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PREFACE
 

This is Part VI of a seven part Final Report on work
 

under Contract No. NAS8-21143 between the George C. Marshall
 

Space Flight Center and the University of.Alabama. The
 

purpose of this entire project has been to perform analytical
 

studies and laboratory tests related to designing an Earth­

orbital experiment, i.e., perform theoretical studies,
 

develop experimental hardware and conduct experiments for
 

the purpose of establishing the feasibility of investigating
 

two-phase fluid flow and heat transfer in porous beds in
 

a reduced gravity environment.
 

Part VI describes the development of the breadboard
 

packages. This includes test models of the channel for
 

the study of liquid and its vapor and the channel for the
 

study of liquid and foreign gas flow. Also included in
 

the breadboard packages are pumps, motors, instrumentation
 

and peripheral equipment for power and data recording.
 

In the main body of Part VI is included the description
 

of the design, development and construction of the bread­

board for the vapor-bubble experiment. Also included is an
 

account of some fundamental experiments that were conducted
 

on this equipment. Water and water vapor were circulated
 

through the closed system of which the principal apparatus
 

was a vertical channel packed with spherical glass beads.
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Boiling occurred at a resistance heater located in the channel
 

near its upstream end.
 

The parameters measured were liquid flowrate (obtained
 

where one-phase flow existed); centerline and wall temperatures,
 

wall pressures, and saturation (ratio of the volume of one­

phase to the total volume of both phases) at several cross
 

sections.
 

Saturation was determined by using a previously calibrated
 

meter consisting of a,light on one side of the channel and a
 

photodiode on the other side. The amount of light transmitted
 

through the translucent porous matrix and detected by the
 

photodiode was-a function of the number of bubble interfaces
 

encountered by the light.
 

The effective thermal conductivity is estimated by
 

considering a-model for lateral heat transfer and sub­

dividing the effects into those due to the solid matrix and
 

those due to the two-phase mixture. The total effective
 

conductivity calculated from experimental results is compared
 

with that obtained by previous investigators and this
 

comparison is presented in the results.
 

The experimental pressure drop through the porous bed
 

is compared to the two-phase pressure drop through pipes
 

obtained by earlier investigators. The correlation is
 

remarkably close.
 

Appendix A describes supporting experiments which
 

were conducted using a liquid with the same index of
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refraction as the beads thus making the interior bubbles
 

visible. Glycerine and triethylene glycol were each tested
 

before it was decided to use water.
 

Appendix B describes the design, development and
 

construction of the breadboard for the foreign gas experi­

ment. Included is the self-contained flow system, as well
 

as instrumentation. Fundamental experiments for the foreign­

gas test setup were described in Part II.
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I. INTRODUCTION
 

A. 	TWO-PHASE FLOW SYSTEMS
 

In two-phase flow systems one may distinguish between
 

nonevaporative and evaporative flows. In the former, a
 

foreign gas is introduced at some point of the flow, whereas,
 

in the latter, the liquid vaporizes.
 

Evaporative flows may be further sub-divided into two
 

classes. In the first, vaporization occurs because heat
 

is added to the water through a fixed surface; in the
 

second, because of a decrease in pressure. The former can
 

be 	further sub-divided into two groups:
 

1. 	Pool boiling, in which the bulk liquid phase is
 

at rest.
 

2. 	Systems in which the bulk liquid and vapor phases
 

flow.
 

The latter method of producing evaporative flow is
 

called flashing when a volume of saturated liquid is
 

suddenly depressurized and becomes super-saturated so that
 

vapor bubbles form rapidly,
 

B. 	HEAT TRANSFER IN PACKED BEDS WITH SINGLE-PHASE FLOW
 

The problem of heat flow through granulated material
 

was discussed in a note by A. 0. Sanders [19]. The author
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shows, by employing the principle of similitude, that for
 

any two heterogeneous systems of-similar shape, but dif­

ferent in size, the ratio of effective thermal conductivities
 

measured at any corresponding pairs of points is independent
 

of the size and surface temperatures and is proportional to
 

the conductivity at any specified point provided the
 

distribution of surface temperatures and thermal conduc­

tivities are fixed (if not uniform), while varying in
 

absolute value.
 

Investigations of radial heat transfer rates have
 

followed two different methods of approach. In the first,
 

only system boundary-temperatures are measured from which
 

heat transfer coefficients or overall effective thermal
 

conductivities are computed. These are based upon the
 

temperature differences of the influx and efflux gas flowing
 

through the bed and the wall temperatures.
 

The second method is based upon the direct measurement
 

of radial temperature distributions within the bed itself.
 

Coberly and Marshall [3] and Felix and Neill [5] employed
 

thermocouples placed across the efflux diameter of the bed,
 

while Bunnell, Irvin, Olson, and Smith [2], Irvin, Olson,
 

and Smith [10], and Schuler, Stallings, and Smith [21]
 

inserted thermocouple junctions into the solid pellets
 

making up the poroqs bed. Results in each case were
 

reported in terms of effective thermal conductivities of
 

the gas-solid bed. It was found that the resistance to
 

heat transfer increased near the wall. Coberly and Marshall,
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and Felix and Neill accounted for this by postulating that
 

an additional lumped resistance to heat transfer existed
 

at the wall. Bunnell, Irvin, and Schuler solved the problem
 

by letting the effective thermal conductivity vary in a
 

continuous manner as the wall was approached rather than
 

postulating an additional lumped resistance at the wall.
 

Argo and Smith [1] proposed a method for predicting
 

effective thermal conductivities in a packed bed in which
 

a heated gas is flowing by summing the contribution of
 

each mechanism by which heat is transferred radially in
 

the bed. These mechanisms are:
 

1. 	Conduction in the gas phase.
 

2. 	Convection in the gas phase.
 

3. 	Radiation in the gas phase.
 

4. 	A mechanism accounting for the heat transfer from
 

particle to particle by conduction, convection, and
 

radiation.
 

Schotte [20] developed a correlation to predict the
 

thermal conductivity of packed beds for various conditions
 

of pressure, temperature, and particle size in which the
 

effect of radiation was taken into account. Radiation heat
 

transfer between particles should be included at high
 

temperatures for large particles. For example, radiation
 

becomes important for 1 mm particles at temperatures above
 

400'C and for 0.1 mm particles above 1500'C.
 

McAdams [15] suggests adding the following radiation
 

contribution to the thermal conductivity of a bed at high
 

temperatures:
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(1)
k = 0.692ED--


where s is the void fraction, D the particle diameter, and
 

T the absolute temperature.
 

