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ABSTRACT

The goal of the investigation was the development of a class of
control systems which efficiently results in high-accuracy (< ZLO-lL radiana)
earth-pointaing attitude motions of satellites of different configurations
in el%lptlc orbits. The earth-pointing oriemtation, i1 e , the orientation
such that one body-fixed axis 1s parallel to the local vertical and another
18 normal to the orbit plane, is required for the lifetimes of the satel-
lites  Gas Jgets provide the conbtrol torgue

Linear differential equations with time-varying coefficients, which
include terms for the gravity torgue due to an oblate earth and terms
for the aerodynamic torque, are used to describe the attitude motion when
a satellite 1s practically earth-pointing Nonlinear equations with time-
varying coefficients are used to describe the atititude mobtion when acquisi-
tion of the earth-pointing motion Ffrom large deviation angles (zBOO) 18
consadered.

Pontryagin's Maximum Pranciple, the necessary conditions for exact
solutions of optimal bounded-phase-coordinate problems and guidelines
obtained from the minimum-fuel station-keeping controls devised for
single-axis systems are used in the development of the station-keeping
part of the control system The acquisition part of the control system,
developed here, results 1n acquisition of the earth-pointing motion from
large angles i1n the time of one-guarter orbat with comparatively little
fuel expenditures

The motions of the satellites wrth the developed station-keeping
control systems are saimulated on an analog computer, and, the performances
of the systems are evaluated  The nonlinear differential eguations which
include the developed acquisition conbrol systems with time delays are
integrated by using a digital computer  The fuel expendibures and the
times of acguisition obtained from these digatal computer runs are com-
pared with those for the satellite motions described approximately by
linear differential equations with the optimal controls obtained from the

maximum principle
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The simulation studies together with the performance evaluations
showed that the control systems are gquite efficilent as well as reliable
(The acquisition system is a back-up system to the station-keeping
system.) The overall control system; which is very simple to realize,

1s given in diagram form
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I INTRODUGCTION

A. STATEMENT OF THE PRCBLEM

At thas time there are msny plammed artifical earth satellites which
must perform tasks whach reguaire a given satellite-fixed line to be
(nearly) parallel to the local vertical while the angles between every
satellite-fixed line and itne orbit plane are (nearly) constant. Thas
reguired orientation 1s cailed (near) earth~-pointing Earth-pointing is
not a natural satellite orientation so that control effort must be spent
to keep the orientation (called stetion-keeping) once 1t has been
acquired. The time interval of station-keeping for practical satellites
ranges from minutes to years. In any case the controller, which causes
the satellate to acquire the earth pointing atevitude and keep 1t, must
be efficient as well as reliable

The problem considered in this investigation i1s how to efficiently
and reliably conbrol a satellite's atbitude motion so that 1t 1s very

accurately earth-pointing for a given interval of time

B SATELLITE CONFIGURATIONS

Since attitade motion characteristics vary widely with satellite
confaiguration and since the efficiency of a given control varies with
the characteristics of attitude motion, 1%, at first, seems necessary
to consider an slwmost infonite variety of ssteliite configurations
Bowever, upon furtheyr inveghtigataon 16 as found that a few sateliate
confargurations exhibit a wide wvariety of gttitude motions whose charac-
terietics are basic characterzistics of a whole range of satellate configurataons.

foar configurations of satelilites and treir orbits are considered
here These four configuratioms were chosen since they exhibit a wide
variety of natural attitude wotions and since they are simllar to some
futire as well as some recent esrth sateilites

Satellates (i) and (4) sre similay to some of today's "stable"
scientific satelliites e g , sateliztes of the Orbiting Geophysical
Obse.vatory and the Tiros sexrzes Satellate {4) 1s such that aerodynamic

forces significantly affect 1ts attitude motioa  Satellite (2) 1s

1



gamalar to "unsisble” manned and ummanned spacecraft which will be
inserted into {nearly) circular esrth parking orbits for transfer to
orbats about other celestial bodies. Examples of such spacecraft are
Apollo and Unmanned Mars BExcursion Vehicle  Satellite (3) 1s similar to
future "unstable" military spplications savellites

The orbits of the satellites are elliptic, although for sateliates
(2) and (3) the eccentricity is assumed to be only O Ol. The orbits
are not considered circular since suca an assunmption 1s generally a
gross oversimplification and since the number of orbats a satellite will
complete before the aerodynamic forces cause 1t to move on a trajectory
back +t0 earth increases with eccentricity (Breakwell and Koehler [k]
have derived an expression for the number of orpits before decay This
expression, which gives e lifetime of about 10,000 orbits (about 1 T years)
for an iaitial perigee neight of 200 miles and an initial eccentricity

of 0.03, has been experimentally verified }

C CONTROLLERS AND PERFORMANCE CRITERTA

In recent years many devices which showed promise of controliing the
attitude motion of satellites have been constructed, analyzed and to
some extent applied with success These coatrollers are categorized
according to taeir subsystems which siupply the control torgunes Control
torgues are obtained by devices such &8s gas Jets, i1on propulsion danits,
three-axes-gyroscopes, v-gyroscopes, reaction wheels, resaction spheres,
exteadable pooms and magnetic devices

Several investigators nave considered such devices in solviag various
acquisition and stavion-keeping provblems For exsmple, Horwitz [19] has
considered pulse width modulation for fairly high accuracy control of
highly idealized gttitude motion. EHuston [20] considered the feasibility
of employing twin-gyroscopes for control, and, Schwartz [32] considered
mnimum energy acquisition using reaction wheel control — Asymptotic
stabilization of the spin axas of a satellite in a circular orbat by
magnetic control was considered by Wheeler [34] Haefner [15] and
Nichol [28] each considered some of the general aspects of actitude
control  Although these solubions contribute to the solution of the

problem at hand, none result in sufficient guidelines for the construction

2



of a device which will efficiently and reliably conirol the attitude
motion for high accuracy earth-pointing

Because of their simplicaty and religbilaty, gas Jets are considered
in this investagation as the suppliers of control torgue

The error in orientation for the high accuracy earth-pointing
orientation 18 considered® to have priority over all other performances
meagures., However, for efficiency, the weight of the fuel spent for
control must be as near minimal as 1s practicable (See Section B,
Chapter ITI ) Another criterion used in the present investigation is the
time limit for acquigsition of the high accuracy earth-pointing orientation
Since some satellites requare rapid acquisition (e g , the acquisition of
the Gemini-Agens to earth~poainting before firang the agena rocket for
changing orblt), the taime of acquasition is limited to the time of one-

fourth of an orbit

D PREVIOUS CONTRIBUTTIONS

The present investigation i1s a continuation of the work at Stanford
on the attitude control of satellites  Busch¥*¥ [6] has developed a sub-
optimal minimum-fuel acquisition control law for a "stable” satellite in
an elliptic orbat The use of this control law does not consistently
result in acquasition to high accuracy earth-pointing unless the eccen-
tricity of the orbit i1s very small However, Busch has included a
reaction wheel for improving the accuracy when the eccentricity is not
smell  Although the reaction wheel must be slowed periodically by apply-
ing gas jJet torque, Busch's controller performs quite well in station-
keeping. The controller gives fairly high accuracy in earth-pointing,

but the controller ig not efficient while statron-keeping

*ATter completing this work i1t came to our attention that & E Pearson
in has presentation on "Performance Maintainsbility in Precision Attitude
Control Systems"in J A C ¢ prepraints (Philadelphia, 1967) discussed
generalized performance measures for practical attibude control systems

*¥%A150, see SUDAAR No 261 or R E Busch and I. Fligge-Totz, "Attitude
Control of a Satellite in an Ellaptic Orbit", Journal of Spacecraft and
Rockets, Vol k&, No &, 1967.



Others who have investigated certain aspects of minimum~fuel
attitude control are Flugge-Lotz and Marbach [13], Foy [1k], Medatch [27],
Athans [1], Craig and Flugge-Lotz {10] and Hales [16]

E. CONIRIBUTTONS

In Chapter II the equations of motions of rigid satellates in
elliptic orbits about an oblate body with atmosphere are derived in terms
of the "three-axes Buler angles" which for small angles are nearly the
yaw, roll and paitch angles  The effects of disturbances such ag those
due to solar radiation pressure, meteorcids, etc. are discussed A mesns
of determining an upper bounds on the error due to simplifying the full
nonlinear equations of controlled motion i1s given

In Chapter III the theory of the control of satellite attitude motion
15 discussed and 1ts application justifaed

In Chapter IV a high-accuracy station-keeping feedback control law
1s developed The application of this control law to "unstable" as well
as "stable" satellites results in very little fuel expenditure  The
reliabality and efficiency of the station-keeping controller under adverse
circumstances 1s investigated in Chapter VI where the overall system is
discussed

Suboptimal acquisition control laws for the four satellites are
developed in Chapter V by extending Busch's results with the aid of phase-
plane methods and Pontryagin's Maxamum Prainciple.

It 15 assumed that sensors of ghttitude angles and their rates for

such high accuracy will be available in the very near future



I1I. THE EQUATIONS OF CONTROLLED SATELTITE ATTITUDE MOTION

Satellite gttitude motion is suitably described by a system of
differential equations in which the dependent variables are the gener-
alized coordinates of the satellate. Three of the generalized coordinates
completely determine the gttitude of a rigid satellite in some reference
frame. The tame-hastory of these three coordinates and their rates for
some 1nterval of time 1s called the attitude motion in that time interval

or more simply the motion

A THE INERTIA TORQUE

For a rigid¥* satellate, B, the inertia torque for the mass center
of B, B¥, 1s well known. (See, for example, Kane [22].) If o,
1= 1,2,3, are elements of a right-handed set of mutually perpendicular
unit vectors which are parallel to prancipal axes of inertia of B for B¥,
say L, 1 =1,2,3, (see Figure 2 1) and if I, 2=1,2,3, are the
associated praincipal moments of inertia, then the inertia torque of B

for B¥ 1s given by
Ty = [ogog(T, - Ig) - o1y Jmy

+ ﬁbgnl(ls - Il) - &212]22 (2 1)

+ lo,(T) - 1) - o T e,

where ml, »=1,2,3, are the measure numbers of the angular wvelocity
of B 1in an inertial reference frame for the basis, El’ 1=1,2,3, and
where the symbol ( ) = a( )/at

One orbat of the satellites considered very nearly lies in g plane
1n an 1nertial space.(See King-Hele [23]). This plane, which contains
the mass center, E¥%, of the earth, E, (together with the plane's

normal) determines a suitable inertial reference frame

*

Causes of non-raigidity of the satellite and their effects on the con-
trolled motion of the satellite and on the fuel cost are dascussed in
Section C of Chapter VI.



ORBIT
SEGMENT

Ly

Figure 2 1 Prinecapal Axes of Inertis, Ll, 1i=1,2,3, the Unit
Vectors n,1= 1,2,3, the Satellite B and the
Earth E



Tn terms of the "three-axes Euler angles”, 6_, 1 = 1,2,3,% (see
1
Busch [6]) the measure numbers of T, (2 1), for the basis 1,

1= 132}3; are

oy = {-810,05 = 0,85 + 8,0,8,¢5 - 00505 * 01050555
- 616, (cq85 + 8y8,0,) - 000,05 + Ogsyop ¢18,85) ]

- 5(9153 - clsecs) - kfwéms} x Iy (2.2a)
TIE = {-6203 + 88,85 - 61625253 + 929353 + 91930203

- 800, (eq05 = 515,85) + 8,00,85 ¥ 85(c 8,05 - 5,55

- 9(5195 + eq8,8,) - kémﬁbl} x I, (2 2b)
Tpg = (=05 - 055 - 88,05 + 6(6y5,0, * 8,015,)

- éclc2 - kgmlwé} x Ig (2.2¢)

where c, = cos 91, s, =sin 61, 1= 1,2,3, and where

w = (esl + 62)53 - (60182 - elc2)c5
®, = (931 + 62)05 + (60152 - elcg)s3 (2 3)
m5 = Bclc2 + 6132 + 63

The smgle © 1s defined in Appendix A (see Fagure A 1) and the inertia
parsmeters kl,kg,ks are defined by

W o3 2 (LTS g o2 1 (2.4)

¥
When 91, 1 =1,2,3, are small, they can be consadered as the yaw, roll

and pitch angles, respectively



B THE (ACTIVE) TCRQUE

The torque for B¥ 1s due to all contact and body forces acting on
B The body forces are due primarily to the gravitational abttraction of
the earth and other celestial bodies and the interaction of the satellate
wath the earth's magnetic field The contact forces are due primarily to
the interaction of the satellite with the earth's atmosphere and emissions
from the sum, to collisions of the saitellite with meteoroids and to the
controls, for example gas gets

A1l of these forces were considered in the deravation of the torque
for B¥ (See Section F of this chapter.) However, the torque expression
used 1n the derivagtion of the equabtions of motion 1s a result of consid-
ering only aerodynamic, control and earth gravitational forces Thas

torque expression can be written as

3

3
I= Z Tl'I}'l = Z(Tgl * Tal * 01)21 (2.5)
1=1 1=l

where for the basis 21, 1=1,2,3, the measure numbers Cl, 1=1,2,3
are for the combtrol torque vector, the measure numbers Iél, 1= 1,2,3,
are for the gravatational torque vector and the measure numbers Qal’
1i=1,2,3, are for the aserodynamic torqgue vector.

c. THE FULL NONLINEAR DIFFERENTTAT, EQUATIONS OF CONTROLLED MOTION

If for each n,is= 1,2,3, +the corresponding measure numbers of
g& and T are davaded by Il, 1=1,2,3, respectively, and summed to
zero, then from (2.2a)-(2 2¢c) and (2 5) the result is represented by
three equations in 91, 1 =1,2,3 If these three equations are solved

for 61, 1= 1,2,3, they give

6, = (913252 - 6265 - 99181§2 + 992c192
= 098, + 00 5, F sk wmy - ¢ kyayy
+e Ty /I, - 5,.10,/1) /e, (2 6a)



6 =860.¢c -060.c -08. cs -06s

2 1372 11 3712 1
- cskzwgm - ssklgbw%
+ c3T2/12 - SSTl/Il (2.6v)
83 = = 6152 - 916202 + eelslc2 + 9620152
- 9c102 - kagﬁgé + T5/I3 (2 6¢)

Equations (2.6a)-(2 6¢) are the desired dafferential equations of
motion in the dependent variables 91, 1= 1,2,3, and the independent
variable t 1f € and ¢ are known functions of t and Tl, 1=1,2,3,
are known function of 81, 81, 1=1,2,3, and t. Except for Gl,

1=1,2,3, which are t0 be determined in the following chapters as
functions of 91, él, 1 =1,2,3, and t, the measure numbers Tl,

I

i1=1,2,3, are known functions of 91, 61, 1= 1,2,3, and © Equations
(B.11) wasth (B.3) and (B.10) give the desired relationships for T .2
1 =1,2,3, and Equations (A.8) waith (A 9) and (A 10) gave the desaired

relationships for Té1’ 1 =112,3, if r, r-e, u/rs, Cq and Sg are

3 -2
known functions of time BEquations (¢ 23)-(0 29) give T, u/r s By,

»

8, s, and ce* as functions of time.

8
The measure numbers of the torque as given by (2 5) can be written

with the a1d of Equations (A.8)-(A.10), (B.3), (B 10) and (B 11) as

T

3
@ + n/r (I5 - 12){— Be, 5,8,

+

2 22 2
J(rE/r) [5(78559 - 1)025283 ~ 285C5C4C1CoC

2 2
2s6cesec1§205 + Esaceclslcec3

2 2
Qcaclslcec5 & 8casaceclcgs5

+

2 L
10854Cq0 oSy + ('TERMS IN 855 « ¢ sl)]}

(continued)

*
if, of course, 90 1s replaced with QP.
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http:A.8)-(A.10

(CD/2)SpV{r(,6252 + 850 8,

-r(6 - GEca)[ﬂeslc2 + ﬂs(chS - 818283)]

+ 10p8pcy[Loc e, ~ Ag(s e, + y5,85)]) (2 72)

3 2 22
T, = C, + p/r (Il - 13){30282c5 + J(rE/f) [5(1 - TSSSQ)CESECS

2 2 2 2 2
- 28gCaCyCIC S + 2cgc e 8,0, 8380559010203 - BSaseceslcec3

22 2 3
+ 18s559023203 + (TERMS IN s sl)]} - (CD/2)Sp V{r(ﬂ5c2c5-ﬂls2)

+r(6 - eEcﬁ)[,c),s(s,lsec3 + clss) + “”’131‘32]

+ 10pcesglea(sy 85 ~ cy805) - fyec]] (2 7v)

3 2 2 2 2 2
T, = Cz + n/r (12 - Il){~ Beeg8g * J(rE/r) {5(75656 - 1)020383

3 3
2 2 2 222
+ 85539c9010205 + 858085951°2c5 - l8sssec20353
222 2 2 2 5
- 2850 08, * 255C5C C 8, C F (TERMS TN s)7 s sl)]}

- (OD/2)SpV{-r(ﬂlcess + 4yeCq

+r(6 - GEcB)[,Gl(clc3 - 8;5,55) - ﬂg(slsgc3 + ClSS)]

+ rQEcesa[zl(slc3 + 318283) - 32(5133 - clsecs)]} (2 Tc)

where
P =0y exp[K(r - rp)] (2 8)
V =(h/a)(1 + 2ec6)l/2 (2 9)

Equations (2.6a)-(2 6c) with Bquations (2.3), (2.4), (2 7a)-(2 9)
and with Equations (0.23)-(C.29) are the desived nonlinear differentaial

10


http:C.23)-(C.29

equations of controlled motion  This model of the comtrolled motion can

be simplified without introducing significant error The simplificabions
strongly depend on the parameters of the satellite and on the mode

{steady-state or acqulsltlon) of motion

D PARAMETERS OF THE SATELLITES AND THE SIMPLICATION OF THE MOTION
EQUATIONS

Tn the Introduction, Chapter I, the general configurations and the
altitudes of the four satellites to be considered were discussed Here
thie discussion 1s translated into numbers for Il,IE,Is,kl,kz,kS,e,a,S,
These

numbers for the four satellites are given in Table (2 1) together with

e o’ Pp? the height of perigee (ph) and the height of apogee {ah)

the air density at apogee, Py

TARLE 2 1 PARAMETERS OF THE SATELLITES AND OF THEIR ORBITS
Satellite No (1) (2) (3) (&)
5 5 3 h

I, 2 30x10 1 15x10 7 00x10 1 43x10

I, 2 33X10° 7 00x10° 1 21x10° 1 a0t

I, > 36x10° 1 21x10° 1 15x%10° 1 k550"
(slug-£t°)

Ky 0 01 0 99 -0 86 0 0L

k, -0 03 -0 86 -0 89 -0 0L

Ky 0 01 -0 89 0.99 0 01

e 0 05 0 oL 0 oL 0.03
a(miles) 41480 1500 4500 L260
ph{miles) 300 500 500 200
gh(miles) 745 585 585 460
Gp(radlans) variable from O to 2
8(radians) variable from O to m 1f 0 S Q s«
o 6 2x107 1 6310730 1 6x1071° % oxa0™H
0, 3 1070 1 751070 b 7x107! 3 71070
(slugs/fts)

11




The orbits of the satellites are fixed by the values given for
a,e,eP,Q and & The shapes and compositions of the satellites are not
completely fixed by the values given for 11,12 and 15 and sre even
less faxed 1f values are only given for kl, 1= 1,2,3, {since common
multiples of I , 1 = 1,2,3, result in the same values of ko, 1= 1,2,3)
Typical configurations of the four satellites are as follows

(1) WNearly spheracal with a weight of 60,000 1bs , a maximum
dimension of 14 £t and a specific weight of 40 l'bs/ft5

(2) Nearly circular cylindrical with a weight of 50,000 lbsg ,
a height of 30 ft., a mean diameter of 6 ft. and a specific
weight of 60 l,bs/'ft3 The axis of minimum moment of inertia
1s nearly tangent to the orbital path when in the earth-
pointing mode-

(3) Samilar to (2) except that 1ts axis of minaimum moment of
inertia 15 nearly coincident with the local vertical when in
the earth-pointing mode

(4) Nearly spherical with a weight of 10,000 1lbs , a maximum
dimension of 9 ft. and a specific weaght of 30 lbs./ft3

The simplifications of the equations of motion are naturally divided
by the regimes of ]Gll, i =1,2,3, and the magnitudes of their com-
patible rates In the acquisition mode iell, 1=1,2,3, vary from
about one radian down to I!_O-:5 radians or less with most of the time of
acquisition spent with Iell, 1= 1,2,3, assuming the larger values
In the steady-state mode the motion will be controlled in a manner such
that lelf, 1 = 1,2,3, will be less than 107> radians Tn the following
two parts of this section, Parts 1 and 2, the equatione of controlled
motioh are simplified for the two modes of motion. The reasons for the
simplifications aere  the solution of the full nonlinear equations of
controlled motion with the aid of a digital compuber is extremely costly,
the analog simulation of these equations (even after they have been
linearized 1in 61, él, 1= 1,2,3) reguires a greater number of opergtional
amplifiers than 1s available on the analog computer used (two pace TR-48
computers slaved together), and, finally, the error due to the simplifica-

tions 1s insagnificant in the final results (see Chapter VI)

12



1 The Simplified Acguisition Eguations of Motion

For some satellites certaan terms 1n the nonlinear equations of
controlled motion are insignmificantly small when the controlled satellate
1s 1n the acquisation mode. These terms are less than one-one hundredth
of the other terms in magnitude for all but about the last one-tenth of
the time of acquisition, which 1s assumed to be the time of one-quarier
of an orbit or less  During the last one-tenth of the acquisition taime
all of the terms are of the order of 10-9-0r less

For satellites (1),(2) and (3) the insignificant terms are
those 1n equations (2 7a)-(2 Te) with C, and J as coefficients and
some of those in equations (2 6a)-(2 6c) and (2.7a)-(2 Te) which are
products of two or three of 31,61, 1= 1,2,3, and 6 The cost of the
digital computer solution of the eguations with the latter of the above
ingignificant terms included 1s not significantly greater than the cost
of the solution without these terms  If only those terms with CD and
J as coefficients are omitbed, then the simplified acquisition eguations

of motion for satellites (1),(2) and (3) are

Ql = (919232 - 6295 - 6915152 + 9620102 - 96351 + 9c152
- 3
S, = kjegmg + el /Ty - Bk (u/r)e 8,058,
3
- 5302/:[2 - 3k2(p./r )cesecsss)/ce (2 10a)
92 = 918302 - Qelcl - 993c152 - Gsl - kgcﬁbébl - klsg%gbs
3 2
+ c502/I2 + Ska(u/r )ces2c3
- 8,0 /1. + 3k (p/ro)e.s. 6 (2 10b)
371/~ 1 27273

95 = —Glse - 9192c2 -+ Qelslc2 + 992c152 - chc2 - kg”f%g

3, 2
+ CS/IS - 3k3(u/r )02c353 (2 10c)

13



where ® , 1 =1,2,3, are given by (2.3) and p/rs, 6 and 6 are given
by (C 24),(C 25) and (C 27) with 8, the angle from perigee at t =0,
added to nt

For satellite (4) the terms which are insigmficant and will be
omrtted 1n the scguisition equations of motion are those which contain

one of J,GDf,CDrQE gnd r@ﬂls ERRY k =1,2,3, as factors In this

case, 1f Vrf 1s replaced by (ha/a?)(l + 2ech) Ri(h?/a?)[l + 2e cos
(nt +6_)] (see equations (B.10) and (C.29)), the simplified eguations
of motion are the same as (2 10a)-(2 10c) except that the terms

rhs, = (CD/E)Sp(hg/a?)[l + 2e cos(nt + 60)]
X (CB/IlCE)(£2SlC2 + ﬂsclcs) (2 i1a)
rhe, =0 , (2 11b)
2/a5)
rhs, = (CD/2I3)Sp(h /a1 + 2e cos(nt + 60)]
X (£2cls3 - zlclcs) (2.11c)

are added to the right-hand sides of equations (2 10a),(2.10b) and (2 10c),

respechively

If (C 23) 1s substituted into (B 2) and € 1s assumed to be e,
at t = 0, then

p=0p, exp{Kel[cos(nt + 90)]} (2 12)
A more convenient form of the simplified acguisition eguabions
of motion 1s obtained by letting 7 =nt, ( )'= a()/az

Xpyaol = 0y X5, =01 for 1 = 1,2,3 (2 13)

With these substitutions and the substitution of (C 24),(C 25) and (C 27)
into (2 10a)-{2 10c) the eguations of motion for satellites (1),(2) and

(3) becomes

(continued)
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xy = {x® s, - xxg + A (xeqe, - x,8.8, - x5, ) *+ AyCq8;

- + kESSWSWi - k105W2W3 + 05v1 - SSVé
- SAS(kl + k2)°25203s3]/°2
) .
X3—X)_{_

t = e - - -
x| = %,%C Al(x2cl + X60152) Aysq k,cgly Wy leSWéWS

2 2
+ e v, - s.v, + 34, (k cq - leS)cesz

32 31 3V 2
xl = x
5 6
| - !
x§ = - xE0y - xhsy * A (%50, * %,¢18,)
2
- A2c1c2 - kSWiWS * g - 3k5A5020555 (2.14)

2
where v, = Cl/h I, = 1,2,3,

A = 6/n = [1+ 2¢ cos(7 + 0 )]
g

= é/n? = -2e[sin(s + 60) + 5¢ cos(t + 90)51n(1 + eo)]

A = (u/rsne) = [1 + 3e cos{t + 90)]

W, = ml/n XpCpCs + X85 + Al(sls3 - °1$2c5)

W, = ay/n = xyeq - mesy + Ay (syeg ¢18,55)
W = ws/n = Xg + 28, T A 08, v (2.15)

The acquisition equations of motion for satellite (&) are

obtained by adding

2
RHS, = rhsl/n = Au(ﬂeslce + ﬂsclcs)(cs/ilce)

(continued)
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- 2
RHS, = rhse/n =0
RHS, = rhss/n2 = Ah(ﬂe 185 = 4© CS)(I ) (2.16)
where A = (C Py Sh /2a [1 + 2e cos(T + 8 )]exp{Ké[cos(T + 6 )—1]} to

the right-hand 51de of the second, fourth and saxth of equatlons (2 13),
respectively. Egquabions (2.16) are obtained from eguations (2 lla)-
(2 11c) and (2 12)

2 The Simplified Steady-State Equation of Motion

High=accuracy earth-pointing motion or steady-state motion 1s
defined to be motion such that |xl| <1072 ragdians, 1 =1, , 6 (see
equations (2 13)) (In the search for a steady-state control law, 1 e ,
for the functions v = Vi(xl’ ..,x6,T), 1 =1,2,3, 1t 1s required
thet |xll =11x 10_4 radians ) In the steady-state mode the terms
in the nonlinear equations of motion which contain products of some of
X5 1= 1,. ,6, are insignificantly small and can be omitted The
terms in the earth oblateness part of the gravitation torque (terms with
J as a coefficient) canmot in general be neglected as was done in the
acquisition equations. However, in the eguation corresponding to the
T.n, component of the torque the oblateness terms can be neglected

3=3
since for an entire orbit these terms are about one one-hundredth of

the inertia torgue term, ) In the two equations corresponding to the
T,n, and T,n, components of the torque the oblateness terms which

gre significant are of the same order of magnitude as the largest of the
other terms for some orbits, but, these oblateness terms which are
significant for some orbits are insignificant for other orbats (These
significant oblateness terms are periodic with zero occuring at The time
of coincidence of B* with a point of the earth's equitorial plane
except 1n the case where the orbit 1s 1n the earth's equatorial plane
and all of the oblateness terms are zero.) It should be remarked that
Tor greater earth-pointing accuracy, say an order of magnitude gregter,
some of ‘the oblateness terms are the most significant terms in the
equablons corresponding to Tlal and Iége for most orbits 1f the
aerodynamic torgque 1s insigmificant.
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In the simplified steady-state equations of motion, which are
written below, the significant oblabeness terms are included;.although,
in some of the control law analysis the orbits are chosen so that these
terms are mero. Before the equations are wraitten it should be remarked
that the "best" functions v, = vl(xl,.. ,x6,1), 1 = 1,2,3, are such
that v, are of the same order of magnitude as X, 1= 1, . ;6, so
that terms in the equations which are products of v and x, are
insigmaficant.

I s, and, c =~ are replaced by x and 1, respectively,
then for satellites (1),(2) and (3) the simplified steady-state eguations

of motion are

pe =X2

2 2
T -
%, = k13131 + A2x5 + Klélgh 2klA5J(rE/r) 85%5C%% + A1

~

X‘ =X,+

>
‘ — - -
xXj, = =A%y - KAz, + k(38 + A )xg

2
+ BkEASJ(rE/r) 55%559 + v2
Xé = X6
x = -5k3A3x5 - A, + v, (2 17)

where Kl =1 - kl, Ké =1 + k2

For satellite (4) the simplified steady-stabe eguations of
motion are

and A, 1 =1,2,3, are given in (2.15).

)
£ =%

T
x = KAz + (Ah/ll)z3 + vy

| S
}CS—XJ_]_

(continued)
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2
K A, 8k2A3J(rE/r) SaCsS t Vp

xﬁ =
*5 = %g
xt = -A, - Ahﬂl/IS + Vg (2 18)

where A 1s the same as in (2.16)

K. THE ERROR IN THE MOTTON DUE TO THE SIMPLIFICATIONS

An upper bound on the motion error due to the simplificabions made
in the equabtions of motion can be easily obtained for satellites which
are stable i1n the sense of DeBra [11]. Suppose that the full nonlinear

equations of motion are wratten in matrix form as -

x' = A(t)x + Bv(7) + g [x,¥(7),7] + g, lx,¥(%), 7] (2.19)

where the transpose of X 1s given by 5? = (xi,x 3 .,x6), A(T) 18 a
s1x-by-s1x periodically time-varying mabrix, B 1s a six-by-three
constant matrix, EF(T) = [vi(w), ,vs(r)] 1s the control vector which
15 a koown function of T and the steady-state (or acquisition) solutions
of (2.19), say Q(T), for given initial condations, @ corresponding
to T, gl[E,XKT),T] is a vector function which containg all of the
forcing function (or nonllnear) terms retained in the simplified steady-
state (or acquisition) equations, and, 52[5,3(1)] 1s a vector function
which contains all of the terms omitted i1n the simplification  Then the

solution of (2.19) can be written as

T
on1 e, + [ o(eNmr(MaN

T

o}

o(7)

T

f‘D(T:}‘)E_l[Q(A):E(?\):-)\]d}\

T
O

+

T

[ ote Mg le00),x(n), Aan (2 20)

T
o

+
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where @(T,TO) 1s the fundemental matrax of x' = A(t)x.

If the norm 1s defined by

6 6
5l =) bl ea ol =) o]
1=1 LyJ=Ll

where @lJ are elements of @ aund af QS(T) is defined to be the

solution of the simplified equations, then

T
lo(9) - 9,(0)] = [ lo(2,0)] lg,lo00), (0,7 Jan (2 21)

T
Q

in the steady-state case gince g, 1s a function of 1 only in this
case
DeBra has investigated the motion of satellates an elliptac orbits

about en oblate earth and has Ffound for certain satellite configurations

that the motion 1s "stable”  Satellites which have such "stable” motaon
have the characteristic that m%?l@(rf,K)l ~20 for T <A< T, In
A

the steady-state case, since v(7) s such that ]@l(T)I <1110
- -8

for all 7, the maximm value of [ge[g(w),g(f),r]l 15 less than 10

Since the equations are periodic with period 2%, the equations for the

steady-state case need be integrated only over the interval T, - Ty = 21.

Thus, in this case ]g(Tf) - gs(Tf)| <126 % 10'6 Since ]Qzl(rf)lza
1077, 1 =1, ,6, for most solutions obtained {see Chapters IV and VI),
the error in @Sl(f) 18 generglly less than 2% for satellites which are
stable 1n the sense of DeBra  Satellites (1) and (&), the roll and yaw
motions of satellite (2) amd the roll and pitch motions of satellite (3)
are "gtable"

Since the vector function g 1s a function of Q(T) as well as
of 1 1in the acquisition case, no meaningful upper bound on the error
due to simplifyang the acquisition equabtions can be found with the above
method  However, Busch [6] found that there was little detectable error
in his aeguisition motion obtained from his simplafied equations, which

were completely linearized.

