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ABSTRACT

A nonlinear analysis of large amplitude pressure waves was made
for a theoretical model of the canine aorta and its continuation beyond the saphe-
nous arter:y. In particular the changes in the pressure and flow pulses produced
by the heart were assessed for meaningful variations in the system parameters.
To allow for the interpretation of relatively small changes in the pressure and
flow patterns it was considered necessary to {ake nonlinearities into éccount as
accurately as possible. According fo recent experimental evidence, the propaga-
tion of the natural pressure pulse should be strongly affected by nonlinear ppenom~
ena such as the wave speed variations with pressure and flow and the large local
changes in cross-sectional area with pressure.

Pressure and flow pulses induced in the aorta and other large
arteries were pre&ieted b;} prescribing the ejection pattern of the heart and the
physical and geometric features of the system. The effects of branches and
bifurcations were modeled by a continuous outflow pattern which varies with loca-
tion and pressure. At the distal end of the vessel the terminal condition was
spepified either in the form of a peripheral resistance or in ferms of a constant
end pressure. The basic geometry was defined by an exponential decrease of the
cross-sectional area of the artery with distance from the heart. Instead of being
prescribed directly, the elastic properties of the vessel wall were given through
the wave speed and its dependence on location and pressure. This information
was algo used to determine the cross-sectional area variation with pressure and
distance by integrating the wave speed-distensibility relation. In this way, the
experimental measurements were incorporated in a most direct manner,

The nonlinear equations for one~dimensional incompressible fluid

flow were transformed according to the method of characteristies and golved on

iv



the digital computer for cardiovascular parameter values corresponding to a
hypothetical 30 kg dog. The parameters were systematically varied to determine
their effects and to investigate possible manifestations of certain pathological
conditions such as arteriosclerosis. In the numerical solutions the effects of
reflections arising fro;:n the boundary conditions, taper and changes in the local
wave velocity are inherently included by employing the method of characteristics.

Many familiar features of the natural pulse induced by the heart ave
predicted by the mathematical model, including the incisura, the growth and sub-
sequent decay of the pulse pressure, and the gradual development of the dicrotic
wave. As the pulse wave propagates down the aorta, there is 2 marked steepen-
ing of the wave front which was not observed when the basic equations were
linearized.

The results suggest 1-:hat the dicrotic wave is caused by reflections
from the distal regions of the artery. However, the degree to which the dicrotic
wave is due to the geometric taper and due to outflow has yet to be determined.

A comparison of the flow and pressure profiles obtained by postu-
lating a peripheral resistance relation as the distal boundary condition with those
computed for a constant pressure at the distal end shows that the concept of
peripheral resistance yields gooﬂ approximations for arterial models with a distal
diameter less than 10% of that at the root of the aorta.

Aortic insufficiency was simulated by prescribing a cardiac ejection
rate with an inordinate degree of regurgitation. The corresponding pressure
pulses were shown to exhibit the famiiiar features of shock waves, which appear
to be responsible for the so-called pistol shot sounds heard over the femoral or

radial arteries of patients with highly incompetent aortic valves.
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NOTATION

cross-sectional area of artery at the reference pressure

local wave speed

= parameters in wave speed expression

friction coefficient
local wave 'speed for linearized analysis
designations for general curves in 2,1 plane
diameter at aortic valve when P = Po
diameter at distal end of artery when P= F°
circumferential Young's moduius
axial frictional force per unit mass of fluid
wall thickness
total length of artery
parameter in wave speed expression
intraluminal pressure
calculated mean pressure
reference pressure
capillary pressure
pressure at distal end of artery

S -~ = local volume flow rate

1° (£) = volume flow rate ejected by heart
radial coordinate
internal radius of artery
Reynolds number for steady flow
peripheral resistance

curvilinear coordinate

viii
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cross-sectional area of artery
cross-sectional area for linearized analysis
time

circumferential wall tension

axial velocity

axial velocity averaged over cross section
axial distance coordinate

distance from aortic valve to femoral artery
outflow parameter

exponent in cross-sectional area expression
differential strain

circumferential coordinate

undetermined multiplier

blood viscosity coefficient

blood density

differential wall stress

.

frictional stress in the axial direction on the arterial wall

- outflow function simulating effect of side branches



I. INTRODUCTION

The intermittent ejection of blood from the left ventricle produces
pressure and flow pulses in the arterial tree. Experimental studies of these
pulses reveal that they are propagategi with a characteristic pattern. The pres-
sure and flow pulses are interrelated and constitute a2 mechanical phenomenon
whose features are defined by the physical and geomeétric pfoperties ;)f the
arterial tree. We know frdm actual measurements on animals and on man that
the pressure and flow pulses undergo well-defined changes in their wave form as
they propagate away from the ‘heartl’ 2). These changeg are expected to be quite
sensitive to certain variations in the properties of .the cardiovascular system,
and the question arises to what extent can deviations of the wave fo;:ms from their
normal patterns be used as diagnostic indicators. With the recent development of ‘
ultrasound echo—rang‘ing devices and pulsed doppler shift flowmeters which allow
us to detect the flow pattern in ﬁlajor arteries without penetrating the ski.ns’4’ 5),
this question seems to be particularly relevant. However, a meaningfui intexrpre-
tation of changes in-the pulse waves is only possible if we have a thorough quanti-
tative understanding of how the various cardi‘ovascular parameters can affegt the
phenomenon. As an attempt to answer some of these questions we have therefore
begun a nonlinear analysis of large-amplitude waves in blood vessels which takes

6,7, 8). One of the principal

into account recently established experimental facts
reasons for undertaking this work is the need for a noninvasive method of deter-
mining iaossible changes which may occur in the cardiovascular system of astro-
nauts as a result,of prelonged exposure to weightlessnessg). While preventive

measures are being contemplated which are designed to inhibit the space adapta-

tion of the circulatory system, the effectiveness of these measures has to be

ascertained in a reliable fashion through transcutaneous measurements.

1



A thorough study of blood flow in arteries or veins presents
formidable obstacles. TIor example, we do not yet know what constitutes a suffi-
ciently accurate mathematical model for the mechanical behavior of the vessel
wall and its surroundings. Also, we have yet to establish criteria which indicate
when certain simplifying assumptions such as linearity in the system behavior,
inviscid flow, one-dimensional flow, etc., are justified., So far, most theoretical
studies of the arterial pressure al.nd flow pulses have been based on linear analy-

osls2:10,11,12)

S even though there has been increasing evidence of the presence

of strong nonlinear phenomenaG). Some of the first serious attempts at including

nonlinear effects were made by La.mbertls), Streeter et. al, 14), Rudingerlz’ 15),

16, 17), and Jonesls) who considered the flow to be one-dimensiona

Barnard et. al.
and made use of the method of characteristics. The essential advantage of their
approach is that the method of characteristics includes automatically the effects
of reflections and makes it possible to aceount for the variations in eross-sectiona
area with distance and pressure, and also the convection of the signal by the flow.
While to-date no realistic analysis of the generation and evolution of the natural
pulse wave in arteries has been made, the referenced investigations have clearly
indicated the potential usefulness of the method of characteristics. The availabil-
ity of faster-digital computers and more de;cailed quantitative information on the
mechanical behavior of arteries render the extension of earlier efforts feasible
and timely.'

19)

Recent experimental observationss’ suggest that the propagation
of large-amplitude pressure waves in arteries or veins is strongly inﬂuencéd by
nonlinear effects. It has been shown that the phase velocities of small sinusoidal

pressure signals increase appreciably with transmural pressure and flow velocity.

Consequently, the natural pressure pulse should exhibit a marked steepening of



its wave front with propagation and also an increase in pulse amplitude. Such a
behavior can be interpreted as being similar to that observed-during the initial
phases of shock wave formation in a compressible flow field. In the present
study we shall examine this similarity and explore the possibility of shock Wé.ves
'evolving from large-amplitude pressure pulses with steep wave fronts such as
those encountered with incompetent aortic or tricuspid valves*) 20,21, 22).

For sufficiently small pressure perturbations, such as those shown
in Figure 1, a linearized *_treatment of the problem can be justif‘ied. Also, it can
be used to demonstrate that the propagation characteristics of artificially induced
signals vary with the naturally occurring pressure and flow ﬂuctuationsG’ 19_).

Since arteries do not seem to be significantly dispersive for pres-
sure waves the phase velocity can be approximated by the speed of gignals in the
form of finite {rains of sine wavesa). This has been corroborated extensively for
the canine aorta in the frequency range from’ 40 to 200 Hz. In our analysis we
shall assume that the nondispersive property is valid also for frequencies as low
as 1 Hz In addition, we shall utilize in an approximate manner the pressure
dependence of the wave speed shown in Figure 2 for the thoracic segment of the

ao_rta23),

The system of one~-dimensional nonlinear differential equations
for the present problem is hyperbolic which means that the occurrence of shock
waves must be considered a distinct possibility. As a matter of fact the idea of

21) <

shock waves in blood vessels is not new Their possible occurrence has been

postulated at times in the pastn’ 12) but not been considered seriously because

In patients with aortic insufficiency, i.e., incompetent or leaking aortic valves,
there is extensive regurgitation of arterial blood from the aorta back into the
left ventricle. Likewise, in patients with severely leaking tricuspid valves we
find regurgitation of venous blood from the right ventricle back into the vena
cava. In both cases extremely large pressure pulses may be generated.

3



SINUSOIDAL WAVETRAINS
SUPERIMPOSED ON THE NATURAL PULSE WAVE

i1
T

3MmHg —»{ =072 5EC

70 cps

100 cps
AZ=5

140 ¢cps
AZ=4

Figure 1. Representative tracings of recordings of the natural pulse wave in the
thoracic aorta of an anesthetized dog, with artificially superimposed
trains of sinusoidal waves of various frequencies. The transient signals
were induced at different times during the cardiac cycle. Note that the
sine waves are highly damped but retain their simisoidal character during
propagation. All of the pressure curves are drawn to the same relative
scale, as indicated, However, each of the curves has a different zero
point since they were separated for illustration purposes. Az represents
the distance between the two catheter-tip manometers used to record the
pressure signals, These tracings are copied from Reference 6.
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EFFECT OF ;&ORTIC OCCLUSION ON THE VELOCITY OF
SMALL SINUSOIDAL PRESSURE SIGNALS
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Figure 2. Wave speed-pressure data obtained for thoracic aorta of an a.nesthetitzed
dog. FEach point represents the average speed of a peak and successive
valley of a sine wave. Taken from Reference 23,
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under normal conditions the distances required for their development exceed
physiologically meaningful values. However, for very strong pressure pulses
with steep wave fronts, the distances at which shock waves can be identified could
well be within the physiological range. If we can verify this hypothesis, we could
possibly arrive at an explanation for the. genesis of the pistol shot sounds which
can be heard over art‘eries in the extremities of patients with incompetent aortic
valveszo) or over the corresponding veins in cases of leaking tricuspid valveszz).
Compared with other theoretical investigations th;e present study
differs insofar as it introduces the mechanical properties of the arterial wall in
a very direct manner through the wave speed as a funcrtion of pressure and dis-
tance from the heart. In the past, the mechanical proéerties of the arterial wall
were in most cases given in terms of a constant Young's modulus. However, if

the pressure dependence of this modulus is not taken info account, the wave speed

decreases with pressureM), contrary to experimental observations.