Schumann and Voss [22] developed an approximate formula
 

which gives the thermal conductivity of a heterogeneous
 

system, consisting of a continuous phase (air), and a disperse
 

phase (solid particles), in terms of the conductivities of the
 

two constituents and their concentrations. They proposed that
 

the thermal conductivity of the system was the sum of the
 

conductivities of each phase multiplied by its respective
 

fractional volume or saturation. Experiments uphold the
 

theory that the conduqtivity is independent of the grain size
 

(if small compared to the system as a whole) and mode of
 

packing.
 

C. HEAT TRANSFER OF TWO-PHASE FLOW IN PACKED BEDS
 

Heat transfer of two-phase, gas-liquid flow through
 

packed beds is important in many chemical water treatment
 

and heat engineering processes such as packed bed heat
 

exchangers. Yet there is a lack of information pertaining
 

to two-phase heat transfer in flow systems which is especially
 

evident for low gas-liquid flow rates usually associated with
 

bubble, slug, and froth type two-phase flows.
 

As late as 1965, Weekman and Myers [25] noted that there
 

have been few, if any, serious attempts made to study heat
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transfer from packed beds operating-with-gas-liquid flow.
 

They studied experimentally heat transfer-to beds packed
 

with various sizes of spheres through which a two-phase
 

air-water mixture was flowing. They predicted effective
 

thermal conductivities ranging from 0.1 to 0.3 btu/hr ft OF
 

using 0.255 inch diameter alumina spheres and 0.187 inch
 

glass spheres to form their porous beds through which water
 

and air flow rates were 5000 to 20,000 lb water/hr ft2 and
 

0 to 1000 lb air/hr ft2 respectively.
 

Lateral transfer is caused by a mechanical mixing
 

through channels which are not parallel to the average
 

direction of flow. Ranz [181 related heat transfer rates
 

for single spheres to flow rates and pressure drops in
 

beds packed with single particles through the application of
 

a simple model. He considered lateral mixing to be the
 

major contribution to the effective thermal conductivity
 

and estimated this by considering the porous bed to consist
 

of interconnected cells with dimensions and spacings
 

determined by the size and shape of the particles and method
 

of packing. Ranz utilized y, the radial fraction of liquid
 

mass velocity, to aid in predicting the thermal conductivity
 

in the lateral direction. Golpalarathnam, Hoelscher, and
 

Laddha [7] found y to be 0.00176 for single-phase liquid
 

flow while Weekman and Myers determined it to be 0.00174
 

for two-phase flow through porous beds. This remarkably
 

close agreement implies that, for both single-phase and
 

two phase flow, the radial fraction of the total liquid
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mass velocity is the same. The effect of the gas is to
 

impart a larger velocity to the liquid phase. This means
 

that while the fraction of the liquid velocity in the
 

radial direction is the same, the magnitude of the radial
 

component will be greater for the two-phase flow.
 

D. PURPOSE AND SUMMARY OF EXPERIMENTAL WORK
 

The purpose of this research was to study experi­

mentally two-phase flow of a single-component fluid through
 

a porous material. It was required to design and construct
 

a flow circuit, channel, and instrumentation to calibrate
 

supporting equipment.
 

This work was part of a long range experimental
 

research program conducted by the College of Engineering
 

at the University of Alabama for the George C. Marshall
 

Space Flight Center, Huntsville, Alabama. It was anticipated
 

that in addition to establishing fundamental results, these
 

studies and laboratory tests would be helpful in designing
 

an earth orbital experiment; that they would lead to the
 

development of experimental hardware for the investigation
 

of two-phase fluid flow and heat transfer in porous beds
 

under variable body forces in an earth-orbiting space vehicle.
 

The principal piece of test apparatus was a rectangular
 

channel 3 inches by 2 inches in cross section and 24 inches
 

long constructed of 1/4 inch thick aluminum with two
 

viewing windows on each side. Tests were also run with
 

the glass windows replaced with aluminum blanks. The
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channel was filled with a porous bed consisting at first,
 

of 3 mm diameter flint glass beads and later of 3 mm
 

Pyrex glass beads. Distilled water was pumped through a
 

closed loop system including the test channel. The vapor
 

phase was produced by boiling at the channel entrance.
 

Boiling was accomplished by heating the bulk liquid to a
 

few degrees below its saturation temperature before entrance
 

into the channel and supplying additional heat through a
 

resistance heater located at the channel entrance.
 

The parameters measured were liquid flowrate (obtained
 

where one-phase flow existed), centerline and wall tempera­

tures, wall pressures, and saturation (ratio of the volume
 

of one phase to the total volume of both phases) at several
 

cross sections.
 

Separate experiments were conducted to calibrate meters
 

to determine volumetric saturation at particular cross
 

sections. Each of these meters consisted of a light on
 

one side of the channel and a photodiode on the other side.
 

The amount of light transmitted through the translucent
 

porous matrix and detected by the photodiode was a function
 

of the number of bubble interfaces encountered by the light.
 

A method is proposed for estimating the effective
 

thermal conductivity of a packed-bed through which flows
 

a two phase mixture of a liquid and its vapor by summing
 

the contributions of each mechanism by which heat is
 

transferred.
 



II. THEORY
 

A. TWO-PHASE PRESSURE DROP
 

Weekman and Myers [24] published a paper in 1964 in
 

which their experimental 4ata for two-phase pressure drop
 

in packed beds were correlated with theoretical results
 

obtained by them. Their data were compared with those
 

obtained by Larkin, White, and Jeffrey [12] for packed
 

beds and Lockhart and Martinelli [13] for two-phase flow
 

through horizontal pipes. The data by Weekman and Myers
 

fell between the turbulent liquid-turbulent gas and the
 

viscous liquid-turbulent gas curves of Lockhart and
 

Martinelli. This is indeed worthy of notice since the
 

Lockhart-Martinelli data represent two-phase flow through
 

horizontal pipes. This fact prompted the hypothesis that
 

a large number of channels in the porous medium may function
 

in the same manner as pipes in two-phase concurrent flow.
 

Larkin, White, and Jeffrey also studied experimentally
 

the pressure drop in two-phase flow through packed beds.
 