*Busch compared the linear acguisition solutions with the nonlinear
solutions
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F.  DISTURBANCES

Those 1nfluences of the motion (or those torques) which ave not
teken account of by the equations of motion are called disturbances  The
primary sources of possible disturbances are the sun, the earth's magnetic
field and meteoroids. (Other disturbances, e g , misalignment of gas
Jets, are discussed in Chapter VI )

The torque for B¥* due to the sun’s gravitational atiraction of the
satellite 1s no larger than :LO—lF times the torque, gé, due to the
gravitational attraction of the earth when the satellate 13 in the high-
accuracy earth-pointing mode of motion  This torgue i1s, of course, very
insignificant when studying the motion for one orbit or less.

Emissions from the sun exert a pressure on the exposed part of the
satellite's surface area. A torque for B* due to this pressure (usually
called solar radisbtion pressure) can be quite significant  Expressions
for this torque have been derived by McElvain [26] and Wheeler [34].

From these expressions i1t 1s concluded for the satellites considered here
that the solar pressure torque 1s no larger than 10-5 times ]Eé[ when
the satellite has large motion and a distance, ds’ between B¥ and the
center of solar pressure of 1 ft  For high-accuracy earth-pointing
motion the solar pressure torque can be as large as IEEI if ds 1is of
the order of 1 £4 This torque can affect the form of the requared
steady-state control law and the cost of the control. However, since

the solar torque 1s very saimilar to the aerodynamic torque in effect and
since the aerodynamic torgue is accounted for, the solar pressure torgue
ver se 1s not considered further

The torque for B¥ due to the interaction of a satellite with the
earth's magnetic field can have a significant effect on the motion
Bandeen and Manger [2] have considered a model of the Tiros I satellite
for correlating data on the precession of the nearly earth-pointing spin
axis. The model included the effect of the interaction with the earth's
magnetic field To model this satellite Bandeen and Manger assumed that
a circular conductor with a one meter diameter was on board and carrying
a current of one ampere. This model correlated well with the data

received. The magnetic torgue of this model was of the same order of
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magnitude as the earth's gravitational torque for an 1naccuracy 1in
earth-pointing of 0 1 radians However, since Tiros I was much less
massive and extensive than the satellites considered here (with about

the same asymmetry), the same magnetic torque 1s only about ZLO_2 times

IE%I for the same earth-pointing accuracy. If this same current-

carrying coirl were placed on the satellites considered here, the magnetic .
torgue would be of the same order of magnitude as gé when the satellites
are 1n the high-accuracy earth-pointing mode of motion.

For actual satellites i1n genersl 1t is difficult to say what effect
the torque due to the interaction of a satellite with the earth's
magnetic field will have on the motion Part of this torgue results from
a regidual component due to magnetization of some parts of the satellite
Since the magnetic torque is considered to be no larger than the other
torgues and since by properly designing the satellite this torque can be
made guite small, 1t 1s considered hereafter only as an unknown distur-
bance of a certain maximum amplitude which must be overcome by the
control

The forces and their torques due to collisions with meteoroids are
considered to be extremely insignificant for nearly the entire lifetaime
of the satellite Christman and McMillan [8] have concluded from
measurements obtained by the Explorer, Mariner and Pegasus satellites
that the probability of no impact by a meteoroid with momentum of
6.67 X 1073 1b-ft/sec 1s 0 99 and that for meteoroids with grester
momentum 1mpact 1t 15 even less. Using experimentally available data,
Whipple [35] has estimated that mebeoroids with speeds of 20,000 ft/sec
and masses of 2 X 10-12 Ib. will 1mpack-a satellite with a cross-
sectional ares of twenty square feet gbout every 20 seconds at an
altatude of 200 males. Whipple has also concluded that the frequency
of impact decreases log arithmetically with altitude and with increase
in the mass of the meteorocad

Cloutier [9] has found that the torgue due to the forces exerted on
a satellite by metecroid impact can be as great or greater than the
torque due to the earth's gravitational sttraction but that this is
generally a rarity A provision must be made for such rare occurances;

and, this a1s done in Chapter IV.
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A summary of the most significant torgues, which can be predicted
with some certainty, i1s found 1n Table (2 2) In thas table for varaious
ranges of ]911, 1 =1,2,3, the satellite numbers ((1) thru (%)) are
placed under the torques and beside the component desighation if for a
particular satellite the component of the torgue is signifacant A
component of a borgue is insignificant af 1t is at least one order of
magnitude less than corresponding components of other torgues  For
satellite (1) some components of the totality of the torques in the
table are shown as insignificant for some ranges of l@ll, 1= 1,2,3.
The reason for this is thabt these components are insignifaicant compared
to the corresponding components of the inertis torque, which is not
included in the table.

The model used for determining the magnetic torque in Table 2.2 was
the same as Bandeen and Manger used for Tiros I The expression used

for the solar pressure torque of Table 2 2 was derived by Wheeler.
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ITT THEORY OF THE CONTROL OF THE SATETITTES' ATTITUDES

A THE MOTION REQUIREMEWTS IN TERMS OF THE STATE OF THE PLAWT

In Chapter 1, Section A, the attitude motion requiremeunts of the
satellites were given in geometric texms  Here, they will be gaven in
an algebraic form

In Chapter IT the dafferential equations of attitude motion were
deraved in terms of the three-axes Euler angles, 61,62,93, whach define
the orientation of the satellite with respect to the orbiting earth-
pointing reference frame On page 14 of Chapter II the three second-order
differential equations of abbtitude motion were replaced with six first-
order dafferemtial equations by defining the vector x = (xl,x2, ,xg)t
The state of the plant at some time, T, 218 defined to be the six-
dimensional vector x(t) = [Xl(T),Xé(T), ,X6(T)]t The state space is
the six~damensional eucladian vector space, X, of which E(T) 1s an
element

High accuracy earth-poinbting requaires that X, 1= 1,2, ;6, be
kept less than or equal to given small positive numbers for the lifetime
of the satellite. (See Appendix D ) Iet s, 1 =12, 6, be these
given®* small posative numbers  Then 1t 18 required that x, £ 8,
1= 1,2, ,6  These inequalities define a closed and bounded region, S,

of the vector space X whach contains the origin or zero vector

B SATTSFACTORY PERFORMANCE AND THE COST

A satellate attitude controller (see Figure 3 1) wall be said to have

satisfactory performance if acquisition to the region S from x, a 1 50

< w2, 1 = 1,2, s6, can be accomplished with near minimum cost i1n less
than the time of one quarter orbat and if the station-keeping part of the
controlier with near minimum cost for the lifetime of the satell:ite can
keep the state space trajectory from departing the region 8 by a signi-
ficant amount (except when large unaccounted for disturbances overpower
the station-keeping part of the controller)

¥
See Chapter IV
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The cost of a satisfactorily performing satellite i1s ultimately a
combination of the monetary cost and time costs of producing the satellite
which performs the required mission. In this presentation 1t 1s assumed
that except for the gttitude controller the satellaite is of a gaiven con-
faguration and cost, so that, reductions i1n cogt asre obtainable only by
reducang the cost of the controller

The cost of the controller is not gust the cost of constructing the
controller and operating it in orbit but includes the cost of placing
the controller in orbit with the satellite. A heavy controller will
require more power Ffrom the vehicle which orbits the satellate than a
light controller

When the conbtroller uses gas Jets to provide the control torgue, the
weight of the fuel for the gas Jets can increase the cost even if increases
in the cost of orbiting the satellite are not considered  For example,
the increase in cost due to an 1ncrease in the weight of the fuel can
result from expensive packaging caused by the increase in volume of the
fuel container or from the increase in the cost of comstructing the fuel
container which must withstand higher pressures if the volume is kept
small

The feedback attitude controller will contain electronic computing
elements and gas Jet thrusters  The number, sizes, weights and complex-
1ties of these should be kept at a minimum for minamum oversgll cost It
18 true that the use of off~the-shelf hardware components will reduce the
cost 1if the weights and cowplexities of these components are not pro-
hibitave.

Thus, to reduce the cost of the attitude controller the weight of
the contrclier should be reduced as much as possible compatible with
inexpensive offT-the~-shelf components and with the simplieity of the over-
all system

The power supply for a year or wmore of control is the heaviest com-
ponent of the comtroller so that the weight of the power swvpply should be
at the focus of agttention. Other components sre nearly fixed an weight
by the state of the art except for the thrusters which genergliy decrease

1n size and weight with decrease in trust magnitudes It should be
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pointed out, however, that for very small thrust requirements hot gas
or 10n thrusters are used and they requaire a weightly power supply for
supplying heat

For a controller whach utilizes gas Jets for comtrol the power
supply cousists of the fuel, which 1g ususlly an inert gas, the fuel
conbainer, tubes for carrying the fuel to the thrusters and pressure
regulating devices Except for the fuel, the components of the power
supply are nearly standard in weight for all but high gas pressures By
reducing the weight of the fuel, the gas pressure and/br volume wall De
reduced Thus, the weight of the fuel will be at the focus of further

attention

C THE OBJECTIVE

In summary, Ghe objective 1s to determine a controller which will
acquire the region 5 of the state space within the one gquarter corbit
time limit from valuesg of X 1i=1,2, ,6, of about 1 5 radians and
which will keep the state of the system waithain £ for the remaining
lafetime of the satellite while using as lattle fuel as possible compatible
with cogts due to the complexity of components and the development of new

conmponents

D. MATHEMATTCAL, TOOLS USED FOR DETERMINING A CONTROL LAW

Two basic approaches to solving the problem of determining a conbrol

law are

1) The application of mathematical results based on fundamental
praincaples which apply to the manimizabion problem

2) The samulation on an analog or digital computer of the plant
with varaous controllers which are determined by theoretical
knowledge of the hehavior of the plant under the action of the

conbrollers

In the mathematical theory the problem to be solved is one i1n the
field of optimal conitrol with inequaliity constraints on the state varisgbles
(the station-keeping part) and without such constraints (the acquisition
part)
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Pontryagin's Maxamum Prainciple [29] and extensions of 1t waill be
used as g mathematical aid in obtaining solutions to both the acguisition

problem and the stabion-keeping problem. For future use Pontryagin's
Maxaimum Pranciple 1s stabed below in the form whach is spplicable to both

problems.

1. Pontryagin's Maximum Principlie for Nongubtonomous Systems

The maximum principle gives necessary conditions for the solution

of the optimal problem
Suppose the following are given

l) The differential eguations of motion
x' = £(x,7,7) (3 1)

where x = (xi, ,xn)t and f = (fl}. ,fn)t. (For example,
equation {3.1) can represent equations (2 14)}.)

2) An initial point in the state space, say X which descrabes
the motion at an imitial time, TO; after which the mobtion is
considered to be under the influence of the control, ¥

3) A fainal point in the state space, say X., which describes
the motion at the final instant of consideration, Tf

4) The cost functional

.
F
J = f 2lx(<), v(v)lav (3.2)

T
Q

Then the optimal problem 1s to find the control v = v(t), which
185 at least as smooth as piecewise continucus, that causes the motion to
be given by Xp at Tf and results an the minimization of J

It should be pointed out that the meaxamum principle applies to
problems in which the control is much less smooth than plecewise continuous
Howyever, there 15 no need to consider a more general class of combrol since
the control devices considered here are adequately described by piecewise
continuous functions

The set V 185 defined as the set of all bounded precewise

continuous vector functions v = v(tr) The function Hlp(7), x(v), T,
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v(7)], the Hamltonian, 1s defined by

n

Hpxny) = ) 2, (wT) (5 5)
1=0

-

where p = (po,pl, ,pn)t 1 defined 1n detail below H___ (p,x,7) as

given by

B [0(1); x(7), ] = max Hp(t), x(x), 7 ¥(v)] (3 &)
v(T)eV

where the maximization of H on v(t) 1s wath respeet to p(t), x(<)
and T

In order that v(7) yield a solution of the given optimal
problem it 1s necessary that there exist a nonzero continuous vector
function p(t) = [po('r), pl('r), .,pn('r)]t corresponding to the functions
v(t) and x(v) through equation (3 1) and

pl' = - JH/d X, 1= 1, ,n (3 5)

such that

(1) for all =, T, €7 < Ty, the function Hlp(r), x(t), 7, ¥]

of the varisble veV attains 1ts mexamm value at v = v(7), 1e,
Hlp(), x(7), 15 ¥(0)1 = & _ [p(r), x(=), 7]
where H 1s given by equation (3 3) and E ., 18 given by equation (3 4),
(11) the function po('r) 15 a norpositive constant

This 1s a statement of Pontryagin's Maxamum Pranciple (PMP) for
nonsutonomous systems. Pontryagin, et al [29] agsume that fO(E, E)
and £(§’ Vs 7) have continuous first deravatives i1n x 1in their proof
of the maximum prainciple This restriction zn the proof can be wegkened
so that the maximum principle applies o problems in whiach afo(g('r) s
v{<))/d x, 1s only contimuous almost everywhere. Breakwell [3] gives =
deravation in this case for autonomous systems i1n an early paper A slight
extension of Halkin's work [17] results in a proof Rozoroer [30] gives
a proof for optimal problems in which both fo(_zg,x) and £(x,v,t) have

continuous second derivatives in X Thas proof can be modified so that
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it 15 elear that PMP applies to problems which hgve fo(g,g) smooth
only almost everywhere along x(7), T, ST S T,

The maximum principle as stated above can be extended to apply
to the optimal station-keeping problem and to the optimal acquasition
problem in the case acquasition to the region § 1s requared rather than
the case were acquasition to the origin of the state space, X, 1s
required The gpplications of the maxamum prineaple to these problems
differ praimarily in the boundary condations

Before the maximum principle i1s applied to an optimal problem
there should be some certainty that the results of the application wall
give correct informatron about the solution of the problem  The maximum
principle gaves conditions which, if they are not satisfied, iwply that
the control i1s not optaimal.

Suppose that there are many controls veV which take %, to
x

=f
Then this one comtrol 1s the optaimal control if an optimal control exists

and suppose that only one of these satisfies the maximum prainciple

An optimal solution deoes not exist if the functionsal J for the control
veV whach takes X, to 3% while satisfying the maximum principle 1s
not & minamum. Otherwaise, a solution to the optimal problem exasts.

In the present investigation Pontryagin's Maxamum Principle
gives a complete set of relations for the determination of a control
Even so and even if a solution exasts, there ig no guarantee that the
control obtained from the maximum principle does not give a local minimum
of J

In the linearized acquisition problem an optimal solution exists
for wveV and the functional J does not have local minima, so that for
a solution of the optimal linearized acquisibion problem, Pontragin's
Maxpmum Praincaiple gives sufficiency conditrons. A proof of this can be
found 1n Rozonoer [30] for the case when f£(x,v,T) and fo(g,g) have
continuous first derivatives in x which 1s true in the acquisition
problem

In the application of the maximum principle to the approximate
station-keeping problems, the function fo(g,x) is eirther nonlinear or
has deraivatives in X which are only almost everywhere continucus in

E(T). In this case Rogonoer's proof of the sufficiency of the condations
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of the maximum principle does not hold. However, since the conditions
of the maximum pranciple are necegsary conditions and since they ave
sufficient to determine a unique motion, then they are sufficiency con-
ditaions for the optimal solution 1f an optimal solution exists In the
case of the approximgte station-keeping problems, the existence 1s

concluded by direct reasoning

2, Applicabtion to the Acguisition Problem

Busch [6] has found a nearly optimal feedback control which wall
cause the motion to proceed from x_ = %0 near zero for a "stable" satellite
configuration For simplicity and reliability Busch's control law 1s a
function of the state only  The method Busch uses for determinaing a
control law from the maximum principle is reverse-time integration, l.e ,
once V = x(p,E,T) has been found from the maxamization of the Hamiltonian
a (see equation (5 4)), the equations (3 l) and (3.5) are 1ntegrated
backwards from p(Tf) and x, to x and p(TO) The solutions x(t)

£

and p{t), T, £TS Tes are then analyzed 1n order that characteristics
of the solutions E(T) and »p(t) can be found which enable the comtrol

to be written as
v = v(x,3) (56

In the reverse time integration procedure T 1s replaced with T% = Te " T
and X, 1s determined by the choice of P and the interval of integra-

tion, T, -~ T (When X 1s glven)

£ iy
In Chapter V & solution to the problem of the optimal acquisition
control of unstable satellites is gaven Thos solution is based on
Busch's solution, the maximum pranciple and the imposed time lamit of

acquisition

3 Applacation to Approxaimate Station-Keeping Problems

Approxamate solutions of the station-keeping problem can be
obtained from PMP by taking the cost functional to be of the form

T

£
J= f [£(x) + g(v)lar (37)

T
o
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where g(v) 1s scalar function of the control vector amd f£(x), a
"penalty function", 1s a scalar function of the state vector.
Since the minimization of the weight of the fuel 1s requared,

g(v) 1s chosen as

3
g(v) =Z |+, | (3.8)

1=1

The optamal control for the problem with the cost functional gaven by

(3 7) wath (3 8) and any f(x) corresponds to the use of simple gas jets
The "penalty function" 1s chosen such that the control keeps x in

or very near S while usang the least possible amount of fuel. If

f(_}_c) 1s chosen so that 1t 1s zero when x 1s in S5, +the functional

(3.8) to be mnimized becomes the minimum fuel functional while X 18 1n

S Thus, 1t seems that the fuel expendature sghould be a minimum at least

for those period when X 1s 1n ]

Pogsible nonnegative functions which are zero when x is in S

are
( 0 if |x1| <8,
6
nl
fl(gg) =Z { 10 “(x, ~s) if x >s) (3.9)
1=l
.
_-10 (xl + sl) if x <-s,
i 1f x| s
1 1
6 n
£,(x) = L o10%x-s ) 1 x >s (3.10)
2r= < 2 11 1 1 :
1=1 n
1 1 2
L5 10 (X1+51) i x <.8

(continued)
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0 af ]x [ =s
1 1
6
oy
fe(§)==§; < exp[10 (xl-sl)]—l i x >s, (3 11)
1=
oy
_ exp[-10 (xl+sl)]"l 1f x < -8

where n, 1=1, . ,6, are numbers chosen so that X stays in or near
S.

Punctions similar o

6
fs(§)==§j kllxl|/(£1 e - lxli) (3 12)

1=1

where kl and ﬂl (a number slightly greater than one) are chosen to
keep x near S, are possible choices Since they exhibat singular
behavior as |X1| - £1 T8, they result in the stabe staying very near
the boundary of S or in S (depending on ﬂl), but, since they are not
zero for x in S, fuel 1s wasted

For an aidea of the relabtive valvues of the functions given by
equations (3 9), (3 10), (3.11) and (3 12) for values of x  see
Fagure 3.2.

Since 1n the station-keeping problem Xy and X, are arbitrary
to within being 1n S or on the boundary of S, the boundary conditions
on the varrsble p(t) are somewhat better known in advance in the station-
keeping problem than in the acquisition problem

Tn Pontryagin, et al [29] and in Rozonocer {30] 1t 1s shown that

a8 neceszary condition for an optimal solution 1s

p(ig) = o (1), + o (e)1% = (0, ,0)° (5 13)
1f E(Tf) 1s (free) in the interior of 8§ or
pltp) = o (5., o (v)1° = - b(x,) (3 14)

if g(tf) 1s (free) on the boundary of S The vector Bﬁgf) 15 the

outer normal to the boundary of S at §(Tf), I 18 a nomnegative constant
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and n =6 in the present investigation
The relation expressed by equation (3 ik) 1s called the trans-
versalaty condition SBince 8 1s defined by |X1| < s, 1= 1, ,6,

equation (3 1L4) can be written as

Pl(Tf) = = U s81 [Xl('rf)]} 1 =1, »6 (5 1K)

The maxamum pranciple requires that P, be a nonpositive
congtant Rozonoer has shown that if Po = - A, then a necessary con-
ditaon 18 A >0 Since H 1s homogeneous 1n ps 1= 1, ,6, the
maximinization of H 1s independent of A  For convenience chooge
A=1

The 1nmatial value E(TO) 1s 1n general not known If E(To) 1s
required to be on the boundary of S, then E(TO) must satisfy a con-
dation simrlar to that given in eguation (3 1) Otherwise, Q(To) 1s
unknown  Since E(To) 1s not required to be on the boundary of S5, the
Transversality condition for E(To) 1s not applied

It should be noted that the boundary conditions given by equation
(3 14) do not apply when x 1s on a "corner" of S, 1 e , a point on
the boundary of S at which two of |xl|, 1=1, ,% or both of |X5|
and ]x6| are equal to the corresponding numbers s, Thas follows from
the fact that the normal to the boundary of 8 s not defined at a
"ecorner”  If thais should present a problem, the "corner" can be smoothed
out by constructing a suitebly smoothe "surface" in the "corner" between
the faces of the polyhedron in the six dimensional gpace (If these
surfaces are small enough, no physically mesasurable changes in the boundaxy
will occur )

The above boundary conditions and the cost functicnals given by
(3 7)-(3 11) are used an Chapter IV with the maximum principle to deter-
mine approximete solutions of the steady-state problem

Si1milar approximate methods of solution for linear, minimum time
problems with restricted phase coordinates has been developed by Iee [24]
and by Russell [31] Iee applaes the method to the minimum time acquisi-

%10on problem of a l/s2 plant with bounded phase coordinates
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b Necessary Conditions for an Exact Solution (NCES)} of the
Station-Keeping Problem

Several investigators have to some extent developed exact solu-
tions to the bounded phase coordinate optimal control problem  Bryson,
Denham and Dreyfus [5] have found necessary conditions for solving
problems in which the control 1s a scalar and certain smoothness assump-
t1ons must hold Chang [7] and Russell [31] are concerned with sufficiency
conditions for solving the linear, minimum time acquisition problem with
bounded phase coordinates. Pontryagin, et al [29] devote their Chapter
VI to obtaining necessary conditions for the solution of the optamal
control problem with restricted phase coordinates  These necessary
conditions, which are discussed in this section, will be used an the
deravatron of the station-keeping control law in Chapter IV

Since the control function v(T) 1s piecewise smooth (discon-
tirmuities of the fairst klnd) and since the other terms in the raight hand
g1de of the dafferential eqguations of motion are smooth, there exists
onily a fainite number of points in time at which the trajectory, E(T),

15 on the boundary and either x{(+~) or E(T+) or both are not on the
boundary If 5(1) 15 the state at such a point 1n time 1 and 27 both
z(7t") and §(T+) are in the anterior of S or one is on the boundary

of 8, then the point x(7r) 1s called a junction point of the tragectory

Of course, there are only a finite number of junction points

In the deravation of the necessary conditions for an optimal
trajectory with restricted states 1t 1s assumed that* (1) the optimal
trajectory has only a finite number of Junction points, (2) the optamal
trajectory lies either entirely in 5 or on the boundary of S, and,
(3) the parts of the optimal trajectory which lie on the boundary of S
for a fainite interval of time must be "regular"

The boundary of the region S must be somewhat "regular" or
smooth, 1 e , 1f s(x) = O describes the boundary of S, then grad s(x)
must be continuous and not vanish for any x 1n the boundary of

2

8 In the stabtion-keeping problem waith S defined by lxll = 8,
1=1,2, ,6, this 1s not the case unless the "corners" of S are

gvoided when the trajectory coincides with the boundary of S By
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surtably "smoothing" the "corners" (see p 35 of this section) this
mathematical dafficulty 1s overcome In Chapter IV the NCES are applied
to several spproxamate single-axis satellite motions by replacing the
"non-regular" boundaries of a phase~plane progection of S with appro-
priate "regular" boundaries These "regular” boundaries are section of
known optaimal trajectories which must exist and deviate from the phase-~
plane projection of S (for bounded E) by some small allowable amount

In Chapter VI of Pontryagin, et al , the concept of regularity
1s used in the derivation of necessary conditions for optimality of those
varts of the trajectory (if any) which lie entirely on the boundary of S
It should be noted that Pontryagin, et al , derived these necessary con-
ditions under the assumption that each of fO(E,E) and f(x,v,t) have
continmuous first derivatives in both x and v If i1t 1s assumed that
fO(E,E) has only continuous first deravatives in x and not in v, then
a weaker set of necessary conditions are obtained  These wesker conditions
sre the same as Theorem 22 of Pontryagin, et al , except that bH/QE
does not exaist everywere along the trajectory which coincides with the
boundary

If there exists an optamal trajectory which lies i1n the region
S, 1t 1s possible that part of this trajector lies entirely in the
interior of S  These parts of the optimal trajectory wmust satisfy the
conditions of the maximum principle

If the regulaxr optimal trajectory contains only a finite numbexr
of junction points, then an additional condition on the function B(T)
at the junction time can be deraived Pontryagin, et al , call this
condition the Jump condition  The jump condition s sabtisfied 1f one of

the two following conditiong 1s satisfied

If

p(t")

p(")

where H 15 a number to be determined

p(v ) + p grad s[x(7)]

p(e") + ¢ grad s[x(t)] =0, RB£0 (3 15)

(In the station-keeping problem the region S has corners In
a note in Chapter VI of Pontryagin, et al , {page 310) 1t is pointed out
that Jump conditions completely analogous to those of equations (3 15)
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must be satisfied gt the transition point from one smooth part of the
boundary of S +to another )

The necessary conditzons for an exact solubion of the stabion-
keeping problem can be summarized as follows. The conditions of the
maxamum principle must be satisfied by each part of the regulsr optimal
trajectory which lies in the inierior of the region S The conditions
of Theorem 22 of Pontryagin, et al , must be satisfired by those parts of
the optimal trajectory which lie entirely on the boundary of 8  The
Jump condition must be satisfaied at a junction point

The gbove necesgssary conditions are, generally, insufficient to
determine the optimal control  Without any conditions other than those
above the search for the optimal control must, usually, be carried out
in & large dimension parameter space Parameters of this gpace include
the number of Junction points, the number of the parts of the trajectory
which lie on the boundary, the boundary conditions p(TO) and p(Tf)
and the number p

In the next chapter the above necessary conditions will be used
in g gearch for a control law for the station-keeping problem  This
search will also be aided by the optimal solutions to the several approxi-

mate station-keeping problems
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IV  DERIVATION OF STATION-KEEPING CONTROLS LAWS

The attitude wmotion of a satellite in the steady-state mode of

controlled motion is to be such that:

1) The anitial ingtant of station-keeping, T, 18 arbirtrary,
1e, TO 1s the time at whach the satellite i1s at an arbitrary
point 1n 1ts orbat,

2) The motion at time T, 18 arbitrary to within E(TO) being in
the region 8 of the state space,

3) The motion after TS and until some given final tome T, must

f

be the result of a combrol v(t), T,STST which keeps

f)

E(T), TO <t = 7, from departing the region S and which uses

as li1ttle fuel ai possible

In the application of the theory of the previous chapter to the
search for station-keeping control laws, 1t 18 convenient %o take Ty = o,
Tp = 2% and {an exther (2 17) or (2 18)) 6, =0 This can be done with-
out loss of generality since (1) E(TO) and E(Tf) are arbitrary to
within their being i1n S (E(TO) can be the fingl state of an acquisition
trajectory or the final state of a previously considered stabion-keeping
trajectory), (2) The equations of motion are periodic with a period of
2% radians, and, (3) In the lafetime of a typical satellite the boundary
of 8 1is encountered many thousands of times and the region S s
nearly covered by the state-space trajectory (see Part 1 of Section A)

The region S was defined to withain the numbers sl, =1, 6,
an Section A of Chapter IIT If s, 1 =1,. ;6, are greater than
about 10-2, the simplified steady-state equations of motion do not gave a
suitable description of the motion The lower limits on 81’ i=1, »6,
are fixed by the state-~of-the-art in the construction of sensors and
controllers which have very small gas jet thrust and/or time delays
Hereafter, the mumbers s , 1 =1, ,6, are assumed to be 1.0-lL unless

otherwise specified
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A THE APPROXTMATE SOLUTIONS — SPECIAL ORBITS

In this section several approximate solutions will be presented
They are approximate solubtions to the problem of determining & contrel
which will keep the state of a satellite's attitude motion i1n the region
5 whaile mainimizing the fuel used

The approximate solutions are approximations in the sense that the
state space trajectories are allowed 1o exist the region S5 by a small
distance (compared to the maximum dimension of S) and in the sense that
integral congtraints on the states are used to limit the motion If the

1ntegral constraint 1s given by

T

£
0 s j flx(r)lar < A

T
o)

vhere A 15 a gaven (perhaps small) positive number and f£(x) 1s given
by (3.9) or (3 10) or (3 11), then this optaimal problem 1s eguivalent
to the optimal problem of Part 3, Section D of Chapter IITI  The problems
are equivalent in the sense that their solutions (as obtained from the
maximum principle) are the same

In this section the equations of motion are assumed to be given by
(2.17) with the angle & either zero or ﬁ/é radians These values
correspond to satellites in nearly equatorial or nearly polar orbits,
respectively They are used imtially {Part 1) to simplify the analysis
although the results do not depend on & In Parts 2-4 these orbats,
1.e , these values of & are assumed so that equilibrium points exist

In Parts 2, 3 and 4 of this section the equations of motion are
approximated further The "stable" single-axis motions of the satellites
are approximated by x" + a2X = v, and, the "unstable" single-axis motions
are approxamated by x" =v and x" + a?x —v with &> <0 The study
of these simple motions results in characteristics of a suboptimsl
minymum-uel station-kKeeping conbtrol as well as a check on the methods
of Part 1
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1 A Statron-Keeping Control Law Obtained From PMP with

Tf 3
J =f [z, (x) +Z |V1|}d'r
TO 1

The Hemiltonian for the system of equations (2 17) wath & =0

or 8 = /2 can be wraitten as

H= Pevl + thé 1 P6V5 - ]Vl| - |V2| - IVSI + (terms whach do not
contean v, 1 = 1,2,3) (3 1)

since as was seen in Chapter IIT P, can be taken as -1
The comtrol v camnot be optimal unless 1t maximizes H for
all values of p, x and t Thus, from (4 1) the optimal control for

bounded v, must be the "ecoast function" of p given by

0 ;o af e, | <2
v, = CST(pEXl) = 2x1 1= 1,2,3
gl
N oseN(p, ), af eyl =1

Where Nl, 1 = 1,2,3, are given posibive numbers and SGN(g) = (g)/l(g)l
Since the last two equations of (2 17), the pitch equations,

are not coupled to the first four of (2 17), the yaw-roll equations, the

controlled patch motion can be solved for independently of the yaw-roll

motion These equations (for the cases when B ~0 or & ~ 1/2)

with the correspondinz eguations for the adjoint variables as determined

from {3 5) can be written in backwards times by letting 7% =2rn - v as

follous

yaw-roll

7%

2
T - -
Xy = Kyhyx) + Axe - KA - vy

XS - Xll-
- )
Agxl + KA x, - k2(3A3 + Al)x5 - v, (& 3)
L1

&
[



2
- Plxy) - Ay + A,

Py =

'py = Flxy) +py -~ KAy

'pg = - Flxg) - Ap, + k(385 Ai)Pl;

'3y = Flx,) +KAD, + 2y (k)
pitch

’xS = - X

'x6 = 3k3A3x5 - A2 - Vg (3 5)

'p5 = - F(x5) - Bk A,

'pe = Flxg) + Ps (- 6)

where '() = d()/at*, the functions A, A, and A, are the same as
an {2 15) but wath T replaced by 1% and

=l
0 , af lxll < 10

P(x )=, (0)/ox, ={ 1074, 1 x >0, 1-1, ,6  (47)

1
-10™, a1r x < - 107
Equations (& 3)-(4.6) wath (4 2) and the boundary conditions
given by (3 13),(3.14') and z(rg) = E(Tf) are sufficient for determining
the controlled motion, E(T*), the adjoint variables E(T*) and, hence
the control X(T*) for T: £ 7 < T% These solutions can be used to
determine the optimal feedback control law for this problem or at least
characterigtics of the optimal feedback control law which can be used in
the construction of a mimimum-fuel suboptimal feedback control law
Although the differential equations are piecewise linear, 1t 1s
not practical to i1nvest a great deal of time 1n a search for their exact
solution since the coefficients are time-varying To determine the feed-
back control law 1t 18 only necessary to determine the values of E(T*)

and T% at which the adjoint varigbles assume the values of +1 ox -1
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Thus, the solution of the equations with the si1d of a high-speed computer
15 perhaps the most logical approach to determaining the feedback control
law

After a thorough investigation the hope of using the analog
computer for solving the above equations was abandoned  The reason for
this was that some of the computer variables, 1 e , the scaled dependent
variables, are generally 10l+ times the other compuber variables, so that,
1t Was ampossible to obtain an accurste and therefore meaningful solution
with this computer

The equations can be solved sccuarately enough with a digatal
computer A Kutta-Merson integrstion routine was programmed as an ATGOL
procedure on the Burroughs B5500 computer  The XKutta-Merson procedure
used was a modified version of the Stanford Computation Center Kutta-
Merson procedure These modifications, the additions of an absolute error
bound and a stepsize-cutting limiter, were made to the procedure to reduce
the computation time The modifications did not affect the accuracy in
less than the fifth sagnificant figure in the test runs made A furlher
reduction in the computation time is accomplished by scaling the equations
so that the dependent variables are more nearly the same size A listing
of the program used for integrating the equations 1s given in Appendix F

Several computer solutions of the yaw-roll equations and of the
pitch equations were needed to determine the "best' values of n
1 =1, ,6, in the penalty function and N, 1= 1,2,3 (These "best"
values are the values which resuit an the fuel cost being as small as
possible while the control keeps |xl] =11x 10-&} 1=1, ,6)

The ainitial choice of values for n and Ni was made 1in the
following way The possible choices on Nl lie 1n a range from the
smallest values with which control will be maintained at all times up to
the largest values which cause changes 1n the motion to oceur too rapidiy
In practice the smaller values are the logical ones to choose since with
large Nl the inherient imperfections in the controller can cause unsat-
isfactory motion and wasted fuel The smallest possible values of Nl
such that control could always be maaintained, even af [Xll, =1, ,6,

grew to values as large as 2 O X lO”h, where chosen For satellate (2),
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for example, these values are Ni =21 X 10-4, Né =71 x 10_4 and

N, =206 x 107
The posgable values of nl are the real numbers  From the cost
functional for this problem 1t can be seen that 1ts minamum for intervals

of time when X 18 not in 8 18 the result of minimizing the part which

1s a functional of x if

L 2
111 -Ll-
E + 10 “(x. F 10 )>z N
hs 1
1

1=1

and
6
oy =)
Z + 10 (xl:Flo )>N5
1=5

If 2t 1s desired to keep lel =11x 10-4, then possible "best” values
of n  for satellite (2) are n, =1 o, n, =2 0, n, =1 0, my, =2 0,
n5 =2 0 and ne = 4 0 In the choice of these numbers nearly twice
the weight was placed on the parts for Xns X and Xz since these
variables change more rapidly than X5 Xg and X5

The results of a computer solution of the equations for satelliate
(2) with the above values of n and N are given in graphical form
in Figure 4 1 From this solution 1t 1s obvious that the above values of
n, and N are not the "best" values Even though this solution
exhibats characteristics whach ai1d both the search for the "best" values
of n and Ni and the search for the feedback control law, the cost
(1n computer time) of continuing this method without other aids is
prchibitive

An approximate solution of the adjoint equations of this problem
for arbitrary x(7+) can be obtained so that an optimal feedback control
law for this problem can be written in terms of n, Thas approximate
golution can be used as an aid in the search for the "best' values of
n and Nl and as a guidelaine i1n the search for nearly optimal and
practical feedback controliers of the attitude motions of satellates

The approximate solution, which is derived in Appendix B, i1s
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p (%) = b, (1 -[(By - B,) + (& +af)I(ar*)?)

