINE
(ENGINE NO. 2)"
 

1A3'9597-509
 

70 LB THRUST ULLAGE
 
ENGINE (ENGINE NO. 4)
 

GFE 15-210001
 

FULTN
OXIDIZER 

>C i LOW PRESS HE.MOD IB63924-505 

9 , 1A49998-512 
OXIDIZER PROP -FUEL LOW PRESS HE MOD 

NCONTROL MOD.1A49422-509 IA49998-509
 

150 LB THRUST 
 150 LB THRUST ATTITUDE..
 
/ CONTROL ROLL/YAW ENGINE
-TTDCNR 


ENGINE NO. I)NE
 
NIA39597-509,9 

FUEL PROPELLANT CONTROL MOD 
OXIDIZER CONNECTIONS IA49422-510 
FLUSH & VENT DISCONNECT FUEL 

IB58697-523 CONNECTIONS 
GAS BLEED DISCONNECT FLUSH & VENT DISCONNECT 

IB58697-531 
-

IB58697-525 
HELIUM FILL GAS BLEED DISCONNECT 

(BACK SIDE OF MODULE) IB58697-535 
Figure 3-2. S-IVB/V Auxiliary Propulsion System Module 



OXIDIZER INLET OXIDIZER VENT 

FUEL VENT0 
FUEL INLET 

OXIDIZER VALVES 0 

FUEL ALVESINJECTOR 

GREEN REFRASIL 

MOUNTING FLANGE 

PHENOLIC RESIN 
IMPREGNATED 

STRUCTURAL GLASS 

PHENOLIC 

IMPREGNATED SILICA 

/ 

. . MOLYBDENUM THROAT 

WITH SiW COATING 

SPRAYED ZIRCONIA 
COATING FOR 
MATERIAL COMPATIBILITY 

Figure 3-3. 150-lbf-Thrust Attitude Control Engine
 

3-10 



100 SCARFED NOZZLE 

AIR GAP 

INJECTOR PLATE STAINLESS STEEL SHELL 

PROPELLANT VALVESSR 

ELECTRICAL INTERFACE 

PROPELLANTINTERFACE 

CHAMBER PRESSURE TAP 

FUEL-CN-OXIDIZER DOUBLETS SILICON-CARBIDE THROAT INSERT 

SPLASH PLATE 

GRAPHITE CHAMBER LINER COMBUSTION CHAMBER 

Figure 3-4. 70-lbf-Thrust Ullage Control Engine 



PROPELLANT OUTLET PORT
 

PROPELLANT BLEED PORT 
 TN HL
 

1 DIFFUSER TUBE
 

VENT STRING
 

CLOSURE FLANGE PRESSURIZING PORT
 

STANDPIPE ASSEMBLY 

Figure 3-5. Positive Expulsion Propellant Tank
 



- -

----

ELECTRICAL CONNECTOR (TYP) MOUNkTING BRACKET 

FILL-DRAIN SOLENOID CNC) 

FILTER 

PORT DESCRIPTION 

A 

B 

TO TANK 

TO ENGINES 

VENT-PURGE 

SOLENOI D(NC) 

C VENT FROM 
TANK 

D VENT FROM 
ENGINES 

FILL-DRAIN PORT . 

CHECK VALVE ---

PURGE PORT
 

SET-PURGE PORT SOLENOID FLANGE 
LEAK-CHECK PORT 

FILL-DR AEN PUR 

PORT ONT-PURGED 
F LL-DRAIN PORT PORT 
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4. TEST CONFIGURATION 

4.1 APS Module III 

The APS module (P/N IA83918-535, S/N 507-2) used for the vibration tests 

was also used in the module II tests except for the propellant tank
 

assemblies and pressurization lines which were replaced. APS module 

configuration at the completion of pretest checkout is shown in
 

table 4-1. This table lists the major APS components, manifacturers, 

part numbers, and serial numbers. 

4.2 Gamma Facility 

The Gamma facility was utilized for pretest checkout, propellant loading, 

unloading, and disassembly.
 

4.3 Alpha Facility
 

The APSmodule III was transported to the Complex Alpha test facility for 

the vibration tests while loaded with propellants. The module was mated 

to a section of the aft skirt which was attached to a vibration fixture.
 

The vibration fixture was attached to the shaker head of a C-210Y "MB" 

vibration exciter which was driven by two (2) "MB" model T999 power 

amplifiers. Because the test site is of open construction, an environ­

mental control unit was required to maintain the module and propellant
 

temperatures within the desired ranges. The environmental control unit
 

was connected to the APS module by a flexible duct which supplied cool 

or warm air as required through the openings provided in the module 

fairing. 

The electrical control panels located at Alpha Test Control Center 

provided for remote operation of the APS module and support equipment.
 

Functions such as pressurizing, venting, and the ability to offload 

propellants in case of emergency were controlled manually. The test
 

control center in addition to the meters on the operation console, also
 

contained strip chart recorder channels for monitoring the critical
 

redline parameters while the APS module was being vibrated.
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A small portion of the Alpha Test Control Center instrumentation was used 
for the vibration test. The data recording equipment used included 10 
strip chart channels, 3 dc amplifier channels, 3 signal condition
 
channels, and 13 frequency modulation (FM) channels. The FM data was
 

recorded on two 14-track tape recorders; one primary and one backup
 

recorder. 
Two 14-track tape recorders were used by Engineering
 

Laboratories and Services (EL&S) at the vibration site to record signals 
from twenty-two accelerometers and two strain gages. In addition, a
 

time range generator, photo camera system, master calibration control
 
console, closed circuit TV, and a video tape recorder were utilized.
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TABLE -i AUXILIARY PROPULSION SYSTEM CONFIGURATION RECORD
 

AT COMPLETION OF PRE-TEST CHECKOUT
 

Module P/N IA83918-535 S/N 507-2
 

Component 


Helium Check Valves 


Helium Tank 


Helium Pressure Regulator 


Quad Check Valve (Oxidizer) 

Quad Check Valve (Fuel) 


Ullage Filter (Oxidizer) 

Ullage Filter (Fuel) 


Helium Low Pressure Module (Oxidizer) 

Helium Low Pressure Module (Fuel) 


Propellant Tank (Oxidizer) 

Propellant Tank (Fuel) 


Propellant Control Module (Oxidizer) 

Propellant Control Module (Fuel) 


Engine Manifold Assembly (Oxidizer) 


Engine Manifold Assembly (Fuel) 


Engine 1 

Engine 2 

Engine 3 

Engine 4 


GFE
 

Vendor 


Sterer 


DACo 


Fairchild-Stratos 


Vinson 

Vinson 


Western Filter 

Western Filter 


Vinson 

Vinson 


Bell Aerosystems 

Bell Aerosystems 


Leonard 

Leonard 


DACo 


DACo 


Tapco 

Tapco 

Tapco 

Rocketdyne 


DACo P/N 


1B67598-501 


IB39317-501 


IB54601-505 


IA67912-503 

1A67912-505 


1B55934-1 

1B55934-501 


1A49998-512 

1A49998-509 


1B63924-506 

1B63924-505 


IA49422-509 

IA49422-510 


1B65684-I
 
IB59670-1
 
1B51482-I
 

1B59679-1
 

IA39597-509 
1A39597-509 
1A39597-509 
15-210001 * 

S/N 

Upstream
Downstream 

150
151 

020 

3825C740071 

1107 
1096 

1036314 
1036305 

135G 
117G 

037 
037 

0000072 
0000216 

805 
806 
801 
4071851 
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5. TEST PROGRAM
 

5.1 General
 

The FQ-L-70 test program was revised to include a third vibration test
 

program instead of two as was originally planned because of the failures
 

experienced in the APS modules during the first two test programs.
 