Their curves were significantly lower than those of Weekman
 

and Myers and those of Lockhart and Martinelli since they
 

corrected their experimental pressure drop results for the
 

mean density in the vertical column. The mean density
 

was defined as:
 

8 
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plSI + (l-Sl)Pg (2) 

The mean density defined in this manner is based on the total
 

volume of liquid held up in the bed and neglects the fact
 

that a significant amount of liquid may be supported by the
 

packing due to capillary attraction and may not contribute
 

to the static pressure gradient in the vertical column.
 

Under static conditions for which the static pressure
 

gradient is zero a substantial amount of liquid may be held
 

in a packed bed. Therefore, the static pressure drop in
 

the flowing column may be less than the drop calculated
 

with Pm used as the flowing density.
 

Weekman and Myers, in a paper published in 1964,
 

treated only the two-phase pressure drop across a porous
 

bed through which air and water were flowing downward
 

concurrently. They presented another paper [25] in which
 

the same experimental apparatus and similar flow conditions
 

were used to study heat transfer characteristics. In their
 

second paper, no consideration was given to the two-phase
 

pressure drop.
 

There is evidence to indicate that the two-phase
 

pressure drop across a porous bed in which a liquid and its
 

vapor is flowing concurrently under non-adiabatic conditions
 

is the same, under certain conditions, as two-phase flow
 

through pipes. In order to demonstrate this, an equation
 

for the two-phase pressure gradient for flow in pipes due
 

to Owens [17] is presented and compared to the experimentally
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determined pressure gradient for concurrent two-phase
 

flow of a liquid and its vapor through a porous bed as
 

obtained in the present study. The two-phase flow of a
 

vapor-liquid mixture in a channel with heat addition is
 

a variable density flow and is treated as a one-dimensional
 

flow. If the pressure drop along the channel is relatively
 

small compared with the absolute pressure, the flow of each
 

phase is practically incompressible. The change in bulk
 

flow density is thus due to the phase change caused by
 

boiling. During the process of phase change, or saturation
 

increase, the phase and velocity distributions are changed
 

and so is the momentum of the flow. Owens obtained the
 

total pressure gradient at a point of a vertical two-phase
 

flow by considering three-components, frictional loss,
 

momentum change, and elevation pressure drop arising from
 

the effect of the gravitational force field.
 

()dp = (- ) f + ()%mom + (dI elev (3)
HP TP dl f Ud om Fci 

where each term of eq. (3) is a function of position. The
 

pressure drop for a given channel length L may be written:
 

L 

Ap = (4I)TP dl (4) 

0
 

The pressure drop due to elevation depends only upon the
 

local saturation and is not a function of the flow pattern.
 

(1 	) Pmg 
(5) 

d)elev gc 



The head loss due to friction for fluid flowing in
 

a pipe is given by the Darcy-Weisbach equation,
 

h CV 2L (6)
 

or 
P9hf = p2-___l A f(7 

- L dlf (7) 

therefore
 

(42) f CG2v (8)-

Owens assumed the friction factor f-for single-phase
 

liquid flow to be the same as the two-phase friction factor,
 

fTP" Making this substitution, eq. (8) becomes,
 

dl f = TPZDg (9)
 

Owens [17], Martinelle and Nelson [14], and McAdams, Woods,
 

and Heroman [16] presented results for the two-phase
 

pressure gradient assuming homogeneous flow in which the
 

two-phase friction factor was-the same as-for single phase
 

flow. Each investigator approached the problem separately
 

and in a different manner and obtained experimental results
 

demonstrating the validity of the assumption.
 

The pressure gradient due to momentum change may be
 

written:
 

(d )mom g2 1d 
mo 2( ) (10) 
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Substituting eqs. (5), (9), (10) into eq. (3) yields,
 

="d" Gv +G 2 rdv+ am )(i 

dl TP "STP2I+ -(TI+ P 

An expression for the two-phase specific volume for homo­

geneous flow may be written in terms of the quality,
 

v = vI +xv 9-V1 ) (12)
 

The total derivative of v is,
 

dv _v + Dv dv1 +2Yv dv1 (13)drx F+v I dl v dl
g
 

Substituting eqs. (12) and (13) into (11), Owens obtains
 

.G2vl r~I v I G2V dx
 

v x
+ +jl+TP2- - g 1)
-) = T2 1 (14) 

TP dv G2 

g
 
v
 

v1 [1 + X(v# -1)]
 

+ 1 
dv G2
 

1+ X(d,
5 9)(-) 

Although the test section is vertical the term for pressure
 

drop due to change in elevation was excluded as it was
 

negligible for all runs. Using this expression, Owens
 

predicted the two.phase-pressure drop within 30% of the­

measured pressure drop for flow in a pipe.
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In the present study, the pressure drop for two-phase
 

flow through porous media was calculated using eq. (14) and
 

compared to the two-phase pressure drop for flow through
 

pipes as obtained by Owens. The friction factor was
 

calculated using:
 

0
0.316 
 (15)

STP (Re)0.25
 

Re (16) 

dv 
The pressure dependent terms vg-Vl, and d-- were calculated 

from the local pressure with values obtained from Keenan and 

Keyes [11]. The results will be discussed in a later chapter. 

B. EFFECTIVE THERMAL CONDUCTIVITY
 

It is common practice to treat an elaborate energy
 

transfer device in a qualitative or overall manner without
 

attempting to thoroughly investigate the fundamental
 

mechanisms of transfer within an element large enough to
 

be representative of the whole and small enough to allow
 

a complete understanding of what is happening within. The
 

transfer of heat through porous media is of considerable
 

importance. Therefore it is desirable to formulate a
 

theoryoto predict the effective conductivity of a hetero­

geneous system from the conductivities of its constituent
 

parts.
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The task of developing a general theory for the transfer
 

of heat through a heterogeneous system is almost impossible.
 

Even in the rather simple case of conduction of heat through
 

a system of spheres packed in a regular way, the mathematical
 

complexities are such that the detailed problem has never
 

been completely solved. On the other hand, where the system
 

consists of granulated material of undefined shape and where
 

the packing is irregular, a direct mathematical solution
 

of the detailed flow and heat transfer in the pores is­

entirely impossible.
 

Due to the mathematical difficulties present, no
 

attempt will be made to discuss the general problem of the
 

conduction of heat through a heterogeneous system. Rather,
 

the analysis will be confined to one particular case, which
 

is simpler than the general case and of more practical
 

importance.
 