- p, [BiaT* + BAB,D_(AT«L)a] - p58135(m+)2 - Phe[BSAT*

- BB (A7) - Flx) )At¥ - Bx,)B, (47%)° - F(x4)135(mﬁ)2
Py(T%) = p; AvF +p, {1 -[(w_?L + tug) + le(AT*)g} - 135639‘(:3?«’9)2

- By, [Bemw + B5(AT*)2]—F(xl)(A=s§f)2- F(XLL)BE(ATKL‘)Qi-F(xa)ATg

(%) = p, B_(ar%)% + p_ [B_at* + BB, (47%)°] + p, {1-[(c° - of)

Pz = PP AT Pogl®sh 3ol Pze 1T %%

+(By +8,)1(01%)%) - p [Byare + B,Bo(ar%)°]

+ F(xB)BB(Affg)e - F(x, )ATE - F(XM)BS(ATLT)Q
PM(T¥) = PleBh(AT+)2 * pEe[BkAT* * B5(AT*)2]

+ by A%+ py (1 -[(wi + mg) + Bl](A'r+)2} + F(XE)BLL(A'L;F

- F(XB)(AT*%)2 + F(xh)ATﬁ (% 8)
P5(T*) = Pse[l - B6(AT+)2] - P6eB6AT* - F(XE)AT%Q - F(X6)B6(AT5)2
pg(%) = Do A% + 0y [1 - Bo(ae#)?] ~ F(x)(ang)® + Flxglang (4 9)

where @y 5 B AT, AT¥, B, and p, > 1 =1 ,6, are as defined in
Appendix E

In equations (4 8) and (& 9) all of B,1=1, ,6, are
periodic (with a period of 2x) and except for B5 they are nearly constant
The averages {over the time of one orbit) of Bl, 1=1, ,L4,6, wuere
subgtatuted 1nto the gbove eguations 35 wag considered constant 1n

the time between boundary encounters with i1ts value taken as the value
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at the time of the previous boundary encounter (Its average value was
not used since 1ts average over the time of one orbit 18 zero ) The
approximate values for pl(T*), 1= 1, »6; whach are given by
equations (4 8) and (4 9) were compared with the "exact" values obtained
from digatal computer solntions

Equations (& 3)-(4 6) were solved with the aid of the digital
computer for geveral sets of values of ns 1= 1, ,6, and several
imatial conditions (some of E(To) in the interior of S and some
on the boundary of 8) The time of solution was - Tt = 6 28 ~ 2n
and the solution was prainted out at intervals of 1+ of O 0L  The motions
considered were the roll-yaw motions of satellites (1) and (2) and the
pitch motions of satellite (3) The control streggth used was N, =

1t

2 1x10 , N,=T71x 107" and N, =2 06 x 10~ These

tions for pl(f*), i=1, ;6, were compared with the approximate values

exact” solu-

given by equations (4 8) and (4 9) for as many as ten intervals of time
per solution as follows  Each solution of xl(r*), 1 =1, ,6, was
applied through F(xl) to equations (4 8) and (¥ 9) The initial
conditions on p__, 1 =1, »6;, were the same as pl(7§), 1=1, ,6
After the initial time Tg the values of P 1=1 ,6, were taken
to be the values of pl(T*), 1=1,. ,6, at the time the proper (yaw,
roll or pitch) trajectory projection reentered the proper projection of
5. These new values of P, Were retained untzl the trajectory exited
and reentered S again

In most cases the comparison of the gpproximate solubions with
the "exact" solutions showed that the approximate solutions drffered from
the exact solutions only in the third significant Figure In other cases
the difference was only an the fourth significant figure Therefore, if
(k 8) and (4 9) are substituted into (& 2), the result 1s a time-varying
feedback control law which 1s considered optimal for the present problem
Thig control law can be implemented in a controller, but, the devices
neeﬁed 1o determine af X, 1s exiting S or entering S when lxll =
10 may be complicated and can be unreligble Taimers, which are
activated when X, 1= 1, ;6, exit S and reenter § are also

needed to generate Ari, 1=1, ,6, and AT¥ Thus, even 1f this

50



control law is the optimal minimum fuel control law with best values of
n and Ni for the above satellitesg, 1t might not he the least costly
control law to implement 1n practice More as sard gbout thig in
Section B

Estamates of the "best" values of n  and Ni for the satellites
can be obbtained with the a1d of (% 8) and (4 9) IFf the control 18 off
and x(7¥) 1s ex1t1n§ S, the tlmﬁ 1t tekes for lxl(r*)[, 1=1, ,6,
£0 increase from 10  to 1 1 X 10 15 generally small enough, so that,
if NRSl, i=1, »6; 1s the no-control right hand side of the equations,
(4 3) and (4 5), for 'x 1 =1, ,6, then

x| (mle)m; i=1, . ,6 (4 10)

18 a satisfactory approximation

Durang those periods of time when the control is off, |pl(1*)|,
1= 2,k,6, must be less then umty For the control to turn on so thab
|xl(T*)|, 1 =1, ,6, do not increase to values greater than 1 1 X 10"4,
the values of the corresponding |pl(T*)|, 1 = 2,4,6, must be unity or
greater at the time when |x1(1*)| =11%x lO-lL Since an (4 8) and (4 9)
P, 1 =1, ,6, are nearly periodic with an average over one orbit of

1e
nearly zero (see Figure k 1b, for example) a first approximation 1s

pE(T*) a:F(x2)AT§ - F(xl)(ATi)g
0, (7%) ~ Pz )ty - Plx,)(aE)?

p6(T*) asF(X6)AT§ - F(X5)(AT§)2 (b 13)

so that for |pl(r*)| to grow to umity in the time imterval Av¥ in
which |Axl] grows %o 10_5, 1e, |x1(1*)[ increases from J_O'-lL 10
11 x lO-h, 1t must be true {as seen from (4 10) and (4 11)) that

1
10 *

r

F(x ) ~ (Afrg_e)'l ~ mRsl/lo'5, 1= 2,4,6

n
w0t

ff

F(xl) o~ (axr%l%)"2 A (NRsl/lo“5)2, 1 =1,3,5 (& 12)
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Eguations (4 12) can be used to determine an estimate of the
"best" values for n,1=1,. ;6  In (4 12) the largest possible
values for NRSl should be used since smailer values result in n

which are too small to keep lel £ 1.1 X 10'1‘ For satellite (2), for

example, the largest £0581b1e values of NRSl for |xl] £11x107
are NRSllexlO" s mBs2=h113x:Lo s NRS5=1.1§10 > MBS =
369 x 107, NRS5 =11 x 10 and NRS, = 2.06 x 10~ With these
values 1t 1s found from (4 12) that n =21, 18, =10, n,=21,

5 = 2.1 and ng = 3.3

From seversal digatal computer solutions obtained with the above

m =1 6, n

estimates of the best values of n and with several sets of values of
Ni, it was found Ehat gome of |xl|, 1=1,. ,6, grew to values as
large as 6 0 x 107, which, of course, 18 too large Also, from the
solutions 1t was found that for Ni and Né neather the largest nor
the smallest of the values tried were best and for Né the smallest
value was best. A detalled examnagtion of this result with the axd of

(& 2), (& 3), (4 5), (4.8) and (% 9) proved to explain the effects of

nl and Ni on the solutions and offered new values of n, and Ni to
be tested (Thls detailed examination 1s not given here since 1t i1s Jong
and tedious with many numbers and since similar exsmingtions are given in
Parts 2 and 3 ) With the newly offered values of n and, Ni digital
computer solutions were obtained It was found that the reguirement for
the "best' values was satisfied by increasiing n, 1= 2,4,6, by about
one over the above estimated values  As expected, the sccuracy of earth-
pointang i1mproved and the fuel cost increased to the maximum value, which
was for no conbrol-off intervals, with increasing n, Also, 1t was
found that both the fuel cost and the earth-pointing accuracy generally
1nereased with increases an N above their "pest" values for values of
Nl less than about O 1 For values of Ni of O 1 or more the fuel
cogt etall incregsed with increases in Ni but the accuracy of earth-
pointing dropped off sharply  Values of Ni whach were smaller than
the "best” values resulted i1n the control being on so much longer that
the fuel cost was generally higher The "best" values of n and. Ni
resulted 1n the patch axis control staying on about 95% of the time

whale the roll-yaw control was on aboub 33% of the time
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In summary the mein result of this part is the time-varying
feedback control law given by (& 2) together with (4 8) and (b 9) The
control law 1s optimal in the sense that i1t was obtained from the suffi-

cient conditions of the maximum principle for the cost functional

Tf 3
J=f Zlv lar
i
kN

T
o]
and the integral constraint on the sistes

T

£
h/‘ fl[E(T)]ﬁT < A

T
(o]

Other results of this part are (a) a not-too-expensive method has been
devised for determining the "best" values of the control law parameters
n, end N, (b) the effects of varying the parameters n and N
from their "best" values was given, and, (c) satellite (2) has the small-
est unit fuel cost with the above control Fagure (4 2) shows vaw, roll
and piteh progections of a state space trajectory of satellite (2) for
the time of one orbit with the above control and the "best" values of
n and Ni

The optimal control of this part is not necessarily minimum fuel
optimal  Indeed, 1t 18 not dafficult to exhibat several conbrols which
keep x 1n S and use less fuel Since 1t 1s very diffacult and
expensive computer-time to apply the NCES to the full three-axes satellite
control problem and since a basis for fuel cost comparison is needed,

simple single-axls control problems are now investigated

2  The Steady-State Motion Obtained From PMP for x" = v

ﬁ
no__ — | =
In x =v let x = x3, x' =, and v v2 Then
T -
Xz = X
t_ 4
Xy = Vg (4 13)
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1s equivalent to x" = v  For some intervals of time, equations (4% 13)
approximately describe the roll motion of satellates 1f they are nearly
symmebtric (such that k2 ~0), if they are not significantly affected
either by the earths atmosphere or the disturbances mentioned in Chapter
IT and 1f they are controlled such that x = 0, 1 =1,2,5,6 OFf course,
no such controlling of a satellite's motion 1s practicable at this time
However, if v, 18 a "coast function' with magnitude N, = 0 01, eguation
(4 13) adequately describes both the roll and yaw motions during those
taime intervals when the control is iﬂé In any case, for the purpose of
comparing the two mathematical methods {approximate and exact}, it as
worthwhile to study the controlled motion of the simple plant descrabed
by (4 13)

By studying the possible controls and motions which sabisfy the
NCES (see Part 4, Section D, Chapter IIL), conbrols which perform satis-
factorily are obtained and given below (These controls are compared

later to the controls obtained from PMP waith

T
f
7= [ te, @) + Ivllas
T
o)

for the motion described by (b 13), 1 e , the approximate method )

While the phase-plane trajectory is in the interior of SR, the
roll phase-plane projection of S, +the conditions of PMP must be satis-
fied They are (4 13) and

pz =0
P, = - Py (& 1)
v, = N, CSI(p,) (4 15)

The parts of the trajectories whiach coincade wrth the parts of
the boundary of SR given by x =& lOHh are "regular" For a given
value of N2(< m), trajectories which begin in the shaded regions of
SR 1n Figure (& 3) must exit SR in acquiring equilibriwm points, namely

those points such that X, = 0  These trajectories do not satisfy the
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NCES unless the vertical parts of the boundary of SR are replaced by
segments of parabolic curves (control-on trajectories) The control-on
parts of the trajectories "A", "B" and "C" ain Figure (k 3) are such
curves The trajectoraes are "regular"  All trajectories in Figure (%.3)
except "B" acquire the part of the line %), = 0 1n or sufficiently near
S, In this case the transversality condataon (3 14) with E(gf)
perpendicular to the Xz~8X15 18 applied Trajectory "B" 1s not precisely
a mammum fuel trajectory except in the limit as ¢ -0 However, ¢ £ 0O
1s more practical since imperfections such asg time delays, thresholds,

etc , (see Flugge-Lotz [12]) are always present in the controller, and,
for comparison of the NCES with the approximate method, this 1g an
anteresting case when ET 18 free in the interior of S The value of

Né useduin Fagure 4 3 1g the smallest value which results in |x1| <
11x10
the 1mitial point an SR The "Jump condition” (3 15) 1s applied at "P"

; 1= 3,4% (a 10% error in the maximum error) regardless of

Since the time requared to reach Xh(Tf) =0 1n S (or a
point suitably near so that no future control effort is required for the
remaining part of the satellite's lifetime) 1s not important, the usual
"bang-cost-bang" control, 1 e , &% Né -0 =7F Né, does not result in a
minimom fuel expenditure (see, for example, Marbach [25] wherein the
acquisition time is given)

Now consider the controls and resulting motions obtained from

PMP with

T
o
J =f [£)(x) + |v]lac
Tr
for x" =v and for various times of consideration and compare them with

the controls and regulting motions obtained from the NCES
As in Part 1 of this section, the equations of the maximum

principle for this problem can be wraitten in backwards taime ag

X=-Xl[.

-7 (4 16)
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lPB == F(XB)
'py, = Flx,) + 1, (4 17)
v = N csT(p,) (4 18)

These equations can be solved in a plecewlise manner.

The piecewise solution of (4 16) for intervals of 1% over

which V(T*) 18 constant is given by

-i-

XS(T*) = 0 Mo - K)o TF + Xg0
- N

1, (%) = { o}ﬁ +ag (+ 19)
+ N

where 1% 18 messured from the last time of control switching, Tg, or
from the imtaal time, <%, and xg, XS(TI), %0 Xh(T ), 1 =o0,s

If equations (4 17) are solved for the same intervals of % as
the piecewise solution of the adjoint variables given an Part 1 and in

Appendix E, the result is

-« - %
P5(T) Dy, = Flxg)atk

ph('r*) P * paeA'E* + F(xh)mg{ - F(xs)(mg)e/e (L 20)

(Notice that when X € 8 equations (4 20) are just the backwards taime
solutzon of (4 14) and that (4 18) and (4 15) are the same for any
£,(x) )

With the proper initaal conditions equations (4 19) and (% 20)
can be used together with (4 18) to construct optimal controls amd optaimal
trajectories If the boundary of S 18 not encountered by the tragec-
tory, which in foreward time goes from a free anitiral point to a fixed

final point on the x,-axis ([xh(ff)[ < 10_h), the optimal control

3
results 1n a trajectory which 1s typically any of those in Figure & 3

except the ones which cross the boundary of SR This 1s easily verified
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with (4 18)-(4 20), since F(xl) =0, p_ = pl(rg) = pl(rf), 1 = 3,h,
and pl(rf) 1s either completely arbaitrary (af E(Tf) 1s & given point
and E(TO) 15 freely chosen) or such that the transversality condataon
1s satisfied (af E(Tf) 1s any point of Xh(Tf) =0 and |X5(Tf)| < 10_h)
If the anitial point of the trajectory is so near the paris of
the boundary of SR given by Xz = + lO-lL that an exceedingly large
control is needed to keep the trajectory in the anterior of SR’ the
trajectory is allowed to exat SR by a suitably small smount  As before

)

the trajectories are limited by ]x1| £11x10 , 1 = 3,h The wvalue

of N, used in applying the NCES, namely N, =5 0 x 10'”, 15 used
here

If the proper final conditions (1n1tial conditions in backwards
time) are imposed by the adjoint variables and 1f the "best” value of
ng 18 used, equations (4 18)-(k 20) give boundary encounter trajectories
which are precisely the same as tragjectory "B" of Fagure 4 3 which was
obtained from the NCES, see Part 4, Section D, Chapter IIT Figure 4 L
shows two such phase-plane trajectories Figure 4.5 shows a plot of
ph(T*) for one of the trajectories as obtained from both the NCES and
(k 20) The curve in Figure 4% 5 which 1s obtained from (4 20) 1s unique
ouly for given ps(Tg) and. ph(Tg) Thas curve 1s only required to
pass through the points (Tg, +1) and (Tﬁ, -1)  Thus, the parameters,
PS(Té)’ Ph(Tg) and 1., can be varied somewhat without affecting the
control, Vé(T*), or the resulting trajectory. The wvalues of these
parameters used in constructing Figure 4t 5 are ps(rﬁ) = =0 20, ph(rg) =
1.00% and n, = O 42 For convenience ph(rﬁ) was chosen to be zero

3

go that the "best" value of 1n_., was the same as obtained from the method

of estimation of Part 1 °
From the above investigation 1t 1s apparent that the approximate

solution, equations (% 18)-(4 20), gives the same results as the exact

solution,; 1f 1t 1s required that the faingl poaint of the trajectory he a

point of the x_,~axis 1n =S It 1s not diffacult to see That the two

3 R
solutions also agree precisely in the case that the fainal point, [XS(Tf),
Xh(Tf)]’ 1s free an S, 1f §;, 1s exited only once (As in Part 1 the

free (in SR) final point requires PS(Tf) = ph(rf) =0 )
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PENALTY FCT
PCTHY . JUMP CONDITION

Figure & 5 Adjoint Variable in Backwards Time. Note PM(T;) >10
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If the approximate solution is carried out for T? - Tg which
1s sufficiently large for two or more exits of SR’ 1t becomes clear
that regardless of The values of Ny Ty and N used the approximate
solution has a fuel cost which 1s larger than the fuel cost of the exact
minimm fuel solution The approximate solution can be made better by
changing the values of nj and n) before each exat or SR or by
applying the solution 1n a plecewise mamner with the jump condiation.
These methods of improvaing the approximate solutions with more than one
exit of SR are, generally, not satisfactory since they mske the con-
ditions of the approximate solution as difficult to apply correctly as the
NCES An alternative to these methods 1s the use of functions other than
fl(g) 1n the inbegral constraint on the states The functioms fE(X)
and fe(E) given by (3.10) and {3 11) are the same as fl(g) when x € 5
g0 that they result in the same satisfactory solutions 1f the trajectory
remains in the interror of S If the tragectory exibs the region B
more than once in the time interval of consideration, the use of fg(g)
wnstead of fl(g) results 1n a reduction in fuel cost This as true
since the deraivative of f2(3) (which appears 1n the adjoint solution)
15 smaller near the boundary of S than the deravative of fl(E) 50
that the fuel cost carries more weight over the trajectory when f2(§)

18 uged than when fl(g) 1s used

A free final point solubion of the approximabte problem with
fa(ﬁ) used ain the integral constraint 1s given below  The steps leading
to this solution are very simrlar to steps leading to the solutions (with
fl(E) used) given above with the several types of boundary conditions
For completeness these steps are given in detanrl

The equations of the maximum principle for this problem in

backwards time are

XS = = XL}.
tX’_!' = =V (‘)-" 21)
n
10 5(x5 - 10'”), if xg > 10'lF
-h
1 —_— -
Pz = 0 s 2f |XSI = 10 {continued)
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n
3 ~4 <h
kJ.o (x5 + 10" ), af xg < = 10 J

([ » b Y
10 u(xh -1077), af x, > 107

-l
By =Py +{ O ; af |xh|510

~

N

oy i -
10 (xlL +1077), af x, <-10 (b 22)

-

v =N CST(pLE_) (b 23)

Equations (4.21) are the same as (4 16) and their solution is
the same as {4 19) Equation (4 23) 1s identical to (4.18). If the "if"
parts of the statements which define the functions in brackets in (h 22)

are assumed but not written, the solution of (4 22) can be wratten as

~lt 2 3
- - w *
E(XSO 107 )1 XhOT + VT /3

'z
10
po(7#) = - = 0 + Dy, (b 2h)
2(x50 + 10_h)T* - xuor*g + VT*S/S
n (XSO - 10~h)T*2 - Xh01¥5/3 + vw*h/lE
3
10
p, (%) = - =5 0
(XSO + lO“h)T*a - thT*g/S + vr*h/le
TPy F PSeT*
X A - 107 T%/2
40 -V
"
+ 10 ‘¥ 0]
X :LO"lL - v¥f2 (k 25)

where ¥, Xg0

the boundary as well as at each time a switech 1n control occurs

and XAO are 1nitialized at each time of encounter with

Suppose that the initaal point is gaven by [XS(Tg), Xh(Tﬁ)] =
(~5 X 10"5, 10-5) and 1n forward time is a free fanal point In this
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casge PSe pS(TO) 0 and Pye Ph(To) C  Untail the boundary of
S 1s encountered (point "1" in Figure L4 6a), sat at ¥, the solutions
(k 19), (4 23), (k.24) and (4.25) give

_ -5 -5
XS(T*) = Xz = Xy TF « 5 X 1077 - 1077

_ _ 1072
Xh(f*) = %5 = 10

v=20
p(7%) =0
py (7%) = 0 (4.26)

From the first equation of (& 26) the time of encounter with
xB(T*) = --J.O"'lF 1s found to be ¥ =5 Since x,X,,pg; and p, are
+ -
continuous, they have the same values at (T{) as at (TT) Thus,

until the control turns on, say at Tg, the solution is

N

- -5
%) = - H* = - -
XS(T ) XSO 40T 10 10 “ 1%

xh(r*) =X = 1077

)

v(T*) = 0
"3 2 B0 o
PB(T*) =~ 10 /2{"'3{401'* ] = 10 T /2
3 3 Dz=2 3
py (%) = - 10 “/2{~x, 1%°/4} =10 ° «¥°/8 (h.27)
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With N =5 x 10“1L the allowable error will not be exceeded,

l1.e , IXSI =11 ¥ lOHh, 1f the control turns on when Xz = =~ 108 x
107 From the first equation of (4 27) with xS(TS) = - 108 x 10'” 1t
18 found thet Tg =08 (measured from Tf) For the control to turn

oh at TS, ph must grow to unity at TS. Thue, from the last equation
of (4.27) the "best" value of n, 1s found to be n, = 6 2 From the
fourth equation of (4 27) 1t 1s found that p5(rg) = 5.0 Thus, for the
next part (ﬁrom point "2" in Fagure % 6a), of the calculation Xyy = )

-1 08 x 107, x =107, p,_ =50, Py, =10 and v=Ns=5x10
Unt1l the boundary of S 1s agzan encoumtered (point "3" in Figure 4 6a),

say at T%, the golution is

2 )

¥ + x o =5 X 10"4¢* o+ 10'51% - 108 x 10

2
*) = K -
XS(T ) Nt XHO z

Xu(T*) = - No¥ +x0 = - 5 X lO-hT* + 107

v(t¥) = N

n
%) = _ 3 by e 2 2
pS(T ) 10 /éfa(xso + 107 )T ), TF + V¥ /21 + Pz,

=50 +12 5% + 7 8¢%° = 130.07%°

B3 - 3 b
Ph(T*) =~ 10 /2{(x50 + 107 )rE° - %), 7 /3 + yr* [12) + Pl * Py T

=10 +5071% +6 25?*2 + 2 6TE° . 32 51‘*lL (& 28)

The time of reentry i1s found from the firgt equation of N 28)
to be 7% =0 126, since xS(Tg) = —-:L.O_llL From (4.28) with 1% =0 126,
the 1mitial values for the next part of the calculation are found to be
Ky =- 530 X107, p,_ =643, p =175 and v=N The next part
of the solution 1s such that PM(T*) continues to increase so that the
control stays on and draves the trajectory to the boundary again  Thus,

until the boundary 1s encountered again (point "L" in Figure L 6a), say
at Tﬁ, the solution 1s
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Xs(T*) = W% - X oT¢ + X,
=5 xlO-uq:*e +53 ><‘_Lo'5-r*-1o'1L
#) = % = -4 =5
xh(T)--NT txyy = =5 X107 T% - 535 x10
v=0N
pS(T*) = Pz, = 6 43
ph(T*) =D, * PSeT* =173 + 6 k3¢ (& 29)

The time of exit, ¥, 15 found from the second of (& 29) to be
% =0 094 sance Xh(Tﬁ) = - 10—lL From (% 29) wath =0 094 the

wnttrgl values for the next part ere found to be Xzg = -9 1 X 10_5,
Py = 6 43, Py, =235 and v =N The next part of the solution con-
tinues until the control switches, say at 7%, and 1s

xs('r*) =5 X 10"1‘1-*2 + 10‘1%* - 91X 1077

Xh(T*) =-5X 10'41* - :LO-lL

po(T%) = oo

"y ~l
pu(T*) =Dy, + P5GT* + 10 TT{XHO + 107 - vi¥%/2}

oy
2 33 + 6.437% + 10

(< 5 X 10'1‘1*/2} (L 30)

The control switches to zero when p4(1§) = 1 0 and the trajectory
becomes pirallel to the Xz =BHLB Since 1t i1s required that Ixh(r*)| <
1.1 X 107, the control switch must occur no later than Tg =0 02 Thus,
from the last equation of (4.30), 1t 1s found that m =71 1s required
If n = 71 and T% =0 02 are used 1n (4 30), the initial valufi for
the next step are found to be X, = -8 88 x 10_5, ¥yo =-11Xx10 7,

Py, = 6 43, P, =10 and v =0 The solution for the next part (#rom

the point "5" in Figure 4 6a), 1s
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_ _ -5 -}
XS(T*) = Xz - X TF = -8 80 x10™7 + 11 x 10 T¢x

xh(f*) =Xy = -1 1X 10_&
pS(T*) =Dy, = 6 43
" -l
pk(T*) =Py, *+ Dby TF + 10 Tz, +107) =10 - 118 6% (L.31)

This solution is for the tame anterval (T;, Tg] where Tg 1s the time
when the control switches from zero to V= - N Thas switch ain the con-
trol occurs when Pu(fé) = -1 Thus, from the last equation of (4 31) 1t
1s found that Tg = 0 017 The initial values for the next step can be
found from (4 31) wath cf = 0 017 They are xg, = -8 69 X 1077,

%o = -1.1 X :Lo“l‘, Dz, = 6.13, P =-10 and v=~0N Thus, the

solutron for the next step, which i1s untal ¥ at which time the trajec-

¥
tory reenters S; is
2 - -l
Xs(T*) = - Nt¥~ -~ XMOT* + Koy = - 5 X110 ‘¥ + 11 x10 ¥
- 869 x 1077
%, (T%) = Ne* +x =5 x 107 H% =11 x 107
b 40
ps(rw) = Pz = 6.43

n
pu(f*) =Py, + pSeT* + 10 lL'c*{xho + lO-k + Nt*/2}

= - 10 - 1187% + 31207% (4.32)
The time T?h can be found from the second equation of (4 32)
since xh(f%) = - 10" Tt 25 ¥ =0 02 The imtial values of the

next (and final) step can be found from (4 32) with <% = 0 02 They are

_ 5 10 o - o] _
Xzy = - 84k x10 -, X0 = - o, Pz = 6 43, Pg = - 212 and v=-0N
The solution for the last step which as umbtil Tg is
o 4

XS(T*) = -5 x 107Fe%® & 307 Fe% - 8.4 x 1077

(contanued )
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xl}('r*) =5X 2070+ - 10'1*

ps('r:*) =6 b3

pl!_('f*) = = 2,12 + 6 43g% (4 33)
The fanal time T% = Tf + . Tg 158 chosen so that the trajec-

tory begins (1n forward tlme) in 5 The solubion 1s given in graphical
form an Fagure L 6

In summary the mean results of this part are (1) minimum fuel
controls for the single-axis motion of satellates 1f the motion is
described by x = v, (2) the demonstration of the fact that the solutions
cbtained from PMP wath

3 =f0(f(§_) + |v]az
T

O

(£(x) = fl(E), fg(g), . ’fe(E)) are minimum fuel solutions 2f the
boundary of S 1s exited no more than once, (3) the use of smooth
functions lake fE(E) regults 1n less control effort than the piecewise

smooth function fl(g) 1f more than one exat of 8 occurs

3 The Steady~State Motion Obtained from PMP for x" -+ a?x = V,
2
a >0

The equation x" + a?x = v dJescribes a stable system if a® >0
If the pitch motion 1s controlled so that |X1(T)I T 11 x 10_4, 1= 5,6,
and 1f the satellite has inertia properties such that kl ~ 1l and kezw -1
(lake satellite (2), for example), then both the roll motion and the yaw

motion are very nearly described by x" + &% = v with a° >0 If the

eccentricity of orbit is less than 5 X 10-6, k: ~ 1 and the yaw-roll

3
motion 18 controlled so that le(T)l =11X 10—h, 1 =1, 54, then the
pitch motion is algo very nearly described by x" + a?x = v Thus, the

application of the theory of Chapter IIT %o

| —
Xl—Xe

xé = - a?xl + v (b 3k4)
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leads to useful information about the theory and the reguared control
In thie part of Section A, the requirements on the control and the
methods of analysis are the same as in Part 2 of Section A

Farst consider the necessary conditions for exact solutions
(NCES) of Part 4, Section D of Chapter IIT VWhile the state-space tragjec-
tory 1s an the interior of S the condations of PMP, 1.e , (k 34) and

-
Py = - Py (& 35)
v=1 CST(pa) (4.36)

must be satigfiried waith the proper boundsry conditions

Three representatives mainimum fuel phase plane trajectories which
do not encounter the boundary are shown 1n Fagure 4 T7a. (These trajectories,
denoted by A, B and C, are the results of applying PMP with three different
gsets of 1mitial conditions on (xi,xe) and (Pl’pE) The circular region,
', which 1s Just ingide the yaw projection of S, Sy, 1s the region to
be acguired af imatially (after acquisition to 8) the trajectory 1s not
already an I" The region I’ was chosen to be acquired since once 1t is
acquired no future control effort i1s needed to keep the trajectory in SY
(in the absence of detrimental disturbances) Also, less fuel is needed
to acquare T' (from within SY) then eny other circular region in &,
The fanal points, P, of the trajectories, A, B and C, correspond to the
fanal time of consideration, namely Toe For trajectory A the fainal point
15 fixed The final point of trajgectory B is free so that pl(Tf) =
Pe(Tf) = 0., The trajectory C acquires the boundary of T' so that the
transversality condition applies

There are points in SY from which T' cammot be acquared without
encountering the boundary of SY A typical case 1s shown in Fagure b 8
The final point of the trajectory 1s fixed so that pl(Tf), 1= 1,2, are
entirely urknown a priori. The jump condation is applied at the junction
point denoted by the number "3"  (Those parts of the boundary of SY
whach are vertical lines are replaced by arcs of circleg about (iN,O).)