The test program for module III included the rework of module II with
 

new propellant tank assemblies, new propellant tank pressurization line
 

and replacement of other miscellaneous hardware damaged during the testing
 

of module II. The vibration test program and test requirements were the
 

same as for module II with the exception of changing the sequence of
 

vibration.
 

5.2 Propellant Tank Verification
 

The propellant tank bladder failure experienced on module II was believed
 

to have been caused by a sharp protrusion on the upper tank diffuser
 

standpipe weld. Therefore, to preclude a similar failure from occurring
 

on module III, new propellant tank assemblies were installed in module II.
 

A thorough inspection was made of the tank diffuser standpipe welds at
 

the vendor prior to tank assembly installation. During this inspection,
 

a sharp protrusion was found on the lower standpipe weld of the oxidizer
 

tank and numerous small well-rounded inclusions were found on the upper
 

welds of both the fuel and oxidizer tank diffuser standpipes. The small
 

inclusions were within the Bell Aerosystem acceptable tolerance and were
 

not removed; however, the sharp protrusion on the oxidizer standpipe lower
 

weld was not acceptable and was removed prior to the installation of the
 

bladder.
 

5.3 Pretest Checkout
 

Between 17 December 1968 and 7 January 1969, the APS module III was
 

subjected to checkout operations at the Gamma test facility in ,
 

accordance with standard checkout procedures. The following abnormalities
 

were discovered during this checkout.
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a. 	The inability to obtain a high differential pressure, current
 

signature for engine No. 3 oxidizer valve 2 (downstream).
 

Additional checkout indicated that valve 2 was closing
 

2 to 3 ms slower than valve 1 (upstream), making it impossible to
 

achieve the high differential pressure condition for valve 2.
 

This condition was identical to that found during the
 

pretest checkout of module II and was acceptable for test.
 

b. 	A 6 sccm leak through the fuel propellant control module
 

transfer check valve. The maximum allowable leakage through
 

this valve is 5 scem; however, because this module has
 

been subjected to previous vibration testing and th rheck
 

valve would never be used as flight hardware, the leak was
 

accepted.
 

c. 	A slight leak was found at the fuel ullage filter-to-fuel quad
 

check valve interface. This was corrected by replacing an "0"
 

ring seal.
 

5.4 Propellant Loading
 

On 7 January 1969 the APS module was loaded with propellants in
 

accordance with the standard loading procedure (H&CO 1B73217). The
 

only anomaly noted was a decrease in propellant tank temperature. This
 

was attributed to the Lest complex piping and valve complexes not being
 

conditioned.
 

5.5 Pressurization
 

The 	following pressures were monitored during the vibration tests:
 

System 	 Parameter Range (psia)
 

Low Pressure Oxidizer Manifold and Ullage Pressure 203 - 222
 

Low Pressure Fuel Manifold and Ullage Pressure 203 - 222
 

Low Pressure Regulator Outlet Pressure 203 - 222
 

High Pressure Helium Bottle Pressure 305 - 3,200
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5.5.1 High Pressure System
 

The high pressure system was pressurized approximately 20 times between
 

14 January 1969 and 6 February 1969. Pressurization was always terminated
 

below the helium bottle operating pressure limit of 3,200 psia.
 

During the pressurizations, the expected gas heating was observed. 
This
 

heating usually peaked out at approximately 570 deg R. Most of the
 

pressurizations were followed by a hold for temperature stabilization and
 

a pressure decay check. No leaks were detected.
 

During the venting of the system, after the required testing (or trouble­

shooting), the lowest temperature recorded was approximately 475 deg R.
 

5.5.2 Low Pressure System
 

The low pressure system was within the prescribed operating limits; however,
 

an anomaly was noted during testing. The oxidizer manifold pressure
 

exhibited pressure oscillations (ringing) at high vibration levels
 

(figure 5-1). This ringing was also observed during the module I and
 

module II testing and has been attributed to the low damping efficiency of
 

the dashpot fluid used in the oxidizer manifold transducer.
 

5.6 Propellant Temperatures
 

The propellant temperature requirements during the vibration tests were as
 

follows:
 

Parameter Range (deg R) 

Oxidizer Temperature 520 - 560 

Fuel Temperature 520 - 560 

5.6.1 Oxidizer Outlet Temperature
 

Temperature dropped below the minimum allowable temperature of 520 deg R on
 

14 and 15 January (figure 5-2). The oxidizer tank temperature was in the
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acceptable region during this time, but the temperature sensing device was
 

exposed to the ambient temperature and consequently gave a false indication.
 

For the remainder of the test the oxidizer temperature remained in the
 

acceptable region (560 - 520 deg R).
 

5.6.2 Fuel Outlet Temperature
 

The temperature dropped below the minimum allowable two times during testing
 

(figure 5-3). This was attributed to the temperature sensing device which
 

was exposed to the ambient temperature resulting in a faulty bulk
 

temperature indication.
 

5.7 Vibration Tests
 

5.7.1 APS Module Transportation to Alpha Complex
 

The APS module, loaded with propellants, was transported to the Alpha test
 

site on 14 January. Acceleration measurements were made during hoisting
 

and transportation at the input to the module in the thrust, radial, and
 

tangential directions. During transportation, the maximum allowable
 

dynamic load factor of 1.5 was exceeded during crane booming operations
 

when the load factor reached 1.6. Levels generally remained below 0.2 g at
 

a predominant frequency of less than 6 Hz except during the removal of
 

the APS module from the test stand at Gamma when high frequency inputs
 

reached a maximum of 1.85 g's. No damage was observed on the APS
 

hoisting fixture or on the APS module.
 

5.7.2 General
 

The APS module was subjected to vibration and shock tests in the thrust,
 

tangential, and radial axes per the levels and order presented in
 

table 5-1. The vibration and shock requirements were as specified in
 

Test Control Drawing 1T10923F "Formal Qualification Test, Saturn IVB/V Phase
 

V APS Vibration." The module was tested in liftoff orientation with the pro­

pellant tanks loaded and the helium system pressurized to 3,000 +200 psi.
 

The test specimen consisted of an APS module installed on a portion of aft
 

skirt vehicle structure, which in turn was mounted on a rigid fixture.
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Twenty-two accelerometers and two strain gages were used to monitor the
 

dynamic input and response of the specimen (table 5-2). Accelerometer and
 

strain gage locations are shown in figure 5-4. The strain gages were
 

.located on the oxidizer pressurization line at the location of the module I
 

line failure; however, data were not obtained because of technical diffi­

culties. The random vibration input was controlled from the average of the
 

input acceleration levels at the lower right and upper right APS attach
 

brackets, accelerometer locations 1 and 2, respectively. Sinusoidal vibra­

tion and shock tests were controlled at accelerometer location 1. In shock
 

testing the control accelerometer signal was filtered with a 200 Hz low
 

pass filter. Control signals in sinusoidal testina were filtered with a
 

tracking filter.
 

Vibration and shock testing was per specification except for minor devia­

tions considered acceptable by MSFC and MDAC dynamics representatives.
 

A leak
X-rays and full leak checks were performed before vibration testing. 

check was made on the low pressure vent valves, relief valves, and the 

.high pressure check valves after each mode (sinusoidal, random, and shock) 

in the three axes. In addition, a bladder leak check, a high pressure
 

system leak (3000 psia) decay and a bubble soap leak (1500 psia) test, and
 

a close visual inspection was accomplished after vibration tests in each of
 

the three axes. These tests were repeated following the 30-sec radial
 

random vibration test. Table 5-3 summarizes these tests.
 

The vibration and shock tests are described in the following paragraphs.
 

5.7.3 Radial Axis Tests
 

On 15 January, the APS was removed from the standby fixture and installed
 

The pre-vibration
on the vibration fixture for testing in the radial axis. 


test preparations were completed on 16 January. Photographs of the control
 

and response accelerometers are shown in figure 5-5.
 