. DERIVATIONS

In this study of large-amplitude wave propagation in arteries we
assume one-dimensional motion of the blood, We model the vessel as a tapered
elastic tube and allow for continuously distributed seepage through the wall to
simulate the outflow through the branches in a2 mamner Which approximates the
regional blood flow pattern. The blood is treated as an incompressible fluid and
the effects of viscosity aré accounted for in an approximate fashion., Rather than
specifying the elastic properties of the vessel wall in terms of a Young's modulus
in order to define the i;lteraction of the blood with the elastic wall we prescribe
the. mechanpical behavior of the tube through the speed of small pressure waves
and the variation of this speed with pressure and location. With the pressure
dependence of the local wave speed we are also stipulating how. the cross-sectional
area changes when the pressure fluctuations can not be considered small. The
equations governing the fluid flow and the fluid-wall interaction are then trans-
formed according to the method of characteristics and put into a form suitable
for machine computation. Adhering to such an approach we include automatically
reflection phenomena and the essential nonlinearities of the system. It also per-
mits us to give solutions corresponding to arbitrary initial conditions and realistic
boundary conditions. For the most part, the notation used here is the same as

that introduced by Skalakn)

and Rudingerlz) in their survey papers.

A. BASIC EQUATIONS

‘We begin with the formulation of conservation of mass and momen-
tum for the fluid. Although this analysis assumes the cross section of the ariery
to be circular, it can readily be extended to vessels with non-cirecular cross

sections. By postulating one-—dimensionai flow we treat the pressure and flow



velocity as uniform over the entire cross section. This is obviously an approxi-
mation of reality and means that we are essentially considering spatial average

values of the dependent flow variables at each cr;)ss section. While the pressure
is inherently nearly constant over the cross section, the average velocity can be

expressed as

2 R
v(z) -—-;r—‘@& gu(n,g,z,t)n.cln do

where ‘\L( R, @_, Z, 't) defines the velocity profile.

Conservation of mass requires that the rate of mass increase inside
an element of the blood vessel is equal to the net influx of mass. For an incom-
pressible fluid and allowing for outflow of fluid ithrough the arterial wall we have,

as indicated in Figure 3
d
st (£562) = pMS, - puS, - ¢ Yoz

where ."F is the rate of volumetric ouiflow (leakage) per unit length of artery.

By expanding the flux at station 2 in a Taylor series about station 1 we obtain
P )
w S, = o + 2 (ovn,S)aa + ...
Tve=2 = FH N 2z (f P

" and therefore

%(TSAZ) = _.a.?;()w‘s,)m ~ f“‘\’bz —-



Vessel Wall

PV2S2

Seepage

PYAZ

Figure 3.” Fluid element in blood vessel. Schematic illustration for the formulation
of the conservation of mass.



Recalling that T ig constant and Z is an independent variable we find for

the limit Az —> O

23S |, wUSv) o |
e 4 = @)
St N E + Y

For the time being, the nature of '\V is left undefined. Its inclusion in the
equation simulates the outflow of blood from the artery of interest through discrete

bifurcations and branches.

As in references (11) and (12) we write for conservation of momentum

dv a2y , V9B _
ST % 5% £ @)

where —f represents the effect of any forces acting on the fluid other than
pressure forces. -F is a forece per unit mass of fluid in the 3z direction and
has the dimengions of an acceleration. Like '\P it is temporarily also left
undefined but will ultimately be restricted to represent only the effects of viscosity.
Since arteries are distensible and tapered, the cross-sectional area

varies with pressure and distance Z from the heart:

S = S(po) |

We now assume that the functional form of this equation is algebraic. It would be
quite easy to include an explicit dependence of cross—sectional area on time (such
as 'x:vith re:;piration or during transient responses to vaso-active drugs). A
dependence on velocity could also be incorporated but there appears to be no need
to do so for the normal range of flow velocities in arteries.

Relations (1) - (3) constitute three equations for the three unknowns

v, P and S’ . With the aid of (8) we can eliminate S as a dependent



variable:

(3

28 ___,(aS)gﬂt+ _a_,g)

dz D= S z/p

Inserting these; expressions into (1) we have

S @S?) 2£—+ (af) L+ "(aa) Y=0 ®

At this stage we restrict the expressions ‘F and '\'P to be

algebraic functions of \D and ~v. For s;uch expressions (2) and (4) represent
a pair of quasi-linear (the coefficients in the equations depend on the unknowns,
but not on their derivatives), first order partial differential equations. To apply
the method of- characteristics, we first form a linear combination of the equations.
With A=A ( PV 2, -L—,) as an undetermined mult.iplier, we multiply (4) by
A and add to (2):

v 9
gt (v+k§ +X(DS>2 'a—E-

S
4w -—f—--?-k}\v——s‘—) +\Y =0
X (3_8.) o2 32 P :
METYA (5)
For any curve C inthe = ,t plane, the parametric equations

of C canbe given in terms of a curve parameter s as

z = =z(9)
and

i

t =1t &

11



A.Iong C 3

dy| _ v dt| | 3v de
ds|, ~ 2t dsl, 2z dslg
We choose C  sothat
é_t_ = l
ds|¢
(6)
__C_‘__Z_ = v + )\,S
dsiq
Similarly along another curve C' s
dp| -2 dt| , 2 de
ds il Ot dslig 22 ds |,

/7
Selecting C” such that

4t
ds

cl
0

d=

Se—

ds

TRRYIE)

we can reduce (5) to

dv| , 1(285) dp| a8
. ;kav)gi' athe ’“’(‘s‘;) th¥ =0 ©

?

1z



!
We now attempt to finda )\ for which the curves C and .
coincide, i.e., a A for which e;cpressions {6) and (7) are identical. This

requirement is satisfied if

),
S

where ¢ is defined by

C= == 10
2P z
Since é_{.:. = we have i% = .‘.I._. and the so-called characteristi.
_ ds ds dt
directions, or base characteristics, are given by
t d
1 9 - - * ¢ 11)
4t

Inserting (2) and (10) into (8), we obtain the compatibility equations, or charac-

teristic equations:

v Sp - e () sgvfae o
P

"The interpretation of these-four equations is that II+ {equation {12) with the upper
signs) is meant to hold on the curve specified by I+ (equation (11) with upper signj},
and correspondingly II. on I"‘.

- From equation (11) or from Appendix A, the mea:ning of ¢ Tbecomes
clear: <« is the local wave speed, the velocity at which small disturbances are
- propagated relative to the fluid at rest. Since the solutions for the base character-

istics (11) are real the original system of equations (2) and (4) is hyperbolic.

13



The solution to the problem can be initiated once the functional form
of S = S ( E> N ;e) is known. To obtain S ( P, z) we could postulate a
mathematical model for the mechanical behavior of the arterial wall and then
derive the area—pressure relation and the corresponding wave speed expression.
However, conventional models for the mechanical behavior of the wall often
predict a decrease in wave speed with pressureM) which, as can be noted from
Figure 2, is in contradiction with experimental evidence. This difficulty is-auto-
matically avoided if we describe the mechanical behavior of the vessel in terms
of the experimentally observed wave speed as a function of pressure and loca~

3). The wave speed enters quite naturally into the characteristic equations

i;ion2
(11) and (12) and the area-pressure relation can be obtained by integrating
equation (10). Finally, by specifying -{: and 'qJ together with appropriate

initial and boundary conditions we can arrive at numerical solutions to the prob-

lem on hand by integrating equations (11) and (12).

B. CROSS-SECTIONAL AREA AS A FUNCTION OF PRESﬁURE AND DISTANCE
Measurements in the thoracié aortae of anesthetized dogs‘?'?’) suggest
that the wave speed changes with intralumina:};'pressure may be a’pproximated by a
linear function over the normal physiological range of pressure. Figure 2
displays typical results of wave speed measurements in which the normal range
of pressure was extended by appropriate occlusions of thé aorta. A quadratic
function would approximate the curve in Figure 2 ;nore cl‘osely and was in fact
used for a number of computer runs. However the results did not differ signifi-
cantly from the cases where a linear relationship was employed, and since the
amount of computing time required was perhaps 50% greater due to the much
more eomplicateci expression for the cross-sectional area corresponding to the
quadratic function, we consistently used a linear pressure dependence of the

wave speed.
14



Assuming in addition that the wave speed varies linearly with dis~

tance along the aorta7), we have

c(F,%) = (¢, *-C-\p) (\l 4—h%) 13y

By substituting (13) into (10) and integrating the resulting differential equation

we find

P-Pe
c(pz) e(p,,2)
STp,2) = Aye’ T a4

where ?o is a reference pressure an(;l A(E) is an as yet unspecified
function which defines the cross-sectional area of the blood vessel at the pres-
sure Po  2s a‘function of the distance. Z  from the heart: A@=8 (P
Pate124) has taken measurements on the major arteries of 11 r’nod-.
erately large dogs with an average weight of 22,1 kg. These measurements are
considered as representative diameters at a given pressure P - Sy
'P s = 100 mmHg. Assuming a wall thickness-to-radius value of 0.08 in the
aorta and one of 0.25 in the external iliac artery, we converted his data to
internal diameters corresponding to the pressure P" . as plotte‘d in Figure 4,
However we are interested in larger animals (the( ultimate application is to man),
and we have therefore scaled these converted data upward to correspond to a
30 kg dog whose bifurcation was somewhat arbitrarily placed at 54 em. This was
done by increasing the internal diameters obtained from Patel's data by a factor
of /-23% = 1.165 assuming that the ratio of weights is the same as the ratio

of lumen areas. The new diameters are also shown in Figure 4.

15



AORTIC o PATEL, 22.1 kg DOG

2.9% VALVE ® 30 kg DOG
o
2.0
J \\D=2.43e7-9%%%Z¢cm
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© ©
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] ] ] | i J
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DISTANCE FROM THE HEART, cm

Figure 4, Internal diameter data for the dog aorta according to Pate1.24) The
solid curve approximates the diameter variation with distance for the
hypothetical 30 kg dog.
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An exponentially decreasing diameter appears to be a reasonable
approximation for the aorta according to the data published in the literature and

given in Figure 4 (see also Ref. 25). We therefore could write for A (2):

A = S(po2) = Sa(pd e (15)

where So (Po) is the cross-sectional area at the root of the aorta at the

pressure F° . With (15) we have

P~ s
~Az + c ¢
S{ Pﬁﬁ) = S.(pye FeP o) (16)

and thus a complete definition of the geometry and mechanical behavior of the

aorta.