In Figure 4 8a the normal to the boundary at the jJunction point makes an
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Figure 4 7  Typical Minimum Fuel Solucvions for System (& 34), a2 =1,
N =2 X 10"1*
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Figure 4+ 8 A Munimum Fuel Boundary Encounter Solution for System (4 34)

7h



angle of 3° with the x,-ax1s, 5O that, 1n Figure 4 8b the "Jump" 1n
(Pl’Pg) at “3" 1s at an angle of 3° with the py-ex1s  In this appli~
cabion the jump condition constant 1s negative. The normals to the
vertical boundary lines at the boundary points "1" and "2" are parallel
to the Xy -8X1S.

The part of the trajectory in Figure 4 8a which begans at the
Junction point "3" and ends at the fixed final point P 1% part of the
optimal tragectory from "3" to the origin for acquisition times greater
than 5%/8 (See Marbach [25], Fig 2 11.) This part of the tragectory
is manimum-fuel optimal since 1t 18 part of an optimal tragectory  The
time of acqguisition (> 5%/8) 1s taken as large as possible since the
fuel cost decreases with increase in acquisition time (See Marbach's
Fig 215 )

For x" + a?x =v as for x" =v in Part 2 at can easily be
seen that the optimal (minimum fuel) controls obtained from the NCES
with the jJump conditions applied at boundary encounter points are the

same as the optimal controls obtained from PMP with

o
J =f [f(_}ﬁ) -+ |v|]d'r
TO

The equations of the maximum principle for

ff
J=[ [£(z) + [v|las
TO

in backwsrds btime are

X == %,

'x =ax, -V (% 37)
2 1

tPl == F(Xl) - aEPE

'y = Flx,) + 1y (4 38)
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v = N 0ST(p,) (4.39)

As an forward tame the solution of (h 57) 18 &8 parametric representation
of the equation of a carele in the (xl,x?)-plane The center of the
circle on the x,-axas at X =V (v = =N or zero) The trajectory
proceeds in a counter-clockwise sensgse with increasing T¥  The piecewise

solution of (4 38) can be obtained by the method of Appendix E and is

w1
% ) I *y - *
pl(T ) Ple cos(a&r ) pgea s1n(aAT ) F(xl)a 51n(aATl)

F(xg)[l - cos(aArg)]

pe(r*) =Dy, cos(anT®) + plea"l sin(aAT®) + F(xg)a—l 51n(aAT§)

F(xl)a_e{l - COS(&ATI)] (3 k0)

Figure 4 9 shows a graph of a solution of {4 38) as obtained
from (% 40) This solution corresponds to the solution of (4 37) shown
in Faigure 4 8a in forward time (as indicated by the arrows) As before
in Part 1 gnd Part 2 of this section, the values of oy and I, depend
on the initial values of the adjoint wvariables. The anatial values of
Pl and p2 used an the solution shown in Faigure 4 9 are a worst case
choace Although Figure 4 9 shows a worst case, there is still some
resemblance to the curve of Figure 4 8b, whach is obtained from the NCES,
1f differences 1n scaling are accounted for If the inmitial (backward
tame) value of Dy 1s made more negative, the solution {(k 40) of the
adjoint equations which corresponds to the tragectory of (4 8a) agrees
perfectly with the curve in Figure 4 8b for all except about one-fourth
of the time of consideration The difference in the curves is due to
the mechamism which causes the change in the adjoint variables on encount-
ering a boundary For comparison purposes Figure b 10 shows a solution
obtained from (% 40) which mostly agrees with the "jump" solution

The above exsmple, which show excellent agreement ain the solutions
obtained from the NCES and from FMP wath
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Tt

J= f [£,(x) + [v]lar
T
o]

are representative of all opbimal solutionms which must (for a given value
of N) exat the region SY (by more than some small allowable amount) once
and only once 'The main reason this generalization can be made 1s the
fact that the parameters ny, n, and [ are freely chosen

k., The Steady-State Motron Obtained From PMP for x" + a’x = v,

a2<0

The equation x" + a2x = v with 32 < 0 gaves an accurate
descraption of the yaw motion of satellite (3) for practical time imbervals
1f the roll and patech motions are suitably controlled  This equation also
describes the piteh motion of satellaite (2) near apogee and perigee if
the yaw and roll motions are suitably controiled

The equations of the maxamum principle for this part are the
same as 1in Part 3 except that here & <0 [Bee (b 34)-(L 36) ] Figure
4,11 shows some phase plane plots of solutions of (4 3&) and (& 35) for
a? = -1 The curves are hyperbolic

Idegldly, 1.e , ain the absence of digturbances and imperfections
in the controller, the best control i1s the minimum-fuel control which
acquires the line PQ in Fagure 4 1la (If the line PQ is acquired in
this 1deal case, no future control effort is required, since once PQ 1s
acquired the trajectory moves very slowly along PQ to zero ) Since the
transversality condition must hold at the final time, which i1s free, the
minimum~-fuel control which acquires the line PQ must be on (W) all of
the time of acquisition (See Fagure & 11b ) Therefore, in this ideal
case the control must be =N gbove PQ and must be -+ below FQ

The magnitude of the control used in constructing Figure &4 1lls
1s too small For two reasons N sghould be larger They are (1) the
error in uxl(T) grows to undesirsbly large values, 1 e , LL'Xl('r)l > )y
1.1 x 10 °, af initially both X and X, are near 10 or =10 ',
(2) for most of SY the cost of acquiring the line PG decreases with
increase 1n N until the cost 1s the same as for x" = v in acguiraing

the same line This last reason 1s easily validated by consideraing the
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time integral of the last of the system equations (equations (& 34))

+ X, = xlAT + NAT {4 41)

Where Ei 1s the mean value (of the integral mean value theorem) for the

time interval Av, bx, > 0 and N >0

Xg

Fagure 4 12 Regions of Fncrease an Cost With Incresse in N

If (4 41) 15 solved for =NAT, whose magnitude 1s the cost, the result

1s

AT = AT = #Ax, - X AT (1 42)

As N 1increases the value of Ei approaches the anitigl value of L
(Even for small N, say W=2x lO-u, the change 1n X, 1s small

compared to Ax2 for most initial condrtions and tame intervals  See

Fagure L 11a ) Sance the time interval required for x2

given amount decreases with increase in N, a1t 1s easily seen from (4 42)

to change by s

that the cost decreases with increase 1n N vwhenever the change an x2

1s positive or negative) and X, 1s negative (or positave) In the

1
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limt J = Ax2 In the shaded regrons of Figure 4 12 the cost i1s less

than Ax2 for bounded N and in the lomt J = Ax2
In the more realistic case in which imperfections in the con-
troller and disturbances of the motion are present, the line PQ cannot
be precisely obtained, and, even if 1t could be acquired, the control
effort 15 not exactly a minimum  The disturbances of the motion are
mostly due to the coupling with the motion agbout other axes, the periodic
oblateness part of the earth's gravitational torque and (rarely appearing)
meteoroids These dasturbances can be gmall enough for the trajectories,
which are never nearer Than sbout 10'6 to the diagonal no-disturbances
trajectories, to remain nearly hyperbolic In this case the combrol law
descrabed by Figure 4 13a as very conservative with respect to cost
(Wath N =1L x ZI_O_lL the control is on only about one-seventh of the tame
of one orbit ) The trajectory in Figure 4 13a i1s realistac ain the sense
that a time delay of O 1 sec 15 assumed in the controller and a small
amplatude (&510-6) sinusoidal daisturbance 1s assumed to affect the motion
of the system described by equations (& 3L4) wath 62 = -1 The cost of
the 1lomat eycle motion of Figure 4 13b i1s about ten times smaller than
the cost of the conmtrolled motion of Figure 4 13a  However, the limit
cycle motion requires sensors (of the state Varlables) whach give one
order of magnitude greater accuracy If the two triangular control-on

regions 1in SY which contain part of the =x. -sxi1s are replaced with

control-off regions, the control effort ais nit signifacantly increased
uniess a large, but rare, disturbance causes the trajectory to acquire a
point near x, =0, x; = lO_lb Thas simplafication of the control
logic can result in a lower overall controller cost even though it can
cause an increase 1n control effort (See Section B)

As 1n Part 2 and Part 3, the solution of the opbtimal problem with

g

J =L/\ [fl(E) + |vliax
T
o]

1.8 precisely the same as the solution obtained from the NCES except for
the discrepancies in the adjoint varigbles which occur during the time
when the state trajectory is oubtside of SY The adgoint variables for
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this problem with

Tt

J = d[\ {fl(ﬁ) + |v|las
T
o

can be obtained as functions of ¥ as 1n Appendix E and are given by

wl
*) = +* %) - *
pl(T ) P cosh(cAT#) + Py C ginh{cAT*) F(xl)c Slnh(CATl)

+

F(X2)[COSh(CAT§)-l]

=1 -1
'3 Xv3 X %
pg(T ) 1 cosh{cat¥) + P1 sinh{cat¥®) + F(xg)c 51nh(0A12)

F(Xl)CHE[COSh(CATi)-l] (L L43)

Where €= = w &% >0 (Tt should be noticed that equations (4 43) are

the "unstable" counterparts of equations (4 9) which are for the "stable”

pateh motion )

B. THE STATION-KEEPING CONTROLS — GENERAT. ORBITS

1l Stabtion-Keeping Control of Ssitellites an a Maxamum Gravitational
Torgue Orbit

In Section A the orbits were restricted to nearly polar or nearly
equatorial orbits which were of sufficient altatude that the aerodynamic
torgue was insignificant.

If the orbits are not nearly pelar or nearly equatorial, the
oblsteness terms in the gravaitational torque can be very sigmifaicant in
the case that high-accuracy earth-pointing is needed. Consider egusbions
(2.17) with the parameters of satellites (2) and (3), for example. For
all but about one-tenth of an orbit the termg which contain either ¢
or s, as factors are larger than the other term when ]xll =11X 1o'h,
2 =1, 6 Thus, as a limiting case the equations of steady-state

motion for satellites such as (2) and (3) are
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' =
¥ =5

2
‘ = -
x! = 2k1A3J(rE/r) 55C5C0 * vy

%), = B yhoT(rp/r) 85045, + v,
Xé = Xg
(4 hi)

' —_— -
Xg = A2 + v3

Since e = 0 Ol in these cases, AB and (I'E/r)2 are very neavrly congtant
50 that for & = 45° equations (4 44) are closely approximated by

|
¥ T %
| S
%, = El cos{t +6 ) + vy
T
XS = 'X).{.
T
x} = E, sin(z 46 ) + v,
| S
XS = X6
1T =
x} = 2e san(t + 90) + Vg (L L5)
where for satellite (2) El = -1 45 x lOHS, 32 = -5 05 x 10—5 and for
satellate (3) E, =1 26 % 10‘3, E, = 522 X 1073

In contradistinction 1o the approximate motions of Section A,
no eguilibriwm point exists in the motion described by any one of these
three pairs of equations (whlch 1n this limiting cgse describe the yaw,
roll and pitch motions) In this case there exists no region of stabilaty
an § (which can be acquired with the aid of a minimum fuel control)
which 1s such that no control effort i1s required to keep the trajectory
in S for the remaining lifetime of the sateliite

Except for the eguations of motion, which have a sine forcing
term, the equations of the maximum principle for each pair (L 45) are

the same as for x" = v The adjoint equations 1n the case of an 1mtegral

8l



constraint on the state variables are (1n backwards time) the same as
(4 18)

Although the sine forcing terms are no longer than 0 1, their
effects are most 1mportant when |xl| = 1.OHLF go that the optimal feed-
back station-keepang control law must be highly tame varying  Thas fact
and the fact that no equilibraium points and no region of stabrlity zn 8
exist make the determination of practical, 1 e , suboptimal minmimum~fuel
control law improbable  However, enough of the characteristics of the
optimal control law are known so that a control which performs satisfac-
torily can be devised

The optimal control must be a "coast function' as given by (4 19)
If the time and the states at which the control optimally switches can be
found, the optimal feedback control will be known If the NCES are applied
to the problem, two characterastics of the minimwn fuel control hecome
apparent They are (1) the imitial (and final) velues of the adjoint
variables, as well as the Jump in the adjoint variables at junction
points, must be small (about one or less i1n p, and ten or less in pl)
1n most applacationg for low fuel cost and for minimum dispersion of the
trajectory, (2) the switches in low cost controls occur when the trajec~
tory 1s near the boundary of the gtation-keeping region

In the msximum prainciple 1s applied to the minzmum-fuel problem
of station-keeping via an integral congtraint on the state or equavalently

to the optimal problem with

ip

J = f[fl(ﬁ) + |v]lac
T
e}

1t 1s found that for the "best" values of n, and N the switches in
the control occur when the trajectory is near the boundary  However, for
the values of n, which keep |x1] =11X 10"h, the pitech control,

Vg, 15 on gbout 95% of the tame of consideration (The time of consid-
eration was 21, the time of one orbit ) In this lamiting case the
controls of the yaw and roll motions are on aboutb 90% of the time when

the "best” values of n, and Ni are used (By reducing the values of
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nl and allowing more evror 1n earth-pointing the fuel cogt can be
reduced )

Since the solutions obtained from the optimal problem with an
integral constraint and from the NCES of the minimum fuel problem all
exhibit characteristic (2) given above, it i1s logical to agk: should
successive switches in the control oceur when the trajectory 18 near one
edge of the boundary or should successive switches occur when the trajecw-
tory 1s alternately near two edges of the boundary” {In the case of the
NCES exther 1s possible, but, in the case of the integral constraint the
latter 1s generally the case ) The analysis whach follows shows that
both methods of control switching result ain the same fuel cost over the
lifetime of the satellate

Take, for example, the third pair of equations (4 45) The

golution for x6(r) 18
X6(T) = X * 2e(cos o, - cos(t + 90))+ vS(T - TO) (4 46)

where TO,QO;Xgo are initialized after each swatch in the control Iet
AT =T - T and Axg = XS(T) - Xgy- Then, sumce At <0 15 (and 218

usually much less), an excellent approximation of (& 46) is

A% a:(vs F 2e sin QO)AT (4 47)

where the upper signs correspond to O < 90 <7 and the lower signs
correspond to w < 90 < 2n If the control switches consistantly between
off and on when x6(1) -is one of two gaven v?iues (e g , both of which
are near X fhl 0 x 10 or Xg = -1 0 x 10 or one oi which 18 near
¥ =10 x10 while the other 1s near x = ~1 0 x 107), then the
ratio of the time the control i1s on to the total time of consideration is
found from (4 47) to be

AT

ON 2e
ATON T ATOFF mﬁg s1in 90 (& 48)

Thus, for a given control magnitude, Ns, the fuel cost depends only on

90 and e and is independent of the values of X6 at which control

switchaing oceurs so that successive switches which occur when the
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trajectory 1a near one edge is no more preferable than successive sgwitches
at alternate edges
A samlar gnalysis of the dependence of the optimal switching of
<h

the contrecl on x. was made For any given value of Xes ]x6| =10 ,
no values of X, |x5| < 10'4, at which optimal switching should occur
were found The reasons for this are considered to be+ (1) the rapad
changes in the state due to the foreing term, (2) the absence of a pre-
ferred point or region to acquare, (3) the periodicity of the forcing
terms

In summary 1t has been found for the limting case of this part
of Bection B that at least one of any two consecutive switches in The
minimum-fuel conbrol must occur on the boundary of £ and there are no
preferred sets of values of {x,x') = (xl,xe) or (x5,xh) or (xs,x6)
at which the other switch i1n the minzmumm-Tuel control should occur  Thus,
for the motion described by any one pair of the three pair of equations
(4.25) the control law given in Fagure 4 14 1s expected to result in
satisfactory steady-state performance The distance d % C 1is not a
conseguence of the theory but xs an innovation which 1s made necessary
by the very imperfection in the controller which maekes the control law
workable — the control time delay For a given d #0 (4 =< 10-h) and
a certain size time delay (or control magnitude) there is a maximum value
of control magnitude (or time delay) at which chatter with no control-off
1atervals will occur If the control magnitude (or time delsy) 1s greater
than this maximum value for the gaven value of d #£ 0, fuel 1s wasted
{See Part 4 of this section )

Thas control law, although sample, alsc results in satisfactory
performance (see Part 5 and Chapter VI) when the periodic exponential
forcing function of the aerodynamic torque is domanant as in the ultra
high-accuracy earth-pointang of satellite (4) (In this case, as above
in the case of the sine forcing term, 1t 18 not difficult to show that
There are no preferred states in 8 at which control switches should

occur )
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2 Improvement of the Control Taw of Part 1, Section A

Although the suboptamal station-keeping control law, eguations
(4.2) with the second and fourth of equations (4 8) and the second of
equations (4 9), was derived for "stable" satellites in erther polar or
equitorial orbits, similar control laws can be deraved for most "unstable"
satellites 1n generel orbits  All of these control laws are similar in
the terms in which the deravataives of the "penalty funetion', F(xl),
1=1, ,6, enter These terms are zero when x 1s 1n § All
other terms contain the plecewise constant variables, Pe? 2 =1, 6,
whose average values over several orbits are nesrly zero

If p s 1=1 ,6, are taken as adentically zero, the
control law 18 greatly simplified, and, for the "best" values of n
and Ni 1t 1s,; 1in each phase plane projection, very nearly the same as
in Fagure 4 14 wath 4 =0 In comparason, the fuel cost 1n the case
p,, =0 was found to be 25% (roll-yaw) to 66% (pitch) less than when
both the full system equations and the full control law was used  The
largest percentage values correspond to those satellate configurations

which require the greatest control effort for earth pornting

3 The Conbrols — Approximate Motions

The ceontrol law for single-axis motion which is given in Figure
4,14 15 expected to result an the efficient control of the approximate
motions of this section and Section A of this chapter  Since the most
general negrly earth-pointing motions of the satellaites congidered here
can be approximsted (1n & least @ plecewise sense) by the approximate
motiong above an this section and in Section A, the three-axes control
law whose components are as in Figure U 14 1s expected to result in the
efficient station-keeping control of the general motion

If the control law given in Figure 4 1% 15 used in the control
of the motion of x" + aox = v, & > 0, and 1f a realistic time delay
in the control i1s assumed, say O 1 sec , the trajectories in Figure 4 15
are typical  These trajectories compare well with the optimal trajectories
of Part 3, Section A (See Figure 4.7) ) The distance, d, was taken
%0 be zero, the worst value If d = 1.0 x 10-4, the agreement with the
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optrmal trajectories of Part 3, Section A is even better and the fuel
cogt 1s reduced in gome cases by &as much as kT% However, 1T no future
control effort i1s needed, the fuel expenditure 1s minute even with d =0
Consader the motion of x" + a°x = v, a2 < 0, when v 18 as
represented in Fagure 4.14 If the tame delay an the control as O 1 sec ,
the trajectories in Faigure 4 16 are typical in the case a2 = - 0.95
(Thas value of &£ 1s slighily more realastic for approximating the
"unstable" yaw and pitch motions than a? = -1 ) The distbance, 4, 18
taken just large enough so that the control (with a time delay of O 1 sec )
18 not on all of the time 1f chatter motion near the two c¢orners (x,x') =
(ﬂo'h
possible The fuel cost in this case with 4 = 10“5 and N =005 as
about

=h
s FO ) occurs For manimum fuel cost 4 should be as small as

.
£ -k
T = L/\ |viar = 3 x 10

T
o

per orbit

4 The Controls — Station-Keeping Motions of the Satellites

The four satellites as described by equations (2.17) or
equations (2 18) with the control for each axis as described in Figure
L} 14 were simulated on a PACE TR-48 analog computer (The patching
diagrams are given in Appendix I ) Some of the results of the many
simulabtion runs are shown in Fagure 4 17 — Fagure 4 20 as phase plane
trajectories (or more precisely, the projection of trajectories into the
phase planes) (The plots were made by an x-y plotter which as darectly
connected to the computer output ) In all figures the initial poant,
Pl, 18 outside of 5 and on the boundary of a region, S+, whach 1s
twice the size of & (in maximum dimension). The reason P1 1s not
taken an 8 but on the boundary of a newly defined regron S+ is given
an the acquisition chapter, Chapter V  The real time (satellate time)
of each run 1s at least the taime of one orbait  When more anformation is
obtained from a trajectory corresponding to more than one orbit (for

example, the stabilization of the roll-yaw motion of satellate (2)), the
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real time 1s the time of two orbits The point in the orbit correspond-
ing to the inatial time 1s gaven by 90, the angle of the satellite from

perigee The time delay in each part of the controller i1s given in each
-+

d}
+N It should be noted in reading the figures that the lightest regions

fagure as t&, which corresponds to ~N, and % which corresponds to
of the rapid chatter parts of the pitch trajectories generally correspond
to the most rapid chatter while the darker parts of the trajectory corre-
spond to slower motion. In Faigure 4 20a 1s shown a yaw trajectory of
satellite (4) (which 1s greatly influenced by the aerodynamic torque) for
the time of two orbits. The part of the trajectory corresponding to the
second orbit overliaps part of the first orbit trajectory  However, the
early rapid chatier motion, which occurs when the aerodynamic torgue 1is
negr its maximum magnitude, i1s light enough for the later less rapid chatter
motion to be seen over 1t. In the roll and yasw parts of Fagures 4 17 —
b 20 the boundary lines of the phase plane projections of S are not per-
fectly straight as in Figuve 4 1k These boundaries were created in the
analog simulation by an electronic signum function generator which was not
perfect, 1 e , the characteristics of the diodes used were only nearly
1deal The large control magnitudes required in pitch resulted in chatter
motion along the nearly vertical parts of the boundary unless these parts
of the boundary were straightened up somewhat  Therefore, for the pitch
parts of Figure 4 17 — Figure 4 20 the boundary lines were (electronically)
made very straight by connecting two diode signum function generators in
series

Table & 1 gives the fuel expenditure (nondimensional) for the
and J_, are the

IRy P
total fuel expenditures for the roll-yaw and pitch controls, respectively

simulation runs of Figure 4 17 — Figure & 20

Jﬁ ¥, ACQ’ for example, 15 the cost of acquiring the roll-yaw projection
¥
of 8 from the point P1 JP q? for example, i1s the cost of the

2

steady-state pitch motion  The fuel expenditure for these runs were
typical of all runs of the same duration The average (the initial poilnts
in S and the angie 90 were varied) steady-state fuel expenditure for
one orbat daffered from the steady-state values a1n Table 4 1 by about

two or three percent Of course, the acquisition part of the fuel

expenditure depended greatly on Pl and to a lesser extent on 90
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TARLE 4 1  ¥UEL EXPENDITURE FOR THE SIMULATTON RUNS OF FIGURE L4 17 —
FIGURE & 20
SATEILITE (1) (2) (3) (4)
F3 ¥ o+
- 7 52x107° 7 60x10™° 5. 7110 7 88x10™°
3¢ *
T 5.05x10~¢ 6 03x10°2 7 5ox1072 15 ghx10™2
=3 -3 -3 -3
Tov, ACQ 2 88x10 L} 3hy10 1 25x10 2 Obx10
-2 =h -2 -2
03x10
Ip. acq 3 09x10 3 0Ox10 1 51x10 1 03x
(+) < * *
-3 -3 -3 -3
J‘R_L as Ik hxio 3 26x10 2, 46x10 5 8Lx10
(T) * *
Tp aq 2.7hx10™t 6 03x10™2 6 01x10™2 12 91x1072
2
#Denotes two orbirts, otherwise one orbat

NOTE  The nondimensional cogt values are translated in Chapter VI inbo
the number of pounds per orbit (or year) for the example satellites of

Chapter 1T
(+)RECALL -

Setellate (1) 18 "mildly stable” in all axes but the pitch
motion 1s strongly Fforced, satellate (2) 1s "very stable” in roll-yaw
but 15 "unstable" an patch with forced motion; satellite (3) s

"unsteble" in yaw, “stable" in roll and patch and pitch has forced
motion, satellite (4) 1s similar 4o satellite (1) except that yaw and
prtch are "destabilized" by the aerodynamic torgue.

102




(Compare, for example, the value of J? for satellite (2) with the
value for satellite (1) )

From the describing differentizl equabions of controlled motion

»ACQ

and the example trajectories of Figure 4 17 — Fagure 4 20 it i1s apparent
that for all anatial state zn S the station-keeping part of the con-
troller can keep the state space trajectory from departing S by a signi-
ficant amount (excapt, perhaps, when large unaccounted for disturbances
overpower the station-keeping part of the conmtroller). Sance Fhe minimum
fuel expenditure of the stabion-keeping controller for one orbit 1s not
known, the steady-gtate fuel cost per orbit obtained in the simulation
runs cannot be compared with an absolute mimawmum  However, since from
Figure 4 17 — Faigure 4 20 1t a1s clear that the single-axis satellite
motions are gpproximated, in at least & piecewise sense, by the approxi-
mation motions of Section A and this section, (Sectlon B) the steady-state
fuel cogt 18 considered to be nearly a minimum  Thus, the station-keeping
part of the controller is considered to perform satisfactorily (In
Chapter VI cost; error and other performance measures are evaluated for
particular sateliites of particular weights  There it 1s found thabt the
welght of fuel used 1n one year 18 very small compared to The weights of
the satellites )

103



V. DERTVATION OF ACQUISITTION CONTROL LAWS

A, EXTENSTONS OF BUSCH'S SOLUTION

In Chapber ITI, Section D, Part 2 1t was mentioned that Busch, using
EMP and a reverse-time integration method, has found a nearly miniwmum-fuel
optimal Ffeedback control law whaich for a "stable" satellite results in

3

acquisition to a region much larger (6.3 x 10 ° radians) than gt (see e g.
Figure (4.20)). The control law works well for x < 0.5 radians,

1=1, ..., 6, but, for some large initial angles (about 60°), the coupling
between the controlled roll motion and the controlled yaw motion via the
controls through the pitch angle and the large value of 005_162 in ‘the
second of Eguation (2,14%) have a destabilizing effect. The Busch control
law results in an acquisition time of about the time of one-half orbit from
anitral angles of about 250. Acguisation frowm larger angles reguires much
longer acquasition taimes, and, in some cases when the satellite as ' un-
stable"” (e.g., satellite (3)}) and the i1mitaal angles are large, acquisition
takes a much longer time. (Th some cases the motion can become uncontrol-
lable so that acquisation cannot be accomplashed. )

Thusg, for the controliers of the gatellites' motrons to perform
satisfactorily, the Busch control law must be modified so that (1) the
region s can e acquired even 1f large imperfections exist ain the con-
trollers, (2) the time of acguisition from X £ 15 radians, 2 = lye..,6,
1 the time of one-quarter orbit or less, and, (3) "unsteble" satellites

such as satellite (3) are comtrollable for large imitial angles.
1. Vaa Phase Plane Technigues

In component form the Busch control law can be writhten as

(-—Ni/e) (SGN(ngxgl + 2::1) + SGN(X2 + 0.1 %))

-

2
-NASeN(x,, ) IF % > 1.7 X l % |

2
o IF Xu<l.7><lx3]
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2
-NéSGl\T(x6) IF xg > 2 X ]x5|

0 IF XE <2 X |x5| (5.1)

where ui, 2 =1,2,3, 1s the nondimensional acquisition control torque
measure numbhers, Ni = 1, and SGW( ) 1s the signum function. Figure (5.1)
shows sketches of the two types of control switching curves in the phase
planes. It should be noticed that N;, 2 =1,8,3, are all unity, and,
therefore, the parabolic swibtching curves in the yaw and pitch phase
planes arve the same as for the minimum-fuel control of x" = u when
|umax.[ = 1,0. Thus, if the magnitude of the conitrol components are in-
creased to shorten the acquisition tame, an obvicus modificaticon to the
Busch control law is the modification of the parabolic switching curves
which makes them compalible with the larger values of Nl, 1= 1,2,3, 1.e.,
an the eguation x'2 = *ax, the coefficient a(=2N) 1s modafied with W,

Cleariy, Ni = 1.0, o = 1,2,3, are too small to give acquisition

from |x1| = 1.5 radians, 1 = 1l,.s.,6, 1n a t-inmterval of 1.57 2.e., 1n
the time of one-quarter orbit. Consider acguisibtion from (x,x') =
(1.5,1.5) for x" = u an mnimum time Tt 1s not dafficult to see that
for lu | = = 10 the acquisition time 18 1 - T, = 0 05, Froma

max. £
study of the minimum-time acquisition of other simple systems 1.e.,
'+ a2x = U, ag > 0, ae < 0, 1t was found that mnimum-time acguisition

1s accomplashed 1in 7, - 7, = 1.57T 1f N was large enough. In particular

the requared values o? N Oranged from a little larger than 2.0 to almost
ten (depending on ae). Thus, 1t seems that Ni =10, 1 = 1,2,3, are
nearly lower bounds Tor the magnitudes of the control components for
minimum-time acquasition. For minimum-fuel acquasition N; = 10, 1 =1,2,3,
seem, certainly, to be lower bounds. Since values of N;, 1=1,2,3,

which are much larger than ten (say, one-hundred) can result in very poor
performance (such as higher cost and no acquisition %o S+) when the usual
1mperfections an the controller (e.g. time delays) are present, the imatial
value assumed for each of Ni, 1=1,2,3, was taken as ten. (In the next
part 1t 18 seen that "sparalang in" o s*  from x, ~0.1,1=1,. .6,

should be avoided for low fuel cost, "Spiraling in" 1s avoided 1f
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N&, 1=1,2,3, are large enough (»10), since the parabolic switching
curves are nearly coincident with the "zeroing" part of a trajectory
from a peant on a parabolic switching curve waith |x1| =~ 041, 1 = 2,&,6.)
Bince Busch was successful in using a straight line for the other
swatching curve in the phase plane of the least "stable" motion and since
the switchang logic for such a curve 1s very simple, straight lines with
various slopes were studied as possible switching curves. Fhase plane
methods with the constraints on the time of acquisition and fuel cost
were used initially an the study in the hope of saving compuber time,
Sance the anmitaal values of the state variables considered were no larger
than 1.50 radians, the control-on part of the phase plane trajectories
wary nearly coincided wath parts of parabolic curves such as XE

2
af Ni # 10. Thus, since the behavior of the phase plane trajectories

— 1
= 2Nixl

was generally known vhen the trajecktory was an a control-on region, the
phase plane analysais was limted mainly to the control-off regions

The phase plane analysis consisted of (1) the calculation of the
slopes of control-off trazjectories at numercus points 1n the phase planes
by asswmng the trajectories an the other two phase planes to be varaous
nominal points and (2) for switching lines of various slopes the estima-
taon of the time between control-on intervals with the aid of Axl =
(§£+1)A¢off’ 1 =1,3,5, where §1+l 1s the (antegral) mean rate value.
Equations (2.1h) were used for lel =1.0, 1 =1,...,6, and equations
(2.17) and (2.18) were used for |x1[ ~ 0.1, 1 =1,.. ,6, The worst
possible values & = /b and 8, = /4 {or Ei) were used in each cage
for each sotellate. The results of this analysis can be summarirzed as
follows (1) the shope of the swatching lane which gave a maximum conbtrol-
off time inberval of Amoff == 1.0 also resulted in most cases in the
lowest estimated fuel cost (the total control-on time for acquisition was
estimated to be about 20-30% of the time of acquisition 1.e., Aﬂon 2
0.3-0.5.), (2) 1f the motion was not very "stable" (e.g. satellite (1)),
some of the smaller (an magnitude) slopes tried resulted in chatber motion
which was very costly and time consumng (especially for |x1| < 0.01,
1=1,3,5 where the sine forcing terms are most influential), and, (3)
slopes of the switching line which where much greater (about 10x) resulted

in a much higher cost estimate (about 200% higher). The slopes of the
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switchang lines vhich are expected to result in a satisfactory acquasition
control law are given in Table 5.1. These slopes are given in Table 5 1
for each phase plane of each satellite and are generally compromises
which are arraived at by placing the greatest emphasis on fuel economy and
gimplicity. For example, the shope of the straight line of the type 2
switching curves i1s larger than was estimated as needed for large angles.
The estamated values of the slope for patch of satellites (1), (2) and
(&) for large angles ranged from sbout -0.75 to -1.5, however, for small
angles (lxll < 0.01l, 1 = 1,3,5) the magnitudes of the slopes were esta-
mated to be about -6.0. Thu, since pitch must be "zeroed" faster than
roll and yaw to avoid detrimental coupling and since other curves which
gave a variable slope are not as simple, a siope of -2 i1s a compromise.
In the next part of thas section the maximum principle is used

to check and/or offer modafications to the control laws of thas part.
2. Via Pontryagin's Maxamum Praincaple

Using the reverse-time integration method, the maximum principle
was applied to the acquisition problem. That 1, the equations of motion
(with the 'coast function" cudimal control) and the adjoint equations were
written in backwards time and integrated wath the aid of the digital com-
puter. (For the program see Appendix F.) The solutions of the equations
of motion were plotted as phase plane trajectories (1.e., projections of
the trajectboraes) so That the conbrol swatching points in the phase planes
could be easily observed.