5.7.3.1 Sinusoidal Sweep Test
 

The sinusoidal phase of the radial axis vibration test was completed on
 

18 January. Replacement of a blown-out capacitor in the main shaker
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power amplifier delayed testing one day. Additional time was spent in
 

checking out the difference in acceleration readings between the control
 

accelerometers at locations 1 and 2. The final sweep was run with the
 

level at accelerometer location 1 reduced to compensate for the higher
 

levels at accelerometer location 2. Filtered acceleration data for this
 

test are presented in figure 5-6. A potentiometer was used to measure
 

double amplitude displacement at the input to the test backup structure.
 

Displacement measurements are presented in figure 5-7.
 

5.7.3.2 Shock Test
 

The shock test was conducted on 19 January. The achieved shock pulses
 

are shown in figure 5-8. Shock spectrum analyses of the control and'
 

several representative response accelerometers are shown in figure 5-9.
 

5.7.3.3 Low Level Random Vibration (Phase I)
 

Phase I low level random vibration testing was conducted on 19 January 1969.
 

Vibration data are presented in figure 5-10.
 

5.7.3.4 High Level Random Vibration (Phase II)
 

Equalization for high level Phase II random vibration was started on
 

19 January but suspended several days due to problems with the equalizing
 

equipment. On 23 January the Phase II random vibration test was
 

completed. Acceleration data for this test are shown in figure 5-11.
 

5.7.3.5 High Level Random Vibration (Phase III)
 

High level Phase II random vibration equalization runs were started on
 

24 January but suspended one day due to burned out resistors in the main
 

shaker power amplifier. New resistors arrived and the Phase III random
 

vibration testing was completed on 26 January. Phase III random vibra­

tion control and response data are presented in figure 5-12.
 

5.7.4 Thrust Axis Tests
 

The-APS was reinstalled on the vibration fixture and pretest preparations
 

for thrust axis testing were completed on 29 January. Photographs of
 

the control and response accelerometers are shown in figure 5-13.
 

5-6 



5.7.4.1 Sinusoidal Sweep Test
 

Sinusoidal vibration testing was conducted on 30 January. The -filtered
 

control and response data are presented in figure 5-14.
 

5.7.4.2 Random Vibration Test
 

Random vibration testing was also conducted on 30 January. Acceleration
 

data are shown in figure 5-15.
 

5.7.4.3 Shock Test
 

Shock testing was conducted on 30 January. The achieved shock pulses are
 

presented in figure 5-16. Representative shock spectrum analyses of the
 

control and several response accelerometers are shown in figure 5-17.
 

5.7.5 Tangential Axis Tests
 

The APS was reinstalled on the vibration fixture for tangential axis
 

vibration and shock testing on 1 February. Photographs of the control
 

and response accelerometers are shown in figure 5-18.
 

5.7.5.1 Sinusoidal Sweep Test
 

The sinusoidal sweep test was conducted on 2 February. Filtered
 

acceleration data for this test are presented in'figure 5-19.
 

5.7.5.2 Random Vibration Test
 

Random vibration testing started on 2 February but was delayed several days
 

due to equalization difficulties. An attempt was made on 4 February to
 

equalize with some new averaging equipment but no improvement was noted.
 

This equipment was removed from the system and the two controls were
 

averaged manually. Random vibration testing was conducted on 5 February.
 

Control and response data are presented in figure 5-22.
 

5.7.5.3 Shock Test
 

On 4 February, the shock test was conducted. The achieved shock pulses
 

are presented in figure 5-20. Representative shock spectrum analyses of
 

the control and several response accelerometers are shown in figure 5-21.
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5.7.6 APS Module Transportation to Complex Gamma
 

The APS module was transferred from Alpha to Gamma on 6 February. The
 

module remained within the maximum dynamic load factor of 1.5 except
 

during booming down operations to clear overhead wires when the blast
 

cylinder, in which the module is housed, touched the ground. At this
 

time 	a shock was measured in the thrust direction, which reached a
 

magnitude of 0.8 g in a rise time of 220 ms, and set up complex oscillations
 

-in the frequency ranges of 20, 12.5, 1.3, and 0.6 Hz. Peak response in
 

the thrust direction was 1.4 g's. Approximately 650 ms later, an input
 

pulse of 0.8 g, with a rise time of 200 ms, was measured in the tangential
 

direction. Subsequent oscillations of 20, 1.25 and 0.7 Hz were experienced
 

in the tangential axis and a peak response of 1.8 g's was measured. A
 

third impact was measured in the radial direction, 1.2 sec after the initial
 

shock in the thrust axis. The input was of short duration and set up
 

radial axis oscillation at a predominant frequency of 20 Hz. The maximum
 

response level reached was 3.4 g's. Throughout road transportation, the
 

acceleration of the APS module was generally below 0.2 g and at a fundamental
 

frequency below 1 Hz. During placement of the APS module into cell No. 3
 

at Gamma, 1/2 Hz oscillations of 0.8 g were recorded in the thrust axis.
 

No damage occurred to the APS hoisting fixture or the APS module.
 

5.8 	Propellant Unloading, System Purge, Disassembly and Inspection of
 
Propellant Tanks
 

Propellant unloading was performed on-7 February per MD H&CO 1B73218,
 

Task 	10. Prior to unloading, X-ray photographs were taken of both propel­

lant 	tanks to show final levels, and 1,000 cc of propellant were removed
 

from 	each APS tank for analysis. The fuel analysis indicated that
 

transmittancy did not meet the 90 percent minimum specified in
 

MIL-P-27404 (the sample value was 83 percent). The oxidizer sample was
 

satisfactory. Propellant unloading and post-unloading purges were carried
 

out with no difficulty whatever, after which the APS was depressurized to
 

blanket pressures and the tank bladders were pressurized to 9 psid
 

positive pressure; On 10 February, it was not possible to re-establish
 

the 9 psid differential pressure across the fuel bladder and a possible
 

bladder failure was suspected. The propellant tanks were removed from the
 

5-8.
 



APS for a detailed leak test, and disassembly and inspection. The leak
 

test and visual inspection following disassembly verified the bladder
 

was in excellent condition. The suspected bladder leak was caused by
 

the insufficient time allowed for the bladder to expand against the
 

tank walls. A detailed description of this disassembly and inspection
 

can be found in DAC-61240, S-IVB/V Auxiliary Propulsion System Phase
 

V-3 Post Test Disassembly and Inspection 14 Day Report.
 

5.9 Conclusion
 

All of the test objectives were met and no failure or anomalies were noted
 

during the vibration testing. Since module III was the same module used
 

for the module II vibration test, with the exception of the tank assemblies,
 

mounting brackets and pressurization line, it was significant in demon­

strating the structural integrity of the system to endure two test programs.
 

The bladder leak found in module II was thought to be linked to the
 

protuberances found on the diffuser standpipe welds. The module III tank
 

assemblies were subjected to special care to ensure the removal of all
 

such protuberances., Since no bladder leaks occurred in module III, this
 

supports the theory that the protuberances did cause the module II bladder
 

leaks. However, folds occurring in the bladder could equally well result
 

in a bladder rupture. At this point, the evidence is inconclusive.
 