C. THE FRICTION EXPRESSION

The expression for the force parameter -P in equations (2) and
(12) will now be restricted specifically to one representing the effects of blood
viscosity. As stated before, -C must be an algebraic function which unfortu-
nately rules out 2 more general modeling of the viscous friction including its
proper phase.relationship to the pressure. To obtain an approximate expression,
we first co;nsider a segment of fluid of unit masé in the aorta. f‘or moderately
tapered vessels this segment can, in a first approximation, be considered as a

short cylinder of radius R and length A%, where

|
AZ = ——= an

PS

17



Denoting by T, the frictional stress on the arterial wall, we

have

-P = M(Z’WQBE)'Ew

or
£ = —Z-J'TI'S' OFE Ty

The sign is negative because the flow is retarded by viscosity. The frictional

stress T,, is usually expressed as

T = C_c-é-f‘U" (18)

vith ¢ £ called the friction coefficient. With this expression we can write

£ = —c_m/% 11.-1 (19)

We now restrict ourselves temporarily to steady flow and consider

hree cases:

1. Inviscid Flow

Here C-F = O .and

=
'F inviscid (20}

2. Laminar Flow

From the well-known result for Poiseuille flow we COLvivuw

XA
¢ - .
£ Re

here Re is the Reynolds number 1

angth, E’e = %
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Hence

C“—'ét—zﬂi
7 pvR TV E

and

- |
-Flaminar - S —S';' = (21)

3. Turbulent Flow

According to the Blasius formula for steady turbulent flow in a pipe

Ve
) TR
Cp = .OM¥€ |\ — = .0O7615
¥ R ( vJE
and therefore -
Yo h;'\ I+
'Fturbulent = . l-':3){‘0(—?3“) SS/S sghn v (22)

where g%n YY"  guarantees that F acts in the direction opposite to that of
the velocity.
The friction expressions (21) and (22) are in a strict sense only vali

for steady flow but are now assumed to be applicable also for nonsteady flow,

D, THE OUTFLOW EXPRESSION '\'l"

' The outflow of blood from the aorta through discrete side branches
and bifurcations is modeled by a continuously distributed leakaée or seepage
defined by the ouiflow function '\P . We use the data of Sa.pirsteinzs) on regiona.
blood flows measurements to specify how much blood, in per cent of the iotal
cardiac output, is lost per unit tﬁne through the major arteries (identified in
Figures 4 and 5) emanating from the aorta. The results are summarized in

Table 1 and Figure 6. It appears that these data are reasonably well
19
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Figure 5. The major components of the canine arterial tree, copied from
Reference 27.
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TABLE 1

Distribution of Blood through the Major Arterial Branches of the Aorta
" According to Sapirstein

Fraction of Fraction of
Distance from Cardiac Output Cardiac Output
3ranch Aortic Valve, cm to Branch Remaining
Aortic Valve 0
. 1.00
Soronary Arteries 0 .05
.95
Brachiocephalic 3 .17 -
’ .78
Left Subclavian 4 .02
.76
mtercostals,
Bronchials, distributed .11
Diaphagmatic 65
Seliac Axis 38.5 .08
. .57
Cranial Mesenteric 40.5 .18
.39
ight Renal 42 .08
.33
Left Renal 44 .06 ’
27
Caudal Mesenteric 51 .09
.18
Bifurcation 54 .09
.09
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approximated by an outflow function which stipulates that the local leakage rate is
proportional to the difference F - ?Q between the local arterial pressure ?
and the capillary pressure P"’ and which exhibits the gross features of the
regional blood flow pattern. Among the various functions considered, the most

realistic outflow distribution was obtained with
(‘ 1% 19 = *
o (p-pe)(lil + s F &) for zc2

LY(P;&) = < —.08 (2.”24{)
bN(P-PQ(U)e {oc i‘-?-i";*

(25)

in which 2% represents the distance from the aortic valve to the gener?.I
region of the femoral artery and é is a meagure of the outflow resistance.
For the cases considered in this analysis 2% was taken to be 70 cm.

The seepage distribution defined by (25) is shown in Figure 7. Near
the heart the outflow is large to simulate the blood‘ flow into the brachiocephalic
and left subclavian arteries at the top of the aortic arch. The seepage rate is
low in the thoi'acic region, and again large near 2 = 50 cm to approximate the
ouiflow to the abdominal organs and into the bifurcation. The exponential
deérease in ¥ for z3» .e *  accounts for the diminishing outflow into the
arteries distal to the femoral region. Since the pressure in the capillaries is of
the order of 25 mmHg we have chosen thig value for Pe in all our computa~
tions. The parameter o< was generally chosen such that the.diastolic pressure
at the heart was of-the order of 80 mm Hg.

A typiecal outflow distribution obtained with this-function is shown
in Figure 6 (Standard Case). It can be seen that the gross behavior of the

empirical data is mimicked by the computed results but the agreement is not

altogether satisfactory. This indicates the need for a more appropriate accounting
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for outflow, although perhaps this effort would be better expended on a model
including discrete branches rather than on the purely cc;ntinuous model considered
here.

This procedure for modeling the effect of branches from the aorta is
admittedly crude. However, until imore accurate information‘is available ori the
true regional flow distribution and its dependence on pressure, approaches such

as the one taken here are justifiable.

E. BOUNDARY CONDITIONS
" The boundary ‘conditions which must be gpecified at the proximal and
distal ends of the artery of interest can each take different-forms,

i. Proximal Boundary Condition

There were two types of boundary conditions utilized. The first was

to prescribe the variation of the pressure at the aortic valve as a funection of time:
‘F (o\'t\ = Po (-t)

Althougia this choice seemed 2 logical one in view of the abundance of actual
pressure recordings taken near the aortic valve, it did not give very satisfa.-ctory
results and was abandoned. The principal reason was that with a representative
pressure recording as the proximal boundary condition WG:B did not predict the
experimentally o'bserved‘ﬂow profiles at the same location. There were often
moderate positive and negative velocities during the latier two-thirds of the
cardiac cycle, when the aortic valve is normally closed. (At this stage, we do
not wish to deal with incompetent valves.) This finding reaffirms that the
Pregsure variation just outside the heart as well as elsewhere in the arterial
tree is related in a complex manner to the conditions in the entire circulatory

system. If the true pressure fluctuation were used in conjunction with the actual

25



geometric and elastic parameters, heart rate and cardiac output, outflow function,
ete, , the corresponding flow pulses should be.in close agreement with those
observed experimentally provided we have a valid mathematical model for the
mechanical behavior of the system. We infer from this that we either do not yet
have a sufficiently accurate description of the mechanical properties of the
circulatory system or that relatively small changes in the pressure pulse produce’
dramatic changes in the flow pulse and that therefore the pressure variation with
time must be known fo a high degree of accuracy.

Much more satisfactory results were obtained by specifying the

volume rate of flow of blood from the left ventricle into the aorta:
% (o,8) = 70 (£)

The flow rate is an equally natural choice as a boundary condition. It is related
directly to cardiac output and pulse rate both of which can readily be measured
and are physically important parameters. Since ﬁ’ is equal to the product of
spatial mean flow velocity and cross-sectional area, the boundary condition now
takes the form
90 (8

(3 (09.0) 2
28)

v(o,t) =

In this analysis we shall use the curve shown in Figure 87’ as representative of
the cardiac ejection c"a (-l;) Since ‘F is not known apriori, iteration is
necessary to satigfy the boundary condition (26) as stated.

2. Distal Boundary Condition

As in the case of the proximal boundary we considered two types of
conditions at z = L, . Recognizing that the pulsatile component of blood flow

diminishes in the smaller arteries and arterioles and essentially vanishes in
26
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most precapillaries and capillaries, we assume that the terminal pressure is

constant:

P(L-,t) = P | 27

This is a reasonable approximation only if the diameter at the distal end of the
artery is sufficiently small.

The second type of terminal boundary condition considered is based
on the concept of peripheral resistance, which is defined as the -ratio of driving
pressure A'{; across the capillary bed to volume flow rate through this bed.
If we take the pressure at the venous end of the capiila?y ‘as 'FQ the driving
pressure is P(b,-{:} - ?c. . The peripheral resistance EL can

therefore be expressed as

‘P(L';t) - Pc

= —_— (28)
EL c‘- (L., t)
which allows us to write the boundary condition as
PL,E) - Pe
v(L,t) = (29)

EL S ( P(L,‘h)' L‘)

The conecept of flow rate being proportional to pressure has heen
widely used in the analysis of blood flow although it seems too simple to be very
realistic, Small changes in ?L will usually cause relatively large changes
in the pressure and.flow along the artery. We decideci to choose that value for
= L Wwhich produces a representative mean pressure at the heart,

The validity of the peripheral resistance idea will be tested by

determining the relation between the actual driving pressures and flow rates for
28



specific distances from the heart when a constant end pressure is stipulated as

the bound:iry condition (equation 27).

F. INITIAL CONDITIONS

Although inpitial conditi:ons are of minor interest here since we are
mainly concerned with the steady state solutions, they are necessary to complete
the mathematical formulation of the problem, From an engineering point of view
it might be logical to specify that the velocity is initially zero and that the pres-
sure is at a n&minally low level, say 25 mmHg. Then by initiating the pulsatile
ejection of blood from the heart one can study the ''starting process.” This could
possibly be of some interest in studying the transient response of'the cardiovas-
cular systera to normal heart beats following a period of cardiac arrest, |

Similarly, one might want to study the response to sudden changes
in the system parameters. Then the initial conditions for i:hat problem ‘would be
the steady state conditions of the unperturbed circulation at the time instant of the
occurrence of the chaﬁge.

As a rule the initial conditions were usually chosen as close as
possible to the anticipated steady state cg)nditions i1£ order to minimize computer
time. In general we selected as the initial pressuré and flow velocity patterns
those of the Standard Case (see section IIIA) at the end of diastole. Of course,
the effect of any initial conditions is ultimately damped out and does not influence

the steady state solutions.
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III. TYPICAL RESULTS

For the most part the IBM 360 computer was employed, although
some final runs were made on the Univac 1108, The so~called method of
specified time intervals was employedM’ 29)_ The ordinary differential equations
(11) and (12) were converted into finite difference equations. Provisions for
iteration were included, but with computing intervals of A% =2 cm,
A-E; = . 001 sec, they proved unnecessary. With this choice, the differences in
the computed results were generally less than 1 mmHg in pressure and 2 cm/sec
in velocity when compared with results obtained with much smaller computing
intervals. An exception was the case of aortic insuificiency (see section IVK)
in which the large and rapid changes in pressure and flow required intervals of
A2 = 1 cmand A‘l; = . 0001 sec to maintain the desired accuracy.

Unless indicated otherwise the following parameter values were used

throughout the study:

1.06 grams/cm3

i

T
B

Po

P‘- = 25rf1mI-Ig

L

The units of pressure used in performing the calculations were usually dynes/ cmz.

i

. 049 poise

100 mmHg = 1.33x10° dyr_les/cmz

3.3x 10% dyne.s/cm2

150 em

However conversion to the more popular millimeters of mercury was generally

made for presentation of the results.