Since S+ 18 small compared to the scale used in the phase plane
plots and since, by "smoothing" the corners of S+, the final (forward
tame) adjoint vector can span the six-dimensional vector space, the origin
of the state space was considered to be the final goal anstead of s,
That is, sance the origin of the state space and S+ are almost equiva-
lent with respect to IMP and since computabtionally i1t i1s simpler to take
E(Tf) = 0, the origin was acquired.

The lanearized equations of motion [Equations (2.17) with the
aerodynamic torgue terms included for satellite (k)] were used an thas
application of the maximun principle. The reasons for using the linearized

equations are (1) the linear and nonlinear optimal solubions agreed
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TABLE 5 1 MODIFIED VERSIONS OF BUSCH'S SWITCHING CURVES

TYPE 1 PLANES
YAW-ALL SATELLITES

RO%SSATELLITES (1), (2) anp

1 (slopes for roll, yaw of

10 X satellites (1) and {4) counld
}i_.‘ be as large as 1 5 )
g
TYPE 2 PLANES
/ r—————
X
PITCH — SATELLITES (1), (2)
AND (4)
i
10 X
-2
TYPE 3 PLAWES

ROLL~SATELLITE {3)

PITCH-SATELLITE (3)

005 X

n'rn"ni
Il Ll "
N
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very well for [xll < 0.1, 2 = 1,3,5, 1in the cases tested¥, (2) for
lxl] > 0.1, 1 =1,3,5, the nonlanear equations are highly coupled and
regsult 1n erratic control switching points ‘since control switching for
one axis depends on the motions of the other axes), and (3) the compuber
tame for each solution run of the nonlinear system of equabtions was too
great (about ten mnutes) to be practicable (since many solutions were
needed).

Some typical solubions of the linear optimal acquisaition equations
are gaven 1n graphical form in Figure 5.2, It should be noted that no
trajectories "spiral in" toward the origin. "Sparaling in" is not a
characteristic of an optimal trajectory in the case Ni 2 10, 1 =1,2,3,
Indeed, for such large values on Ni three switches in each control
component 18 generally a maximum humber in the time interval of Te = Ty =
1.57 since the adjoint variables on whaich the switches depend generally
give (1n backward tame) s short comtrol-on interval followed by a long
control-off interval or with a short control-off anterval and then a long
conbrol-on interval).

In Table 5.2 are given some of the data obtained from the thirty-
two backward time solutions. In particular Table 5.2 presents the range
of wvalues for the slopes of the switching lines which pass through the
origan and the poini at which the control switches from off to on. Also
presented are the consensus values (for lines drawn through the greatest
number of switching poants) of the slopes and the best values for stabila-
zation of the motion.

In the next section, Section B, the fainal states of the backward
time runs are used as the 1mtial states in the solutions of the full
nonlinesr equations of suboptimally controlled motion. These forwaxrd
time solutions of the nonlinear equations of suboptimal controlled mo-
tion and their fuel costs are compared with opbimal linear solubions and

their costs in the performence evalustion chapter, Chapter VI.

B, ACQUISITTON CONTROL LAWS WHICH PERFORM SATISFACTORILY

#Alsc, Busch found very good agreement in many comparisons
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TABLE 5 2

SLOPES FOR THE STRAIGHT LINE SWLITCHING CURVES AS
OBTAINED FROM THE OPTIMAL (LINEAR) SOLUTIONS

BEST FOR
SATETIITE AXTS RANGE OF SLOPES CONSENSUS STABTLIZATTON
(1) YAW -1 01— + o -1 00 -1 01
"STABTE" (orR +0 b41)
ROLL -1 28— + oo +0 33 -1 28
(OR -1 13)
PITCH -1 01— -0 89 ~0 92 -1 0L
(2) YAW -0 77~ -0 59 -0 69 -0 77
VERY "STABLE"
IN ROLL AND ROL, -0 38— -0 19 -0 35 -0 38
YAW} ".UN"
STABLE" IN
PITCH PITCH -2 1= <1 63 -1 81 -2 1
(3) YAW -0 86— + «% +0 k2 -0 86
"UNSTABLE" (OR -0.67)
EgTﬁw’ wory |BOLD -0.91~ + wt -0 61 -0 91
ROLL AND (OR +0.40)
PITCH PITCH 41 03- +1 5 +1 25 +1 03
(%) VAW -0 Gl + * -0 77 -0 b
"STABLE" (OR +0 39)
BUT GREATIXY | gorr | -0 85- + e« 40 b2 -0 85
AFFECTED BY (0R -0 8k)
AFRO -
TORQUE PITCH -1 33- -0 89 -1 02 -1 33

*
Depends on initial condition of adjoint variables, bubt, gemnerally if

yaw ~ -,

then roll ~ 1 0 and vice verss
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In Section 4, Part 1 three types of phase plane switching curves
(Table 5.1) were suggested by the phase plane analysis as possible
"improvements" ¥ of the Busch switching curves In Part 2 of the last
section the linear equations for an optimal acguisition solution were
integrated in backward time. Some of the data optained from these inte-
grations are presented in Table 5.2.

If the consensus values for the slopes of the switching lines (Table
5.2) are compared to the slopes given an the sketches in Table 5.1, good
agreement 1s found in about half of the cases. The exceptions are pitch-
satellite (1), roll-satellite (2) pitch-satellite (&), which are each off
by nearly a factor of two, and roll or yaw of satellites (1), (3) and (&),
which are mogtly off by a sign. If the best values for stabilaization
{the greatest slopes obtained from the optimal solutlons) are compared
to the slopes of Table 5.1, the agreement i1s found to be good in every
case.,

Of the two types of swiitching curves, the parabolic curves have the
smallest devaation from the optamal. This i1s, of course, expected for
control magnitudes of ten or greater. From Faigure 5.2 1% 18 clear that
the parabolic switching curves will work very well when [xlf, 1=1, .,6,
are small, however, for large angles and rates 1t 1s possible that some
medifications will he needed.

The following conbtrol law was used in the inatial tests of acquisi-
tion of the satellites from large angles {[using the nonlinear equations
of motion, (2.1%) - (2.16)]

u = (-Ni/Q){SGN(xl+lfxl+l[ + 203;1) +

sew(x, . + Mx seN(@ - Ix D11, 1=1,2,3 (5.2)

where N&, the negative of the slopes, and the "change-in~slope" factor
Ql, 1= 1,2,3, were as given in Table 5.3 (If Ql 15 large, OGN
(Ql - lel) 1s positive for all X and has essentially no effect )

Usang some of the final conditions (backward time) of the optimal

*Busch considered only one "sbable" satellate., Here, consistent acquisi-
tion to a smaller region from larger angles is obtained for four ("stable"
and "unstable") satellites.
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(lanear) solutions for inmitial condations, the Ffull nonlinear equations
wath the control given by (5.2) and Table 5.3 were integrated wath the aid
of the dagatal compubter. Since some chatter motion was expected along
‘the straight switching lines in some planes, a time delay was burlt ainto
the conbrol. The tame delay was intially simulated by making the control
a functron of the value of the state at the end of the previous step of
wntegration., The integration and the plotting (by the Stanford Cal-Cowmp
Plotter) were carried out 1n two steps so that the small details of the
phase plane plots covld be observed. Farst, the digital computer inte-
gration proceeded from |xl| =15, 1=1...,6, dowa %o lel £ 0.02,

2 =1,3,5. Then, using the fanal values of the first run, the second

L

digital computer run vas made down %o lel £2.0X10 ', 1=15.. ,6.
(Acquaisition Trom S+ %o B  was simulated on the analog computer
See Fagures (4.17) - (%.20).)

The imitial runs (for the four sstellites) were quite time consuming
and only seven out of the twelve phase plane curves of each run appeared
as expected. The trajectories 1n the phase planes of satellite (1) dad
not proceed toward the origin as directly as those trajectories of
Figure (5.2). The reasons for this were considered to be (1) the slope
of the switching line an pitch was too small (in magnitude) and caused
the acquasition an the piteh plane to be too slow, and, (2) the slow
acquisition in pitch resulted in harmful cross-coupling between the roll
control and yew and the yaw control and roll  The fuel cost for this run
was J = 15.87 and the tame (Tf - To) of acquisition was greater than
2.0. The initial anlegration run of satellite (3) gave an umstable so-
Jutaon 1.e., after a short taime the state space trajectory began moving
away from the origin and continued until there was no hope of acguisition.
This unstable behavior proved to depend somewhat on the initial conditions,
however, the main reasons for this bad performance are considered to be
the same as the reasons for the poor performance in the initial run of
satellate (1). The initial integration run of satellite (2) showed that
early chatter wotion in roll and yaw occurred. This early chatter motion
appeared to be the reason for the cost and scquisition time being greater
than expected. The (nondamensional) cost was J = 9.91 and the (nondi~

mensional) time was 1.7%. The anitial solution Ffor satellite (&) was
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TABLE 5 3 THE PARAMETERS OF THE CONTROL LAW FOR THE INITIAL TEST
SATELLITE | AXIS M 9 SHITCHNG TTNES
YAW 1.0 10 © A’Y TYPE 1
(1) ROLL 1.0 10 © _XT TYPE 1
PITCH 10 10 0 AT TYPE 1
YAW 0.5 | 100 s DégggiEgR ”
(2) ROLL 05 10 0 ™~ MODIFTED
S~ TyPE 1 CR 2
PITCH 2 0 10 © AK_ TYPE 2
YA 10 10 0 _ST TYPE 1
(3) ROLL, 20 0 05 AT TYPE 3
PITCH 2 0 0 05 —AT TYPE 3
AW 10 10 0 Lt TYPE 1
(k) ROLL 1.0 10 0 AY TYPE 1 N
PITCH 20 10 0 J TYPE 2

~
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generally as expected except for a little early chabtter motion in roll
and yaw, The cost and time of acquisition compared very well with the
optimal {linear)} acquisition cost and time Tn all of the imitial runs
(except the run for satellate (3) which did not result in acquisition)
the parabolic control switching curves gave good results with only a
slaght amount of chatter motion to S+ when 1n one case a "zeroing'
part of a trajectory missed S+.

The following changes were made 1n the phase plane switching lines
of satellites (1), (2) and (3), in the hope of improving the performance
of their acquisitaon combrols. (The initial run for satellite (4) inda-
cated that its control resulted in satisfactory performance go that no
changes an the control for satellate (&) were made.) The slope of the
switching line for pitch-satellate (1) was decreased from -1.0 to -2 0
1n the hope of achieving quicker acquisition 1n pitch so that the detra-
mental cross coupling hetween roll and yaw would be elamneted. The
glopes of the swatching lines in roll and yaw for satellite (2) were de-
creased from ~0.5 to -1.0 1n an attempt to alleviate the early chatter
motion 1n roll and yaw and, thus, reduce the fuel cost and time of acquasi-
tion. The slope of the switching line in roll-satellaite (3} was reversed
in sign for [x3| 2 0.05 (by changing Q2 to 10 0) and was increased in
slope from -2 0 to -1 0. This modification was made in an attempt to
acquire [for the unstable satellate (3)] the region gt (Sance pitch
for satellite (3) 1s so highly "stable", the negative slope of the switching
line ain patch was retained.) In the remaining simuletion runs of the
subopbimally controlled nonlinear system the compubation vime was shor-
tened by removing the fixed tame delay and introducing a more natural
but slightly varying time delay. This was accomplished by introducing
the stepsize cutbting limiter of Part 1, Section 4, Chapter IV. TFor a

stepsize of &1 = 0 002, a time delay of about t, = 0.125 sec was

d
bmrlt inte the control by lamtaing the number of cuts to four.* The ac-
curacy was not significantly affected by this lomt  The step size was
taken as & = 0.0002 for the second part of each run. This gave an ef-

fective tame delay of about td = 0 01 sec during this part The smaller

#Recall that <, the nondimensional time (in radians) 18 equal to nt
where n a8 the average orbital rate and + s the real time in seconds
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time delay was reguired when the trajectory encountered the region S+,
since much larger time delays resulted in the overshooting of S+. The
larger time delay was used during the first part of each run to save
computer time. The large time delay was considered a worst case.

The results of the egecond set of digital compubter simulation runs
for the four satellites with the new control laws [same as in Table 5.1
except for roll-satellite (3)] and the new time delays showed definite
improvements. Satellate (1) acquared the region s" within the time of
one-quarter orbit and the fuel cost was reduced by about 25% . The re-
sults for satellite (2) showed an improvement of about 10% in the Fuel
cost and a slight improvement in the acquisition time. Satellite (3) was
again uncontrollable but this tame 1t took longer for the trajectory to
begin moving away from S+. Wew anitial conditions (fanal conditions of
an optimal (linear) solution) were used in the test of the acguisition
control of satellate (4). Again, the results for satellate (4) were
satisfactory. The fuel cost and time of acquisition compared very well
with that of the optimal (linear).

The pitch control of satellite (3) was again modified. The positive
slope of the switching line (when lx5] > 0.05) was changed to a negative
slope 1n the hope of reducing the large angle coupling between the yaw
control and roll and the roll control and yaw by rapidly reducing the
pitch angle. Similation of the acquisation of satellite (3) wath the
newly modified control was made for several initial conditions. These
samulation runs gave satisfactory results although the fuel costs were
35-67% greater than the optamal (linear) fuel costs.

In Fagure (5.3) - Fagure (5.6) are shown phase plane plots of the
phase plane projgections of one of the worst case acquisition trajectories
for each satellate. These are worst case trajectories since they show
more chatter than others and since the fuel costs and/or times of acquisi-
tion are generally greater. The right plot on each page of Figures (5.3) -
(5.6) 15 an enlargement of the origin. OFf course, these plots do not
show all of the acquisition. Once a phase plane projection of S+ [see
Figure (& 17) - Figure(t 20)] 1s acquired by the phase plane projection
of the acquisition trajectory, the sbation-keeping part of the controller

[see Figure (6.1)] takes over and performs the acquisition form near the
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projected boundary of S+ to the projection of 8. (Since two widely
different levels of control torque are needed for satisfactory performance
1n acquisition and stabion~keeping, the region S+ was acquired by the
acquisition part of the controller. Otherwise, rapid chatier motion and
wasted control effort result from the control torque being too large for

the regaon of station-keeping. See the data of Chapter VI on the fuel
cost versus the size of N, 1 =1,2,3, and the size of 8.)
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VI. COMFLETE ATTTTUDE CONTROL AND PERFORMANCE EVALUATTION

The complete attitude conbrol system comsisting of the station-
keeping controls derived in Chapter IV and the acquisition controls
derived an Chapter V are considered to give satisfactory performance
A block diagram of this complete attitude coutrol system 1s gaven in
Figure (6.1).

In the remaander of this chapier the performances of the two parts
of the complete control system are evaluated in terms of the performances
of other systems and in terms of the weaght of fuel requaired for a year
of control as compared to the weight of the satellite. Also, presented

here are performance limitataions i1mposed by imperfections.
A, ACQUISITTON CONTROL COMPARED TO OPTIMAL (LINEAR) ACQUISITION CONTROL

In Section B of Chapter V, the selected acquisition control system
was tested and found to perform satisfactorily, however, a thorough
comparison of the fuel cosbs found in the test runs with the optaimal
(1inear) fuel costs was not msde. Although the optimal (linear) Fuel
costs are probgbly very conservative, they are considered to be a lower
bound which i1s large enough for the compariscon to be meaningiul

The average nondimensional fuel cost for the acquisition simulation
runs of satellite (1) was J = 12.k. For satellates (2), (3) and (4) the
average fuel costs were 10.2, 14,1 and 13.2, respectavely. These average
costs daffered from the average optamel (linear) fuel cost by 3:%, 15%,
43% and 36% for satellites (1), (2), (3) and (L), respectively. The
percent differences of the average costs seem gquite high, however, conw-
sidering the strong cross coupling which occurs when the angles are large

(»60°), the fact that a simple fixed switching logic control i1s used and
the fact that the optamal (linear) cost is not a greatest lower bound,
these percent differences are not unsatisfactory.

Several simulation runs of the nonlinear acguisitiron system were
made for small angles (=~ 5°) from the final conditions (backward tame) of
optimal (linear) runs. The percent differences for the small cases were
about 15 /.

The varaaticn in the percent dafference for each indaividual run was
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from ~4.1% to +62%. The extreme percent dafferences belonged to the
large angle runs. The suboptimal system had an advantage of 4 1% over
the optimal system in one of the runs for satellite (4), however, the tame
of acquisition for the suboptimal was almost 20% greater than that of
the optamal. The maximum percent i1dfference of 62% was for the run of
satellite (3) which was given in Fagure (5.5).

One of the main reasons for the greater fuel cost of the subopbtimal
system 18 the chatter motion which occurs during acquisition from some
inttial condaitions. This chatter motion can be avorded, even with a fixed
gwitehing logic control, by increasing the values of Mi (the negative
values of the slopes of the straight line switching curves). If the
values of M  are increassed unbal no (or lattle) chatter motion occurs,
the time of acquaisition generally decreases, but, the fuel cost increases.
However, unless the slopes are increased until no (or lattle) chatter mo-
tzon occurs (about a factor of ten), the costs do not generally increase
by more than 1007 .

The nondimensional fuel cost values can be translated for particular
satellites into the weight of fuel used in, say, pounds. If, while 3 gas
Jet 18 on, 1t 18 assumed that the gas flow rate and exhaust velocity are

congtant, the weight-flow for a gas jJet couple is given by

. N; Iln2 o
Wl = Tﬂ'— "6 >y 1 = 1,2,3, (6.1)
1
where Eﬂl 1s the moment axrm distance, g is the acceleration of gravity
and 1 1$ the magnitude of the exhaust velocaty. TIf both sides of (6.1)
are multaplied by n oy (recall that ¢ = nt), the result is

w, =W =W 5827 5 B (6.2)
i i

which 1s the weight of fuel used in the time anterval, 4t, that the
gas get couple 15 on.

The ratio v/g, whose reciprocal 1s a factor in (6.2), is ususlly
referred to as the specific impulse, Isp' A realastic value for © 1s

1500 ft./sec. so that a reasonable specafic aimpulse 1s Isp = 46.5 sec.
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In this case gfv = 2.15 X 10°% sec.™ . The values of n for the satel-

lates considered an this ainvestigation range from 0.95 X 10-3 to 1.13 X
10"3. In the following calculations of the weight of fuel used, the
worst case value of n = 1,13 X :LO—3 1s used. The typical satellites
referred to are those of Section D, Chapter IT. Since the typacal
satellites are sperical or cylindrical and since the lever arm distance,
231, 28 usuzally half the length of an axis, the ratio Ii/EEl can be
approximated by 1/5 m¢_, 1f the satellite 1s spherical, by 1/% mg, for
‘the longitudinal axis and by 1/6 mg, for the transverse sxis, 1f the
satellite 1s cylandrical. (m 18 the satellite's mass. For satellite
(1) m = 1,860 slugs. TFor satellites (2), (3) and (&) m 1s 1550 slugs,
1550 slugs and 310 slugs, respectively.)

Now The nondimensional averasge acquisition fuel cost for each satel-
lite can be translated into pounds weaght. The values of J (given
earlier in this section) for satellates (1), (2), (3) and () are 12.4,
10.2, 1%.1 and 13.2, respectively. Therefore, the approximate (worst)
weaghts of fuel used on the average for acquisation by satellites (1),
(2), (3) and (k) are 0.88 1bs. (4 =7 #5.), 1.28 1bs. (zl =15 £t.),
1.78 lbs. (zl = 15 f%.) and 0.10 1bs. (zl = b 5 ft.), respectively

B. STATTON-KEEPING CONTROL

In Part %, Section B of Chapber IV the station-keeping control sys-
tem was simulated on the analog computer and found to perform satisfactorily.
In this section the performance of the statiron-keeping control s eval-
uated by comparing 1t to the hybrad station-keeping control system of
Busch (which contains a reaction wheel) and by evaluating fuel costs

changes with various parameters of the gystem.
1. Comparison with Busch's Solution

Busch obtained station-keeping control in roll and yaw simply
by leaving small (6.3 X 1073 radians) circular regions of no control
about the oraigin in the roll and yaw phase planes of the acguisation
phase plane switching logic. This performed well for the "stable"
satellite considered by Busch. (The steady-state cost per orbit for

roll and yew was sbout J = 10—3.)
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Sance the pitch motion was forced by a sinusoidally varying

"stgbilizing"

term and since neirther of the switching curves were of a
type, Busch's piteh acquisation control could only achieve complete
acquisition in pitch periodically and the error in pitch grew periodically
to about 0.1 radians., The fuel cost for this periodaic reacquisition in
pitch was high. To gain greater accuracy in prteh and to reduce the
weight of the fuel used, Busch supplemented the pateh part of the control
system wath a reaction wheel.

If the envairommental torques acting on the satellate are nearly
sipusoidal, the power requared for "pushaing" against the reaction wheel
18 nearly zero, so that, except for the weight of the reaction wheel and
supporting components the weight of the pitech part of the controller is
negligible. However, sance the envirommental torgues are not sinusoidal
but have the character of a nearly constant forcing term with some periodic
varistions, the reaction wheel must be continuously "pushed" against in
such a way that the wheel speed 15 continously increased. 8Since Busch usged
gas Jebs to produce the torque to hold the satellite steady while slowing
the reaction wheel once 1t reached 1ts saturation speed, his steady-
state fuel consumption was increased by 21.973. (This 1ncrease was due
o slowing the reaction wheel when only cross coupling caused the wheel
speed saturation 1.e , all forcing texrms were considered as purely sin-
usoidal.)

The weight of the fuel used for station-keeping can be compared
(for the same saze satellite) to the weight required by Busch's system
for station-keeping control. Consider the "stable" satellate (2) Busch
2 % I, =1.21
slugs-f%.g. If the reaction wheel 1s a brass cylinder with a diameter
of 1.5 ft. and a height of one foot, the weight of the reaction wheel is
138 1bs. From Table 4.1 1t 1s found that the cost of the steady-state
pitch control for satellate (2) 18 J = 6.03 X 1072 per orbit. The
cost for a year (about 5.6 X 103 orb1£;§sof prtch steady state control
18 J = 337. From Equation (6.2) the weight of fuel used in pitch for

suggests & reaction wheel moment of inertia of I = 10°

a year of station-keeping i1s found to be 8.47 1bs. (ﬂl = 3 ft.). In the
same manner the weight of the fuel used for roll-yaw station-keeping is

found to be 1 13 1bs. (ﬂl = 15 ©t.) per year which 1s about the same as
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Busch's roll-yaw control used for the 50,000 1b. satellate,
(learly, the weaght of the fuel used for station-keeping by the
control of Section B, Chapter IV 1s much less (about 9%%)than the weight

required by Busch's station-keeping conbrol system.
2, Fuel Expenditure Per Orbit For Values of Various Parameters

The fuel cost for station-keeping varies with the values of
parameters such s eccentricaity (e), inertia parameters (kl), strength
of the conmtrol (Ni), size of S(sl) and the peak voltage of sensor
noise. Simulation runs (as in Section B, Chapter IV) were made to de-
termine the effect of the variation of these parameters on the fTuel cost.
{The results of the runs also offer a check on the behavior predicted
for the satellates by the analysis of the simple motaions of Chapter IV.)

To test the effect of eccentricaty cn the fuel cost, simulation
runs were made for the ineritia parameters of satellite (3) whach is
"unstable" in yaw but "stable" 1n roll and pitch. From these runs it
was found that the roll-yaw fuel cost varied by only 375 for a variation
an e from 0.0 to 0 05, however, the patch fuel cost varied directly as
the eccentricity TFaigure (6.2) shows the pitceh fuel cost as a function
of eccentricity.

To test the effect of the inertia parameters on the fuel cost
per orbit, faive sets of values of kl, 1=1,2,3, (which correspond to
five satellites whose earth-pointing mobtions range from highly "unstable"
to highly "stable") were used in the simulation runs. The change in the
pitceh fuel cost was negligible when e = 0.05 was used. A second set of
runs was made with e = 0.01 in the hope that the reduction of the size
of the relatively large Fforcaing term would result in noticeable changes

in ‘the paitceh fuel cost with changes an  k_, however, the results were

3.’

the same for thas set of runs. The changes in the roll-yaw fuel cost with

changes in kl and k, were gquite significant (a meximum increase of

172%) These changesaare represented 1n the chart of Figure (6.3) for
W =N, =0.01, e = 0.05 and 4 = 3 X 1077,

Satellates (2) and (3) were simulated in the investigation of
the effect of the strength of control on the fuel cost. (These two

satellites were chosen for this investigation since satellate (2) 1s
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"yngtable' in piteh and satellite (3) 15 "unstable" in yaw.)} The dis-

tance d was taken as 2.0 X lOH? 2.5 X 10”7 an the pitch control and as
5 % 10™° snd k.5 x 1077 1in both the roll and yaw controls. Recall from

Chapter IV that in pitch, when the sinusoidal forcing term 1s most sig-
nificant, the distance 4 should be large enough to insure a control-

off anterval an any interval which contains two consecutive control
switches to iNé. Also, recsll that for "stable" single-axis motions

{e.g those of x" + a%x = v) the fuel cost should decrease with i1ncreases
in d(élouu). For "unstable" single-axas motions (e.g. those of x" +
0Py = v, a? < 0) the fuel cost should increase with d(élouh), however,

d must be jJust large enough to insure a control-off interval in any
interval which contains two consecutive conbrol switches to IN

Figure (6.&&) shows the roll-yaw fuel cost per orbit of satellites
(2) and (3) plotted as a function of the control strength for the various
values of d. BSince the pritch fuel cost varies imnsignaificantly with the
inertia parameters, only the pitch fuel cost per orbit of satellite (3)

15 shown plotted ain Figure 6.4b., The points on the curves of Figure 6.4Db
marked "overshoot" correspond to the values of N3 (for a tame delay of
about 0.5 sec.) for which control-on pitch trajectories overshoot the
small strips (of width d) in the pitch phase plane. For Né greater
than these values the wvalues of d are not large enough to insure a
control-off interval in any interval whaich contains two consecutive
control switches %o fNé.

The effect of the size of the region § on the fuel cost per
orbit was investigated for satellate (2). The results of this investiga-
tion are given if Figure 6.5. The point (0.0,0.0) aided in the con-
struction of the curve for voll-yaw. (This was possible since the origin
of the roli-yaw state space 1s an equilibrium point.)

To test the effect of sensor noise on the error and fuel cost
per orbit a low frequency (100 cps) Gaussian noise generation was used.
The noise was added to the state wvariables as they entered the controller.
Runs were made for satellite (3) with N = 0.0k and 4 =2 5x:lo"u.
The peak noise voltages used were 0.05, 0 1 and 0.2 times the peak state
varilable voltage of 1.0 volt. The error and fuel cost of each run with

noise were compared to the error and fuel cost of the noiseless run.
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The fuel cost was found to increase slightly (less than 2% ) while the
5

error was at most 0.5 X 107 ° radians or 5%.

¢. TMPERFECTIONS IN THE MCDEL, AWD THE ULTIMATE ABILITY TO EARTH-POINT
1. WNonraigadaty of the Satellites

The mathematical satellite models were made on the assumption
that the satellites are rigid. This, of course, 18 not precisely the
case, however, for the satellite confagurations considered ain this in-
vestigation, the effects of the various causes of nonrigidaty can be
made acceptably small  Contribubors to nonrigidity include the slight
deformation of the satellite structure in the small force environment
(The largest gas jet required for acquisition gives only 0.17 1lbs. of
hrust. ), the mobion of the valves of the gas jets and the gaseous fuel

In the steady-state mode, the deformation of the satellites
should be insignificant when, for exsmple, an atbached camera is to be
aligned very accurately for earth-pointing to wiathin lO”lL radians. For
the satellites considered here the deformation 18 generally much smaller
than the best machining tolerance available today and 1s, thevefore,
insignificant

The motion of the gas jet valves i1s wvery rapid so that the
valves are opened or closed in just a few mlliseconds. Thus, the gas
valve must attain a speed of the order of 100 1n./Sec from rest (wath
respect to the sstellite). After attaining this speed the valve must
agaln be brought to rest. The forces required to accelerate the values
and %o brang them to rest can cause a significant torgque (about 0.1 ft.-
1bs.) unless care 1s taken in their design.

Since the pressure dve to a completely gaseous fuel as (for all
pracplcal purposes) uniformly distrabuted over the inner surface of the
fuel container, the torgue due to the pressure forces 1s essentially zero
(regardless on the containers shape or 1ts position in the satellite).
Therefore, the third contributor to the satellaite’s state of nonrigadaty

has an insignificant effect on the satellite's earth-pointing performance.
2. Gas Jet Misaligmment

Kach gas jet pair was assumed to be aligned such that the torque
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of the couple was "about" a principal axis of inertia Ffor the mass center.
In practice the orientations of the principal axes are known to within
only about 0.0l radians. Hence, when a gas Jet pair is on, 1t 1s probable
that a torque wath a magnitude of about 0.0l of the gas jet pair's torgue
1s applied about the other principal axes. It 1s most lakely that these
misalignment torques will not aimprove the control systems performance,
however, their effects on the accuracy are cconsidered o be insignificant

but they can result in as much as a 12% incresse in the fuel cost.
3. ©Sensors and Error

In this investigation 1t 18 assumed that the state of the at-
titude motion 18 avaerlable from sensors. In the last section, Section B,
1t was found that low fregquency (100 cps) noise added to the s.ate
variable signals from the sensors has almost no effect on the performance
(even 1f 1ts peak voltage 1s 0.2 of the sensor's output voltage). How-
ever, 1f there 1s a bias error of 107%, say from the misaligmment of the
sensors, the earth-pointing accuracy will suffer by 10% at times and the

fuel cost will generally increase.
k, Others

The mathematical satellite models used in this investigation do
not account for very large forces such as those dwe to the motion of a
man on board and the collision of the satellite with & very high momentum,
but "non-Ffatal” meteoroid.
. Calculations based on AK1+1 ﬁ=NhE£w, 1i=1,2,3, and on
n.Ileiﬂm = £1mméb, 1=1,2,3, where Nmi 15 the effective value of the
1%h component of the nondimensionsl meteoroid torgue, mo s the meteor-

h axis and &0 1s the change

01d's mass, ﬂl 1s the moment arm for the 1
1n the magnitude of the meteoroid's velocaty, showed that (for &y  be-
tween 20,000 £t./sec. and 60,000 £t./sec. and for £, ‘between 1.0 ft.

and 15 ft.)} the station-keeping control should be able to easily accom-
>

modaie meteoroids with masses up to about 5 X 10™° lbs. several times per
orbit. (Accommodation of meteoroids of thns size 1s considered to occur
rarely, See Section F, Chapter II.) The acquasation control, whach acts

1rke a back-up station-keepang control with some decrease in accuracy,
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should be able to accommodate meteorcids up to about 0.05 1bs. (with
lattle loss of accuracy).