The effective thermal conductivity of a porous-bed
 

through which a two-phase mixture is flowing can be estimated
 

by considering a simple model for radial heat transfer and
 

assuming that all the various heat transfer mechanisms can
 

be lumped into two terms. The heat transfer associated with
 

the solid particles constitutes one term, while the heat
 

transfer of the two-phase mixture constitutes the other
 

and each term is weighted according to the fraction of the
 

volume it occupies. Since, in the experiments conducted
 

as part of the present study, local temperatures inside the
 

porous bed were low enough so that radiation heat transfer
 

could be neglected. This condition is assumed to apply
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in the analysis given herein. Therefore, the principal modes
 

of heat transfer are conduction through the solid phase and
 

transfer by conduction and convection through the two­

phase mixture. The assumption is made that the principal heat
 

transfer is radial and is substantiated in the experiments.
 

Theoretically, the porosity of a packing of uniform
 

spherical particles should be independent of the size of the
 

spheres. However, actual measurements show that for sands
 

(diameters in the range 0.4 mm to 0.25 mm) of essentially
 

uniform grain size, the porosity increases as the grain size
 

decreases [4]. Due to the bridging and wall effects, it is
 

almost impossible to obtain anything approaching a uniform
 

packing by pouring beads into a container as was done when
 

the test channel was filled with 3 mm diameter spherical beads.
 

dA 

*Solid 
o 	Liquid 

Vapor 

Figure 1. Cbntrol Volume of Porous Bed
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Figure 1 is an arbitrary control volume of a porous
 

medium enclosed by the surface A through which heat energy
 

is transferred to the surroundings. The modes of heat
 

transfer are conduction and convection, neglecting radia­

tion because of the low temperatures. The total amount
 

of heat transferred by conduction from the control volume
 

can be expressed in terms of the heat flux vector q
 

integrated over the surface of the control volume.
 

Q = S'9g n dA, (17) 

where n is the outward normal unit vector at a point on the
 

surface, and ds is an element of surface area. q can be
 

expressed as the product of an effective thermal conductivity
 

of the porous medium and a temperature gradient,
 

q = -rkVT (18)
 

therefore,
 

(19)
Q = -EAkvln dA 

A portion of the surface area dA is occupied in part
 

by a solid, in part by liquid, and in part by vapor.
 

The k in equation (18) is the coefficient of heat
 

conduction through the incremental surface area dA of the
 

control volume, which must be general enough to include
 

the effect of each of the following:
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1. Thermal conductivity of the solid particles.
 

2. Thermal conductivity of the liquid.
 

3. Thermal conductivity of the gas.
 

Since heat transfer by conduction is proportional to area,
 

the thermal conductivity for the porous medium and two-phase
 

flow will be weighted according to the contribution of each
 

constituent making up the flow field. Equation (19) may be
 

written;
 

.Sk.l + 4k n dA (20) 

where p is the porosity of the porous bed representing the 

ratio of fluid volume to total volume as well asthe ratio
 

of fluid area to total area (for randomly packed beds).
 

Thus, 4A represents the fractional part of the control 

surface area which passes through the fluid and (I - )A 

represents the portion which passes through the solid 

grains. ks is the thermal conductivity of the solid parti­

cles and k that of the two-phase mixture. 

Since, the resistance to heat transfer by conduction
 

of the two-phase mixture may be separated into that due to
 

the liquid and that due to the vapor, the following may be
 

written:
 

kTp = Skv + (1 - S)k1 (21) 
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where S is the ratio of vapor volume to total volum6 of
 

void space (S also represents ratio of areas when the bubble
 

distribution is random), where kv and kI are the thermal
 

conductivities of the vapor and liquid, respectively. Hence
 

the total heat conduction can be written as:
 

Q = -A[(I - 4)ks + 4Skv + (l - S)kl]Vrh.t dA (22) 

or
 

KcVTSJA dA (23)
 

where
 

Kc = (1 - )ks + pSk v + (l - S)k1 (24) 

Kc is defined as the effective heat transfer coefficient 

due to conduction which consists of the sum of the contribu­

tion of each constituent making up the flow field. The 

thermal conductivities of the solid, liquid, and vapor are
 

taken from references [6] and [9]. These conductivities
 

vary only slightly over the temperature range in which
 

tests were conducted and are taken at the average of the
 

centerline temperature of the porous bed and channel wall
 

temperature.
 

In the present experiments the direction of principal
 

heat transfer was radial or perpendicular to the centerline
 

of the channel, therefore, the discussion of heat transfer
 

coefficient is specialized to apply to the radial direction
 

only. The total effective radial thermal conductivity
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at a particular cross-section may be written as:
 

Ke = Kc + KR (25)
 

where K is the contribution to the overall effective thermal
r 

conductivity of the radial movement of liquid and vapor
 

caused by the tortuous channels in the randomly packed
 

medium. It is emphasized that, because none of the small
 

random channels are straight, radial velocities exist at
 

any cross section even though the net radial flow is zero.
 

Ke was calculated experimentally at five locations where
 

there were meters for determining the saturation.
 

If KR is a constant in a cross section, at any cross
 

section in the porous bed, the average heat flux per unit
 

area through the walls of the channel that is caused by
 

convection may be expressed as the product of K R and the
 

temperature difference between centerline and wall. This
 

flux may also be written directly in terms of the convection
 

phenomenon. Therefore when these two expressions are
 

equated the following results:
 

Tw-T 

KR L = YV0PlCpl(Tw - Tt) + SVoPvCpv(Tw - T ) (26) 

in which V0 is the flow rate of the liquid divided by the
 

total area of the channel. S is the radial fraction of the
 

liquid velocity, y the radial fraction of the gas velocity,
 

L the distance from the centerline of the porous bed to the
 

inside channel wall, Tw the inside channel wall temperature,
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and Tk the centerline temperature of the porous bed.
 

Therefore, yV0 PI is that portion of the total mass velocity
 

having a component in the radial direction. It is the
 

consensus of earlier investigators [7][24] that the presence
 

of vapor flow in the radial direction only increases the
 

magnitude of the liquid velocity and has no bearing on the
 

amount of the total mass velocity having a radial component
 

which has been accounted for by introducing y. Investiga­

tion of the relative magnitude of each term on the right
 

side of equation (26) reveals that the only term with
 

appreciable magnitude is the term accounting for the heat
 

flux convected radially by the liquid [7], thus eq. (26)
 

becomes:
 

KR = YV0PLCPLL (27)
 

In the experiments conducted for this study, the
 

liquid mass flowrate was measured before the liquid
 

entered the test channel, therefore V0 is determined by
 

applying the equation of continuity. y is taken to be
 

0.00174 from the works of Golpalarathnam, Hoelscher, and
 

Laddha [7], and Weekman and Myers [24]. Both observed that
 

the amount of heat transferred did not appear to be a
 

function of particle size.
 