A. STANDARD CASE
To establish a basis of comparison in studying the effects of certfain

parameters, we defined a Standard Case for the aorta and its continuation beyond
' 30,



the saphenous artery in an anesthetized 30 kg dog. The following physical and

geometric features were assumed.

1. Wave Speed:

o

c(P,a) = (97 + 2.03p)(1 +.02=) cm/sec (30)

where 'P is the pressure in mmHg and = is the distance from the
aortic valve in cm. This dependel;ce of the wave speed on pressure and
distance from the heart approximates the patterns given in the 1iterature7)
and observed in our laboratory23). The experimental data shown in
Figure 2 i‘epreéent thé wave speed as a function of pressure in the canine

thoracic aorta at about 25 cm from the aortic valve.

. Créss—Se ctional Area:

Consistent with Equation (16) and the data plotted in Figure 4, we have

taken
PP
r ~-.045z + P c
403 e PRI ol
OER (osde E N
-.089(2 _gq.) + fc(b%)c.ﬁp. 2)
k.0.41-| e ke pee

The available anatomical data suggest that we choose for & slight}.y‘
different exponential functions depending on 2 € 54 cm or = ) 54¢-cm.
For 2 < 54 cm we used the data shown in Figure 4, while for

g- > 54 cm we arranged it such that we have a terminal diameter of
100 microns when L. = 150 cm. Both functions assume the same
value at 2 = 54 cm. Originally a terminal diameter of 10 microns

was used which approximates more closely the capillary size but requires

. 31



a larger value of L, for the same function ( P, 2) and thus more
extensive computation. However, the results did not differ noticeably and
in order to minimize computer time we selected as terminal diameter
100 microns.

3. Heart Parameters and QOutflow Expression:
For the Standard Case the pulse rate is 120 beats per minute and the
net stroke volume 30 cmg. This means that the cardiac output of the
hypothetical 30 kg dog is 3. 6 liters or 0.12 liters per minute per kg
massso). The value of o< appearing in Equation (25) for the outflow
function "'l) (P J%') was determined to produce a diastolic pressure of

80 mmHg. This was achieved for &= 9.29x 1073 cms/sec/mmHg.

Pressure and flow velocity profiles for the Standard Case are dis-
played in Figure 9 for six different locations beginning with & = <&  (the aortic
valve) and continuing fo = = 100 cm. Figure 10 shows the temporal mean
values for pressure and flow velocity as a function of = together with the
diameter at diastolic pressure.

The temporal pressure profiles plotted in Figure 11 for various
distances from the aortic valve indicate the familiar gradual change in shape as
the pulse wave propagates in the aorta. We clearly note the incisura in the
pressure ﬁattern at =0 . Its sharpness howev& begins to disappear with
increasing distance. In the course of our numerical studies we observed that
the short interval of backflow or negative flow shown in Figuré 8 was not
necessary to produce the incisura. Abrupt decreases in the cardiac ejection rate
can cause that feature even when there is no flow reversal. For the Standard

Case no backflow was present beyond 30 cm. As’the pulse wave propagates, the

wave front steepens markedly with distance. The pulse pressure grows fastest

32



g€

g qaozem [ [ [ I I
ro B B B B 3
ST |20k O . 20 _ |\ 40 . \60 _ 1180 - 100
A E 100 |
RS NG A NG AV I\~ I
o 60 i | L | | ! | N | Vl\l
160 - - - - - -
> 120 F - - - . -
58 sofy © Ln 20  f40 Lfie0 |8 L |00
S 4o¢\_ . . L
- &
Ll>-|0 ok Y/ [ [ = »
- O I ] | ] | | | | ] J ‘ ] ]
0 25500 2550 0 .25.50 0 .25.50 O .25 .50 O .25 .5

TIME, secC
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near Z = 70 c¢m and reaches a maximum near = = 90 cm.

The dicrotic wave first becomes noticeable at = = 40 cm and is
fully developed past = = 60 cm. It will be indicated later that the dierotic
wave appears to be the result of reflection phenomena.

By integrating the product of area and velocity at each station over
a cardiac cycle, we obtain the volume flow at each point. The corresponding
results for the Standard Case are given in Figure 6 for comparison with the
empirical data of Ref. 26.

The growth of pulse pressure with increasing distance from the
heart correlates well with in vivo observations. That the diastolic pressure
decreases with distance has also been noted in experiméntal studiesz). However
the variation of the mean flow velocity with distance from the aortic valve as
predicted by this analysis has not been mentioned in the literature. As a matter
of fact the graphs in Ref. 2 seem to suggest that the mean velocity decreases
monotonically with distance. This could be interpreted as an indication of a
deficiency in c;ur present model, although the equipment necessary for reliable
and accurate measurements of flow velocity in blood vessels has not been

generally available.

B. EFFECT OF DIAMETER

Figures 12 and 13 show the effects of a general reduction of the
mean diameter of the aorta by 20% which amounts to a decrease in cross—sectional
area by 36%. All other parameter values are the same as in the Standard Case.
A decrease in the cross-sectional area apparently causes higher flow velocities
and pulse pressures. The velocity is higher because the same amount of blood
must flow through the smaller aorta (the stroke volume remains 30 cm3). The

pulse pressure is increased as a consequence of lowering the distensibility of
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Figure 12. Pressure - time profiles at various distances from the heart for
) reduced arterial diameters, with other cardiovascular parameters
unchanged from the Standard Case.
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the artery by reducing the cross—sectional area. With T and ¢ (P, 2)
unchanged, a 36% decrease in S means a decrease in the distensibility (%SF) :
by the same percentage according. to Equation (10). If the dicrotic wave is a z
‘manifestatign of reflections from the (;listal end of the arterial tree, the overall
reduction in diameter should lead to a dicrotic wave which is more distinet at
closer distances from the heart than in the Stan;lard Cage., Figures 12 and 13
seem to confirm this. Also, as & increases the diastolic pressure assumes
lower values than in the Standard Case, which appears to be due to the larger
outflow from the proximal aorta due to the higher pressures during systole. The

higher pressures also lead to higher average wave speeds which in turn causes

the pressure peaks to occur earlier in time.

C. EFFECT OF WAVE SPEED INCREASE

It is known that the wave speed_in arteries increases with agesl) and
possibly also as a result of arteriosclerosis. We have tﬁerefore examined the
effects of a general increase in wave speed by 40% which, according to the Moens-
Korteweg equation (see Appendix A, equation 4A), is equivalent to a doubling of
the elastic modulus of the vessel wall, Since any increase in wave speed amounts
to a reduction of the distensibility we expect the pressure and flow pulses to
exhibit similar cha;lges as in the case of a general reduction in the diameter.
Indeed, the results -shown in Figures 14 and 15 confirm this. We note again a
higher systolic pressure and a s-teeper wave front. The pressure peaks and
valleys occur much earlier due to the increase in wave speed. Hjowever the flow
pulse is not as strongly affected by a 40% increase in wave Spe‘ed which amounts
to a lowering of the 'distensibility by 96%, as it is by a decreas‘e in the distensi-
bility by 86% through a reduction in the cross-sectional aréa without a change m

wave speed. The higher wave speed also appears to induce what could be
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Figure 14, Pressure -time profiles for wave speeds 40% higher than with the Standard
Case, but with all other cardiovascular parameters unaltered. As expected,
the pressure peaks and valleys develop earlier in time for the higher wave speeds.
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interpreted as the onset of a second dicrotic wave at the larger distances from

the heart.

D. EFFECT OF PULSE RATE

Figures 16 and 17 display the effects of changing the heart rate from
the standard value of 120 to 180 and 60 beats per minute. The systolic interval,
i.e., the ejection time, was left unchanged and the- stroke volume was also held
constant. Therefore the cardiac output was changed by factors of 3/2 and 1/2
respectively. Since physiologic responses will cause changes in‘the oﬁtﬂow
pattern when the cardiac output is altered to this degree, the outflow constant &<
was changed by the same factor in each case. Thus the pulse rate of 180 per
minute is taken to simulate exercise, and 60 per minute to simulate rest. We
recognize that these variations are only gross approximations. For example, in
exercise certain organs receive more blood and others less which means that
scaling the outflow distribution by changing o« is somewhat artificial.

For the lower pulse rate of 60 beats per minute, the pulse pressure
is generally larger than in the Standard Case because we have also reduced oL
for this case and therefore increased the resistance to outflow while the ejection
phase of the cardiac cyc:1‘e is the same as the Standard Case. We note that a short
interval of negative flow persists well past z. = 40 cm. Also, we find additional
"dicrotic waves. " Actually, such additional waves during diastole were observed
experimentally on anesthetized dogszl?). It is of interest that the first extra wave
appears to coincide in time with the next primary wave of the Standard Case. A
similar stétement can be made about the second exira wave, which has a relatively
small amplitude, and the dicrotic wave of the Standard Case. This suggests that

some of the prominent features of the natural pulse are directly related to reflec-

tion phenomena.

42



%

———— HEART RATE 60 BEATS PER MINUTE; OUTFLOW
REDUCED TO 50% OF STANDARD CASE
——— STANDARD CASE

HEART RATE 180 BEATS PER MINUTE; QUTFLOW
INCREASED TO 150% OF STANDARD CASE

140 - -

o
()
3,\’
/1
)
!
/’o
j

)}
O

PRESSURE, mmHg
> O
O O
i |

o
o

@®
®)

40 I 1 | ]
0 .50 .0 O 50

TIME, sec

Figure 16, Pressure -time profiles showing the effect of heart rates different from that of the Standard Case
(H.R. = 120 beats per minute), The outflow constant & was adjusted as indicated in order to

maintain essentially the same diastolic pressure at the heart.
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Figure 17. Velocity - time profiles for different heart rates corresponding to the
pressure curves of Figure 16.



The increase in pulse rate from 120 to 180 beats per minute generally
leads to opposite effects relative to the Standard Case than does 2 reduction in
heart rate from 120 to 60 The pulse pressure is diminiéhed ’since we have
lowered the outflow resistance. Also, the short interval of negative flow is no

longer present at &= = 20 cm.

E. EFFECTS OF A CHANGE IN OUTFLOW DISTRIBUTION
As stated in Chapter II the model f_or outflow pattern '\P is not

entirely satisfactory. In (l)rder to assess the effects of the variation 61? "P with
distance along the artery we have modified the outflow function of the Standaré

Case to simulate what might occur as a result of reducing the cutflow info the
abdomen as illustrated in Figure 18. Since we are leaving the outflow constant e
and the cardiac oufput unchanged, the pressure must increase. This is corrobo-
rated by the results shown in Figure 19. A higher pressure leads in turn to an
increase in the outflow rates and a larger distension of the vessel which together
accoimt for the reduction in the flow pulse evident in Figure 20, The results
given in Figures 19 and 20 show that any marked change in outflow distribution,
with all other cardiovascular parameters left unaltered, should cause clearly

noticeable deviations from the Standard Case.