A mon 1n motion aboard the satellate can exert forces on the
gatellate which cannot be compensated for by the station-keeping control.
(The force on the satellrte due samply to the man casvally raising has
arm above his head 1s gbout 10 1bs.) The acquisition conbrol cannot
compensate for these forces unless (for the satellites considered in
this 1nvestigation) the nondimensional control magnitudes, Ni, 1=1,2,3,
are 1ncreased to about 10,000 and the time delays are reduced to about
10 microseconds., (Of course, 1f the satellites are much more massive
than those congidered here, say about 1000 tons, the wvalues of Ni and

of the time delays do not need to be so extreme.)
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VII. CONCLUSION

A feedback control system for efficiently controlling the attitude
motions of satellites an elliptic orbits about an oblate earth with an
atmosphere was devised The criteria used for efficient (or "satisfactory")
performance were (1) high-accuracy (lO"LL radians) in earth-pointing
after the acquazgaition of the earth-pointing mode has been accomplished
withan the ‘tame of one-quarter orbit from large angles (»60°), (2)
minmmum fuel expenditure, and, (3) practicality of the system. Although
four parbiculer satellite configurations ("stable" and "unstable") were
assumed in the deravation, the devised control system performed well for
a wide varrety of satellite shapes, orbits and parameters of the control.
(See Chapter VI.)

The deravation of the conbtrol system proceeded in two steps. First,
in Chapter IV the station-keeping part of the conbroller was devised.
Pontryagin's maximum prainciple, the " jump condiations"” and the guidelines
obtained from the minimum-fuel station-keeping controls devised for
single-axis systems were used in thig derivation. The maximum pranciple
was applied to (1) the minimum-fuel problem which was considered as a
problem in the theory of optimal processes with bounded phese coordinates
and (2) the mnimum-fuel problem with an 1nbegral constraint on the state
(of the attitude) for maintaining high-aceuracy earth-pointing.

In Chapter V the acquisition part of the controller was devised.
Pontryagin's maxamum principal and phase plane methods were used to exbend
the Busch acquisition control to gave @ acgmstion for a wider range of
satellites (including "unstable" satellites), @) higher accuracy and (3)
acqusiition from larger angles in the more realistic time of one-quarter
orbit.

Two avenues of future research related to this anvestigati.on are
considered to be (1) the theory (sufficiency conditions) for the long-
time optimal control of highly forced systems wath bounded phase coordinates
and (2) the high-accuracy and efficient control of the attitude motion of

a manned satellzte (by, perhaps, devaices other than gas jets).
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APPENDIX A. THE GRAVITATIONAL TORQUE

DeBra [11] has shown that the gravitational torque for B#* (the ¢ m
of the satellite) due to an oblate earth is suitably given by

3
T, = (3w/r’)n, xI
g 1 Ry

4

(5udr 2/r5) xI, (L-7 cosgy)
7 ERl R,

(ude7/r”) W x I

=

(1erE2/r5) cosy (;_;Rl X I+ EX _IRl) (4.1)

where J

- 2 - -
3/2 (1, - Tg)/me,” = 1 63 x 10 3 .= mgG, I and I, are the
polar and equatorial principal moment of inertia for E+ (the ¢ m of the

eartch) m, 18 the earth's mass, r_, 1s the earth's equatorial radius, G

13 ‘the universal gravitation congtami, DRy 1s a umt vector directed
from E* to B¥, N 1s a wnat vector whach is parallel to the earth's axis,
Y 1s the angle between N and Ry and IRy and Iy are second moment vec-
tors of the satellite, B, relative to B* for‘ERl and N, respectively

Kane [22] shows that T

T for example, can be written as

3
In =ZL , b, 113-93 (4 2)
1=1 g=1

where n, 1= 1, 2, 3, are mutually perpendicular unit vectors, b1 =N.
n, 1= 1, 2, 3, and IlJ’ i, 3 =1, 2, 3, are moments and producis of
inertia of B relative to B¥* forg_l1 and EJ
Suppose Ry 1= 1, 2, 3 are parallel to prancipal axes of inertia
of B for B¥ (see Figure 2 1) Then I1J =0 for 1 ¥ 3. If n,1=1, 2
3, are right handed unmit vectors and e, = 231 *n, 1= 1, 2, 3, then
with the aid of A.2 and a similar relation for ERl the terms which ap-

pear as vector products in A.1l can be written as
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*as (r '_rl)

N X Iy = bby (Ig - Ip) m) + 0,05 (T,
+ ogby (I, 1)33
R, XIy= (32 313 aSbEIE) n, + (a.b
* (agbyly - aghIy) ng
_1\_“(231 = (b Ty = baayTy) my + (b2
| + (byayly - byl ) ng
where 'I:L =”IIJ, i=g3g=1, 2, 3

g X_I'Rl = 858, (I3 - Ie) n

+ a8, (I

3 l 1

3 21

) n

3 2

2

- a b 13) n,

- bla3I3) n

(4 3)

Now the gravatational torgue as given by & 1 can be written with

the ai1d of equations A.3 1n the desired component form A more useful

expression Tfor the torque is obtained 1f al,
written as functions of the attitude angles 91, =1, 2, 3, and of the

parameters of the orbit of the satellite,

B,

and bl, i1=1, 2, 3, are

8, Qp (see Figure A.1)

Thas will be done before equations A.3 are substatuted into A.L.
It 18 not difficuld to conclude with the ard of Figure A.1l and

trigonometry that

N=s5108[lsin(6 +6 ) + cos (6 +6) 1 + coss (A %)
- PRy v 7R, =R

where B[ry” 18 the unit vector given above, DR3 18 a unit vector

which is normal to the orbat plane with 1ts sense gaven by the right

hand rule for aincreasing @, hai:N

is a vmit vector which together with

Oy and 533 form a set of right-handed mutually perpendicular uwmt
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vectors and ep 18 the angle between the ascending line of nodes and
the line between E¥ and the perigee point of the orbit.

Now, if hg.» 1= l, 2, 3, are writben in terms of n,t= 1, 2,
3, and 1f these expressions are substibuted anto A 4, then the coeffi-
cients of n,1= 1, 2, 3, in the resulting expression will be bl,
i=1, 2, 3, respectavely The coefficients of no,i1= 1, 2, 3, 1n

the expression for ERl are a,, 1 = 1, 2, 3, respectively

If the three-axes Euler angles, 61, 62, 93, are used as 1n
Busch [6], 2t can be concluded that

R, = %3 Iy “Cof3 By TSol3

p, ~ (sy8,05 + ey85) 1y + (o053 = 818,8:) Dy ~ 5.0,

233 = (5153 - e8,¢5) by + (5103 *ey8.85) By + e Cny (A 5)
where c1 = CQs 91, sl = gin 91, 1=1, 2, 3

From the first of A 5 1t i1s observed that

a, = c203, a, = -c283’ ag = 85 (4 6)
and from A 4 and A 5 1t 1s observed that

bl = 585902C3 + sacecls3 - cacls2c3 + SaceSlSQC3 + 088153

=3
It

+ - + - s
o 86090103 0831C3 58560233 c6018283 88085152 3

b3 = CgCiC, + 85,8, — 5.Cp8.C, (A7)

where, for example, c; = cos 3 and s, = sin (8 + QP)
Now with A.3, A 6 and A 7 the gravitational torque, which 1s given
by A.1, can be expressed in a Torm which i1s convenient for studying its

effect on the attitude motion of earth-pointing satellites  The sub-
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stitusion of A.3 anto A, 7T results an T =TT . n. +T . n . +T _n

where

and

gl

1

H
Il

g2

1

3
1

g3

g gl =1 g2 =2 g3 =3

= (u/r3) (13 - Ie) {3a3a2 + 5J [rE/r]2 1 -7 cosgy] a8y

1

2J [rE/r]e bgb, + 109 [rE/r]e cosy [a2b3 + ajbgl}

(u/r3) (Il - 13) {3ala3 + 5J {rE/r]2 [1-~7 cosay] a8,

2J [rE/r]2 b by + 103 [rE/r]2 cosy [a3b1 + ale]}

(M/r3) (12 - Il) {Sagal + 53 [rE/r]2 [1 -7 cos%y] 2,8,

2J [rE/r]2 bgb, + 103 [rE/r]2 cosy [alb2 + aébl]} (A.8)

In the terms of equations A.8 the factors whach involve only 8,

b, 1
12

a.g

32
b,b

32

bib3

2 2
+ s.c.C + (terms in 5, » 8,

=1, 2, 3, are given by

2
=CoSo83y 8183 = Co85Cq,  BgAy = =Cp ¢38g

8.0, 8.C 8 202c g.c.c
5 6

g 17273 ~ 1717273

S_.C_C.C ec c, + 8 2c
55671 273 & 76

*)

2 2 2
c.8.c.C e_8_S.C.C + (terms an 570 wees 8

°s “1%1%%3 " %5"3%%1 %2 53

s_c.8,.G.C 2c + g 28 2c 8.C. - 8 23 c.5 C 20
5B 612 73 5 78 TeveT3 & "8eT12 U3

e 2 3)

5°5°6%1 €2%3 " g €1 Cp%cC%3
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_ pA] 2 2 2 2 3
bEbl = 56 SGCGCICEC3 + 86c8395102c3 - s8 se c2 0383

2 2 2 2 2 2 5
Sg Cg €1 c383 = BxCsCply 5583 + (terms in 5.7y s B )

*)

2
- + o % o
0233) (berms an 8, ) 8

oPs * agby = cge ¢, (8,

2 2
b, + b, = -
a3 1 a.l 3 060102 c3 + 2 8659025203 56c65102 c3

3

+

2
(berms an 5.7, s
1 1

2 2
b. + h. = -
al o a2 1 saceclcgc3 2 568602 c3s3 + CSSlCEC3

+ (terms in 312, 813) (4.9)

From A.4 1t 1s found that cosy = N ° L 18 glven by
1

(A.10)

Il
0
0

cosy 550
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APPENDIX B. THE ABERODYNAMIC TCRQUE

If a sagtellite 1s in orbat 100 miles or more gbove the earth's
surface, then the ratio of the speed of B¥ to the most probgble random
speed of the air molecules ig of the order of 103. At these altitudes
the mean free path of the molecules greatly exceed the maximum linear
damension of the satellite Hayes and Probstein [18] have shown for

bodaes in such free molecular flow that the pressure and shear 18 given

by

(2 - fn)pv2 cos U

o]
It

= ftpV2 sin ¥ cos

A
1

where fn and f, are the normgl and tangential accommodation coeffi-

cients, p 1s thz density of the air, V = !2?/a| where XP/a 18 the
velocity of a point P of the element of surface area of B relative %o
the free-stream velocity of the air near the satellate and ¢ 1s the
angle between the vector 3? a and a line normal to the surface element.
Yor the satellite attitude motions consgidered in this thesis the
angular velocaty of B 1n inertial space 15 such that error in taking

+
EP/a = 3? /a is at moit 0.0001%. 1In the following derivation V will
B¥/a
v

be assumed to be .
The accommodation coefficients are defined by ft = (Tl - Tr)/Tl
and £ = (pl - PT)/(Pl - pb) where, for example, p, 18 the normal
momentum component of the molecules which are re-emitted from the surface
with a Maxwellaan distribution at the surface temperature Tb and the
subscripts 1 and r denote incident and reflected. Hayes and Probstein
conclude from the results obtained by experimentalists that f% lies
an the range between 0 8 and 1.0 and f, 1s about unity
irf R, denotes a unit vector normal to the element of surface

are7, say ds, and is directed out of B and 1 1n 1s such that
B /g,
1

= Vn , then the force on ds 18 given by

dF = -pV2 cos y[(2-f Jecos ¥ n - £, sin ¢ n lds (B 1)
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where 1n, 1s a unit vector in the direction of the projection of -n

=Y
onto ds.
For a spherical satellite the aintegration of {B.1l) over the half

of the surface in the flow gives

F = -CDSpV2/2E (B.2)
where C_=2 -7 -7%_ and B is the progecied area so that the force
D n t B*/a
vector i1s parallel to v and 1s a drag force.
%
If £, =f =1 1n (B.1), then dF s parallel to EF for an

element of a satellite of arbiatrary shape. Thus, the sum F will be a
drag force only for any satellite af fn = ft = 1.
If f =1 and £, = 0.80, the lowest value given above, then 1in

(B.1), the term in parentheses can be written as

n + 0.2 sain Y(cos ¢n, - sin yn)

where n, 1s perpendicular to n and 18 directed maximally away from
dsl. FExamination of thas term shows that a "1ift" component of the force
1s possible for some orientations of some satellites. For g cylindrical
satellate wath exther circular or ellaptic cross section an a nearly
earth~polinting orientgtion, ssy 10'3 radians, the term which contrabutes
to the 11ft 1s smaller than 10> times the drag component For both
lateral and end surfaces so that the "lift" component of the resultant
force will be insignificantly small. For all other orientgtions of any
satellite the ratio of "laft" to "drag" i1s still less than 0.12.

The aserodynamic force used in the calculgbtion of the aerodynamic
torque for B¥ wall be that given by (B.2).

King-Hele [23] considers the error to be less than 5% when C, 2s
taken to be 2.2 for both spheres and cylinders (ﬂ/d >-l) af CD 18
based on the mean area, S, perpendicular to the direction of motion.

The atmospheric densaty p has been determined experamentally and
theoretically in resent years for altitudes gbove 100 miles. It has
been found (see King-Hele [23] and Johnson [21]). that p decreases
almost logarathmically with altitude between gbout 150 miles and about
500 miles. If this be the case then
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P=p exp[~K(r-rP)] (B 3)

where the subscript p denotes perigee, X 1s a constant to be deter-
mined from the data and r 1s the distance from E¥ to B¥. The
atmospheric density data is usually plotted on semi-log graph paper so
that K can be read from the plots directly From these plots it 1s
observed that K should be sbout O 02 miles ™™ from an altitude of 200
mles and should be sbout O 01 miles ™  from an altitude of 500 miles
Also, 1t 18 observed that due to changes in the sun's influence between
day-time and night-time, the density changes by a factor of about two
at an altitude of 200 miles and by a factor of asbout ten at an altitude
of 500 miles. The maxamum values occur in the dsytime. If 1t 1s
desired to fix gp and K for any one orbit without regard to day and
night, then for the most nearly correct values of p over the range of
altrtudes of the orbat and over the time interval of days 1t i1s best to
pick the day-time value of pp and the value of K which corresponds
to day~time values of p near perigee. Thas 1s done in the thesis for
a height of perigee of 200 miles In thig case the densaty, p, as
given by (B 3) 1s considered to be too large during might-time by a
factor of two at 200 miles and by a factor of ten at 500 miles., It is
consadered to be too small by a factor of 0.7 during day-time at 500
miles and to be correct during day~time at 200 miles

The torgue of the aerodynamic forces acting on the elements of
surface area of a spherical or high-accuracy earth-pointing cylindrical

satellite 18 gaven by

T =4 xF

(B L4)

where £ 15 the distance vector from B* to the geometrical centroid
(GC) of the satellite.

In Appendix A, Figure A 1, the orbiting reference axes with unit
vectors 231,932,233 were defained The unit vectors Ei’ 1= 1,2,3,
are defined in Section A of Chapter IT (see Fagure (2.1)).

Since the GC 1z fixed an B, 1t is convenient to write

L=12n + 3222 + hen, (B.5)
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where ﬂl =4 n,1= 1,2,3 If n 1s wraitten in terms of s
= 1,2,3, then with the use of (B 5) T, will be ain.terms of n_;
1i=1,2,3, as desired.

% % % .
Since vB /a = VB - va = Vn and since vB = Tn + 1T8n and
— - = - -Rl _Be

[x]
I

vo=w X rgBl = éEr(ﬂ X‘ERl) where ©_, 18 the angular speed of the

E
earth and W 1s given in Appendix A, then

R r(9 - e ) 8 _s_c
T E 56
n=-my — EOo nR + ——— (B 6)
1 3
where 8g; Cg ave defained an Appendix A.
From (B.6) 1t 1s seen that
v2=f2+r292+r2[é§(c +sc)-29 cg ] (B7)

With the a1d of (€ 7)-(C 9) equation (B 7) can be written as

P - h2(1+e2 + 2ech)

2(1-2)2

=2 22
- 2ho.cl + ¥ 26 (c BCG)
where c¢8 = cos 6.

If e =0 05, then the expression for v differs from

V= (n/a)(L + 20c0)/2 = 16 (B 8)

only 1in the third significant figure.

The substitution of (A.5) into (B 6) and the results of this
substitution into (B 2) produces an expression for the force, F, which
1s in terms n,1= 1,2,3. If this expression for the Porce is substi-

tuted into (B h) with (B 5) and 1f the vector product 1s carried out,

the result is I, = Talgl + Té2n2 + T 3_5 where
CDSﬁV
Tal = = —2—-—- {r(,6282 + ﬂSCQSS) - I'(e - GE S)E'BQS:LCE e
+ 4 (Cl 5= 5 2ss)] + re 5[£2 1%z ﬂs(slc3 + clsESS)]}
CDSpV
Ta2 = -~ {r(ﬂscgc -4 18 ) + r(6-8 08)[3 (Sl oGz + )+ﬂl 1%
162 (Contlnued)



+

rQEcesafﬂs(slSS - 015203) - ﬂlclce]}

CDSpV .
23 = " B {-r(.ﬂlces5 + £202c3) + r(e-GEca)[El(clc3 - 318255)

=

]

- 22(5152c3 + clSS)] + reECSSS[ﬂl(SlCS + 013255)
- £2(5133 - clsecs)]} (B 9)

The quantities p and v in (B.9) are assumed %0 be smtably
given by (B.3) and (B 8) The quantities v,r, and O are given as
functions of time in Appendix C  The quantities CD’ S, ﬂl, 1= 1,2,3,
pertain to a given satelllte, and, the quantities h,a,ca,sa,ep,rP,K

and gp pertain to a given orbit. Except for C which 1s taken as

2
OD =2 2, grven values of these guantities were iLosen in Chapter IZX
The angular speed of the earth is QE =73 X 10"5 rad /sec.

The error 1n the torgue components, (B 9 ), are considered to be
caused primarily by the error in p and the error in the product GDS.
These errors were discussed above The total error in each of Tal’
1= 1,2,3, 1s considered to be between 20004 to large (night-time at
500 miles) and 50% too small (day-time at 500 miles) Generally, this
means that the magnitudes of the components of Ea are between 1/2 and
20 times the correct values

For the purpose of delermining a feedback control law which will

result in suitable attirtude motion, when this motion is influenced by

the atmosphere, thais inaccuracy 1s i1nsignificant Of course, performance

measures such as fuel cost can be in ercor as much as Tal’ 1= 1,2,3,
are in error, bui, generally, this depends on the magnitudes of the

components of the other torques which influence the attitude motion.
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APPENDIX ¢  THE PARAMETERS OF THE ORBIT
AS FUNCTICNS OF TIME

King-Hele [23] and Sterne [33] have derived expressions for the
rates of change of a, e,.2, 5 .and GP of a Kepler orbit due to the
pramary perturbing sources which are the earth's oblateness and the
earth's atmosphere. For the orbits considered an this investaigation
the changes are less than 10 miles per day in a, 2 X 1o'h per day 1in
e, 7° per day in , 1° per day i1n & and 10° per day in Qp For any
one orbit these changes cause only an insignificant change in the terms
in the attitude equations of motion  Thus, since the equations of mo-
tion are periodically time varying, they need to be integrated for a
single orbit only so that for any one integration a, e, @, & and Qp
can be assumed constant. -

The angle & varies from zero to 27 radians For a Kepler or-

b1t 6 1s related to r by

r = (b%/4) (1 + ec)™t (¢ 1)

where W = mEG, 6 = cosf® and h 18 a constant such that r29 =h

Thus,
B - 0% (1 + eco)d (¢ 2)
3
T
6=n (1 + e06)2 (€.3)
and.
;L_, _ (l 4 609)2 (C )-l-)
2~ 2 2.2 :
T a~ (1L -¢e%)

- T o

# For convemience c@ = cos8, but generally ¢ = cos (8 + 90).
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where n = u2/h3 and a (1 - ee) = h2/u
The differentiation of C.3 with respect to time and the substitu-

tion of C 3 into the dafferentiated expression gives
6= —2n2ese (1 + eco)d (C.5)

The angle € can be written as an approxamate function of t so
that the raght hand sides of equations C 1 - C 5 can be written as ap-
proxamate functions of +

In the thesis e 1is assumed to be less than or egual to 0.05 In
this case the function (1 + ec:e)"2 can be expanded 1n s rapidly con-
verging power series in e so0 that the integral of C 3 can be written

as

g %
J[‘ (L - 2echd + 3e2026 - [REMATNDER]) @6 = nk/ﬁ at
0 0

vwhere (REMAINDER)} = he3[(ce + eczb)3/(14+-ece)8]e=x for 0 < x < 0.05.
If the maximum gbsolube value of the REMATINDER 1s used, then

0
If (REMATNDER) a0l < 6.5 X 10748

0

s0 thatb

at = 6(1 = 3/2e2) - 2e sinf =~ 3/’+e2 sin 26
with an error less than 0.06% or

ut = 8 - 2e sind (¢.6)
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with an error only in the thard signaficant figure (except at 8§ = 0O
where the error 1s zero)

Equations C 1 - C.5 are approximately given by

r = (B/) (L - ece) (¢ 7)
E - n° (1 + 3ece) (c 8)
6 =1 (1+ 2ecs) (¢ 9)
r 22 a® (14 2eco) (¢ 10)
5 = -2n"ese (L + 3ece) (c 11)

with the approximation only in the third significant figure

The use of C.6 and trigonometric i1dentities results in

ce

cos nt cos (2e sind) - sin nt sin (2e sing) {¢c 12)

and

sé

sin nt cos (2e sing) + cos nt sin (2e sing) (¢ 13)

The expressions for c¢f and s6 given in C 12 and ¢.13 differ
from exact values by less than 0.0L. (This 1s easily seen by plotting
[cosg - cos (6 £ €)] and [sine - sin (6 £ €)] as a function of the
error, € <001 (¢ >0), for various values of 6 ) Thus, 1f ¢ 12
and C 13 are substituted into C.7 - C 11, then C.7 - C 10 wi1ll be in
error only in the fourth significant figure and C 11 will be in error
by less than 14 for most of the orbat. In C 7 - C 11 the factors
(1 - eco), (L + 2eco), (1L + 3eco) and s (L + 3ecd) can be written
with the aid of C 12 and C 13 as
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(1 -~ ecB) = 1 - e cos nt cos (2e sinB)

+ e sin nt sin (2e sinf) (c.1h4)

(1L + 2ec8) = 1 + 2e cos nt cos (2e sang)
~ 2e s1in 0t sin (2e sind) (C.15)

(1 + 3ech) = 1 + 3e cos nt cos (2e sind)

3e sin nt san (2e sind) (c.16)

]

s6 (1 + 3ecB) = sin nt cos (2e sinb) + cos nt sin (2e s1nd)
+ 3e cos nt sin nt {cos2 (2e s1nB) - s:.n2 (2e sano )]
+ 3e (cosgnt - 81n?nt) sin (2e sin@) cos (2e sind)

. (c.17)

Since e < 0.05, then |sin (2e San)l‘S 2e < 0.1 and |cos (2e
g1n9)| = 1.00, Thus, C.14 -~ C.16 can differ from

(1 -ecB) =1- e cos nt (c.18)
(1 + 2eeB) = 1 + 2¢ cos nt (c.19)
(1L + 3ec8) =1 + 3e cos nt (C.20)

only an the third significant figure and

s6 (1 + 3ecO) = sin nt + cos nb ° 2e 8108 + 3 e cos nb sin nt

+ 3e (cosgnt - 31nent) * 2e s1nd (C.21)

18 1n error by less than 1%. Since #1nf = sin nt + 2e sind cos nt
(from C.13) wath less than 1% error for most of the orbit, then C.21

can be written as
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s6 (1 + 3eecB) = san nt + 5e cos nt sin nt

It

or

s0*(1 + 3ec8) = sin nt + 5/2 e sin 2nt (c.22)

with a botal error of less than 1% for most of the orbat. (Actually,
the difference in the exact values and the values gaven by C.22 1s less
than 0.01 for the entire orbat, but the percent error becomes unbounded
as the exact value approaches zero).

Now the substitution of C.18 - C.20 and C.22 into C.7 - C.11 re-
sults an

r=x, [1 - e(eos nt -1)] (c.23)
E3 = n° (1 + 3e cos nt) {Cc.24)
Ir

*

86 =n (1 + 2 cos nt) (C.25)
2. g’ (1 + 2e cos nt) (c.26)
6 = -2n2e(51n nt + 5/2e san 2nt) (G.27)

where in C.7 he/u has been replaced by af{l - e2) =r (1 +e) and
terms 1n e2 omitted., . The resulbts 1n equations C.23 ? C.26 daffer
from the exact v?lues in the third or higher sigmificant figure, and,
the wvalues for é which are gaven by C.27 are i1n error by less than
0,01 parts i1n one for most of the orbhit,

If C.6 1s used, then 88 and c@ can be written approximately as
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gan (0 + 60) san (nt + 90)

+

2e cos (nt + 90) san nt {1 + 2e cos nt) (c.28)

cos (0 + 90) = cos (nt + 90)

I

2e san (nt + 80) sin nt (1 + 2e cos nt) (C.29)

The order of approximation in C.28 and C.29 1s the same as in C 12
and C.13.
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APPENDIX D THE STATE-SPACE REGION OF STATTON-KEEPING

The region of station-keeping, S, was defined in Section A of
Chapter ITI  Since 1t 1s clear that at least parts of the boundary of
S must be switching surfaces for a feedback control law, the choice of
the region S from possible station-keeping regions should be a best
choice. The criteria used for a best choice are small error, a minimum
fuel expenditure and gimplicity.

If the angle, ¢, between the local vertical and the satellite-
fixed line Ll [see Figure (2 1)] and 1ts rate, o', are required to
be small, say |o| <8, |o']| <r, then the requirements on 8., 1 =2,3

and their rates are

|cp|asJ8§+9§ = \IX§+X§ S8

68! +6.01] |3 + x x|
|@,| ~ 2 ? 53 _ 3l 576 <y
2 =2 2 2
92 + 93 Xz + XS

For near earth-poiunting, the yaw angle and its rate must also be
regtricted to small values so that the requirements on 61 and Si
are |91| = 895 [9i| < Bye This region of station-Keeping 1s not suf-
faclent to avoid exceedingly large values in either eé or 8% Also,
the switching logre for a controller hased on such a regron 1s not
sample.

Generally, the station-keeping region should be closed regiron of
the state-space which encloses the oragan Thus, 1n any phase-plane
projgection of the region, the projection of its boundary should be a
closed curve which encircles the origon  Circles, ellipses, parts of
parabolas, parts of straight lines, etc can be used for constructing
the closed curves  However, i1f parts of curves such as circles, para-
bolas, etc., which are analytically described with squares of the state
variables, are used, the error in the state variable signal from the
sensors 1s compounded. Thus, the region whach encloses the origin

should be constructed with linear functions unless such a region results
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in g significant fuel cost increase The region S, as given, 15 oOhe
such region, The dependence of the s1ze of the region on fuel cost as

discussed in Section B, Chapter VI
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APPENDIX E. AN APPROXIMATE SOLUTION OF THE ADJOINT EQUATIONS

For satellites which are "stable" in roll-yaw, the approximate

solution of the adjoint equations for

T

7 3
7= [T Zlvlua«s

T
o)

which 1s derived below 1s in excellent agreement waith the drgital

compuber solutions.

Tet T Tg < Te < T%, denote the time at whach the roll-yaw (pitch)
trajectory re-enters the roll-yaw (pltch) projection of S af the
tragectory has departed the projection of S  Otherwise, let Ty = Tg.
Wath this fixed (after each encounter with the boundary of S} time,
the piecewise linear equations, (4.4) and (4.6) with (k.7), can be
approximated by piecewase constant equabions by replacang % with To
in Al’ A2 and AS'

Tet v, k<7 < f%, 1 =1,...,6, Denote the time at which the
progected trajectory, xl(T*), exits the xluprOJectlon of S. Then,
since F(xl) 1is 1£P1, ~10™  or zero and since Al, A2 and AS are

now constants, equations (4.4) and (4.6) can be laplace transformed as

follows
yaw-roll
-F(x. )
_ 1
88y =Dy = exp(-7,8) - klAiPe AP,
F(xg)
sFy = Ppe = =g e¥p(-158) + P) - KA P
~F(x5) 2
sP; - Dy, = = exp(-xss) - AP, + ke(SAB + Al)Ph
F(XJ_[.)
sB) - By, = — exp(-rhs) + K AR, + P, (B.1)
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Patch

—F(Xs)
sP5 - Pg = < exp(hTBS) - Bk AP,
F(X6)
§Pg = Dg, = exp(-16s) + P5 (B.2)

where p__ = pl(Te), 1 =1y.4.,6, and B = Pl(s) 1s the I=place
transform of the variable pl('r*), 1= 1yeee 60
If equations (B 1) are solved for P,1=1, >4, and equations

(E.2) are solved for P,1s= 5,6, ‘the results are

B 3 2 - -

2
pseBS + pheBlBE - BlT2 - BBTA]S + p183235 + pae(BlB3 - 35)

+

- - B,.T
Pz BB, + (B5 Bth)Tl BABETE + B5T3 + BT,

2 -1
[B532T1 + (BB - B5)Té - B,B,T,]s }/a

3

_ o
Py = {py s + (g, - Bomy, + Tp)s™ - (g By + 3By ¥ 2B

+

T, + BeTh)s - (pleB5 + Py By + BT, - BT, + B5Th)

+

~1
(BT, + BBTS)S }/a

3 2
Py = {pges” + (BgDy, = Bgpy, - T5)s” + [py By + 1, BgBy,

4

Ps.(By + By) + 1y BsBy + BT, - BeTy ls + 1y BBy
2
+ pSeBhB5 + pue(BiBS + BB) - BsTl + BB T, - (Bl + BeBh)Ts

2 -1
BEB5T4] - [B,BT - B)BgTy + (35 - BlBS)Th]s 1/A

- 3 2
Py = (Byes” + (RpcBy * Pge * )T F (2B * PpcBs T BB
* BT, - Tgs +py By +pg By - BT+ BT, + BT,

(B

T+ BlTS)s_l}/A (E 3)
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-1 2
P5 = (P‘)_es - P6e:B6 - TS - B6T6S )/(S + B6)

Pg = (Dges + Dg, + Ty ~ Tgs ™ )/(s° + By) (5 4)

L 2
where T = F(xl)exp(-rls), 1=1,.0,6, A=25 + (13:L - By + BBBA)S

2 - _ _ 2
+ 35(132 - Bu)s + By - BB, and B =k A, B, =KA, By= kz(Al + 5A5),

B}.’. = Kl 3 B = "‘A a.Ild B6 = SKSA Wlth A:L’ i = 1,2_, 3, evalu.a.‘ted

5 2 3
at 1™¥ =71 .
€ 2
Let B1 - 35 + BeBh = 2a, 32 - Bh =b and B5 - BlB3 = ¢c. Then
A can be written as

A= slaL + 2as° + Bgbs + ¢ (E.5)

If the characteristic equation, (EGS), has roots which do not change
type; e.g., from type imaginary to type complex, with time, then eguations
(B.3) and (B.4) can be inverted.once-~and-for-all to give the approximste
solution of (L4.4) and (%.6) for the entire tame of one orbit. This is
the case if B5b 18 Zero or very small.