The bladder vendor (Bell) has conducted an analysis of Module I bladder
 

failure mode and its cause. This analysis is published in supplement I to
 

this report.
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rABLE 5-1 (Sheet i of 2)
 
VIBRATION REQUIREMENTS
 

RADIAL AXI
 

SINE
 

gct/min (upsweep only)
 

1.5 to 2.5 Hz at 0.04 G, zero to peak
 
?,5 to 3.5 Hz at 0.125-inch D.A. Displacement
 
3,5 to 20 Hz at 0,08 G, zero to peak
 

SHOCK
 

(3 per axis)
 

15 G's
 

Peak
 

(half~sine wave)
 

5+1 Time (milliseconds)
 

RANDOM 

PHASE I (2 minutes)
 

20 = 85 Hz 0,025 g2/Hz 
85 - 280 Hz +6.5 dB/octave 

280 1,QOO Hz 0.31 g2/Hz 
1,000 = 2,OQO Hz -12 dB/octave 

PHASE II (30 seconds)
 

2

20 - 170 Hz 0.1 g /Hz 

170 - 280 Hz 6.5 dBEoctave 
280 - 1,000 Hz 0.31 g /Hz 

1,000 - 2,000 Hz -12 dB/octave 

PHASE III (55 seconds)
 

20 - 170 Hz 0.1 g2/hz 
170 = 280 Hz 6.5 dB~octave 
280 - 1,000 Hz 0.31 g /Hz 
,OOQ - 2,000 Hz -12 dB/octave 



TABLE 5-1 (Sheet 2 of 2)
 
VIBRATION REQUIREMENTS
 

THRUST AXIS
 

SINE 

1 oct/min 3 - 7 Hz; 3 oct/min 7 -.20 Hz
 

(upsweep only)
 

3 to 4 Hz at 0.24 inch D.A. Displacement
 
4 to 7 Hz at 0.2 g's peak

7 to 20 Hz at 0.1 g's peak
 

RANDOM
 

(3minutes)
 

20 - 30 cps at +6 dB/2ctave
 
30 - 100 cps at .01 g /cps
 

100 - 200 cps at +6 dB/o~tave
 
200 - 1,000 cps at .05 g /cps


1,000 - 2,000 cps at -3 dB/octave
 

SHOCK
 

(Same as for radial axis)
 

TANGENTIAL AXIS
 

SINE
 

(Same as for thrust axis)
 

SHOCK
 

(Same as for radial axis)
 



TABLE 5-2 
ACCELEROMETER AND STRAIN GAGE 
LOCATIONS AND ORIENTATIONS 

LOCATION ORIENTATION 

Thrust Tangential Radial 

1 Control-Lower Right APS Attach Bracket Thrust Tangential Radial 

2 Alt. Control-Upper Right APS Attach Thrust Tangential Radial 
Bracket 

3 Quad. Check Valve and He. Press. Thrust Tangential Radial 
Regulator-Input 

4 Shaker Head Thrust Tangential Radial 

5 Quad. Check Valve-Response Thrust Tangential Radial 

6 Fuel Tank-Aft-Response Thrust Tangential Radial 

7 Oxidizer Tank Aft Response Thrust Tangential Radial 

8 Ox. Prop. Control Mod L-5 Input Radial Radial Radial 

9 Fuel Low Press. He. Mod. (Ullage Vent Thrust Tangential Radial 
Valve L04) Response 

10 Engine No. 4 (Ullage) Input Thrust Tangential Radial 

ls Oxidizer Tank Press. Line Quad. Check 

Valve End-Strain Gauge 

l2s Oxidizer Tank Press. Line Quad. Check 
Valve End-Strain Gauge 

13 Lower Left APS Attach Bracket Thrust Tangential Radial 

14 Upper Left APS Attach Bracket Thrust Tangential Radial 

15 APS Module-Center Response Thrust Tangential Radial 

16 Fuel Tank-Forward Response Thrust Thrust Thrust 

17 APS Module-Forward Response Thrust Tangential Radial 

18 Ox. Prop. Control Mod. L-5 Input Tangential Tangential Tangential 

19 Oxidizer Tank-Forward Response Thrust Thrust Thrust 

20 Oxidizer Tank-Forward Response Radial Radial Radial 

?1 Oxidizer Tank-Forward Response Tangential Tangential Tangential 

22 Oxidizer Tank-Aft Input Thrust Tangential Radial 
23 Fuel Tank-Forward Response Radial Tangential Radial 

24 Amplifier-Engine Press. Transducer- Thrust Tangential Radial 
Response 

Left and right are as viewed from outside vehicle.
 

s - Strain Gauges
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TABLE 5-3 PRETEST CHECKOUT SUMMARY 

1.0 HIGH PRESSURE HELIUM SYSTEM CHECKOUT 

Test Test Procedure Allowable Limits Test Results Coznents 

Helium Check Valves 
Functional Check ind 
Prelim±nary Leak 
Check (4.2.1) 

Pressurize APS to 1500 psig and moni-
tor regulator outlet pressure. Leak 
check all connections in He supply 
system for leaks. 

Regulator Outlet Press. 196 psig 
188-201 psig. 
INo leakage allowed. 

satisfactory 

Helium Regulator 
Functional Check 
(4.2.1) 

Increase the He supply to 3100 psig 
in 500 psig steps. At each step 
create a deand on the regulator and 
check lock-up pressure, 

Regulator Lock Press. 
shall be 188-201 psig 
and be consistent 
within + I psiz. 

196 psig Satisfactory 

Helium System High 
Pressure Leak Check 
(4.2.2) 

Pressurize APS to 3150 psig and check 
for reverse flow through high pres­
sure check valves, check for leakage 
at both high pressure transducer leak 
detection ports, and both regulator 
reference ports. System Litmits Result Comnents 

Allow APS pressure to stabilize and 
measure pressure decay for I hour. 

Port P 

Redundant He 

Hip 
LIP
H/P 

51 SCCM 
51 SCCt
51 SCCM 

0 
0.1

0 

Satisfactory 
Satisfactory
Satisfactory 

Check Valve LIP 

He. Press. Xducer #1 

He. Press. Xducer #2 

51 SCCX 

1.8 SCCM 

1.8 SCUM -

0 

0 

- - -

Satisfactory 

Satisfactory 

Not Installed 

The numbers shown in parenthesis. are 

Reg. Ref. Port A 

Reg. Ref. Port B 

He Tank 

the applicable paragraphs in NDAC H&CO iB73220. 

I SCCM 

1 SCCM 

11 psid/hr 

0 

0 

I psld 

Satifctr 

Satisfactr 

Satisfactory 



TABLE 5-3 PRETEST CHECKOUT SUMMARY (CONT'D) 

2.0 PROPELLANT AND PRESSURIZATION SYSTEM LEAK AND FUNCTIONAL CHECKOUT
 

Test Test Procedure Allowable Limits Test Results Comments 

Critical Valve Pressurize APS to 40 + 5 psig and Venting during all Vdnting noted. Satisfactory 
Functionals (L,3.2) individually cycle open then closed cycles. 

both low pressure helium module vent 
valves utilizing both coils. Monitor 
vent ports for venting. 

Propellant Control Pressurize the check valve outlets to 
Module Check Valves 23 + 3 psig and measure reverse 
Leak Check (4.3.3) luakalge11 

System f Limits J Results f Cowmnents 

Oxidizer 5 SCC1 0 SCCM [Satisfactory 

Fuel 5 SCC4 6 SCCM I * 

Quad Check Valve 
Cracking Pressure 
Test (4.3.4) 
A. Cracking Pressure Pressurize APS .to 25 psig and com­

pare check valves upstream and down­
stream pressure. System Limits Results Coa=,ents 

A Oxidizer 
Fuel 

2-5 psid 
2-5 psid 

3.25 psid 
3.75 psid 

Satisfactory 
Satisfactor 

B. Low Pressure Leak Pressurize the check valve outlets 
Check to 5 + 112 psig and measure reverse B Oxidizer 3 SCCx 0.5 SCCM Satisfactory 

leakage. Fuel Conbincd Combined Satisfactory 

The numbers shown in parenthesis are the applicable paragraph fh MDAC H&C01T73220 
* The out-o'f-tolerance condition was accepted as satisfactory for this test. 