F. EFFECT OF STROKE VOLUME

The result of altering the stroke volume was studied for both
larger (50 cms) and smaller (20 cms) values than in the Standard Case (30 cm3).
In order to maintain near normal diastolic pressure levels, the outflow was
adjusted by a corresponding factor. All other cardiovascular parameters were
left uncha:nged. Therefore an increase in the stroke volume should produce an
increase in the pressure and flow pulse while conversely a decrease in stroke
volume should diminish them. Accordingly we expect a2 more pronouncec
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steepening of the wave front at the higher stroke volume and a more gradusl one
when we reduce it. We note that the results plotted in Figures 21 and 22 confirm
these predictions. The flow pulse patterns given in Figure 22 also indicate that
for the small stroke volume we have flow reversal even at relatively large

distances from the heart,
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Effect of stroke volume on the pressure pattern. The cardiac ejection rates
used were obtained by scaling the ejection rates given in Figure 8. The outflow
constant o was changed by the same factor, but all other parameter values
are those of the Standard Case. As expected, the pulse pressure varies in a
direct manner with the stroke volume. Also, with increasing pressure the
peaks and valleys of the pressure pulse are advanced in time.
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1V, SPECIAL PROBLEMS

Having a mathematical model which yields reasonable predictions
for the characteristic features of the actual pressure and flow pulses generated
by the heart, we intend to study the consequences of making certain changes in
this model. We are particularly interested in assessing the effects of simplifica—
tions which are frequently introduced in elementary theories on blood flow.
Whenever we compare the results from any of the altered models ‘with those of
the Standard Case, it should be kept in mind that even though the Standard Case
solution is used as a reference, it represents an approximation to the pressure
and flow pulses observed in reality. However the computer results discussed
are sufficiently accurate to be considered as exact solutions of the mathematical

problems defined by the various models.

A, SEMI-INFINITE TUBES WITH UNIFQRM CROSS SECTION

In order to study the pulse waves in the absence of geometrically
induced reflections we treat the case of a semi-infinite elastic tube of constant
diameter. To simplify the problem further, we assume that there is no outflow.
For such tubes and various functions Q,( P 3 z) we shall examine the flow and
pressure pulses induced by a single stroke with an ejection pattern as Sh(;WIl in
Figure 8.

The inside diameter of the tube is taken to be 2.43 cm at a- pressure
of 100 mmHg. Since there is no geometric taper, the pressure and flow fluctua-
tions should be much lower than those occurring in a moderately tapered tube.
Therefore in .order to attain reasonable fluctuations in pressure and flow we
double the stroke volume by doubling the values of cardiac ejection rate given in
Figure 8, The initial conditions are zero velocily and a constant pressure of

80 mm Hg everywhere in the tube.
52



Figures 23 and 24 illustrate the results for four different wave speed

functions:
1 ¢ = C(P,%) = (7+2.03p)(L+ .022) cm/sec (Standard Case)
@ ¢ = o(g) = (O7T+2.03x100)(1+.022) (independent of P )
® ¢ = c(p) = @7+2.03p) (no variation with distance)

4) ¢ = constant

{97 + 2,03x100)
In all these expressions the pressur;e P -is measured in mm Hg and the distance
2 in centimeters from the heart.

Funection (1) exhibit‘s the wave speed variation with pressure and
distance as it has been asgumed in the Standard Case. Taking in (1) the pressure
to be 100 mm Hg we obtain function (2). Disregarding in (1) the wave speed
increase with distance from the heart we arrive at the expression (3). Finally,
by negiecting the spatial variation of the wave speed and assuming an average
pressure of 100 mmHg everywhere, we have a constant wave speed function as
given by 4).

From Figures 23 and 24 it is clear that the pressure and flow puises
are noticeably changed when we have a wave speed which increases with = .
This implies that a ngeaning‘ful prediction of the natural pressure pulse in the
aorta is only possible if we take into account the variation of the wave speed with
distance.

The influence of pressure dependence of the wave speed appears to
be less significant here than is the increase of ¢  with distance, We notice,
however, an increase in the slope of the wave front when ¢ is pressure
dependent and 2 more gradual decrease in the pressure or flow for the wave back
as might be anticipated. Since the slopeg are already steep-the differences in
slope are not readily apll)arer;t in the figures but they do in fact amount to factors

of two or three.
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Figure 23. Pressure profiles in semi-infinite tubes with different wave speed functions, The tubes are untapered

and there is no outflow through the wall. Ejection pattern is that for Figure 8 but scaled to yield a

stroke volume of 80 cm3.

The solid lines represent the results corresponding to ¢ = c(p, z) as defined

by (1); dashed lines correspond to ¢ = c(z) (expression (2)). The dotted lines are obtained for ¢ = c(p)
(expression (3)) and the dash-dot lines illustrate the results for a constant wave speed, expression (4).
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Expressions (1) and (2) stipulate higher wave speeds and thus a
stiffer arterial wall than do either (3) or (4). Therefore, with (1) or (2) the
pressure pulses arrive at each station sooner and have larger amplitudes than
the pulses corresponding to expressions (3) and (4). We also note that for func-
tions (3) and (4} the pressure returns to 80 mmHg after the ejection ceases,
whereas for the cases of the tube becoming stiffer with increasing distance from
the origin the pressure remains elevated for the time periods considered.

For the functions (2) and (4) the individual changes in shape of the
pressure and flow pulses with increasing distance from the origin can at least
in paxt be Aattributed to fluid viscosity. The nonlinear effects due to the wave
speed variation with flow velocity, to the local changes in cross-sectional area
with pressure, and to the local taper generated by the pressure pulse are still
present and also cause modifications of the results.

!

For the wave speed functions considered there is no evidence of a

dicrotic wave in any of the pressure pulses.

B, LINEARIZED TREATMENT

The differential equations (2) and (4) for one-dimensional fluid flow
are inherently nonlinear. If we linearize these equations we reduce the problem
to one which can be treafed by conventional methods such-as Fourier analysis.
As a matter of fact most of the past studies of pulsatile blood flow are based on
linearized equations, even though it has been recognized that linearization
constitutes an approximation. While for some applications such an approximation
may be tolerable, it is expected to introduce excessive errors in the predicted
pressure and flow patterns. To determine the magnitudes of these errors in our
case we have set out to examine the differences between the solutions of nonlinear
and linear analyses.
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If we consider the fluid velocity and the deviation of the pressure

from a mean value ']3 ag periurbations, the linear approximations to the

governing differential equations (2) and {4) can be writien as

v 2
;E + _jl;_? -P(P v-a) (32)
and
‘:});—E + ég_'-_ °P
>/22 2P /o ot

+,U,(BS‘) +Y =0 (33)
Plp=p

2z _
P:'_'

S ( P 3 3) denotes the cross-sectional area relation for the linearized

problem. The outflow expression “'P is linear in the dependent variables and

does not have to be modified.

The method of characteristfcs applied to these equations yields

by C(B 4
: =2 = =xcC 34
I a1 L (34)

and

B U"C‘L(ass. ' Q‘j’ dt (35)



where the wave speed is now independent of pressure.

LS».(F"» *) (36)
£(3

As before, we prescribe the spatial variation of the wave speed and then integrate

Ci_('?;) =

P=F

Equation (36) to determine the dependence of the cross-sectional area on pressure.

Specifying the geometric taper again by (15) we obtain

P—Po
_./32-+ fcf.

S.(p2) = So(?;) e @7

We note that S L Srows exponentially with pressure whereas in the nonlinear -

analysis the cross-sectional area defined by (16) approaches an upper limit with

?—’-oo ’ namely

—k= + ‘-‘-:(ani)c( 2)
lim S(P,g) = So(Fo)e f P )
P ==

Especially relevant would be a comparison of linear and nonlinear
analysis for the Standard Case. We choose the mean pressure of the nonlinear

y

solution as the pressure P about which the linearization is made. .Accordingly
we take F = 88 mmHg, For the wave speed expression we use Equation (3 0)
with the pressure set identically equal to 88 mm Hg.

Figures 25 and 26 illustrate the solution of both the linear and non-

inear problems. In the linearized case the systolic pressure is higher in the
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Figure 25. Pressure patterns correspoending to the Standard Case in which nonlinear
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linearized equations. Aside from the mean pressure, the differences in
shape become more pronounced with incréasing distance from the heart,
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proximal aorta than predicted by the nonlinear treatment because the increase in
cross—sgectional area (distension) with pressure is no longer taken into account as
a pressure-alleviating phenomenon. As &  increases the difference between
the systolic pressures diminishes and changes its sign. This may in part be due
to the fact that the outflow from the proximal aorta is higher for the linear analy-
sis than for the nonlinear one. (The outflow is proportional to the pressure.)
Thepefore a smaller flow pulse reaches the distal portions of the artery in the
linear case giving rise to a smaller pressure pulse there.

In the linear casé the wave fronts are coﬁsiderably less steep and
do not increase their slopes a.ppreciably with distance. The ;?vave backs are
steeper so that the wave peaks are delayed but the valleys occur at approximatély
the same time. As the pressure increases above the average value F thé
arterial wall becomes stiffer in the nonlinear analysis which causes a progressive
steepening of the wave front; conversely, as the pressure falls below the average
value the vessel becomes more distensible which in turn causes more moderate
slopes. These differences become more pronounced with increasiné distance
from the heart. It is evident that the slope does not vary appreciably between the
hottom and top of each pulse in the linear solution. Also, the rate of pressure
rise at the front r.of the pulse is approxin‘lately' equal to the rate of decay at the
back.

We also note that the dicrotic wave is larger in the linear approxima-
tion. One possible explanation for this could be the increased stiffness of the
distal portion of the artery in the linear case which was introduced by selecting
"’3 = 88 mmHg for all 2. Since the dicrotic wave appears to be caused by the
reflection of the primary pressure pulse from the distal portions of the artery,
it can be expected that the larger dicrotic wave is due fo a stiffer distal enﬁ, i.e.,

a harder reflection region in the linear analysis.
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The prominent differences seen between the two solutions indicate
that a reliable interpretatién of the possible causes for relatively small changes
in the naturally occcurring pressure and flow pulses can only be made if nonlinear

phenomena are taken into account.

C. EFFECT OF FRICTION

Since it has been anticipated that.fluid friction does not play an
important role in the large arteriesgz), the effects of viscosity have been
accounted for only in an approximate way. The results discussed so far are all
based on a friction coefficient corresponding to steady laminar flow.

In order to assess to some degree the importance of frictional
effects, different values of the viscosity coefficient ,4 were assumed and the
results compared with the Standard Case. 1If has been stated33) that the
"effective" viscosity coefficient for pulsatile flow in the large arteries is of the
order of eight times that associated with steady flow. Therefore the effect of
increasing l,( ten-fold as compared with the Standard Case was examined.