The equation for predicting the effective thermal
 

conductivity of a porous bed in which concurrently flows
 

a two-phase mixture of a liquid and its vapor is submitted
 

to be of the form:
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Ke = (1 - p)ks + [Skv + (1 - S)kI] + YV 0 piCPL ¢ (28) 

With the effective thermal conductivity presented in this
 

form, the contribution of each constituent can be investi­

gated.
 



III. 	 DESCRIPTION OF EXPERIMENTAL APPARATUS AND
 

SUPPORTING EXPERIMENTS
 

A. TEST CHANNEL
 

The aluminum channel (Figure 2) housing the porous
 

bed, saturation meters, pressure transducers, inlet heater
 

and thermocouples was 24 inches long with inside dimensions
 

2 inches by 3 inches with plates fastened at both ends. The
 

entrance end plate contained a heating element and access
 

posts for electrical connections to the heater. The channel
 

was constructed by cutting and welding together two 4 inch
 

by 4 inch by 1/4 inch angles. The 1/8 inch radius fillet
 

at the base of each angle was machined out to make all
 

corners square.
 

On each 3 inch side of the channel were two viewing
 

windows 2 inches by 8 inches by 1/4 inch made-of Pyrex
 

glass attached to the channel within a slot, 2 1/16 inch
 

by 8 1/16 inch. The clearance between wall and glass-was
 

filled with RTV-106 silicone rubber sealant. To keep the
 

glass from being pushed out due to internal pressure, a
 

slotted plate with gasket was fastened over the glass on
 

the outside of the channel. Care was taken to prevent metal
 

to glass contact to lessen the danger of breaking. Five
 

22
 



23 

Figure 2. Aluminum Channel
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circular windows were placed 3 inches between centerlines
 

opposite each other on each of the 2 inch sides such that
 

light from one window could be transmitted through the
 

bed to a photodiode on the opposite window. These windows
 

were made of I inch diameter Pyrex glass 1/8 inch thick
 

placed in a 1 1/8 inch diameter hole flush with the inside
 

wall. The clearance space between the window and hole was
 

filled with sealant.
 

Pressures were measured by four Consolidated Electro­

dynamics Corporation (CBC) transducers placed along the
 

center of one of the 2 inch walls. The first was placed
 

7 1/2 inches from the inlet and the others 3 inches between
 

centerlines midway between the photodiodes. -The trans­

ducers were 1/2 inch diameter with flush mounted diaphragm
 

and fitted into a counterbored hole on the outside wall of
 

the channel. They were held securely by a collar which slid
 

over the transducer and bolted to the channel wall. The
 

counterbored hole was connected to the inside of the
 

channel by seven holes (0.0135 inches in diameter) which
 

were drilled perpendicular to the channel center line and
 

spaced equally across the 1/2 inch diameter hole. This
 

allowed the pressure transducer to experience changes in
 

fluid pressure and not be in contact with the glass beads.
 

Temperatures along the channel centerline were measured
 

by seven thermocouples, the leads-to which were inserted
 

through a hole in a 5/16 inch diameter bolt sealed by
 

epoxy. The bolts were screwed into holes in the wall such
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that they were flush with the inside wall. The first
 

thermocouple was placed 4 1/2 inches from the inlet and the
 

others on 3 inch centerlines between the lights.
 

All temperatures were measured by thermocouples made
 

from copper-constantan wires. The centerline temperatures
 

of the porous bed were measured by thermocouple junctions
 

soldered into a copper spheres the same diameter as the
 

glass beads. The sphere and wires were insulated by
 

lacquer spray. The inside wall temperature of the channel
 

was measured by drilling a small hole in the wall and
 

pressing a copper slug which contained a thermocouple
 

junction into the hole. The temperature of the liquid
 

in the accumulator tank was measured by an insulated
 

thermocouple junction.
 

The saturation meters each consisted of a 28 volt dc
 

light source and photodiode biased by a 0-40 volt dc power
 

supply with its output measured on a microammeter in series
 

with the power supply. The light source was placed on one
 

2 inch side of the channel behind a 1 inch diameter glass
 

window. The photodiode was placed on the opposite side
 

behind a 1 inch glass window. The center of the first
 

meter was placed six inches from the channel inlet and the
 

other four on three inch centerlines.
 

The end plate (Figure 3) through which the fluid
 

entered the porous bed supported a teflon frame for the
 

heater wires, electrical connections, screen, and baffle.
 

The heater which extended 2 1/2 inches into the porous bed
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was made of 24 B. and S. gage (0.0201 inch diameter) 1.478
 

ohms per foot Chromax Alloy wire (Driver-Harris Company)
 

wound around two strips of teflon. Since the wires were
 

uninsulated, extreme care was taken to maintain a space
 

between adjacent wires. Two insulated electrical feed­

throughs were placed in epoxy sealed drilled holes in the
 

end plate soldered to a 1/8 inch diameter copper bus bar
 

which was connected to the heater wire. On the inside
 

surface of the end plate a screen was mounted to hold the
 

beads and an aluminum plate 3/4 inch by 1 1/4 inch by
 

1/16 inch with 3/16 inch diameter holes was attached 1/2
 

inch from the screen to break up the bulk of entering
 

fluid. The exit end was closed by a plate which had a
 

screen over the opening. The entire channel was attached
 

to a 1/4 inch aluminum base plate which was bolted to a
 

table. A hinge arrangement allowed the channel to be
 

rotated 90' from the vertical.
 

Electrical
 
Connector
 

Copper Bus Bar Heater
 
p " Wires 

Baffle
 

1~I n s u l a t or I_ 

Electrical
 
Connector
 

Figure 3. End Plate
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B. FLOW CIRCUIT
 

Shown in Figure 4 is a diagram of the flow circuit.
 

Fluid was pumped from a 14 gallon tank through type 304
 

stainless steel tubing (0.402 inch I.D. and 0.049 inch
 

wall thickness) using brass Swagelok connectors. The
 

stainless steel tank was 12 inches in diameterv30 inches
 

high and 1/4 inch wall thickness closed by a gasketed lid
 

forming a pressurized accumulator chamber. Band heaters
 

were placed around the tank to heat the liquid before a
 

test began. Installed in the lid were a pressure gage and
 

a back pressure relief valve. Thermocouple leads passed
 

through the lid to a junction within the liquid.
 