TABLE 5-3 PRETEST CHECKOUT SUMMARY (CONTID)
 

2.0 PROPELLANT AND PRESSURIZATION SYSTEM LEAK AND' FUNCTIONAL CHECKOUT (COIIT'D)
 

Test 

C. High Pressure 

Leak Check 


Low Pressure Helium 
.yidule Relief ValvesCheck (4.3.6) 


Pressure Regulator
 
Functional Test
 
(4.3.6) 

A. Primary Regulator 


B; Secondary 


Regulator 


Test Prodedure 


Pressurize the'check valve outlets to 

210 + 5 psig and measure reverse 

leakage. 

Pressurize each valve until relief 

valve cracks, decrease pressure to
220 + 2 psig and measure leakage, 


decrease pressure to 195 +42 psig and 

measure leakage. 


Pressurize APS to 1500 + 50 psig with 
both regulator reference pressures 
at ambient. Cycle ehch vent and 
measure flow rate and flow and lock-

up pressure.
 

Same as A except with primary
 

regulator disabled. 


Allowable Limits Test Results Corrqents 

3 SCM Maximum 0.5 SCaM Satisfactory 
(Combined) (Combined) 

TLits Vts 
TestVa
 -. 

Cracking 325-350 Oxid 337z33 J Sat isf_£t 
Pressure psig Fuel;4 a-A7 s tIsfatoy 

11.0 5CCM Oxid 0 Satisfactory 
Leakage i.0 SCa,; Fuel L Satisfactory 

3.23-17.95 CrFI 7.5 M Satisfactory 

Flow Pressure
 
185-197 psig 189 psig Satisfactory
 

Lock Up Pressure 
1-8-201 ps'g 196 psis Satisfactory 

3.23-17.95 CFt1 7.5 CFR Satisfactory
 

Flow Pressure
 

189-205 psig 197 Satisfactory
 

Lock Up Pressure
 

192-205 psig 201 Satisfactory
 

The numbers shown in parenthesis are the applicable paragraph in NDAC H&CO IB73220 

I 

http:3.23-17.95
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TABLE 5-3 PRETEST CHECKOUT'SUMMARY (CONT'D)
 

2.0 PROPELLANT AND PRESSURIZATION SYSTEM LEAK AND FUNCTIONAL CHECKOUT (CONT'D)
 

Test Test Procedure 

Engine Valves Pressurize APS to 208 psig and 
Functional Check energize valves. Measure solenoid 
(4.3.8) current and valve actuation times. 

Allowable Limits 


Attitude Control Engines
 

Current:
 
1.3 amp maximum 


Poppet Travel:
 
1-4 ms. 


Syncronization: 

3 me mAximua 


Actuation Time Hi 

23 ms maxinum 


Actuation Tire Low 

17 ms maxmum. 


Ullage Control Engine
 

Current:
 
1.0 amp maximum 


Poppet Travel:
 
1-3 ns naxinm 


Actuation Tie-:
 
21 ms maxium 


P 


P
 

Test Results I o(.r tl 

0.88-0.98 amp 

1.5-2.5 ms. 

* 
0-3 ms. 

* 
14.5-18.5 ms. 

$-12.5 ms. 

Satisfactory 

Satisfactory 

Satisfactory 

Satisfactory 

Satisfactory 

0.62-0.67 

1.5 Ms. 

12.5-14.5 ms. 

Satisfactory 

Satisfactory 

Satisfactory 

The numbers shown in parenthesis are the applicable paragraph in MDAC 1I&CO IB73220
 
*As covered in the report text, it was not possible to obtain a high differential pressure valve signature for valve 2
 
of engine 3. This condition was accepted for this test. Ref. A45-KCDC-RPOD-68133.
 



TABLE 5-3 PRETEST CHECKOUT SUMMARY (CONTfD)
 

2.0 PROPELLANT AND PRESSURIZATION SYSTEM LEAK AND FUNCTIONAL CHECKOUT (CONT'D)
 

Test Test Procedure 

Engine Valve teak Pressurize ABS to 210 + 10 psig and 
Checks (4.3.10) measure engine valve leakage. 

Engine Combustiohn Pressurize combustion chambers to 85 
Chamber Leak Checks psig (throat plugs installed) and 
(4.3.9) measure pressure decay rate. Check 

for external leaks. 

Valve Engine Limits 

All 

Valves 

1 

2 

3 

1 SC4M _ 

1 SCCM 

1 SCCN 

4 3 SCCN 

A & C 
1 
2 

1 SCCM 
1 SCc. 

B & D 

3 

1 

2 

1 SCCM 

1 SCC4 

1 SCCM 

3 1 Sccm 

1 & 3 

2 & 4 

1 

2 

3 

1, 

2 

I SCCX 

1 SCC! 

1 ScCM 

1SCCoI 

1 SCC 

3 1 SC 

Engine
Engine 

1 

ts 
... ...Limits 

1 psid/min 

2 

3 

1 psid/min 

1 psid/mln 

* 

'Rate 


0.02 	SCCM 


0 


0.06 SCCM 


0 


0 


0 


0.04 SCCM 

0,02 SCbi 


9 

0.1 SCCM 


0.5g 	SCCM 


0 


0.05 SCCM 


0.45 SCCM 


- 0 

Rate 

Rate .,.
 

0.04 psid 


0 


0 


0 


Comments
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Comments
 
Co ___ent
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

I Satisfactory
 

*No limit established. Data recorded for rccord only.
 

The numbers shown in parenthesis are the applicable paragraph in MDAC H&C0 1B73220
 



CO 

TABLE 5-3 PRETEST CHECKOUT SUMMARY (CONT'D)
 

2.0 PROPELLANT AND PRESSURIZATION SYSTEM LEAK AND FUNrCTIONAL CHECKOUT (CONT'D)
 

Test 

Full Operating 
Pressure Leak Check 
(4.3.11) 

Test Procedure 

Pressurize APS to 1500 + 50 psig and 

monitor APS system for pressure 

decay. Check all components and 
connections for external leakage. 

Component 
Helium Tank-
Oxidz T e 

Oxidizer Lrlage 
Fuel System 

limits 
50 psid
3 psid 

3 psid 
3 psid 

Results 
0psld
0s 

2 psid 
1 psid 

Comments 

Fuel Ullage 

Oxid Transfer Fort 

3 psid 

30 SCCH 

1 psid 
0.3 SCCH 

Oxid Recire. Port 30 SCCH- 0.1 SCCH 

Oxid Vent Port 240 SCCH 0 

Oxid Relief Port 

Fuel Transfer Port 

60 SCCH 

30 SCCH 

0.2 SCCH 

1.1 SCCH 

Fuel Recir. Port 30 SCCR 0.2 SCCH 

Fuel Vent Port 

Fuel Relief Port 

240 SCCH 

60 SCC 

0 

0.2 SCCH 

Reg Primary Ref. 

RLg Secondary Ref. 

I SCCII 

I SCCH 

0.3 SCCH 

0.1 SCCH 

Helium Fill Port 51 SCcOt 0.2 SCCH 

Oxid Gas Bleed 6 SCCH 0 

Fuel Gas Bleed 6 SCCH 

The numbers shovn in parenthesis are the applicable paragraph in MDAC H&CO 1B73220 



TABLE 5-3 PRETEST CHECKOUT SUMMARY (CONT'D)
 

2.0 PROPELLANT AND PRESSURIZATION SYSTEM LEAK AND FUNCTIONAL CHECKOUT (CONT'D)
 

Test Test Procedure 

System and Ullage 

Valves, Low Pres-

Pressurize APS to 23 + 3 psig and 

measure leakage through indicated 

sure Leak Check ports. 
(4.3.12) 

Component 

Oxid Transfer rort 


Oxid Recite. Port 


Fuel Transfer Port 

Fuel Recirc. Port 


Eng. 1 Valves 


En_. 2 Valves 


Eng. 3 Valves 


Eng. 4 Valves 


Oxid Vent Port 


Oxid Relief Port 


Fuel Vent Port 


Fuel Relief Port 

Oxid Gas Bleed Port 

Fuel Gas Bleed Port 

Limits 

0.5 50CM 


0.5 SC0M 


0.5 SCCM 

0.5 SCOt 


1 SCCM 


1 SCCM 


1 SCCM 


I SCC 


1 SC01 


4 SCCH 


1 SCM 


4 SCCH 


0.1 SCCM 


0.1 SCCM 


Results 

0 


0 


0 

0 


0 


0 


0 


0 


0 


0.04 SC0M 


0 


0 


0 


0 


Cornents
 
,ISatisfactory 

Satisfactory
 

Satisfactory
 
SatisfActor7
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

Satisfactory
 

aThe numbers shown in parenthesis are the applicable paragraph in MDAC BI&COIB73i20
 
tD 



C 
TABLE 5-3 PRETEST CHECKOUT SUMMARY (CONT'D)
 

3.0' PROPELLANT TANK CHECKOUT
 

Item Procedure Spec. Result Comments Ref. 