In addition the inviscid approximation was investigated.

An increase in the viscosity coefficient produces a higher flow
resistance and thfarefore a decrease in the flow velocity and an increase in the
pressure, at least in the proximal aorta. The inviscid case should essentially
yield opposite results. With the retarding effects of friction removéci, the flow
velocity pulse, and correspondingly the pressure pulse should have a larger
magnitude for smaller diameters.

The results plotted in Figures 27 and 28 confirm these expectations.
For the larger viscosity coefficient the overall pressures are higher when
Z < 40 cm, and the pulse pressure at the heart has increased slightly. The
resistance to outflow along the artery should actu;ally be greater for a more
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viscous fluid but this detail waé not included in the model for the outflow
function '\f’ . Its proper inclusion would tend to increase the pressures fl.:‘rther.
Beyond 40 em the cumulative effects of increased friction cause such a rapid
decay of the pressure and velocity pulses that they are virtually damped out at
100 cm from the heart. Percentagewise, the amplitude of the dicrotic wave has
been reduced more markedly than the primary pulse. One possible explanation
for this can readily be given. If the dicrotic wave is indeed caused by reflection
it must exhibit the effects of friction in a compounded fashion.’

The case for M= 0 is not quite a true inviscid solution because
the terminal pressure, left unaliered at 25 mmHg, is probably strongly influenced
by viscous effects in the arterioles. While a true inviscid formulation would lead
to a different terminal condition, the investigation of that problem would not be
of practical interest. Our intention here is to approximate reality as closely as
possible, and we have therefore left the distal boundary condition unchanged.

For the iar;g‘er vigcosity coefficient of ’A = .49 poise the pressure
and flow pulses are significantly different from those of the other: cases ( M= 0,
. 0&19). If the "effective" viscosity coefficient is in fact of this order of magﬁitude
then fluid viscosity does play an importa.{lt role even in arteries as large as the
aorta. On the other ha:nd, the comparison of the case rk = (3 with the Standard
Case suggests that the differences due to friction are not great for 2z & 60 cm
where the mean diameter is larger than 0.6 cm. Beyond that region the pressure
and velocif-;y fluctuations for I.L = 0 progressively depart from those of the
Standard Case.

Aside from the laminar Poiseuille expression (21), the Blasius
formula for steady turbulent flow in a pipe was also used for the‘ cases’

I.A. = .049 poise and )A. = .49 poise. As can be noted from Figures 29 and 30
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the pressure and flow pulses are remarkably unaffected by turbulent friction,
especially for 2 < 80 cm. Deviations are observed only for 2 > 80 em or
for diameters less than 0.3 cm where the flow is unlikely to be turbulent. Only
near the heart is turbulent flow normally considered possible. The differences
between resulis for the two values of H are not profound because the turbulent
expression for friction (22) includes the coefficient of viscosit’y raised to the
one-fourth power.

Since we are dealing here with friction models which are in some
sense artificial we can not perform a true investigation into the importance of
fluid viscosifly. All we can say is that an increase of the viscosity coefficient
from 0. 049 {o 0.49 poise in our laminar frictional term produces considerable
changes in the pressure and flow pulse particularly at larger distances from the
heart. By contrast the same increase in {A does not induce significant
changes when the turbulent friction term is utilized. However, it remains to be
shown whether the expressions chosen for the frictional term are adequate
representations of the true situation. Clearly, a thorough investigation of the
effects of fluid viscosity on large-amplitude pulsatile flow in distensible tubes

should be conducted.

D, PERIPHERAL RESISTANCE

The notion of peripheral resistance is applicable when the pressure
and flow pulses are linearly related. The adequacy of such a concept for the
distal boundary condition should be investigated, We are doing this by utilizing
as distal boundary condition the fact that the pressure is essentially constant in
the vicinity of the capillaries. The corresponding solution for the Standard Case
is then examined as to the pressure-flow relationship at various distances from

the heart. Figure 31 gives the results in terms of the instantaneous blood
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concept were strictly valid, each of the four curves would be a straight line.
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velocity as a function of instantaneous pressure at four different distances from
the heart. If we can disregard the cross-sectional area changes with pressure
the local blood velocity is directly proportional to the local bleod flow. For
small diameters we may indeed neglect the cross-sectional area changes and
therefore interpret the curves in Figure 31 as.approximations of the pressure-
flow relations. We note that with decreasing distance from the heart the
pressure-flow relationghip deviates progressively from a linear one.

To further assess the effects of prescribing a peripheral resistance
EL_ we have considered the Standard Case ariery and suitably selected a value
for E.,_ at each of the various distances z from the heart indicated in
Figure 31. This means we have computed the pressure and flow pulses for four
arteries with the same initial diameter, taper, ¢( F, .?:) s f\l) ( P ,2) ;
ejection pattern and heart rate, but different lengths, terminal diameters and
peripheral resistances. The values used for EL; are given in Table 2. In
each case R L  was selected such as to yield at the root of the aorta the same
diastolic pressure as does the Standard‘Case. The corresponding results are

illustrated in Figures 32 and 33,

TABILE 2
Peripheral Resistance for Different Terminal Diameters
Diameter Length R W

cm cm dyne sec/ cm®

.04 120 2.39% 10°

.1 103 3.82x10°

.5 71 9.93x 103

1.0 40 2.60x 10°
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The pressure and flow velocity profiles for the case with a terminal diameter of
0.04 em can not be distinguished within drawing accuracy from those for the
Standard Case. The same is true for the.artery with an end diameter of 0.1 cn?.'
Hence for the mathematical model used here the concept of peripheral resistance
aprears to be a very good approximation for arteries with end diameters of

0.1 cm or less. For a terminal diameter of 0.5 cm the agreement is not as
good. In this case we have deviations up to 4 mmHg in pressure and up to

12 cm/sec in veloeity.

When the ferminal diameter is taken as 1.0 cm at L_; = 40 cm we
note that extra waves begin to appear; the pressure and flow pulses are distorted
and their magnitudes altered considerably. The peripheral resistance concept
leads to results which can no longer be considered as acceptable approximations.

Within the framework of the mathematical model used here for the
aorta and its continuation, the elementary concept of peripheral resistance
appears to yield fairly accurate results provided that the terminal diameter
does not exceed 0.-'5 cm. Since in our case thig value is reaoﬂed at a distance
of 71 em from the aortic valve, it appears that prescribing a peripheral resist-

ance may not be advisable at any point of the aorta.

‘E. WAVE FRON’f VELOCITY
Ié has been shown that the famili;ar features of the natural pulse

generated by the heart are predicted by the present model. The wave front
velocity offers another comparison between"theory and experiment. To define
a characteristic point of the wave front on wlllich to base the calculations of the
velocity from the transmission time over a given distance, a sfraight line was
drawn fangent fo the front of the pressure pulse at the location of maximum
slope (inflection point). ~Another line was drawn tangent to the pressure curve
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at the end of diastole preceding the beginning of the pulse. T‘he intersection of
these two lines was used as the characteristic point, whose speed is interpreted
as the wave front velocity. The results for the pressure pulse of the Standard
Case are shown in Figure 34.

McDonaldﬂ has published some data on the wave front velocities
for a situation where the mean pressure was 121 mmHg. After scaling his
distances to correspond to the hypothetical dog considered here, those velocitiés
are also given in Figure 34. The comparison of McDonald's valueg with the
results from-the Standard Case is generally satisfactory. However such a
comparison is not strictly proper because the mean pressure of the Standard
Case is only 88 mmHg. Therefore an additional computer run was made using
the parameters of the Standard Case except that the méan pressure was raised
to 121 mm Hg by decreasing t11:e outflow constant ©¢ . The larger wave speeds
due to the higher pressures should naturally cause larger values of the wave
front velocity and the calculations, also given in Figure 34, confirm this.

34)

Further, recent measurements taken in the canine ascending aorta indicate
that the wave front velocity averages 3.3 m/sec at pressures of 100 fo 110 mmHg.
Assuming that a value of & = 5 cm characterizes the region of the ascending
aorta, we see that this data point also agrees with the computer results given in
Pigure 34,

It seems that our mathematical model of the aorta can be used to
predict actual wave front velocities with reasonable accuracy. Of course, it
would be more meaningful to compare the velocities obtained by direct measure-

ments on a dog with those predicted by our model on the basis of the physical

and geometric parameters for the same dog.
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F. HARMONIC ANALYSIS

If we were dealing with a linear system, then a logical way to solve
;;he present problem would be to first calculate the pressure and flow velocity
pulses produced by sinusoidal ejections of blood from the heart. Superposition
of the contributions from each harmonic of the actual cardiac ejection curve
would then yield the actual spatial and temporal patterns of pressure and velocity.

As an approximation to the true situation, linear analyses of blood
flow have been extremely popular in the past. Specific quantities which have been
examined and interpreted by such linear analyses are the apparent phase velocity
and impedance (defined as the ratio of the magnitudes o-f pressure and flow veloc-
ity) for each harmonic component. Numerous investigators have published plots
of phase velocity and impgdance as functions of frequency and have atiempted to
relate certain features of these plots to properties of the circulatory system.
Although linear theories may have legitimate applications, we have sufficient
evidence that we can not disregard nonlinear phenomena for ocur purposes.

Nevertheless we have decomposed the pressure and velocity pro-
files of the Standard Case into Fourier components at different locations along
the artery and have computed the apparent phase velocities for pressuré and
flow velocity and also the impedance moduli and phase angles. The correspond-
ing results are given in Figures 35 to 38, For comparison purposes we have
also shown in Figure 37 an example of an impedance curve taken from in vivo
measurements in the femoral artery of a dog35).

The graphs in Figures 35 to 38 generally approxiingte the data given
in the literature. This was to be expected since the pressure and flow pulses of
the Standard Case and their shap.e change during propagation are reasonably close

approximations of experimental observations.
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on the femoral artery of a dog, 35)
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G, TWO LIMITING CASES OF ARTERIAL WALL PROPERTIES

The effect of the elastic properties of the arterial wall is accounted
for in the specification of the wave speed as a function of distance and pressure.
Thus, in order to assess the consequences of alternative models we must change
the form of the wave speed function. Specifically we intend to inquire into the
characteristics associated with a rigid artery, and also one which is distensible
but whose wave speed is independent of prlessure.

A rigid wall has no distensibility, and so according to Equation (10)
the wave speed should be infinite. However we have ignored so far the compress-
ibility of blood in this analysis, and if the wall is.rigid this property can no longer
be neglected. Since the wave speed is the speed of propagation 6f small signals
relative {o the medium at rest, the wave speed for a compressible fluid is equal
to the speed of sound in the fluid. Accordingly we choose < = 1. 5x10° cm/sec
as the wave speed relation fox" a rigid arterial wall. Keeping all other param-
eters of the Standard Case unchanged we obtain the results digplayed in
Figures :3»9 and 40, Although the pressures are very much elevated due to the
nondistending walls the velocity magnitudes remain at reasonable levels. Both
profiles follow the shape of the ejection curve very closely.