A Viking Model FH-54G pump was used downstream of the
 

tank. Inserted in the line between the tank and pump was
 

a bronze valve and filter made of small mesh copper screen.
 

The pump was constructed of all bronze parts with a
 

mechanical seal and bronze relief valve. It was capable
 

of pumping a maximum of 3 gallons per minute at 25 psi.
 

discharge pressure and was driven through a flexible coupling
 

by a 1/3 horsepower variable speed direct current motor with
 

speed range between Oand 1800 rpm.
 

Downstream of the pump, the liquid flowed thru a
 

Pottermeter flow sensing element incorporating a high
 

efficiency rotor which spun freely within a venturi. This
 

unit was capable of withstanding temperatures in a range from
 

-456 to 10000 F and pressure up to 5000 psi. The element
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consisted of a housing designed to adapt directly into
 

the piping in which a hydraulically self-positioned rotor
 

was suspended, As the fluid flowed through the element, the
 

rotor revolved at a speed determined by the velocity of the
 

fluid. Mounted on the outside of the housing was a pick-up
 

coil, so placed that the rotation of a magnet created an
 

AC voltage of frequency equal to the speed of the rotor.
 

Since the sensing element was a frequency device, only
 

flow factors which affect the rotating speed of the rotor
 

could influence the flowmeter accuracy. Therefore, fluid­

viscosity, pressure, temperature, and specific gravity
 

have only slight effects on the volumetric flow rate. The
 

output signal from the sensing element was fe& into a
 

Model 3C-N Electronic Frequency Converter. The Potter­

meter and frequency converter assembly was calibrated using
 

a suspended float rotameter (Figure 5).
 

After passing through the pump, the liquid was heated
 

by a 1000 watt immersion heater silver brazed into the 1
 

inch O.D. copper tube located upstream of the entrance to
 

the channel. The power input to the heater was controlled
 

by a Model 1053 Thermotrol Temperature Controller designed
 

to operate by any one of three different modes: On-off,
 

Proportional, or Proportional with Reset. In these
 

experiments it was operated in the On-off mode.
 

Out of the immersion heater the water flowed through
 

a filter, into the channel, and back into the tank.
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C. EXPERIMENTAL PROCEDURE
 

As previously mentioned, the purpose of this experiment
 

was to study boiling flow through a porous medium. In
 

order to treat this phenomenon, an experimental apparatus
 

was constructed and used for the experiments described
 

herein. For a particular flowrate, values of saturation,
 

pressure, and temperatures were measured in the flow field.
 

The procedure for conducting a typical experiment will be
 

described.
 

To begin a test, the 14 gallon accumulator chamber
 

was filled with distilled water and the water pumped around
 

the flow circuit. The band heaters around the accumulator
 

chamber and the in-line heater heated the water to a-few
 

degrees below saturation temperature which was about 218 'F.
 

It required approximately two hours to heat this amount of
 

water. At this temperature the band heaters and in-line
 

heater were manually turned off and power was applied
 

to the heater in the channel producing boiling. The voltage
 

applied to the heater in the channel was adjusted to a
 

predetermined value by means of an alternating current variac.
 

Saturation was determined by using a previously
 

calibrated meter consisting of a light source and photodiode.
 

For a constant intensity light ray received by a photodiode,
 

its output is a function of the bias voltage and for identical
 

bias voltages the output is different for each photodiode.
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When calibrating the meters each photodiode was biased to
 

produce an output of 12 pa at zero gas saturation i.e., with
 

clear liquid flowing through the channel. This particular
 

voltage was called the calibration bias and was different
 

for each photodiode. When gas saturation was measured the
 

calibration bias voltage was applied to the photodiode and
 

the corresponding output read from the microammeter. When
 

one saturation meter was being read, all the other lights
 

were off to prevent light interference affecting this meter.
 

Also the Pyrex windows on the channel were shielded to
 

prevent outside light from affecting the photodiode output,
 

Because each of the meters was powered by the same power
 

supply, the calibration bias voltage had to be reset on
 

each meter before saturation could be measured.
 

Each time the saturation in the channel was measured,
 

a permanent pressure-time trace was taken. This trace was
 

obtained by applying 5 volts dc excitation voltage to each
 

transducer and feeding the output current into a Model
 

1508 Honeywell Visicorder Oscillograph Recorder. The
 

deflection of the Visicorder output trace was calibrated
 

against the existing pressure in the channel. This will
 

be discussed in a later section. Before a test began, a
 

calibration trace for each transducer was obtained at room
 

conditions and the power supply to the Visicorder was kept
 

on for the duration of a test. When a pressure trace was
 

desired, the run button on the Visicorder was punched and
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a short segment of paper obtained which contained the
 

pressure trace.
 

A precision pressure gage, installed in the lid of
 

the accumulator tank, indicated the pressure of the vapor
 

above the water surface in the tank. A pilot relief valve
 

was set to maintain this pressure at a constant value. This
 

pressure served as a datum to indicate the system pressure.
 

Temperatures at several points in the flow circuit
 

were monitored from the beginning to the end of a series
 

of tests. Bach of the pairs of wires leading from a thermo­

couple was fastened to a Bristol Temperature Recorder which
 

stamped a numbered dot on the chart paper. This paper was
 

continuously advancing at a constant rate and had grid
 

lines marked in degrees Fahrenheit; therefore the temperature
 

at any particular location could be read from the chart.
 

This also provided a permanent temperature record for the
 

duration of a test. It was necessary to calibrate the
 

recorder at the freezing point and boiling point of water.
 

A test series is defined as a group of tests each having
 

the same voltage (hence power) applied to the channel heater.
 

Tests series were run for channel heater voltages 40, 45,
 

and 50 volts. For each series liquid water flowrate was
 

initially set at 0.48 gpm. Complete data were recorded
 

for this flowrate and 5 additional flowrates at increments
 

of 0.48 gpm with a maximum of 2.88 gpm.
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D. CALIBRATION
 

Saturation Meters
 

The saturation meters were calibrated in a special
 

channel constructed specifically for calibration purposes.
 