Fuel Tank 
a. Attachment Joint Leakage Connect tank to APS systems. 

Position bladder against inner wall. 
Pressurize ullage and propellant 
system to 155+10 psia. Check ex­
ternal connections with bubble soap 
and monitor pressure decay for IS 
Ian. 

5 psid decay, max. Less than S psid. Satisfactory 4.2.4 

b. Bladder Leakage Reposition bladder against inner 
tank wall. With ullage side vented 
to ambient, pressurize propellant 
side of bladder to 24+1 psia. Mon­
itor leakage at ullage drain fitting 
for 15 min on water manometer. 

180 scc/30 min. 
(helium) 

15 scc/iS min. Satisfactory 4.2.6 

c. Pre-Load Purge PUrge system with 24+1 psia GN2 
until effluent gas contains less 
than SO ppm moisture. 

32 ppm, max. 42 ppm. Satisfactory 4.2.7 

Oxid Tank 
a. Attachment Joint Leakage Connect tank to APS systems. 

Position bladder against inner Mall. 
Pressurize ullage and propellant 
system to 155+10 psia. Check ex­
ternal connections with bubble soap 
and monitor pressure decay for 15 
min. 

5 psid decay, max. 2.5 decay, max. Satisfactory 4.3.4 

b. Bladder Leakage Reposition bladder against inner 
tank wall. With ullage side vented 
to ambient, pressurize propellant 
side of bladder to 24+1 psia. Mon­
itor leakage at ullage drain fitting 
for 15 min on water manometer. 

180 ssc/30 min. 
(helium) 

IS scc/15 min. Satisfactory 4.3.6 

* Indicates applicable paragraph in Douglas Drawing 1B70153 



TABLE 5-3 PRETEST CHECKOUT SUMMARY (CONT'D) 

3.0 PROPELLANT TANK CHECKOUT (CONT'D) 

Item Procedure Spec., Result Comments Ref. * 

Oxid Tank (cont) 

C. Pre-Load Purge Purge system with 24+1 psia N2 
until effluent gas contains less 
than 50 ppm moisture. 

50 ppm, max. 30 ppm. Satisfactory 1.3.7 

Indicates applicable paragraph in Douglas Drawing IB70153
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Section 5
 

STUDY RESULTS
 

The ORDS, when taken as a composite set of potential measurements for orbital
oceanography and meteorology, provided interesting insights into the general obser­
vational patterns which might be anticipated in future resear.ch programs. The pat­
terns or trends observed suggest answers to mission-planning questions regarding
the spectral regions of importance, the grid-point sampling intervals, the frequency
with which the measurements should be.made, the role of potential observational 
platforms, the role of man, orbital operation requirements, and the specific instru­
ments or sensors needed for a comprehensive measurement program. 
5. 1 SPECTRAL REGIONS, OF INTEREST
 
For a comprehensive measurement 
program in orbital oceanography and meteor­
ology, the principal spectralregions of interest are the visible (0. 4 to 0. Si), infra­
red (0. 8 to 50p), and microwave (103 to 105 .) bands. Spectral-sensing requirements
for 31 of the more important measurement areas are summarized in Figures 5-1
and 5-2. For nearly every phenomenon of interest, measurements were required

in more than one spectral region. In many cases, multiband sensing was required

to provide secondary or 
"control" data which could be used to aid in interpreting
the significance of the data gathered in the spectral region of primary measurement

'interest. As an example, I1 upwelling from the Earth's surface in the 10 to llp
region is occulted or attenuated by clouds in the field of view. Since the energy
detected would be radiated at the cloud's temperature, a control measurement is

needed (probably in the visible region) to verify the radiation 
source.
 
Because of their three-dimensional nature, meteorological phenomena generally

require a greater number of wavelength regions in their measurement programs

than do oceanographic phenomena. To illustrate, the differential absorption bandsof the various constituents of the Earth's atmosphere are important factors in con­
trolling the amount of the reflected and scattered radiation which could be observed

from the vantage point of space. Comparison of the relative 
amounts of reflected
and scattered radiation invarious portions of the electromagnetic spectrum provides 
a feasible technique for assessing such factors as cloud cover; cloud heights; pre­
cipitation; surface temperature; and the vertical distribution of temperature, water vapor, CO2 , and ozone. Since the oceanographic measurements feasible from remote 
platforms are essentially of a two-dimensional nature, it appears that less need
exists for broadband coverage. Required oceanographic measurements were found 
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to lie primarily in just two regions, the visible and microwave. Color photography
would provide directly usable data on the dynamics of ocean waters, plankton con­tent, ice coverage, cloud coverage, sea state, and many other phenomena. Micro­wave measurements of surface temperature gradients are preferred over the IR,since they are not appreciably affected by clouds or atmospheric water vapor. Con­siderable research and ground truth testing is required, however, before the fea­
sibility of microwave systems can be established. 
5. Z SPATIAL RESOLUTION (GRID-POINT SAMPLING) 
For each of the items identified in the study, the required distance between discietemeasurements (grid-point sampling) was determined. This spatial resolutionshould not be confused with the resolution of the parameter in terms of accuracy andprecision of the measurement. Rather, it is the sampling distance or spatial varia­bility of the phenomena of interest. A comparison of the data'plotted in Figures 5-3and 5-4 suggests that oceanographic phenomena require measurements made at
closer spatial intervals than meteorological phenomena. 
5..3 TEMPORAL RESOLUTION (SAMPLING FREQUENCY) 
Observation or data-sampling frequency (Figures 5-5 and 5-6), i. e., the interval ofelapsed time subsequent measurements of each parameter at the same grid point,was also examined. Measurement of meteorological parameters reqaired samplingat more frequent time intervals than oceanographic parameters. In Figures 5-5and 5-'6, a horizontal line delineates the range of observation frequencies requiredfor each parameter. The horizontal lines reflect the range of sampling rates from"desired" through "usable." It should be noted that the 	span of observation­

frequency requirements 

for plankton and fish varies 
POLLUTION h ul-SEA STATE
"0WAVES from hourly to monthlyLOAL WNDS data. The extended range 

•OCEANCURRENT 	 associated with biologicalBOTTOMCOMPOSITION
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meteorological.events require -data 
gathering on an hourly to daily basis 
as contrasted to oceanographic m'as­
urements which require daily to'yearly 
sampling intervals. 
These observational patterns suggest 

that different orbital platforms may
be required (Figure 5-8). The rela­
tively coarse measurements requiringfrequent observations, typical of 
certain global weather events, would 

adequately accommodated by vehi­
cles in synchronous orbits. The very
slowly changing oceanographic phe­

nomena requiring relatively fine 
spatial resolution would be adequately
accommodated by surface and aircraft 
observations. The oceanographic and 
meteorological measurements made 
frequently with fine spatial resolution 
might be obtained by satellite in low­

altitude orbits. 
The program defined included two 
majomajor measurement elements: an 