For satellites (1) and (2) B5b varies periodically from dbout; 10 to
--lO_lL and the roots of (E.5) have real parts less than 0.1 in magnitude
Thus, the exponential factors in the solution due to these real parts

are nearly unity for solution tames 1.e., the time intervals between two
successive encounters with the boundary of S, less than unity (In
Chapter IV 1t 1s seen that dozens of encounters ocecur-in the time of

one orbit, which tekes gbout six time umts to complete. )

If the term an (E.5) with B_b as a Factor 1s omitted, then (E.5)
can be written as A = (52 +-w§)(52 + wg) where wi < a +dab-c and
wg =8 = a?—c - If this expression of A 218 substzbubed i1nto eguations
(B.3) and 1f, on inverting (E.3) and (E.4) for positive and real values
of a)l ,(D2
y and 1 -y, respectively, then the approxamate solution of equabtions

(4.h) and (4.6) 1s

and Bg, the functions siny and cos y are replaced by
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pp = (1 -[(B5 - B) + (mi * mg)](AT*)2} - Py, [ByAT*

+

2 2
BB (4)°] - g Bo(arr)® - 3, [Boacr - BB, (ar*)]

F(Xk)BS(ATﬁ)g - F(xl)ATi - F(Xe)BlﬂTSQ

1

2 2 2 2
= % - * - *
P pleﬂ'r + PEe{l [(cnl + wg) + BZ’)](AT =3 pSeBz(A'r )

phe(BEAT* + BSAT*Q) + F(xe)Awg - F(xl)(ATT)e - F(xh)Bg(ATﬁ)g

2 N2 2 2
= % % ®)= - -
Py pleBs(AT ¥ o+ pae[BBAT + BSBA(AT 7] + p3e{l [(cul ab)

)2

-+

2 2
(B, + B,)1(AT%)7} - py _(BoAT* + 3235(AT*) + Flxy )8 (at)

F(xs)Afg - F(xh)BS(ATﬁ)E

2 2
— e *
P}, ?1eBh(AT = o+ pge[BhAT¥ + BB(AT+) 1+ Py AT

+

Phe[l —[(aﬁ +—u§) +-Bl](AT*)2} + F(Xh)aTﬁ - F(xs)(mg)2

+

F(XE)BLL(ATé")Q ( 6)

P = PSe[l - BG(AT*)E] - p6eB6(AT+)2 - F(X5)AT§ - F(x6)B6(ATg)2

Pg pseAT* + p6e[l - B6(AT*)2] + F(x6)Arg - F(XB)(AT*;)2 (£ 7)

where AT# = 7% - T and ATi = 7% - To1=1, ,6

An approximate solution of the adjoint equations for "unstable
satellates can be derived in a similar manner However, instead of sine
and cosine functions (which can be replaced by simplier functions)
appearing in the equations, the eguations contain the exponential function
and are much more complicated in yaw-roll In Sectaon A, Part 3 of

Chapter IV an approximate solution 1s presented for "unstable” pitch motion
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APPENDTY. F. DIGITAL AND AWALOG COMPUTER PROGRAMS

In Figures F 1, F2, F 5 and F 6 are given listings of the digital
computer programs. These are given in the order in which they are used
in the text The word "clock" which appears 1n the digital computer
program is an ATGOL procedure  Thas procedure was used to determine the
elgpsed time required for the execution of certain parts of the programs
s0 ‘that measures could be taken to reduce excessive computation times
The symbols used in the differential equations (DE) procedures are not
the same ag 1n the dafferential equations in the text since these symbols
were reserved for the plot routine. However, the equivalences are given
in the comments

In Figures F 3 and ¥ 4 are given simplified analog computer programs
which were used to simulate the acquisition motions from g to S and
the steady-state motion for the suboptimal steady-state control. The
time delays required in these simulations were obtained from the time

delays 1n the comparators by time scaling
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PROCEDURE KUTTAMERSONCNs XsHHs Y, Fp EPSs AR s ERRORs, STEPSIZE)S
VALUE N»HHs EPS»AB »STEPSIZESINTEGER N3 REAL XsHHs EPS»AB 3
REAL ARRAY Y[0l} PROCEDURE F3 BOOLEAN ERRORs STEPSIZE}

COMMENT: VERSION OF 660518 660722

EPS AND AB ARE THE RELATIVE AND ABSOLUTE ERROR BOUNDS RESP,
STEPSIZE TRUE TO WRITE STEPSIZE WHEN CHANGED
STEPSIZE FALSE FGR NO QUTPUTY
ERROR 1§ SET TRUE IF STEPSIZE BECOMES 70O SMALL ELSE FALSES
REGIN COMMENT KUTTA MERSON INTEGRATES A SYSTEM OF N FIRST ORDER
ORDINARY DIFFERENTIAL EQUATIONS. SEE L. FOXs "NUMERIGAL
SOLUTION OF QRDINARY AND PARTIAL DIFFERENTIAL
EQUATIONS"» P, 24, PERMAGON PRESSs 1962 !
OWN REAL HC, FINAL, H2s H3, H6s H8s ERR» TEST» T, HJ3
OWN INVEGER I,CY,CyT3 CWN BOOLEAN DBL3 LABEL L» KMs RETURNJ
OWN REAL ARRAY Y1, Y2s FO» Fi{» F2[013013

COMMENT EXCEPT FOR HC», THE OWN VARIABLES ARE FOR SPEED ONLY3
FORMAT MSSG("THE STEP SIZE IS NOKW®s R12,5:™ AT T="»R12.533
DEFINE FORI = FOR I«i STEP { UNTIL N DO #,

CONSTANTS = H2¢H/2,03 H3eH/3.,03 HéeH/&.05 HOeH/8,0 %5
COMMENT CHECK FOR INITIAL ENTRY AND ADJUST H IF NECESSARY 3}
ERROR ¢ FALSES
H ¢« HH 3
IF N=0 THEN BEGIN HC ¢ H$} GO TO RETURN END3
IF H=0 THEN GO 7O RETURN} FINAL ¢ X+¢H}
IF HC=0 THEN HC ¢ H3
IF EPS#0 AND ABS(H)>ABS(HC) THEN
IF SIGNCH)#SIGNCHC)Y THEN H ¢ HC ¢ =HC ELSE H ¢ HC3
COMMENT: CUT IS THE NUMBER of TIMES THAT THE sSTEP SIze IS ALLOWED TO
HALVE ITSELF IN SUCCESIONS
CUT ¢ 43
CU ¢ CUT3
T ¢ X+H} X € FINAL} CONSTANTSS
COMMENT MAIN KUTTA=MERSON STEP LOOP 3
LiFOR T¢I STEP H UNTIL FINAL DO
BEGIN KM3 F(T=H,Y,F0);}
FORL Y1({1l ¢ FOLIIXH3I+Y[IJ} F{(T=2xH3, Yis F1)}
FORL YI{I)l € (FOCLIJ+F1LI0IxH6+YII15 FET=2xH3, Y1» F1)}}
FORE YILIJ € (F1LI1x3,0+FO0CTYIxKB+YI13 F(T=H2s Yi» F2)}
FORL Y1LIJ & (FPL11x4,0=F1ETIx3.04F0FT1IXH2+YLI13 F{(T» Y1, F1)}
FORY Y2LI] ¢ (F2LI11X8,0+F1LT)4FOLTI))IxH&+YE] 13
COMMENT DUES THE STEP SIZE H MNEED TO BE CHANGED 3
IF EPS#Q THEN
BEGEN DBL ¢ TRUES;
FORI BEGIN ERR¢ABSCYL{I1=Y2L13)x0,25 TESTe¢ABSC(YI[IJ)IXEPS)
IF ERR>TEST AND ERR>AB THEN COMMENT HALF H}
BEGIN H ¢ H2} TeT=H23
IF (CU«CU=1)<0 THEN BEGIN ERROR ¢ TRUE3} EPS¢Q}
GO TO KM} END3
IF STEPSIZE THEN WRITE(MSSGsHaT)3
IF T+H=T THEN BEGIN X¢«T} ERROR ¢ TRUE3S GO TO RETURNS

END3
CONSTANTSS GO TO KM}
END,
1F 64.0xERR>TEST THEN OBL ¢ FALSES

ENDJ

Fagure F 1. Solution of Approximate, Minamum~Fuel Optimal, Station-
Keeping Equations [(% 3) and (4 L4)] for Roll-Yaw.
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PROCEDURE DE{TAU»Y,DY2}
VALUE TAUjS
REAL TAUS
ARRAY Y,DY[O1$
BEGIN
REAL Al»A2:,A35A43
COMMENT Y[13=1000xX1s YE21=1000%X2, Y[31=1000%xX3, Y[41=1000%X4,
Y{5)=0.,01%P1» Y[61=0.,01%F2, Y[71=0,01ixP3, Y[81=0,01%XP4,
Y{91=J,ROLL=YAN=JRY}
Yie YIL113 Y2¢ Y[213 Y3e¢ YL315 Yde Y4513
Y5« YI213 Y6¢ YL613 YT7¢ YL715 YB8e¢ YI[8I}
RGO, 13
FX1¢ IF ABS{Y1)<RG THEN 0.0 ELSE IF Y1>R6 THEN PR1
ELSE =PR1}
FXx2e IF ABS(Y2)SRG THEN 0.0 ELSE IF Y2>R8 THEN PR2
ELSE =PR2}
FX3e¢ IF ABS(Y3)sSRG THEN 0.0 ELSE IF Y3>RG THEN PR3
ELSE =PR3}
FX4¢ IF ABS(Y4ISRG THEK 0,0 ELSE IF Y4>RG THEN PR4
ELSE =PR4}
COMMENT Wi=V1, W2=y2}3
Wie IF ABS(Y6)>0,01 THEN NIXSIGN(Y6) ELSE 0.0}
W2e IF ABS(Y8)>0,01 THEN N2XSIGNCY3) ELSE 0.0}
CT«COSCTAUY? STeSIN(TAUYS
Ale1+4XEXCT, A262XEX(ST+5XEXSTXCT) S
Ael+2XEXCT?  A4eld413%XEXCTS
DY[13¢ =Y2)
DY[2)e¢ KIXAIXY1=A2xY3=K3IxA3IXY4=1000%K1}
DY[3)e =Y43
DYE43e AZXYI4KAXAIXYZ2=K2XA4xY3I=1000xH2}
BYES)e =0 .01XFX1=KixAIXYS=A2XYSH}
DY[6]e Q+01xFX2+YS=KAxXA3xY8)
DYL71¢ =0, 0iXFXI+A2xYS+K2HRALXYSS
DY[B8)e O0,01xFX4+K3IxAIXYE+YTS
DYL93¢ ABS(H1)+ABS(W2)}
END DEr
COMMENT INITIALCFINAL) CONDITIONSS
START! READCE NI sN2sKi»K2sK32sKA,PR12PR2sPRISPRYSX10,%X202X305X40,
MUYEFINISHI}
TAU€TLOJ€03
YL1le2000xX10) Xi[0JeX103
Y{21e1000xX203 X2[031eX203
Y{31¢1000xX303 X3[0)eX30;
YL4)el000xX403 X4r[0leX40}

YI51¢ IF ABS(X10)=RG THEN =MyxSIGN(X10) ELSE 0.0}
Y(6le IF ABS(X20)=RG THEN =MUSIGN(X20) ELSE 0.03
P2l0leYD6]; P1[0le¢YtS513
YL7)le IF ABS(X30)=RG THEN =MyxSIGN(X30) ELSE 0.05
Yi8le IF ABS(X40)=RG THEN =MUxSIGN(X40) ELSE 0.0
P4L0JeY(B]3 P3[OTeYLT13
YL9le03
WRITECLABL)Y,

HRITECRESLTAU»X102X202X302X40,Y[612Y[BIsH12H2))
COMMENT CALCULATING USING KUTTAMERSON AND LOADING ARRAYSS
FOR Le¢ 1 STEP 1 UNTIL 628 DO BEGIN

Fagure F.1 Containued.
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KUTTAMERSONC9sTAU» 04015 YsDE»B=4,8=5FINISHsFALSE )}
TLL]lel}

X1[L31¢0,001%xYE1]5 X2[L1€0,001%YE213 X3{L1e0,001xy[3]}
X4LL1¢0,001xY[43;
P2LL1€10OXY{6); PA4CLI€100xY[8]} PIILI¢100xY[S]1} P3LLI«100xY[7)3
PRINT¢13
IF L MUD PRINT = O THEN
WRITECRESLoTELI,YEL)aYE21oY[33, YL 4T YI6TsYIBT2HL-H2DS

END KUTTAMERSGN LOOP}
JRY€Y[9Fi}
WRITE(PARMSESKLsK2sK3»KgsJRY)S
WRITECLPAGE J»PARMTIPR1->PR2sPR3I>PRYSNI» N2, MUY}

Fagure F 1 Containued.
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PROCEDURE KUTTAMERSONCNs XsHH, Y, Fs EPS» AB » ERRORs» STEPSIZE)}
VALUE N»HHs EPS,AB »STEPSIZ2EJINTEGER N3 REAL XsHHs EPSsAB 3
REAL ARRAY Y[Q01} PROCEDURE F3 BOOLEAN ERRORas STEPSIZE;

COMMENT: VERSION OF 660518 660722

EPS AND A8 ARE THE RELATIVE AND ABSOLUTE ERRQR BOUNDS RESF.
STEPSIZE TRUE TO WRITE STEPSIZE WHEN CHANGED
STEPSIZE FALSE FOR NO QuTPUT
EKROR 1S SET TRUE IF STEPSIZE BECOMES TOO SMALL ELSE FALSE}
BEGIN COMMENT KUTTA MERSON INTEGRATES A SYSTEM QOF N FIRST ORDER
CGRDINARY DIFFERENTIAL EQUATIONS. SEE L« FOX» "NUMERICAL
SOLUTION OF QRDINARY AND PARTIAL DIFFERENTIAL
EQUATIONS®» P, 24, PERMAGDON PRESS, 1962 3
OWN REAL HCs FINAL» H2,» H3, H6s HBs ERR» TEST» T, H»
OWN INIEGER I,CU,CUTS OWN BOOLEAN DBLJS LABEL L» KM» RETURNSZ
OkN REAL ARRAY Y1» Y2s FO» F1, F2[033013

COMMENT EXGEPT FOR HC, THE OWM VARIABLES ARE FOR SPEED ONLYS3
FORMAT MSSG("THE STEP SIZE 1S NOW"s R17.5," AT T="s»R12.5)3
DEFINE FORI = FNR 1¢3 STEP 1 UNTIL N 0O #,

CONSTANTS = H2¢H/2,0} H3¢H/3.,0} H6€¢H/6,0r HBeH/B8.,0 ¥}
COMMENT CHECK FOR INITIAL ENTRY AND ADJUST H IF NECESSARY »
ERRQOR ¢ FALSE;
H ¢ HH »
IF N=0 THEN BEGIN HC « Hr GO TO RETURN END3
IF H=0 THEN GO TO RETURN} FINAL « X+H}
IF HC=0 THEN HC ¢ H}
IF EPS#0 AND ABSCHY>ABS{HC) THEN
IF SLGNCH)ASIGNCHG)Y THEN H « HC ¢ =HC FLSE H € HC)
COMMENTS: CUT IS THE NUMBER OF TIMES THAT THE STEP SEZE IS ALLOWED TO
HALVE ITSELF IN SUCCESION}
CUT <« 10}
cl &« CUTS
T & X+H} X & FINAL} CONSTANTSS
COMMENT MAIN KUTTA=MERSON STEF LOOP 3
LiFOR T€T STEP H UNTIL FINAL DO
BEGIN KM$ FCT=HyYsF0Q)}
FORE YIEZ) ¢ FOLIIXH3+YLI13 F(T=2xH3s Y1, Fl3}
FORI Y1[TI) ¢ (FQLIJ+FLEIIIxHE+Y[I)} F(T=2xH3, Yis» F1);
FORI YI[I) € (FLITI1x3,0+4FQCI3)xHB+YL[I1} F(T="H2s Y1» F2);}
FORY YIEI] € (F2LIIx4,0=F1LlT)x3,0+F0TT]1)XH2+YELI? F(Ts Yi, F133
FORI Y2LI1 € (F2lI11%4,04F1LI34FOLT)IXHE+YLI]
COMMENT PDULS THE STEP SIZE H AEED T BE CHANGED 3
IF LPS#20 THEN
BEGIN DBL ¢ TRUES
FORI BEGIN ERR€ABSCY1[I1=Y21T133%0,23 TEST¢ABSCYILIJI®EPRS}
IF ERR>TEST AND ERR>AB THEN COMMENT HALF HJ
HEGIN H € H23 TeF=H23
IF CCueCyY=1)<0 THEN ERRQR ¢ TRUE}J
IF STEPSIZE THEN WRITE(MSSGsHsT)}
IF T+H=T THEN BEGIN Xe&T3 ERROR ¢ TRUEJ GO TO RETURNS

END3J
CONSTANTS; GO TO KM}
ENDJ
IF 64+0xERR>TEST THEN DBL ¢ FALSES

tnD3
IF DBL AND H < HH THEN BEGIN H ¢ 2,0xH}

Figure F 2  Solution of Approximabte, Minimum-Fuel Optamal, Station-
Keeping Equations [(4.5) and (& 6)] foxr Pitch
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1F STEPSIZE THEN WRITE(MSSGsHsT)3
LU € CUTS

CONSTANTS END DOUBLE H3
ENDJ
FORI YL[I) & Y2(13;
END KUTTA MERSON LOOPS
IF EPS=0 THEN GO TO RETURNS
COMMENT NOW BE SURE TO HAVE T = FINAL
HC ¢ H} H ¢ FINAL=(T=H)}
IF ABS{HI>ABS(FINAL)X1.45519152288=11 THEN
BEGIN T « FINAL? EPS ¢« 0j CONSTANTS} GO TO L ENDJ
RETURNS: ENU KUTTA MERSON;
PROCEDURE DECTAU»Y»DY)S
VALUE TAU3 REAL TAU}
ARRAY Y,»DY{01}

BEGIN

REAL A»B3

CTeCaS{TAU); STe«SINCTAUNS
A€2XEXCST+SxEXST=CT )
Bel+3XEX(TS

COMMENT YL11=1000xXx5s Y121s51000xX6s YL31s0,01%XP5s Y{41=0.01xP6,Y[5]=
JrPLTCH=JP}
Yie YL1), Y2e¢ Y[213 Y3¢ YL313 Yde YIH)3
RG5¢«041s RGE€Q,1}

FX5¢ IF ABS(Y$)SRGS THEN 0 ELSE

IF Y1>RG5 THEN PRS ELSE =PR53
FX6« IF ABS{Y2)2RGé THEN 0 ELSE

IF Y2>RGé6 THEN PRé ELSE =PR&S

COMMENT W3=V3:
W3¢ IF ABSCY43>0.01 THEN N3xSIGN(Y4) ELSE 03
DY[1le =Y2)
DYE21¢ 3IXK3IXBXY{141000X{A=W3)}
DY[3)¢ =Q.01XFXS5=3xK3IXBxY4} s
DY[41€0.01XFX6+Y3S
DY[S1e¢ ABS{W3)}
END DE }
COMMENT INITIALCFINAL)Y CONDITIONS?
START: READ(E,K3,N3s»PRS5,PRESXS0,X60,YE31,YE41>YI[51)IFINISHI}
TAU«£0,03 TL01e0,03
YL1}e1000xX503
ASL03eX503
Y{21€1000xX603
X6L01eX603
Y[3)le IF ABS(XS50)=RGS THEN =MUXSIGN(XS50) ELSE 0.03
Y{43e IF ABS{X60)=RG6 THEN =MUXSIGNC(X60) ELSE 0.0}
P50(01eY(33}
Pel0l1¢YL41}
WRITECLABL)S
HRITECRESLTAU» X505 X605 YL 315YI415W3)}
COMMENT CALCULATING WITH KUTTAMERSON AND LOADING ARRAYSS
FOR L ¢ 1 STEP 1 UNTIL 628 DO BEGIN
KUTTAMERSONCS, TAU» 001 2YsDEsB=ls8m5, NUTS»FALSE)S
IF NUTS THEN
HRITE(<®"STEPSIZE WAS CUT FOUR TIMES AND KMC CONTINUED»T=",
FEe3s>»TAUD}

Figure F.2. Continued.,
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http:ABS(Y4)>0.01
http:RG5+0.ls

XSCL1¢0.001xY[113 X&6(L1e0,00ixYE21;

PSILI«1GOXY[3}3 PgILI+«100%Y[4])}
TELI*LS

PRINTe1j

IF L MDD PRINT = 0 THEN
WRITE(RESL,TELILY[135Y[232YE3)5Y[4)5K3D}

END CALCULATING AND LOADING LOCPS

JPeYL513

WRITECIPAGE]sPARM)EsK3sN3»PRS,PR6sMUSJP Y}

Fagure F 2 Continved .
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PRECEDING PAGE BLANK NOT FILMED.

PROCEDURE KUTTAMERSONC(N, X, H» Y, F, EPS» AB » ERRORs STEPSIZE)S
VALUE N» Hs EPS»AB »STEPSIZESINTEGER N3 REAL X+ H» EPSsAB
REAL ARRAY YL01; PROCEDURE F3 LABEL ERRORJ BOOLEAN STEPSIZES

COMMENT EPS AND AB ARE THE RELATIVE AND ABSOLUTE ERROR BOUNDS RESF,

STEPSIZE THUE TO WRITE STEPSIZE WHEN CHANGED, FALSE FOR NO QUTPUTS

BEGIN COMMENT KUTTA MERSON INTEGRATES A SYSTEM OF N FIRST ORDER

ORDINARY DIFFERENTIAL EQUATIONS. SEE Ls FOXs "NUMERICAL
SOLUTION OF QRDINARY AND PARTIAL DIFFERENTIAL
EQUATIONS"» P, 24, PERMAGON PRESS, 1962 5

OwN REAL HGCs FINAL, H2s H3s, H6s» HB» ERR» TESTs T3

DWN INTEGER I3 OWN BOOLEAN DBL» LABEL Ls KMs RETURN»

OWN REAL ARRAY Y1, Y2s FOs Fls £280:3013

COMMENT EXCEPT FOR HC, THE OWN VARIABLES ARE FOR SPEED ONLYJ
FORMAT MSSGC"THE STEP SIZE IS NOW™, £18,11))

DEFINE FORI = FOR I+#1 STEP 1 UNTIL N DO #,
CONSTANTS = H2¢H/2,03 H3€H/3.05 H6e¢H/6,03 HBeH/8.0 #3

COMMENT CHECK FOR INITIAL ENTHRY AND ADJUST H IF NECESSARY 3
IF N=0 THEN BEGIN HC ¢ H} GO TO RETURN ENDJ
IF H=0 THEN GO 70 RETURN} FINAL ¢ X+H3
If HC=0 THEN HC ¢ H3
IF EPS#0 AND ABS(H)>ABS(HC) THEN

IF SIGNCH)#SIGNCHC) THEN H ¢ HC & =HC ELSE H ¢ HC3
T € X+Hs X & FINAL3? CONSTANTSS
COMMENT MALIN KUTTA=MERSON STEP LOOP 3}
LifFOR T¢#T STEP H UNTIL FINAL DO
BEGIN KM! F(T=HaYsF0);
FORI Y1EIT ¢ FOLIIXH34YLIl3 F(T=2xH3, Yi, F1)}
FORL Y1[I] ¢ (FOLIJ+F1ITI]IXHO+Y[II} F(T=2XH3, Y1s» F1),
FOR} Y1[I1} € (FILI3x3,0+4F0CT1)IxHB+Y[I33 F(T=H2» Y1 F2);
FOR: Y1[I1 ¢ (F2il13ix4,0=FilT1x3.0+F0011)XH24YLI1} FC(Ts Y1, F1)3
FORL Y2[1) € C(F2LIix8,0+F1[I3+FOLT))IXHE+Y[II»
COMMENT DODES THE STEP SIZE H NEED TO BE CHANGED 3
IF LPS#0 THEN
BEGIN DBL + TRUE;
FORI BEGIN ERReABS(Y1[IJwY2F113x%0,25 TESTABS(YL[IJIXEPS)
1F ERR>TEST AND ERR®AB THEN COMMENT HALF H3
BEGIN H ¢ H23 TeTmH2}
IF STEPSIZE THEN WRITECLIDBL]+ MSS5Gs H)J
IF T+H=T THEN BEGIN XeT3 GO T0 ERRCGR END}
CONSTANTSS GO TO KM3
END3
IF 68,0%ERR>TEST THEN DBL € FALSES
END3
LF DBL THEN BEGIN H ¢ 2xHJ}
IF STEPSIZE THEN WRITECLDBLI» MS5SG, H)S
CONSTANTS END DOUBLE K3
END3
FORI  Y[I] « Y20113
END  KUTTA MERSGN LOOP3
IF EP$=0 THEN GO TD RETURNJ
COMMENT NOW BE SURE TO HAVE T = FINAL 3
HC ¢ H3} H ¢ FINAL=CT=H)}
IF ABS(H)>ABS{FINAL)IX1,4551915228€~=11 THEN
BEGIN T ¢ FINALJ EPS ¢ 0» CONSTANTSS GO TO L END3
RETURNS END KUTTA MERSONS

Figure F.5 Solution of Nonlanear, Suboptimal Acquisition Equations

[(2 1k)-(2 16) and (5 2)]
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1F DBL AND H < HH THEN BEGIN H ¢ 2,0xH}
1F STEPSIZE THEN HWRITE(MSSG,H»T)}
CU & CUT3
CONSTANTS END DOUBLE H3
ENDJ
FORT YEI) « Y2(113
END KUTTA MERSON LODOP}
1F EPS=0 THEN GO TO RETURN.»
COMMENT NOW BE SURE To HAVE T = FINAL 3
HC ¢ H} H ¢ FINAL=CT"H)}
IF ABS(H)>ABS(FINALIX1.,45519152288=11 THEN
BEGIN T ¢« FINALS EPS « 03 CONSTANTSS GO TO L ENDJ
RETURNS ENU  KUTTA MERSONS

PROCEDURE DE(TAUs»Y»DY)}

VALUE TAUJ REAL TAU}

ARRAY Y»DYEOQDS
BEGIN

REAL A1sA22A30A485TASC15C25C35515525853+CT25T3

The TAUHTHETAGS CTe COSCTA)S STe SINCTAYZ

Ale 142xEXCTI A2e=2xExST) A3€1+3XEXCT? Ale CXAIXEXP(KXEX(CT~1))3

COMMENT YL1ISX1, Y[2)=X2» YI31=X3, Yr41=Xs4s Y{5)=XS5, Y[612X6Es, Y[7I=4}

Y1eY[113Y2€YL235 Y3eYE31) Y4€YLB13 YS€YES1S Y6€Y[&I}

C1+¢COSCY1)3 C24C0S8{Y3)5 C3eC0OSCYSY3

S51¢SINCYL1)? S2¢SINLY3)5 S3¢SINCYSII

Vie IF ABS(Y1)<0,0002 AND ABSCY2}<0,0002 THEN O ELSE
»{NI/2)X{SIGNCY2xABSC(Y2)+20xY1)+SIGNCY2+MIXYIxSIGN(GI~ABSCY13)))3

V2e IF ABO(Y3)<0,0002 AND ABS(Y4)<0,0002 THEN 0 ELSE
= {NZ2/2IX{SIGNCYIxABS(Y4)+20XY3)+SIGNLY4+M2XYIXSTIGNCAZ~ABSCY3))));

Vie IF ABS{Y2I<0,0002 AND ABSC(Y&6)<0,0002 THEN O ELSE
={N3/2IX(SIGN(YEXABS(Y6)+20XYS)I4SIGNLYS+M3IxYSXSTGNCA3=ABSC(YS)I) )}

Wie Y2xC2xC3+YgxS3+AIx(SIXSIwWCIxS2XC3)3

H2e YAXC3I=YZ2XC2XSI+AIX(SIXCI+CIX52X53)3

W3¢ YO+Y2XO2+AIXC1xC23

DY[13¢ Y27

DYE2)e(YoxXYUXS2=YaxYO+AtX(YAXCIXC2=Y2XSIXS2=Y6XS1 I+A2XCIXS2+K2 xS IxWIxH1

=KIXC3IXH2xHIm3IxXAZX(KI+KZ IXC2X82XCIXSI+ALXCIX(SIXC2+CIXC3)
+C3IXVI=83xV2) /023

DY[3)¢ Y43

DY[43e Y2XYOXRC2mAIXCIX(Y2+YEXS2)=A0XSI=WIXCKIXHIXSI+K2XHIXET)

+3xA3IX(K2XCIXCI=KIXSINSIINCIXS24CIRV2=53IXYE}

DY{Sle Y67

DYL6)emyY2xYaAXC2=DY L2 x52+A1X(Y2XEIXC2+YAXCIXS2IeKINWIXWI=IXKINATIXC2XC2xX

C3x53=A2XCIXC2+A4XCIx(S3=C3)+V 3}

DY{71¢ ABS(V1)+ABS(V2)Y+ABS(V3)}

END DE}

COMMENT INITIAL CONDITIONSS CLOCK3
START? REAUCEsKIpKZ2oK3sNisN2sN3»X10s%20,X30sX402X50,X60M8,015M2202,
M35835C,D»Ks THETAO» X1L s X2L s X3La XGL s X5L s X6L s X1Rs X2Rs X3R2X4R» X5R» X6R)
EFINISHI}

TAUe YI71¢ TLO3e O3

X1001« Y[11}¢ X103

X2[0)¢ Y[Z2]¢ X203

X3[0Je YL3]¢ X303

XGE0le Y[41e X402

XS5[0)e Y[51¢ X503

Figure F 5 Containued.
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X6[0le YiGl¢ X603
WRITECLABL)J

WRITECRESL,TAU»XE0»X202%X30,X802X50,X60)3
COMMENT CALCULATING WITH KUTTAMERSON AND LODADING ARRAYSS
FOR Le 1 STEP 1 WHILE L<1000 AND CABSCYr21)2D OR ABSCY[41)2D 8R
ABS(YI61)2D) DO
BEGIN
KUTTAMERSUNCZ»TAU»0,002sYsDE»B»4,8=5,NUTS,FALSE)S
IF NUTS THEN WRITE(<"STEPSIZE WAS CUT FQUR TIMES BUT KMC CONTIMUED,
Tan",F6,3»>»TAUY}
X1[L3¢ YL133
X2[L1i«e Y23}
X3[L)e Y(31}
XalLle Y413
XS5CL1« YL513
X6LL1¢ YLOIS
TELI€G, 004515
PRINT 13
IF L MOD PRINT=0 THEN WRITECRESL,TLLI»Y[13,Y[23sYL31aY[4IsY[5]15Y161D3
END CALCULATIND AND LOADING LOOP}
Je YITI3
WRITECIPAGE]sPARMsE s K1oK22K32G»D2pd)} CLOCKS

Fagure F.5. Continued
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PROCEDURE KUTTAMERSDN(Ns X,HHs Y, F, EPS, AR » ERROR, STEPSIZE),
VALUE N»HHs FPS,AB »STEPSIZE,INTEGER N3 REAL XsHH» EpPpS,AB
REAL ARRAY YL(0l, PROCEDURE F» ROOLEAN ERRORs STEPSIZE,

COMMENT. VERSION OF 660518 660722

EPS AND AR ARE THE RELATIVE AND ABSODLUTE ERROR BOUNDS RESP.
STEPSIZE TRUE TO WRITE STEPSIZE WHEN CHANGED
SIEPSIZE FALSE FOR NO OQUTPUT
ERROR IS SET TRUE IF STEPSIZE BECOMES 700 SMALL ELSE FALSES
GEGIN COMMENT KUTTA MERSON INTEGRATES A SYSTEM OF N FIRST AORDER
ORDINARY DIFFERENTIAL EQUATIONS, SEE Le FOX», “NUMERICAL
SOLUTION OF ORDINARY AND PARTIAL DIFFERENTIAL
EQUATIONSY", P, 24, PERMAGON PRESS, 1962 »
0aN REAL HC, FINAL, H2» H3» H6» H8» ERRy TEST» Ts H»
gbN INTEGER 1,CU,CUT», OWN BUODLEAN DBL» LABEL Ls KMs RETURN,
Oni REAL ARRAY Y1, Y?» FO» Fl» F2{0.30733

COMMENT EXCEPT FOR HC» THE OWN VARIABLES ARE FOR SPEED ONLY?