This channel had the same cross-sectional dimensions as the
 

experimental channel and was 12 inches long. The meter was
 

placed near the exit so that the injector disturbances
 

would not affect the calibration. In the calibration setup
 

weight decrement was used as a measure of total gas volume
 

within the channel, and thus an indication of average
 

saturation. In order for the average saturation to be the
 

same as that in the cross section of the meter, nitrogen
 

was injected into the channel as the gaseous phase. This
 

eliminated the problem of vapor condensation in the interior
 

of the channel. Such condensation would mean that the
 

average saturation would be different from that measured
 

at the meter cross section. The indices of refraction of
 

nitrogen gas and water vapor are almost identical. Thus
 

the calibration obtained in this manner was applied to
 

the meters when used in the boiling experiments.
 

The light passing through the bed was detected by the
 

photodiode placed directly across the channel from the light.
 

The intensity of the light detected by the photodiode
 

was dependent upon the absorption and dispersion of the
 

light rays by the solid particles and different interfaces
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within the porous bed and was indicated by the current
 

output of the photodiode. The light was dispersed by
 

striking an interface formed by two different mediums.
 

With clear water flowing through the porous bed, the
 

number of interfaces dispersing the light was a minimum.
 

The introduction of bubbles in the fluid stream produced
 

additional interfaces (solid-vapor and liquid-vapor).
 

Therefore the amount of gas present governed the amount of
 

light received by a photodiode, and consequently its current
 

output. In order for this to be meaningful, each meter was
 

calibrated for current versus volumetric saturation.
 

.Shown in Figure 6 is the calibration set-up. The
 

volumetric saturation was calculated by weight decrement
 

and the current output of each photodiode corresponding
 

to a particular saturation was recorded. A photodiode is
 

a very sensitive device, therefore to exclude any error
 

from stray light, the inside of the calibration channel
 

and experimental channel was painted with a high temperature
 

aluminum paint. When taking readings on the experimental
 

channel, the glass windows were shielded.
 

In the calibration circuit water was pumped through.
 

3/4 inch inside diameter flexible clear vinyl tubing. At
 

the point of attachment to the channel, these lines exhibited
 

a certain degree of rigidity, which produced an error in
 

the weigh-t-readings. - In-order to determine this error,
 

knownweights were placed on the channel and the corresponding
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Figure 6. Experimental Apparatus for Calibrating Photodiodes
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weight indicated by the scales was recorded. Additional
 

weights were added such that a correction for each indicator
 

position could be determined (Figure 7).
 

There was also an error due to the momentum change of
 

the liquid at the entrance and exit to the channel. This
 

error varied with water flowrate. To compensate for this,
 

the scales were set at the same initial indicator position
 

each time the flowrate was changed.
 

The saturation exisiting in the channel was determined
 

by a change in weight indicated by a change of scale
 

position. For clear water flow there was 0.1278 lb of
 

water in the exit line which had to be subtracted from
 

the indicator reading to give the true weight of water in
 

the channel. Upon introducing nitrogen there was also
 

two-phase flow in the exit line. An approximation was
 

made of the weight of water and nitrogen present in the
 

exit line for each saturation. As the saturation was
 

increased the volume of nitrogen in the exit line increased
 

and less correction was required.
 

In the initial tests, the photodiode output, for
 

zero saturation was different at the beginning and end of
 

a test. Also there was a large fluctuation in the current
 

at each saturation, frequently as much as 2 va. It was
 

found that this fluctuation was more pronounced at low
 

liquid and gas flow rates and it was decided that this was
 

the result of the bed becoming fluidized at low liquid
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rates. Upon increasing the liquid flowrate, the entire
 

porous bed was at first fluidized and then raised inside
 

the channel. This moving of the bed caused some fluctuation
 

at each indicator position. To solve this problem the
 

bed was packed 10 different times and 2800 beads were added
 

after the initial packing. The most efficient method of
 

packing the bed was to maintain the liquid flowrate constant
 

at 0.96 gpm and pulsate the gas flow through the bed. After
 

these packings the bed stabilized as did the scale readings
 

and the photodiode output was more steady, varying only
 

0.2 pa at the most.
 

As was mentioned previously, the channel for the
 

present study was constructed with 5 meters, each meter
 

requiring one photodiodeo In Figure 8 the output of each
 

photodiode is plotted against voltage applied to the light
 

source. The variation in impressed voltage is an indication
 

of the light-intensity passing through the porous bed.
 

The same light bulb was always used for a particular
 

photodiode to eliminate any error caused by the variation
 

of intensity of different light bulbs at the same applied
 

voltage. From these curves it is apparent that each
 

photodiode must be calibrated separately. In an attempt
 

to shift these curves such that only one calibration would
 

be required, a variable resistor was placed in series with
 

each photodiode. By applying the same bias voltage to each
 

photodiode, the output could be adjusted by increasing
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or decreasing the series resistor. With the maximum
 

intensity light passing through the bed, the resistance of
 

a photodiode is in the range of 2 meg ohms. This required
 

a series resistor of the same magnitude. However, it was
 

found that due to the large resistance of the series
 

resistor, the voltage drop across this resistor varied as
 

the current output of the photodiode causing an additional
 

fluctuation in the bias voltage. Since each photodiode has
 

a different characteristic curve, then each will have its
 

own calibration curve.
 

Several different type light sources were investigated.
 

One made by Texas Instruments Corporation which produced
 

light in the infrared spectrum was considered. This source
 

produced a narrow beam with a 20 degree central angle of
 

spread. This type of light source exhibits a change in
 

wavelength with temperature. This characteristic is
 

undesirable for the purpose of measuring light transmission
 

in a flow channel where temperature will be varying. The
 

fact that this light produced a narrow beam was at first
 

thought to be beneficial since a photodiode is direc­

tionally sensitive. However, at low liquid and gas flow­

rates, or low saturations, the gas bubbles flow through
 

the porous bed along random paths at different frequencies,
 

and the size of the bubbles is larger than for higher
 

saturations. The narrow beam light did not cover enough of
 

the bed to give a true indication of saturation under such
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conditions. Therefore, the light sou-rcezused, namely, a
 

small 28 volt dc bulb requiring 0.17 amps was one which
 

produced a beam covering a large area giving an average
 

of the saturation in the neighborhood of a particular cross
 

section.
 