For the case of 2 wave speed which is independent of pressure, one
of tﬁe sources of nonlinearity is removed. However, the Moens-Korteweg equa-
tion (Appendix A) inéicates that the elastic modulus of the arterial wall will si:.ill
increaée with pressure, since the thickness-to-radius ratio decreases as the
wall becomes more distended. An artery with constant elastic modulus would
display a wave speed relation which decreases with increasing pressure.

Using as the wave speed function that of the Standard Case with

F = 88 ram Hg and leaving all other parameters defining the Standard Case
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unaltered we find the pressure and flow patterns given in Figures 41 anci 42, The
pressures are not gignificantly affected by this assumption, but they are somewhat
lower. Also, the changes in the slopes of the pulses .are analogous to those noted
in the linearized treatment (see section IVB) and can be explained by the same
reasoning.- Ag in the linear solution the dicrotic wave is larger than in the Stan-
dard Case. This may again be caused by the fact that for large distances from
the heart the pressure of 88 mm Hg assumed in the wave speed function exceeds
the mean pressures of the Standard Case. Hence the distensibility of the distal

portions of the artery is also reduced here and would tend to intensify any reflections.

H. EFFECT OF GENERALIZED VASOCONSTRICTION AND VASODILATATION
Generalized vasoconstriction and vasodilatation relative to the -
Standard Case can be simulated in the model by alteriné the resistance to outflow
through the outflow constant o¢ . Th?s is only a partial simulation because the
diameter of the artery of interest was kept constant. If we select a smaller value
for o< we produce a vasoconstriction which in turn should cause an increase
in the mean pressure and in the pulsé pressure because less blood is being
removed from the artery while the stroke volume is the same as before, The
pressure rise should lead to larger wave speeds and therefore pulses which travel
somewha-t faster. For vasodilatation the effects must be antithetic.
These expectations are corroborated by Figures 48 and 44 where
the outflow constant o<  was changed by +15%. The Standard Case is also
plotted for comparison purposes and naturally falls between the two sets of curves
illustrating the effects of vasodilatation and constriction. From Figure 44 we
conclude that the pressure rise induced by increasing the outflow resistance has
apparently caused a suffic iently large distension of the proximal aorta to lower

the peak and mean flow velocities.
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I. EFFECT OF CARDIAC ARREST

Cardiac arrest was simulated by setting the cardiac ejection rate to
zero after steady state was reached for the Standard Case. The results are given
in Figure 45 and show the presence of small fluctuations in pressure and velocity
after the ejection has ceased. It appears that these fluctuations including the
dicrotic wave are manifestations of multiple reflections of the primary wave.
But the dicrotic wave or any other wave can not be interpreted as a simple reflec-
tion at a discrete site because all pressure and flow peaks or valleys tend to
appear later in time as the pulse travels down the artery. Retrograde waves
should appear earlier in the distal and later in the proximal regions. No distinct
retrograde waves can be discerned in Figure 45. The reflection mechanisms
which seem to be respoﬁsible for the development of the dicrotic wave. ilave yet

to be identified in a quantitative manner.

J. A QUIESCENT STATE AS fNITIAL CONDITIONS

If we are interested in steady state pressure and flow profiles the
choice of initial conditions is not crucial. However, in order to minimize the
computations we have regularly prescribed the initial conditions in terms of
guesses for the ultimate end-diastolic pressures and flow. It was generally
found that for all practical purposes the actual steady state condition was
reached after two heart beats when the end-diastolic pressure at the heart was
estimated to within a few mm Hg and when the end-diastolic veloecity pattern of
the Standard Case Wé.S used as the initial velocity distribution.

In a few situations however, initial conditions may be pertinent, for
example, in determining the response of the cardiovascular system to renewed
cardiac activity following a state of cardiac arrest. We now consider such a
gituation and assume that the period: of cardiac arrest is sufficiently long to
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produce in our model a quiescent state characterized by zero velocity and a
pressure of 25 mmHg (= PC- so that there is no outflow) everywhere in the
artery. With such a quiescent state as initial conditions and for cardiovascular
parameters corresponding to the Standard Case, we have computed the pressu_ré
and flow patterns over several heart beats.

Figures 46 and 47 show the gi'adual return of the pressure and flow
to steady state profiles. The approach fo steady state appears to be roughly
exponential. After five heart beats the transient response still differs by perhap
5 mm Hg in pressure and by about 5 ecm/sec in velocity from the steady state
values. However, life-sustaining pressures are evidently attained already after
two or three heart beats.

There are significant differ;ancés between the shapes of the profiles
during the first cardiac ejection, and those occurring latér. Most striking is the
large velocity pulse in the vicinity of the heart which can only be explained in
terms of the narrowing of the aortic cross section at lower pressures (see aiso
Appéndix B). We also notice intervals of relatively large negative flows éuring
the first few beats. In addition, the dicrotic wave occurs later relative to the
primary pulse during the fir:s.t few beats in this numerical experiment. By
interpreting the dicrotic wave as a manifestation of some reflection phenomena,
this delay may be attributable to the lower wave speeds associated with the lower

pressures in the beginning.

K. AORTIC INSUFFICIENCY AND SHOCK WAVES

It has already.been noted that the system of one-dimensional
différential equations for blood flow is hyperbolic, just as is the system of equa-
tions for the supersonic flow of a compressible fluid. Since the occurrence of

shock waves ig a familiar feature in high-speed compressible flow, it is
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reasonable to ask under what conditions similar phenomena could occur in the
cardiovascular system. Reality does not allovy for true discontinuities. Howéver
we can envision shock waves in the form of abrupt rises in pressure and flow or
spike-type perturbations which may evolve from relatively gradual changes in
pressure,

While we have noted the steepening of the pressure wave for the
Standard Case with increasing distance from the aortic valve, under normal
conditions the pressure pulse generated by the heart is not sufficiently steep or
strong to produce a shock wave within the dimensions of ?he body. waever, in
the case of an incompetent aortic valve (aortic insufficiency) the situation is
quite different. The large amoqnt of backflow associated with a leaking valve
would reduce the normal net cardiac output per beat unless the size of the heart
and the gross ejection volume are increased. A larger heart, and correspond-
ingly larger positive and negative flow rates, are indeed clinically observed in
patients with aortic insufficiency. Finally, é.ny increase in the ejection volume
for a given systolic time interval produces pressure pulses which are steeper
and stronger than normal, and can therefore generate shock waves within a
shorter distance from the _heart.

Lacking actual recordings of cardiac ejection paéterns in instances
of aortic valve incompetence, we have assumed the ejection rate function shown
in Figure 48, We arrived at this function by utilizing the information given in
Reference 36 according to which regurgitation can exceed 80% of the net aortic
flow. Also the diastolic pressure at the heart should be of the order of 40 mmHg
or less to allow for the filling of the ventricle with oxygenated blood from the
Iung. In addition, we have kept the shape of the ejection curve approximately the

same as in the Standard Case for the positive ejection phase of the cardiac cycle;
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but we increased the net stroke volume from 30-to 37.5 cmg. - All other cardio-
vascular parameters are identical with those of the Standard Case.

Since the peak ejection rate is much higher we expect a marked
inerease in pulse pressure as well as a much steeper wave front at the heart.
Also, the inordinate regurgitation through the incompetent valve should cause
significant backflow over a large segment of the aorta.

These predictions are verified by the computed results which are
shown in Figures 4§ and 50 together with the Standard Case. While normally
the pressure remains elevated behind sh_ock waves encountered in supersonic
flow problems, it decays rapidly in our case due to the reversal in slope of the
cardiac ejection curve and due to the outflow.

For many years, it has been observed clinically that the so-called
pistol shot phenomenon is associated with aortic valve incompetence. This
phenomenon manifests itself with a sharp pulse which can actually deflect the
palpating fingers at the radial or femoral artery. We can readily demonstrate
that the pistol shot sounds must be generated locally. They can not emanate
from the. heart, because they would be dissipated long before they could reach
the extremities by the damping mechanism provided by the viscoelasticity of
the arterial Wal-l. The origi:n of the ferm '"pistol shoi' stems from the sharp
cracking sound heard through a stethoscope placed at the site.

Just as an ordinary shock wave induces audible vibrations in air,
the large and rapid rise in pulse pressure noted in Figure 49 can be expected to
induce vibrations in the elastic arterial wall. When these vibrations are within
the audible frequency range and have a sufficiently large amplitude then they

would represent 2 sound. Since the pressure pulse has a very peaked and narrow

shape and is traveling at a speed of 5 to 15 meters per second, such a sound

96



H

O

o
1

W

O

o
1

PRESSURE, mmHg

o
T

——— STANDARD CASE
— AORTIC [INSUFFICIENCY

—100
500 -

n

O

®
T

300 |

200 -

PRESSURE, mmH(g

100 |-

Figure 49,

.25 .50 O .25 .50 O .25 .50
TIME, sec

Pressure profiles for hypothetical aortic insufficiency corresponding to
cardiac ejection rate given in Figure 48, Other parameter values are
those for the Siandard Case. First indication of a shock wave is suggested
by the steepness of the pressure front at 40 cm from the heart.

97



——— STANDARD CASE
——— AORTIC INSUFFICIENCY

400 - -

W
o
O

200

100

I S~

VELOCITY, cm/sec

no
®)
O

100

VELOCITY, cm/sec

o

1000 .25 .50 0 .25 .50 0 .25 .50

TIME, seC
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should be of very short duration. The findings here are in apparent agreement
with clinical observations on the characteristics of the pistol shot sounds.

Although we h'ave been discussing the arterial pistol shot, a similar
ocecurrence can arise on the venous side of the heart if the tricuspid valve is
incompetentzz). The venous pistol shot is normally detected over the jugular
and femoral veins.

‘Figure 51 shows the development of the shock wave from a different
viewpoint where we have plotted the local pressure gradient as a function of time
on an expanded scale. (The local ‘Eime rate of change of pressurt_a %-_E would
show similar features.) The differences from the Standard Case are very
evident. For s = 100 and 120 cm the gradient gﬁ does not return
immediately to zero because the pressure here is decreasing with distance.

The difference in the travel times for the shock wave and the pres
sure pulse of the Standard Case is particularly noticeable in f‘ig‘ure 51, Itis
caused in‘ part by the nonlinear effects of the variation of signal speéed with
pressure and velocity.

We can estimate the "thickness" of the shock wave by multiplying
the speed at which the wave travels relative to the fluid by the time necessary
for its passage. The former can be approximated by thé wave speed at the
average pressure of the pulse, and the latter by the time interval during which
the local pressure gradient exceeds 10% of its maximum value. Table 3 shows
the results for this calculation.