R&D phase and an operational phase(Figure 5-9). The development of 

measurement techniques,
and operational theories or models are 

R&D objectives. The operational 

systems involve the more routine data 
gathering, processing, and dissemina­
tion. As descriptive and predictive 

techniques are developed in the R&D 
phase, they in turn establish the sen­
sors, data processors, and information 
interfaces needed in the operational
system by the using agencies. 
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The shifting pattern of 
demands for measure­
mnent platforms was TERE 
examined for the R&D 
(Figure 5-10) and the 
operational phases 
(Figure 5-11). Orbital NT PROCESSORS 
facilities, aircraft, sur- CONCEPTS TECHNIQUES 
face vehicles, and mul­
tiple combinations, 
including orbital plat­
forms, were consid­
ered. Criteria used in RESEARCH AND 
identifying the most 
responsive type of meas-

DEVELOPMENT PROGRAMSYSTEM OPERATIONAL 

urement platform were 
(1) projected equipment Figure 5-9. Technical Objective Achievement 
development status and 
space -flight worthiness of instruments; (Z)necessity for concurrent measurements,
such as ground-truth verification; (3) the required geographical coverage and
resolution; and (4) the periodicity, frequency, and duration of the observations. 
Most orbital measurements identified for the R&D phase required ancillary verifi­
cation or "ground truth" testing. Certain theoretical studies, however, could be
verified by specific experiments performed on the orbital platform. These gener­
ally relied on some unique advantages of orbital space (zero-g, synoptic coverage
capability, etc. ). An example is the zero-g required in various experiments deal­
ing with cloud physics and weather modification mechanisms. 

Some measurements were identified by the scientific contributors as being of
potentially great value if they could be made on a synoptic basis, even though no
feasible technique was currently available for remote sensing. These types of meas­
urements were included in the analysis for completeness but were identified as
being feasible only from surface vessels. Examples are sea-surface electric 
charge and gravitational and magnetic anomalies. 
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As the emphasis on the measurement programs shifts towards the operational sys­
tems, the use of independent orbital facilities becomes more important (Fig­
ure 5-11). However, aircraft appear to continue to offer advantages in those opera­
tional areas dealing with the assessment of such slowly changing phenomena as 
coastline patterns and bottom anomalies. These trends are based solely on the 
expected ability of the given platform to satisfactorily accomplish the observations. 
The comparative operating economies of the various platforms were not considered 
in this study. 

5. 5 THE ROLE OF MAN 

Although an evaluation of the role of man in orbital operations involves analysis 
beyond the scope of the present study, the data at hand permitted at least a prelim­
inary assessment of his potential contribution. The rationale followed in this anal­
ysis acknowledged that man could be "engineered" out of the orbital system but 
usually at the price of increased complexity, decreased reliability, and decreased 
system capability. On the other hand, man requires complex support equipment 
and is therefore costly. Each measurement requirement was analyzed to determine 
the nature of man's possible contributions to the program and how they might change 
the R&D and the operational phase. Five potential contributions of man were 
identified: 

1. Selection of targets. 
Z. Checking of complex instrument functioning. 
3. Calibration and testing of new and complex instruments. 
4. Manipulation of observation meterials. 
5. Visual observations. 

Each measurement was weighed against these criteria; man was considered 
"valuable" in space if three or more were involved in the measurement program 
and "useful" if one or two were satisfied (Figures 5-12 and 5-13). Results indicated 
that man could make a useful or valuable contribution to nearly 50% of the measure­
ment programs in the R&D phase. In the operational phase, however, the role of 
man became less certain, as indicated by the significant number of "to-be­
determined" judgments. The measurement programs requiring man were generally 
those involving highly complex instruments with selective pointing, or specific 
zero-g experiments requiring monitoring and controlling. 

It should be noted that 100
 
this analysis did not
 
represent an exhaustive 90 OCEANOGRAPHY,
 
evaluation of the role of 0 34 MEASURGMENT
 
man. Other potential METEOROLOGY,r-80--

uses of man which cap- 70 
t COMBINED,italize on his natural 

___________48 MEASUREMENTS 
ability, training, and z 60 NON-REDUNDANT
 
specific skills as a
 

and 5scientist, observer, 

operator, as well as those -40
 

functions attendant to the 3
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craft and its payload, 20
 
require further study. 10­
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100 	 R&D and operational
 
activities (Figure 5-14)


90 - OCEANOGRAPHY, indicated that 50% of ocean­
34 MEASUREMENTS ography and meteorology
2MEAEOG instrument feasibility tests 
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5. 7 INSTRUMENT REQUIRE­
..-. _MENTS 

Examination of instruments 
4 -	 _OCEMOGRAHY -- required for the various 

METOROOGYm 	 measurement programs 
__ _-indicated that 25 generic20 	 classes would provide the 

basic data needed in the 
1 50 70 so 90 R&D phase of the programUTrrUDE -- EGREESdevelopment activity. 
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_____ 

Currently available or proposed instruments were examined to determine whether
th'ey provided the desired instrument capabilities and the measurement require­
ments. The prime source of data wason existing and proposed instruments the
NASA-supplied lists from the Nimbus and Applications Technology Satellite 
programs and from the APS A and B Apollo Applications Program. Of the 25

equired instruments, 20 could be identified in current or proposed NASA pro­grams; 5 were new. Figure 5-17 summarizes the types and program sources for 
these instruments. 

Instruments proposed for APS A and B programs would play a significant role insatisfying the oceanography and meteorology program requirements. If these pro­
grams did not materialize, a corresponding gap in equipment development would 
exist. 

Section 6 
SCOPE OF STUDY AND STUDY LIMITATIONS 

The foregoing discussion has described the procedures followed in identifying
orbital-research objectives in a logical and systematic manner. The study has
examined the disciplines of oceanography and meteorology from the viewpoints ofthe research scientists and of other potential users of the information. Recom­
mendations for specific classes of measurements have been made. 

The study was limited to the examination of the oceans, the atmosphere, and theirinteraction. Coastal zones were included, but the freshwater or limnological zones 
were not. Also, the tidal influence of the sun and the moon on the atmosphere was
not explored. Before a comprehensive plan for Earth-oriented research can be
developed, these and other regions of Earth-centered observations should be
analyzed. It can be anticipated that 
agricultural and forestry applications,
geological surveys, and photogram­
metric mapping activities would I -T$....mURUMENTSREQUIRED .IM... A NTS.

require many of the same types of .................... 

sensing devices in orbit as found useful ., 

-

for oceanography and meteorology. ,°.r.,. .o 
- -

Establishing the measurement com- , o
monalities among a multidisciplinary ;..tmvu...... .. 
set of research objectives would .... . -1 ___"

undoubtedly suggest more efficient and ..... 
effective orbital-research program .....ME 
plans. _, _____-___._ 

Once a multidisciplinary orbital-
research or experiment plan has been 

-__ 

formulated, the remaining steps in 
the overall program planning can be 
accomplished: supporting R&D can be Figure 5-17. O&M Instrument Package Accommodation 



identified; design requirements for space laboratories and facilities can be speci­
fied; and the mission operations and ground support necessary can be defined. 
Hardware development times and costs will then provide a basis for the preparation 
of a realistic time-phased program plan. These steps remain to be taken. 

The present study was further limited to the identification of observational require­
ments which were of value to oceanographic and meteorological research and which 
appeared to be potentially feasible from remote platforms. No attempt was made to 
assess the economic tradeoffs involved in determining the cost effectiveness of the 
various potential data-gathering platforms, (i. e. , aircraft, surface vessels, or 
orbital facilities) although judgments were made regarding the most responsive type 
of measurement platform from an engineering or research standpoint. 