FORMAT MSSG(™THE STEP SIZE IS NOW", R12,5," AT T="»Ri2.5)}
DEFINE FUHI = FOR I¢1 STEP 1 UNTIL N DD #,
CONSTANTS = H2¢H/2.0, H3¢H/ 3.0, H6¢H/6,0, HBeH/8,0 #,

COMMENT  CHECh FOR INIFIAL ENTRY AND ADJUST H IF NECESSARY 3
ERROR ¢« FAl S&»

H ¢ HH »
IF N=0 THEN BEGIN HC <« H, GO TO RETURN END,
1F H=0 THEN GO TO RETURNS FINAL ¢ X+H,
IF HC=0 THEN HC € H»
IF EPS#0 AND ABS(H)I>ABS(HC) THEN
IF SIGNCH)#SIGNCHC) THEM H € HC € =HC FLSE H ¢ HC3
COMMENTS CUT 15 THE NUMBER 0F TIMES THAT THE STEP SIZE 15 ALLOMWED TO
HALVE ITSELF IN SUCCESIONS
cLT « 10,
cL € CUI»
T & X+Hs X & FINAL, CONSTANTSH
COMMENT HMAIN KUTTA=MERSON STEP LOOP
LIFOR Tel STEP H UNTIL FINAL DO
BEGIN HKM? F(T=H,Y»F0)}
FORL YILI1] ¢ FOLTIXH3I+Y[11, F(T=2xH3, Y1, Fil}»
FORL YILI1 & CFOLIJ+F1LIJDXHE+YEIIs F(T=2%H3, Yis F13)
FORL Y1LI3 <« (FALIIx3,0+FO0LT))xHB+YLII3 F(T*H2s» Y1is F2)»
FORL YILI) & (F2LI1x4,0=F1[I1x3.0+F0CIYI%H2+YII1,» F(T» Yi» F1)»
FORL YZ2LI} ¢ (F2L13x%4,04F1ETI+FOLITIxHG6+Y[I]}
COMMENT DUES THE STEP SIZE H KEED TO BE CHANGED 3
{F EP5#0 THEN
BEGEN DBL ¢ TRUE.
FORI BEGIx ERR€ABSCYI[II-Y2011)%x0425 TEST«ABS(YILIJIXEPS)
1F LRR>TEST AND ERR>AB THEN COMMENT HALF H»
BEGIN H € H2s TeT=~H2;
IF (CUeCU~1)<0 THEN ERRQR ¢« TRUE»
IF STEPS{ZE THEN WRITECMSSGsH,T)>
IF T+H=T THEN BEGIN XeT, ERROR ¢ TRUEF GO 7O RETURNJ

END.»
CONSTANTSS GO TO KM3
END»
1F 64+0xERR>TEST THEN DBL ¢ FALSES

END s
IF DBL AND H < HH THEN BEGIN H ¢ 2,0xH}

a Roll-Yaw

Figure F 6. Solution of Optimal Ianear Acquisition Equabions in Backward

Tame
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1f STEPSIZE THEN WRITEC(MSSGsHsT)3
LU « QUT,

CUNSTANTS END DOUBLE H3J
ENDJ
FORI  Y[I]1 e Y2[I13

END KUTTA MERSQN LODOP3

IF EPS=0 THEN GD 7O RETURN}
CUMMENT wnuW BE SURE 7O HAVE T = FINAL !

HC ¢ Hr H &« FINAL=(T=H)}

IF ABS(H)>ABS(FINALIX1,45519152288«11 THEN

BEGIN T ¢« FINALJ EPS ¢« Q3 CONSTANTSS GO 70 L END3

RETURNS: ENU KUTTA HMERSON3
PROCEDURE DECTAUsY»DY)S
VALUE TAU» REAL TAU;
ARRAY Y,DYLO]»

BEGIN
REAL A1,AZ2,A32A4,TAUBS
TAUBe TAU=TF=THETAD, CT« COSCTAUB)Y} s5Te¢ SIN(C(TAUBR)}
Ate 1+2xEXCTs> A2¢ 2xXExST» A3¢ 4+13XEx0TS Ade 1+AXEXCTs
COMMENT Y1=X1s Y252 Y3=X3, Y4=X4s YS5=P1s, Y6=P2s Y7=2P3» YBzPi,
Yie YIL113 Y2« Y[21, Y3e¢ YI31, Y&e Y[4), YSe YES]r Y6e YI61} Y7¢ YETI}
Y8¢ YEBI,
Vie IF ABS(Y6)>1.,0 THEN NixSIGN(Y6) ELSE 03
v2¢ IF ABS(Y8)>1.0 THEN NZ2xSIGNCY8) ELSE 03

DYL1]e=Y23

DY[21¢ AKIXA4XY1=A2xY3=K3IXALXY4oCxA1XEXPCKXEX(CT=1))"V1is

DY[33e=Y4,

DYL4)e AZXYI+KAXAIXY2=K2XAIxY3=V2,

DYLS51e™KIXAAXY6~A2xYE,

DYE6]e YS=K4xXAIxXYS,

DY[L7)¢ A2XYp+K2xA3dxYA}

DYL81¢ KIXAIXYB+YTS

DYE91e ABS(VII+ABSCY2),

END DE»
COMMENT INITIAL (FINAL) CONDITIONS 3 CLOCK3
START, READ(E,K1,K2,K35KE-N1sN2sX10sX20,%30sX80sP10sP20,P30sP40sCaK,

TESTHETAQMIFINISHIS
TAUe TLOQl® Yi9le O
YEile X1[0)e X105
Y[23e X2[01e X20,
Y[3]¢ X3[{01¢ X30;
Y043+ X4(0)e X40,
Y{S1¢ PL0OJ
YL&1¢ P20;
YET)e¢ P30~
YEB1¢ P40Q»
WRITE (LABLD»
WRITEC(RESLsTAU,X10sX20sX30,X405P10sP20sP30,P40)3
COMMENT CALCUt ATING WITH KUTTAMERSUN AND LOADING ARRAYSS
FOR L¢ 1 STEP { WHILE L£150 AND ABS¢Y{21)<1,850 AND ARSCY(413<1,.850 DO
BEGIN
KUTTAMERSUNCI»TAU2O 01, YsDE»8=4,8=5,NUTSsFALSEY S
IF NUTS THEN WRITEC<"STEPSIZE WAS CUT AT LEAST TEN TIMES BUT KUTTAMERSO
N CONTINULDST="sF6,3,>»TAUD;
Xii{Lle YL11»

Figure F 6, Continued.
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mailto:KUTTAMERSUNC9tTAUO.OtYDE,@-4,0@e5NUTSFALSE
mailto:ABS(H)>ABSCFINAL)xI.4551915228@-11

X2[Lie YLZ1}
X3[LJe Y[333

XqfLle YE4),

TLLY ¢ L»
PRINT ¢ 13
IF L MDD PRINT =0 THEN WRITECRESL,TCLI»Y[11sYL21oYE3IIsYIAIYIS1-YI6]s
Y[71,YEB])3
END CALCULATING AND LDADING LOOP}
Je YE9]D,

WRITECCPAGE]SPARMSE,K1,K2,K32KE,C,U)3

Figure F.6 Continued,
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STANFORD B5300 ALGOL == 07/05/66 VERSION 201/67
BEGIN COMMENT OPTIMAL PITCH ACQUISITION IN BACKWARDS TIME,

SAVE
FILE OUT PLOTTER 2(1».765)JREAL ARRAY A[O0:10221,A2[02:2,0:2),CF0°91,8YMALO
t11121,SYMBI=15"631,ABCDI0*23,REAL OLTH,

PROCEDURE PLOT{(X»Y»IC)IVALUE X»Y»ICSREAL Xs»Y}INTEGER ICIBEGIN STREAM PRO
CEDURE WRIT(FIL,IFLsAYIBEGIN SY€A;DI€IFL31T(60(81+SI+2,08¢6CHR)IFRELEASE
CFILYFEND WRITSOWN INTEGER TT,IsNPX,NPY»>BA»TsWIDX,PEN;OWN BOOLEAN BOOL»I
NTEGER JsKsDXsDYr IYsNRsNTHNCIIZsNALLABEL FINSH>ONsLI3FORMAT TORM{1022A6
;IF ABS(IC)>3THEN BEGIN BA«O,WIDXeIF IC<=3THEN 282ELSE 1P23PENe2,A[QD]e"
4444047300176 004433",A02]¢"333332%,G0 TO FINSHIEND,IF ABSCIC)IZPEN THEN

GO ONSPEN«S=PENJALIJ«(IF BOOL THEN"666661"ELSE TT+24955)Y+PEN+PENIBONL TR
UEs»FOR Ke9XPEN STEP~IUNTIL 1500 BEGIN ALI+I+ilevw466666":IF I21018THEN BE
GIN AL10191€"340000">WRIT(PLOTTERSPLOTTERCOI»ALD)),1¢3560 ONFEND,END,ON?
NACREAL (DX &~NPX+(NPX+HIDXXXIZ0I+REALCOX>QIFIY€REALCDOY ¢=NPY+(NPYeWIDX®Y )2
0)YFREAL(DY>0),1F ABS(DX)2ABS(DY)YTHEN BEGIN NR“ARS(DY),NCeNTABS(DX)31I2¢
A2LNA,1JEND ELSE BEGIN NReABS(DX)IINCENTEABS(DY)ITI12¢A2T1,TYIENDSIYCAZINA
sIY)sNAeNT DIV 2INTeNT NRLLLI*IF(NCeNC=1)20THEN BEGIN IF NAZNT THEN BEGIN
TIY NAeNA-NTZEND ELSE BEGIN TeIIZ23NA-NA+NR ENDSIF BDOLe&NOT BOOL THEN B
EGIN ALT1eT+TT,IF(T¢I+1)21019THEN BEGIN AL10191«"340000"WRIT(PLOTTERSPL
OTTER{(C)»,ALQ1),1¢3,END;GD TO L1, END,TT«"006006"8T[15°33:01:60 TO L1SEND?
IF IC<OTHEN BEGIN IF BOOL THEN I«I=iE1 SE ALIl«TT+"0QO00660"ALTI«I+116m3400
00" WRITE(PLOTTER, TORMsFOR K€OSTEP 1UNTIL I DO ALK))}»>FINSH'WRITE(PLOTTER
sTORM» 44488, 44433 ,M333331",CI(BA(RA+1IMOD 100YMOD 10JRCIBA DIv 10
1[2433634927,"133333%,9338444",F0R KeOSTEP 1UNTIL 7OpOv“asanbdr),BO0L«TRUE
sNPXeNPYeQ,T«33ENDIENDS

PROCEDURE SYMBOL(XO,Y0,HGT,BCO»THETA,N)s» VALUE X0,Y0,RGT,THETA,N,INTEGER

N3REAL XpsYOsHGT,THETASALPHA ARRAY BCDLOJ,BEGIN REAL BINXsACsWsDSCsAINX,
Io0STSaMAVIsHIsTIIsMOV2,RCoCCoLPrXAsYAsXAGs YA, OWN REAL CTHsSTHILABEL LOA
DR,DEFINE A=SYMA#,B=SYMB#,IF THETAZOLTM THEN BEGIN OLTH¢THETASCTHeCOS(TH
ETACTHETAX 017453292513 STH SINCTHETA) SENDSHI«HG T2 142857142857, XA+ CTHXH
I3YAeSTHRHIIXAGeXAXE 40 YAGEYAXE403IF N<OTHEN"BEGIN MOV{i«IF N==12THEN 3EL
SE 23 X0ex0=MOVIX(XA+YA) > YOCYO=MOVIX{XA=YA)sBINXeN,GO TO |LOADRZEND3ACeyCe
CCYO WeBeDIOIWHILE AL« ACH1<SN DO BEGIN IF CCeCC+127THEN BEGIN W+«RCDIWCeN
C+113CCe1ENDIBINXeN (12161, We08N[12.18230],LNADBIDSCeRBEBINXI.L[33251,05TS
CALAINXCRIBINX]L39291),LPe3311¢0sFOR I«1STEP 1UNTIL OSC DO REGIN It II¢
IT+128THEN BEGIN II¢1;0STSeALAINX«AINX+1IENDIMOVI«0STS,[(62313M0V2¢05TS.L
0+31;037S«0805TS06112136),IF MOVI=TTHEN LP¢3ELSE BEGIN PLOTC(XO+MOVIXXA=M
OVE2xXYAsYO+MOVIXYA+MOVOXXASLP) s LP¢2,END,ENDIXO¢X0+XA65Y06YO+YAGLENDENDS

PROCEDURE NUMBER(X»YsHGT»FLTaTHETAsNISVALUE XsYsHGT»FLTsTHETAsNSINTEGER

NSREAL X,YsHGT,FLT,THETA,BEGIN REAL FRAC,BOOLEAN BsLABEL SWORDJREAL STRE
AM PROCEDURE CVY(XO0)3VALUE XOFBEGIN SI«LOC X030I1eL0C Cv,DI«DI+2,D5¢6DEC E
NDsREAL STREAM PROCEDURE LZRO{VNsR},VALUE VNsBrBEGIN LABEL M3}SI«LOC VN.sD
1¢L0OC LZRO3D5eWDS,51eSI™63DI«DI~635¢1F Sc="0"THEN BEGIN DSeLIT™ ",57eS51+
1END ELSE JUMP OUT TO M)»M.51«L0C B,SKIP 47SR,I1F SB THEN BEGIN DI«DI=1,D
SeLIT"~"ENDSEND L7ROJFRAC«IF NSOTHEN,SELSE IF N=1THEN,OSELSE IF N=2THEN,
00SELSE IF N=3THEN.QQQSELSE IF N=4THEN.QOOOSELSE.000005,BeFLYS*FRACSIF F
LT ABSCFLT)I+FRACZ100000THEN IF FLY210000000R B THEN BEGIN ABCDIOJ€Mrrsnw#
*+%,G0 TO0 SWORD END,ABCDICI«LZROCCV(FRACCENTIERCFLT))»BYSIF NSOTHEN SWQRD
*SYMBOL(X»YsHGT» ABCD > THETAS6)ELSE REGIN ABCOL1JeCV(ENTIER((FLT=FRAC)x100
000))+"400000", SYMBOL(XsYsHGT»ABCD, THETA,IF NSSTHEN N47ELSE 12).FauNtomp,

b Piteh (Complete Program)

Fagure F 6 Continued,

193


http:IY3,NA.NT
http:BAIO,WIDX.IF

PROCEDURE AXIS({XsYsBCDsNCsSIZEF,THETAsYMINADY))VALUE Xy YsNCsSIZE»THETAYM
INsDYIREAL XsY5SIZE,THETA»YMINsDYS INTEGER NC,ALPHA ARRAY BCOIOI,BEGIN RE
AL THsCTHsSTH>I»XBsYB,XAsYAsICTH,ISTH, YMAXS ABSV,EXPPILABEL LS50 THeTHETAX
0,0174553ICTHeCTHCOS(THY,ISTHESTHSINITH) » XBeX, YB«Y,IF THETASOTHEN BEGI
N ICTHe=TCTHIISTH¢=ISTH END sPLOT(XAeXm (IxISTHsYA€Y+,1xICTH,333F0R l¢15TE
P IUNTIL SIZE DO BEGIN PLOT(XBsYBs2))PLOT(XBeXB+CTHsYB¢YB+STH,»2),PLOT(XA
EXA+CTHaYACYA+STHs2),END,IF NC<OTHEN GO TO LS50,YMAX¢«YMIN+SIZEXDYSIF ABRSV
ABSCYMINI<ABSCYMAXITHEN ABSV«ABS(YMAX),EXPP&0?Te¢1iWHILE ABSV>9999.999D0
BEGIN ARSVeABSVX ,1,1elIX,13EXPPeFXPP=1END,WHILE ABSY<0,999D0 BEGIN ABSVe
ABSV*lOoO:I*Ixio.o}EXPP*EXPP+IEND;DY*DVXIiYMAX*YMAXxI;XA#XB-.15XI5TH-.53
XxCTH, YA+YB+,15xICTH=,53xSTH,FOR [«SIZE STEP~IUNTIL ODO BEGIN IF ABS(YMAX
320,001 THEN NUMBERCXAsYAr O 1o YMAXS THETA» 33 YMAX€YMAX=DY 3XA«XA=CTH, Y AeY A"
STH END,I«If EXPP=0OTHEN NC ELSE NC+7iYA€((SIZE«SIZEXsS5)"e06XIIXS5TH+,33x]
CTHHY X Ae(SIZE~406%xT IxCTH=,. 3I3XISTH+XsSYMROLCXA»YA» « 14, BCDs THETASNCYIF E
¥PP=0THEN GO TO L50s1¢lI1=63%,12,XA¢IXCTH+XAYA«IxSTH+YAJABCDEOTe"x 10 "
}SYMBOLC(XA»YA» o 14, ABCD» THETA» 63, 1IF EXPP=1THEN GO TO L50}XA¢XA+,25xCTH=,0
IXSTHs Y ACY A+ 25X%XSTH+ 4 07XCTHINUMBERCXA»YA» o072 EXPP» THETA20Q) LSO IEND

PROCEDURE LINE(XsYsNsg)»VALUE N> INTEGER N;BODLEAN KFARRAY X,Y[OJIBEGIN I
MTEGER I,I3,A,B,C,IF K THEN BEGIN Ae¢p,B¢{,C¢N=1,END ELSE BEGIN AeN-ljipe=
13C#0,ENDSTI3«33F0R Iep STEP B UNTIL ¢ DO BEGIN PLOT(X[I1,Y[I)s13)3I3¢2EN
N KeNOT KLENDS

PROCEDURE SCALE(AsNsKsLso YMINsDY)}3VALUE NyLsKs»INTEGER Ns>K,REAL LsDYsYMIN;
REAL ARRAY ALOIsBEGIN REAL YMAX,INTEGER IsNMK,YMIN«YMAX€ALK=1),NMKe«N=KsF
OR IeK+K=1STEP K UNTIL NMK DO IF ACII1>YMAX THEN YMAXeADT]ELSE IF A[LIl<YM
IN THEN YMINCALII,DYC(YMAX=YMINI/LsFOR I+K=1STEP K UNTI| NMK DO ACI)eCAL
T1=YMIMNI/DY,END.

PROCEOURE SETPLOTTER,BEGIN PLOT(0,0»0,0,=1039),ABCDI0Y«"START ", ABCDI[11¢
"CALIBR";ABCD{21e"ATION *,SYMBOL(0,055,050.28,ABC05~90,0,18)3ABCD{0TemY=
0 "L, SYMBOL(D,0s~0,1850,28,ABCD20,02,3)5PLOT(0.,850.023),PLOT(7:0s0,0s2),
ABCOLOY*#"SET X ",SYMBOL(6,720452,0,28,ABCD,90,055),PLOT(7,020,023),PLOTL7
.0;28,0;2):?'.0-1-(1.0;28.0’2))ABCD[0]""Y=28 ")SYMBUL(O.OpZT.BL’;002BJAHCD’
0,024):PLOTC(10,02040»,=3),END>»

FILL ¢[*IWITH OCTO40404040404,0CT040404040405,00T040404040406,0CTO204040
40407,0¢T0480404040504,0¢T040404050505,0¢T040404040506,0¢T040404040507,0¢
TO40404040604,0CTOL0404040605,FILL A2[0,+INITH 06T50500,0¢T50600s0CT5070
0,FILL A2[1,*IWITH QCT60500,0CT60600,0CT60700,FILL AZ2[2,*IWITH 0CT70500,
0cT70600,0CT70700,FILL SYMAL*IWITH 0CT10304146371706,0CT1100000000000,0¢C
T10302027160000,0¢T40000144463717,0CT6050000000000,0CT01103041433414,0CT
34454637170600,0¢T43033730204000,0CT00000000000000,0¢T01103041433404,0CT
7470000000000,0CT03143443413010,0CT1061737460000,0CT06074721200000,0¢T34
434130500103,DCT14344546371706,0¢T05140000000000,06T01103041463717,06T60
41333440000,00T11151404141202,0CT42323135344404,0¢T40100105164655,0¢T514
p4435251412,00T21314200000000,0CT10412120107022,00T23454637170600,0CT111
50221117014,0¢T15252414000000,0CT02440600000000,0¢T01417006440200,0¢T212
52303430000,00T00034346371706,0CT3434000000000,00T04073746453404,0CT0304
143340000,0CT42413010010617,0CT 37464500000000,06T00073746413000,0CT47070
434080040,0CT47070434040000,0cT33434130100106,0CT17374645000000,0CT00070
444474000,0CT10302027173700,0CT00011410000000,0CT40202747000000,0¢T34271
706054031,00T42201001031400,0¢T40312324364700,0¢T45034100000000,0¢T44081
513040000,0CT01452305410000,0CT01103041470000,0¢T00070347254000,0¢T07004
000000000,0CT00072347400000,0CT00074047000000,0¢T10304146377036,0CT47703
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717060110,0CTO0073746453404,0CT710010617374641,0¢T30107022400000,0¢T00073
746453804,0cT344348000000000,0¢T02324334140516,00T46262720000000,00T01452
305412303,0CT43232521000000,0CTO3430000000000,0C0T00112324160700,0CT10212
242112170, 0CT24254514240000,0CTO41417042044600,00T00000000000000,0CTO0470
000000000,0CT01103041433414,0CT0506173746000020CT202707470000002,0CTo7 011
030414700,0CTO7204700000000,0CTO7002440470000,0¢T00477007400000,0CT07244
724200000,0CT07470040701434,0CTO00CO000000000,00T10212313122200,0¢T00477
0160607 17,0CT167041313048041,0CT02463545%053513,00T3430000000000,0CT024270
04480000,0CTOT272000000000,0CT14167036340000,0CT0040440400042420C7220000
00000000s0CTO0482204402200,0CTO0A000440484822,0CT0O0L004524800220020CT243443
41301001,0CT3142422000000,0CT24422002242200,0¢T20224422042200,0¢T22248220
0000000,0CT24014124220000,0CT24024224202200,00T44331304131100,0CT1131403
1332200;OCT103650046&1070;GCT22220000000000:UCT02a222202u2200;DCTOOﬂhoua
0220000,nCcT00442224202204,0CT40220242220000,FILL SYMBI[#1WITH 0CcT30157,0¢C
T12156,0CT14155,0€722153,00T32151,00T14150,06T12147,0¢T06166,0CT14145,0¢
T18144,00T26142,00T18141,0¢cT16140,0¢T14137,0¢T20135,0¢T22000,0¢712002,0¢
T22003:0cT32005,0¢Tt4007,00cT220110¢T30013,0cT12015,0¢T4001620¢T3002850C
T34023,00T42025,00T732030,0¢T26032,00T06034,0CT14035,00T12036,00724037,0C
T30041,0¢T24043,0¢T16045500T16046,00T14047500726050,00T14052,0¢T14053,0¢
T12054,00710055,0C732056,0C714060,CCT06061,0CT712062,0¢T12063,0C712064,0C
T14065s0CT06066,0CT12067,0CT10070,0CT340731,0CT16073,0CT30074,0CT24076,0C
T26100,00T26102,0CTO4104,00T714105,0¢T30106,00T14110,0CcT00111,0¢T04112,0C
T30113,0CT10115,0CT14116,00T06117,0CT121200CT12121,00T12122,0CT16123,0¢C
T34125,00T34126,00722130,00T12132,00T10133,0¢T12134;0L.TH«®103
PLOT(Ds0,101913
BEGIN
REAL CTsSToXsTAUSTFsTHETAOSEsK3s N3,V 3I»X50,X60,P50,P602JsCsKy
Y1sY2r Y3 Y4 X5MIN»XOMIN,DXS2DX6,
INTEGER L»PRINT,
ARRAY YLO!51,T,X5,X6[0:5001),
BODLEAN NUTS?
LABEL STARTsFINISH,
ALPHA ARRAY HOZ,VERI[O:11}
FORMAT LABLC"TAUM,X3,"XS50,X5,"XE" s X5,"PS"»XS5,1P6");
FORMAT RESLCI3»4(X25FS423)s
FORMAT PARMIME=",F5,22s X2 "K3="sF 6.3, X2 "C"E10,2,X2,"J="sF5,2)3
PROCEDVURE KUTTAMERSONCN, XsHHs Y, Fs EPSs AR » ERROR, STEPSIZE};
VALUE NsHH» EPS»AB »STEPSIZEJINTEGER N} REAL XsHHy EPS»AB
REAL ARRAY Y[0l)» PROCEDURE F; BOOLEAN gRROR, STEPSIZE!
COMMENTS VERSION OF 660518 660722
EPS AND AB ARE THE RELATIVE AND ABSOLUTE ERROR BOUNDS RESP.
STEPSIZE TRUp 7O WRITE STERSIZE WHEN CHANGED
STEPSIZE FALSE FOR NO OuYPUT
ERROR Is SET TRUE IF STEPSIZE BECOMES TDO sMALL ELSE FALSE;
BEGIN COMMENT KUTTA mERSON INTEGRATES A SYSTEM OF N FIRST ORDER
ORDINARY DIFFERENTIAL EQUATIONS., SEE L« FOXs "NUMERICAL
SOLUTION OF DRDINARY AND PARTIAL DIFFERENTIAL
FQUATIQONSY, P, 24, PERMAGON PRESS, 1962
OWN REAL HC» FINAL» H2s H3» H&s HE8» ERRs TEST, Tsr HI
OWN INTEGER I»,CU»CUTS QWN BODOLEAN DBL3 LABEL L» KMs RETURNI
OWN REAL ARRAY Y1s Y2, FO» Fi1s, F2l[0:3013
COMMENT  EXCEPT FOR Hce THE OWN VARIABLES ARE FOR SPEED ONLY?
FORMAT MSSG("THE STEP SIZE IS NOHWw, R12,5,%" AT T=",R12,5);
DEFINE FORI = FOQR le3 STEP 1 UNTIL N DO #»
CONSTANTS = HZ2¢H/2,0, H3¢H/3,03 HOCH/6,0} HBeH/B,0 ¥}
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coMMENT  CHECK FOR INITIAL ENTRY AND ADJUST H IF NECESSARY »
ERROR ¢ FALSE,
H ¢ HH -
IF N=0 THEN BEGIN HC,¢« H» GO TO RETURN ENDJ
1F H=0 THEN GO TO RETURN, FINAL ¢ X+H}
IF He=0 THEN HC ¢ H,
IF EPSAO AND ABS(HI>ABS(HC) THEN
Ir SIGNCHIZSIGNEHC)Y THEN H ¢ He ¢ =HE ELSE H ¢ HC»
COMMENTS CUT IS5 THE NUMBER OF TIMES THAT THE STEP S$IZE Is ALLOWED To
HALVE ITSELF IN SUCCESION}
cuUT « 103
cU « CUT;
T « X+H3 X ¢ FINAL, CONSTANTS;
COMMENT MAIN KUTTA-MERSON STEP LOOP 3
LIFOR TeT STEP H UNTIL FINAL DO
BEGIN KM: F(T=H»YsF0Q)3
FORI Y1113 ¢ FOLIDxH3+YET3; FCT=2xH3s Yis F1),
FORI YICI) « (FOCII+F1CI7)IxH64+YLTI)s FL{T=2xH3, Yi, F13;
FORI YIL[TY ¢ (F10I1x3,04FO0LT1)xHB+Y[I1, F(T-H2, Yis F2);
FORT YI1LI] « (F2lI11x440=F101)x3.0+F0C0T))xH2+YLIds F(Ts Yis Fi)s
FORI Y2[IJ « (F2L1IxA4,0+F3CI1+FOCTIIXHO6+YLTI],
COMMENT DDES THE STEP SIZE H NEED TO BE CHANGED
IF EPS#0 THEN
BEGIN DBL ¢ TRUE,
FORI BEGIN ERR€ABS(YII{TI=Y2[I13x0.2, TEST¢ABSC(YL[I1IxXEPS;
IF ERR>TEST AND ERR>AB THEN COMMENT HALF H3
BEGIN H ¢ H23 TeT=H2,
IF tCUeCU~1)<0 THEM ERROR € TRUES
IF STEPSIZE THEMN WRITECMSSGsH»T),
IF T+H=T THEN BEGIN XeT,» ERROR ¢ TRUE» GD TO RETURN>

END»
CONSTANTS, GO TO KM}
END>
IF 64,0XERR>TEST THEN DBL ¢« FALSE,

END3
IF DBL AND H < HH THEN BEGIN H +« 2,0xH,
IF STEPSIZE THEN WRITEC(MSSGsHsT)»
CU ¢ CUTS
CONSTANTS END DOUBLE H}
END?
FORI YCI] « Y2711
END KUTTA MERSON LOOP3
IF EPS=0 THEN GD TO RETURN.
COMMENT NOW BE SURE TO HAVE T = FINAL
HEC & Hr H € FINAL®(Tw=H),
IF ABSCH)I>ABS(FINAL)IX1.45519152288=11 THEN
BEGIN T ¢« FINALS EPS ¢ 0, CODNSTANTS) GO TO L END3
RETURN: END KUTTA MERSON,
PROCEPURE CLOCK3BEGIN OWN INTEGER TEMPUS,TEMPUS1,
FORMAT FMTL1(X97», "DATES "» A2,AD25A2), FMT2¢6 (
Me = « = "y, | APSED TIME WAS"s F7,3» Y SECONDS = = = = ®
* TOTAL TIME WASY™, FB.3» " SECONDS,"),
IF TEMPUS # 0 THEN WRITE(FMT2, =(TEMPUS =(TEMPUS « TIME(2))) / 60.0

»=(TEMPUS1 = TEMPUS)Y / 60,00
ELSE BEGIN WRITEC(FMTL,{TEMPUS¢TIME(S5)).[36212],TEMPUS, [24212],
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TEMPUS.[12:121), TEMPUS«TEMPUSI¢TIMEC2)} ENDIEND CLOCK»
PROCEDURE DE{(TAU»YsDY)s
VALUE TaU? REAL TAU;
ARRAY Y,O0YLO0]»
BEGIN
REAL A3,TAUB,
TAUBe TAU=TF=THETAQS CTe COS(TAUB); S5Te SINCTAUB):» A3+31#3XExCT,Y1eYL11»
YQGY[i]}Y3*Y[3]’Y4¢Y[ﬂ]; V3elIF ABSCY4)>5,0 THEN N3xSIGNCY4) ELSE O,
DYL1le=Y2,
DYL21¢ 3xK3IXAIXY1+2XEXSTHCX(1+2%XEXCT IXEXP(KREX(CT=1) )=V 3}
DY[31e=3xK3IXA3IXY4;
DY[4)e Y335
DYES5Je ABS(V3);
END DE?
COMMENT INITIAL C(FINAL) CONDITIONS; CLOCK;
START? READCE,X3sN3,XS50»X60,P50,P60sCrKsTFsTHETAOYIFINISHIS
TAU«¢TLO1eY([51«0»
Y{1le XS[01e X503
YL2)¢ X5003¢ X603
Yi{3]« P50,
Yi4le P60}
WRITE (LABL)»
WRITE (RESLsTAUAXSO0sX60sP50sF60),
COMMENT CALCULATING WITH KUTTAMERSON AND LCADING ARRAYSS
FOR L+ { STEP 1 WHILE L<150 AND ABS(Y[21)%1.850 DO
BEGIN
KUTTAMERSON(S» TAU» 0, 01sYsDE»®=4s8=5,NUTS»FALSE);
IF NUTS THEN WRITE(<»STEPSIZE WAS CUT AT LEAST TEN TIMES BUT KUTTAMERSO
N CONTINUED»T="sF64.3,>»TAU)}
X5{L1¢ YI1];
X6ILIe YL213
TILY ¢ L3
PRINT 1.,
IF L MOD PRINT =0 THEN WRITECRESL,TLLI,Y[1)sYL21,¥Y[3)5Y(41)3
END cALCULATING AND LOADING LOOP;
J ¢ YEDIS
WRITEC(LPAGE)»PARMsE»K3sCsJ)}
COMMENT PLOTTING X6é6 VS XB } CLOCK,
XSCLI€X6ELTe=2, XS[L+11¢X6[L+11e2;
SCALE(XSsL+2, 1,45 X5MIN>DX5),
SCALE{X62L+2» 104 X6MINLDXED )
HBZI0le * X5 ",
VER{Qle n X5 ™}
PLOT(Os1s=3)}
AXISCOs0,HOZ24r 8502 XSMINSDXD)}
AXISCO,0,VER» G, 4,90, 6MIN,DX6)}
LINECXSsX6sL» TRUED,
PLOT(L1O,sm=1,=33} CLOCKS
COMMENT IF MORE DATA CARDS ARE TOD BE READ THEN;
60 TO STARTS
FINISHt
ENDJ
PLOT¢0,0,1019)3
END.
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