In compressible flow problems the shock wave thicknesses are
extremely small compared to the physical dimensions of the bodies involved.
The thicknesses given in Table 3 are much larger, of the order of ten times the

arterial diameter. They also indicate that the shock wave does not form
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Figure 51. Local pressure gradients in the case of hypothetical aortic insufficiency.
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abruptly, but in a gradual manner. In the case considered it approaches a

minimal thickness of about 6 cm and then broadens again.

TABLE 3
Thickness of the Arterial Shock Wave

Distance Wave Speed Time to Pass Thicknes:
cm cm/sec sec cm
0 340 120 4]
20 560 . 025 14
40 900 . 010 9
60- 1100 . 006 7
80 1700 . 004 7
100 1200 . 005
120 670 . 030 20

The peak pressures exceed 500 mmHg at Z = 80 c¢cm and.as such
are probably somewhat high. Presumably this may partly be due to the fact that
we have disregarded the viscoelastic damping which is particularly pronounced
for spike-type perturbations. Yet it should be mentioned that systolic pressures
beyond 300 mm Hg have been observed in man37). In general, the gross features
associated with aortic insufficiency predicted here for the dog seem to be in
qualitative agreement with observations on man. Even the fact that backflow is
gtill present for = = 60 cm (near the external iliac artery) appears to be

37)

realistic
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V. DIBCUSSION AND CONCLUSIONS

The results of this study have shown that the familiar features of
the natural pressure and flow pulses in arteries can be reproduced mathemati-
cally with the help of the method of characteristics if we specify the physical anc
geometric cardiovascular parameters properly. In examining the effects of
changes in these parameters it became apparent that the incisura develops even
when there is no backflow as long as the time interval of diminishing ejection
rate is sufficiently short. This means that towards the end of cardiac ejection
the flow rate (Figure 8) must decay rapidly to zero to give rise to an incisura,
Also, for the wave speeds considered we did not observe the phenomenon of
backflow in the aorta beyond a distance of 30 ¢m from the heart excgpt at low
heart rates, low pressures and when we have incompetent aortic valves.

" Generally speaking, for stiffer arteries the backflow was less pronounced and
vanished at shorter distances from the heart.

As the pulse wave propagates, we can always notice a marked
steepening of the wave front and a peaking of the pressure pulse when we take
the nonlinear effects into account. By contrast, the.linearized analysis predicts
less peaking of the pulse and essentially no steepening of the wave front. It also
yields a significantly different diastolic pressure, a wider pulse and a more
prominent dicrotic wave. These differences between the results of a linear and
a nonlinear treatment of the propagation of large-amplitude préssure waves
suggest that nonlinear effects must be accurately accounted for if we are inter-
ested in the interpretation of small changes in the flow and pressure pulses.

A decrease of 36% in cross-sectional area of the artery and an
inerease in arterial wall stiffness cérresponding to a 40% rise in wave speed

produced substantial changes in the pressure and flow pulses, suggesting that
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they may possibly serve as diagnostic indicators. The potential use of the flow
pulse for Fliagnostic purposes seems particularly promising in view of the recent
development of ultrasound echo-ranging devicess) and pulsed doppler ﬂometers.s)
Both the reduction in diameter and the increase in wave speed effectively produced
a diminished distensibility which accounts for the elevation of the pulse pressure
in the major arteries predicted by the model. Wﬁle the increase in wave speed
primarily affected the shape of the flow pulse and not so much the peak flow veloc—
ities, the reduction in diameter mainly increased the peak flow velocities and left
the shape of the flow pulse essentially unchanged. TFigures 14 and 15 hint that a
sufficiently large increase in wave speed migh‘t lead to the development of a second
dicrotic wave. They aiso demonstrate that backflow can virtually be eliminated
by raising the wave speed. Moreover, they clearly show that relatively small
changes in the pressure gradient alter extensively the flow pattern. This again
suggests that the results to be obtained ’qy prescribing the pressure variation at
the root of the aorta (instead of specifying the ejection pattern) as a boundary
condition may exhibit large errors in the predicted flow pattern uniess we know
the pressure at the heart with extreme accuracy. In addition, it shows that the
pressure gradient technique for determining the cardiac output?’s) is proae to
large errors.

Many of the features of the dicrotic wave indicate that it is caused
by the reflection of the primary pressure pulse from the more distal regions of
the arterial tree. However, the quantitative aspects of this reflection phenomenon
are not fet established and additional investigations will be necessary. As we do
not observe a dicrotic wave when the model artery is infinitely long and has neithe:
taper nor outflow, we may infer that the dicrotic wave is a consequence of taper

or outflow. Also, since the dicrotic wave appears progressively later in time
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with increasing distance from the heart it can not be the result of a discrete
reflection from a single site. This conclusion is also supported by the fact that
the dicrotic wave occurs essentially at the same time for a given distance from
the heart irrespective of whether we impose the terminal boundary condition at
71, 103, 120 or 150 cm from the heart. -

Cardiac arrest and the subseguent resumption of the normal heart.
bheat were simulated to seek evidence of transient phenomena. When the heart is
stopped, extra waves which are normally obscured by following heart beats are
observed but they have very small amplitudes. This suggests that they are
caused by multiple reflections of the primary pressure pulse and that the dicrotic
wave is the first of these reflections, When the normal cardiac ejection is
resumed after a quiescent state of zero velocity and unif?rm pressure of 25 mm Hg
has been reached, it takes only 2 or 3 heart beats {o restore the pressure and
flow pulses to life-sustaining levels.

The simulation of rest and of exercise by considering pulse rates
of 60 and 180 beats per minute and modifying the resistance of the vascular bed
to enforce normal pressure levels revealed distinct changes in the pressure and
flow pulses. The lower heart rate produced significantly higher pulse pressures
and larger dicrotic waves but much smaller average ﬁow velocities as compared
with the Standard Case. It also allowed for backflow at distances beyond 40 em
from the heart. In addition, as sometimes observed experimentally, a7 multiple
diastolic (dicrotic) waves, which may even exhibit backflow, are predicted at the
lower heart rate. The higher pulse rate simulating exercise produced generally
opposite effects, i.e, lower pulse pressures, higher mean flow velocities,
reduced backflow and a smaller dicrotic wave,

Overall modifications of the outflow resistance as might be caused
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by vasoconstriction, vé,sodilatatioh, and by removing an abdominal organ seem
to yield the expected ch;anges in the pressure level but only mild alterations in
the flow patterns.

It is questionable whether the effects of fluid viscosity have been
accounted for in a satisfactory manner since the friction expreésion is based on
the assumption of ;quasi—steady flow. TFor a nominal value of p = .049 poise
or less, the resulis are ejssentially the same for laminar or turbulent flow.
However when we increase the effective viscosity coefficient to 0.49 poise, then

| the pulse waves gxhibit a much more rapid decay with distance for laminar flow
but not in the furbulent case, yet the basic shape of the pressure and flow pulses
-i8 not markedly altered. -

"The concept of a peripheral resistance for the distal boundary condi-
tion was found to be remarkably satisfactory provided that this boundary condition
was applied no closer to the heart than the fen;oral region in the cases examined.
Attempts to utilize a peripheral resistance in the abdominal aorta yielded drastic
alterations' in the pressure and flow patterns.

'i‘he wave frt;nt velocity for the Standard Case compared rather
favorably with experimentally obtained data. Likewise, harmonic analyses of
the computed res{llts for various stations alpng the artery show that the apparent
phase velocities of the different harmonics as well as the impedances resemble
those obtained from dog experiﬁlents.

Simulating aortic insufficiency; we find that the wave front is rapidly
steepened with increasing distance from the heart in a fashion reminiscent of
shocﬁ waves in high-Speed.compressible flow. Indeed a first iﬁdication of a shock
wave in our particular case could be observed at 40 cm from the heart. Its effec-

tive thickness was estimated fo be as small .as 6 cm. The occurrence of shock
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waves in our model of the cardiovascular system should not be foo surprising
since the governing differential equations form a hyperbolic system, Normally
the dimensions of the body are too small to allow for the development of a shock
wave, It is only in‘cases 6)? circulatory disorders such as aortic insufficiency,
where we have a very steep pressure front at.the heart and an unusually large "
pulse pressure, that a shock wave can develop within a realistic distance from

the heart.
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APPENDIX A

We shall demonstrate that the wave speed expression (10) appearing
in the derivation of the characteristic equations is indeed equivalent to the classi-

cal Moens-Korteweg relation. According to equation (10) of Chapter II:

S

= (A1)
t(5),

Restricting ourselves to a tube of circular cross section we consider a segment

el
I\

for which the cross-sectional area does not cha.ngé appreciably with axial dis-

tance. Then S is essentially a function of pressure alone S =‘S( P) , and

(9.5.) ~ 48
BPZ P

Denoting by 1.  the internal radius of the circular cross section, we have

2
S = mn
émd
48 . drn _ 2 g dn
dy P T
For a thin-walled tube with a wall thickness ln we cantake m  to approxi-

mate also the radius of the middle surface n -+ —l'-’z- ~ .

* With the expressions for S and (.g_'g_.) given above we can write
P

£
for equation (Al)

= [nodp (A2)
Zf dn
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We now consider a change of state of the tube from a radius n. to n+dn

from a pressure P to p+ d p and.from a circumferential wall tension

T to 1 +d T . The differential strain produced by dn s

de = 21T(rt+-<:1n)‘—-2-rrn_ _ dn

2mTn n

while the differential wall stress can be given as

dT

de- = 24
T TR

Hence the tangential elastic modulus becomes
do-

. d9- _ n 47
E__ - L-\cln (A3)

Static equilibrium requires that the tension in the wall be balanced

by the pressure in the fluid, which means T = P rn.  and
dT = P dn + Mt AP
Neglecting the contribution of the small term Fd n we have

dT d
PP

and equation (A3) can also be written in the form

-
E -3

Combining this relation with (A2) we Finally obtain
Eh
Zen

(A4)
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which is the classical Moens-Korteweg eguation for the Tocal speed of propagation

of small pressure signals in-elastic tubgs.
We note that this equation has been derived from the more general
equation (Al) with the assumptions of
(i) a circular cross section
(i) a thin wall
(iil) a cross-sectional area that changes slowly with axial distance.

These are the standard assumptions for deriving the Moens-Korteweg equation

« from alternate considerations.
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APPENDIX B

At a uniform pressure F" equation (16) shows that the cross-~
sectional area of the artery varies exponentially with distance from the aortic
valve. If we plot the function & ( 2} l% defined by

P Yo
€ elpe) ¢ lpe,2)

E(Z;P) = e (B1)

for various values of p (see Figure B1l), we can assess the changes in fthe
local geometry of the artery produced by deviations of the local pressure

from Po . In computing the curves displayed in Figure Bl we have-chosen
the wave speed to be that for the Standard Case, and Po = 100 mm Hg, The
figure clearly indicates how the artery stiffens as = increases. It also shows
that the local changes in cross-sectional area produced by the natural pressure

pulse can easily exceed 10%, especially in the proximal aorta.
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Figure Bl. ZEffect of pressure on the arterial cross section in the Standard Case.
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