Finally, the scheduling of orbital research requires an ordering of research objec­
tives. This implies the assessment of priorities for the measurements as a function 
of the relative importance of the critical issues to which the measurements are 
directed. During the present study, the scientific contributors were asked for their 
judgments regarding the relative importance of the issues identified. There was 
generally universal agreement that both atmospheric and oceanographic pollution 
were the most important issues. Beyond this point, judgments differed. While it 
was beyond the scope of the present study to pursue the problem of priority assess­
ment with the scientific community as a whole, it must be recognized that, unless a 
consensus can be derived by competent authority, future planning studies will be 
limited in their ability to establish the most significant and effective experiment 
plan. 

Section 7 

IMPLICATIONS FOR RESEARCH 

The Oceanography and Meteorology Study found that a significant number of the 
measurements necessary to fulfill the study objectives can be implemented by a 
remote-observation program. For remote sensing of certain parameters, such as 
surface charge, bottom composition, and acoustic signature, an advance in tech­
nology is needed. The importance of these variables suggests that research might 
profitably be directed toward these areas. 

Besides the instruments to implement the measurements program, other factors 
are required to completely synthesize the system. For example, one major objec­
tive of the meteorology program is the achievement of accurate, long-range weather 
forecasts. While capabilities exist today for 36-hour forecasts based upon 
simplified two-degree-of-freedom models with 500-km resolution, accurate 10- to 
14-day forecasts require more complicated three-degree-of-freedom models; with 
input data accurate to a 5-km resolution level (Figure 7-1). 

Developmeht of more accurate long-range forecasting requires sensors capable of 
much finer resolution and requires more frequently sampled observations of the 
atmosphere. . Coupled with these trends are requirements for advanced mathematical 
models capable of operating with increased fidelity in simulating the physical 
situation. Study of recent COSPAR reports indicates that major portions of the 
numerical models necessary in the simulation have been formulated but remain to 
be tested and verified. The refinement and validation of such mathematical models 
will be a continuing research need. 

The trend in meteorology toward higher resolution and more frequent measurements 
and the advanced theoretical numerical models for weather forecasting makes an 
advance in computational facilities a more critical requirement. Analysis of these 
requirements indicates that, to achieve the desired'automatic forecasting capability, 
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an increase of many orders of mag­
nitude in data-processing capacity 
over currently available systems
will be required. Thus, data handling
is a major and critical R&D area. 

One measure of this, as shown in Fig-
ure 7-2, is an increase of 100 million 
over the requirement for computer 
operations per unit time found in cur-
rent system capabilities. This 
increase represents the increased 
data-processing load in moving from 
the short-range forecasts with 
500-km grid point resolution cur-I 
r e nt ly p r o g r a m m ed , t o the fu tu r e 
requirement for long-range forecasts 
with 5-km resolution. 

insight into the expected role of a manned 
phase. Towards this end, measure­
ment requirements were suggested 
for areas (1) where manned participa­
tion is valuable or useful and (2) where 
orbital platforms or a combination of 
space and other platforms is needed. 
This subset of total requirements 
includes such observation types as sea 
color, turbidity, and bioluminescence; 
storm tracking, air, and cloud motion; 
sea-surface temperature; surface, and 
airborne objects; vertical soundings 
of temperature, pressures, moisture, 
and winds; gaseous, liquid and solid 
composition of the atmosphere; and 
electrical discharges. 

Study of the instrument-development 
requirements has indicated that initial 
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Similar trends are found in ocean- Figure 7-1. Meteorologicai system Evolution 
ography. Analysis has shown that, 
for large-scale fisheries prediction and the generation of use-oriented information,
the data-acquisition rate exceeds the stated capabilities of any current or contem­
plated observation platform. As mentioned previously, more fundamental to the 
problem of implementing a fisheries-prediction system is the formulation and
verification of theoretical models of marine biological behavior. Expansion of
applied-research activities can validate existing models and develop new ones, as 
required. These classes of research are very long range programs which can lead 
to vast increases in scientific understanding of very complex natural processes. 
This study did not consider- the economic implications of the research program 
necessary to fulfill the objectives identified by the systematic approach. It should 
also be noted that no current satellites in orbit directly support oceanography
research objectives, although much of the meteorological data currently being
gathered can be used in oceanographic research. 
An example of the anticipated experiment program evolution foreseen for orbital 
oceanography and meteorology is documented in Volume II, Appendix A. Certain 
characteristics can be seen in the total measurement requirements, which provide 
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emphasis can most profitably be placed on the development of cameras and IR 
radiometers. These, in turn, are followed by spectrometers, microwave radio­
meters, radars, and groups of these instruments functioning together. Nighttime 
coverage becomes practical as radiometers and low-light-level camera systems
are introduced. Spectrometers permit temperature- and moisture-profile observa­
tions,, while microwave radiometers and radars allow sensing of surface and rain­
fall conditions. 

The 	measuring instruments finally used in orbital research will include the more
advanced and complex sensors of the equipment grouping. Also, the functional
activities involved in performing these measurements can be anticipated to be, par­
ticularly complicated during the early research phase, considering requirements
for simultaneously making observations and 	ground truth tests. Man's role as a 
researcher, observer, and instrument operator during this critical early research
phase will be particularly important. His natural ability, coupled with training and
specific skills, will address such orbital activities as critical instrument adjust­
ments, coordinated experimental procedures where several parties will be in voice 
contact with each other, on-board handling of important data, observational tech­
niques, and early interpretation of results of individual research experiments.
When these scientific duties are coupled with other required on-board supporting
activities, such maintenanceas and repair, the synergistic observational capability
of a flexible manned orbital-research facility will be fully realized. 

Section 8 

SUGGESTED ADDITIONAL EFFORT 

This study explored the areas of oceanography and meteorology research and 
identified elements of a long-range experiment plan which would profit by the use of 
space platforms, utilizing the capability provided by manned operations. In doing 
so, 	 this study has examined a significant portion of the sun-Earth coupled system.
To identify completely all sun-Earth interactions and relationships, however, the
study should be expanded to cover other related areas of interest such as the limno­
logical zone (including land, rivers, lakes, and 	streams) and lithospheric
phenomena. From this extended base, the total Earth-oriented program of 
oceanographic and meteorological research could be synthesized with balanced 
requirements, mission loads, and specific R&D goals. 
In addition to a completed study of the land-sea-air interface, the following areas. 
for further activity are recommended: 

1. 	 Expansion of the systematic approach for the identification of research 
objectives to include other Earth-oriented research areas: agriculture, 
forestry, geography, geology, and hydrology.

Z. 	 Delineation of general mission-planning requirements, promising options, 
and measurement tradeoffs. 

A. 	 Identification of major factors influencing operation and configuration 
design. 

B. 	 Examination of data-handling needs and system impact on ground 
facilities. 

C. 	 Description of mission mode alternatives, day/night observation 
targeting, and unique research-oriented observational opportunities.

D. 	 Determination of economic tradeoffs between alternative data collection 
methods. 

3. 	 Development of a time-phased plan, including engineering estimates of 
costs and schedules, showing program alternatives, major R&D milestones, 
and design-decision points. 
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4. 	 Development of a theoretical base through observation of iemotely sensed
data which can be used to infer parameters of specific interest to users. 

5. 	 Identification of critical R&D areas. 
A. 	 Examination of the needs for key theoretical studies and long-term

investigations necessary for model development.
B. 	 Definition of the pacing experiments requiring zero-g or orbital

observations and investigations of technological advance necessary to
implement the ultimate data-management requirements. 

In summary, the Oceanography and Meteorology Study has been an exploratoryeffort to define systematically those orbital measurement requirements which would 
most directly serve the needs of the scientific community and potential usingagencies. The design and operation of manned and unmanned space vehicles appearsto be well within current technology. To be effectively utilized, however, suchvehicles must be responsive to user needs. It is hoped that the effort described inthese documents will help provide insight into an analytic approach whichsome 
translates user objectives into measurement plans. 
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