The size of the bubbles passing through the porous bed
 

varied with liquid and gas flowrates. At low liquid flow­

rates, the bubbles were estimated to range from 1/16 inch
 

to 1/4 inch in diameter. As the liquid flowrate was
 

increased, the bubbles were broken up and the number of
 

small bubbles at any one section increased. At high liquid
 

flowrates it was necessary to increase the gas flow to
 

produce the same saturation as at low flowrates. However,
 

it is recalled that the same volume percentage of gas is
 

present for equal saturations. The size of the bubbles
 

influences the amount of light transmitted through the bed
 

and hence the output of the photodiode. Therefore, the fact
 

that the amount of gas at any one section was the same for
 

equal saturations but at higher liquid flowrates the
 

bubbles were smaller in size and produced additional
 

interfaces required calibration for each liquid flowrate.
 

This means that the output of a photodiode at the same
 

saturation will be less at high liquid flowrates than
 

at low flowrates.
 

When calibrating each saturation meter, nitrogen was
 

used as the gaseous phase and water as the liquid phase.
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In the vapor bubble experiment-, the gaseous phase was
 

produced by locally boiling the liquid at the entrance to
 

the channel. Since the meter measures the amount of light
 

transmitted through the bed at a particular cross-section,
 

how then, if any, will the different types of interfaces,
 

water and nitrogen, or water and water vapor, affect the
 

calibration? The fact that nitrogen was used will not
 

affect the calibration in so far as the refracted light
 

ray is concerned. In order to verify this, consider Snell's
 

Law of Refraction. When light falls upon an interface
 

separating two different mediums, part is reflected, part
 

is absorbed, and part is refracted into the medium. The
 

angle of refraction depends upon the angle of the incident
 

ray-and the index of refraction of the medium through
 

which the refracted ray is passing. Figure 9 shows the
 

two different interfaces. For the same angle of incidence,
 

what is the difference in the angle of refraction?
 

Snell's Law states that the index of refraction v- in 

the medium through which the refracted ray is passing is
 

the ratio of the sine of the incident angle i to the sine
 

of the refracted angle r.
 

sin i (29)

sin r
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For an equal angle of incidence the sine of the refracted
 

angle for the two interfaces is inversely proportional to
 

the index of refraction of the different medium.
 

sin r sin i (30) 

-sini
sin r' 


where the prime denotes properties pertaining to nitrogen.
 

Therefore, the angle of refraction varies as the index of
 

refraction for the two gases. The index of refraction for
 

water vapor is 1.000261 and for nitrogen is 1.000296. The
 

difference of 0.000035 is considered small enough such that
 

the calibration will not be affected by using nitrogen as
 

the gaseous phase.
 

In the vapor bubble experiment where the gaseous phase
 

was produced by boiling the water, the system operates at
 

temperatures higher than room temperature. When calibrating
 

the photodiodes the system temperature was 77 OF. Several
 

tests were run in which the liquid was heated to 120 °F,
 

and this temperature increase had no affect on the calibra­

tion curves. Therefore, the calibration does not appear
 

to be temperature dependent.
 

In Figure 10 is shown the calibration curves for one
 

photodiode at four different flowrates Each of the five
 

photodiodes have a different set of calibration curves.
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Pressure Transducers
 

Pressures on the inside channel wall were measured
 

using Consolidated Electrodynamics Corporation (CEC)
 

pressure transducers requiring 5 volts dc excitation voltage.
 

This voltage was supplied by a Model 801C Harrison Laboratory
 

power supply. The transducer output signal was fed directly
 

into a Model 1508 Honeywell Visicorder Oscillograph Recorder
 

which provided a permanent pressure-time curve. For the
 

pressure trace to be meaningful, the Visicorder output
 

signal was calibrated against the corresponding pressure
 

experienced by the transducer (Figure 11).
 

Six transducers were-p-laced in-the flow circuit, one
 

at the channel entrance, four on the channel, and one at
 

the channel exit each requiring a separate calibration
 

curve because of different pressure ranges and internal
 

resistance. This was accomplished by attaching opposite
 

each transducer a pressure tap which connected to an
 

Ametek precision pressure gage. With the inside of the
 

channel open to atmospheric pressure and the gages zeroed,
 

an initial pressure trace was recorded on the Visicorder.
 

Water was then pumped through the channel and at a selected
 

pressure the Visicorder Oscillograph was started and a short
 

segment of paper obtained which contained the deflection
 

from the initial setting representing the particular
 

pressure experienced by the transducer. The pressure
 

required for this deflection was read from the pressure
 

gage and a calibration curve obtained (Figure 12).
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IV. EXPERIMENTAL RESULTS AND CONCLUSIONS
 

The test channel was instrumented such that values of
 

temperature, pressure, and saturation could be measured
 

continuously over a period of time.
 

In the initial series of tests, the flow of vapor
 

bubbles at a particular flowrate could be observed to
 

some extent through the Pyrex glass windows although no
 

effort was put forth to produce a transparent bed. Since
 

the heater extended into the porous bed the diameter of the
 

bubbles emerging from the heater wire surface was a function
 

of the pore size which was approximately equal to the
 

diameter of the glass beads (3 mm). Visual observations
 

indicated that the vapor bubbles produced by the heater
 

seemed to be of constant size and distributed equally
 

across the cross-section for a distance of 2 or 3 inches
 

above the heater. From this point until the bubbles
 

reached the channel exit, there existed a region along the
 

centerline of the porous bed in which a vapor bubble could
 

travel the entire length of the channel without condensing.
 

As the channel wall was approached in the radial direction
 

at any chosen cross section, the amount of vapor bubbles
 

decreased such that there was almost no flow of vapor
 

adjacent to the inside of the wall.
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The saturation changed along the length of the porous
 

bed from the heater to the exit. When the Pyrex observation
 

windows were used there were high values at the heater wires,
 

at mid length and at the exit. Low values existed in the
 

sections containing the two Pyrex glass windows. An
 

approximate explanation of this variation in saturation
 

can be given in terms of longitudinal heat conduction
 

through the channel walls. This conduction occurs from the
 

heat source in the vicinity of the channel heater. Heat
 

flows longitudinally in the channel wall, and this longi­

tudinal heat flow contributes to the total inside wall
 

temperature. The glass windows are much better insulators
 

than the aluminum wall; therefore the temperature of the
 

glass window would not be raised as much as the walls due to
 

longitudinal conduction. Therefore condensation would be
 

greater adjacent to the glass windows than in the cross­

sections surrounded by aluminum walls. Thus, such a
 

conduction pattern of heat in the channel walls would
 

provide an explanation for the shape of the saturation curve
 

given in Figure 14, Figure 13 is a plot of recorded
 

centerline temperatures (Tt) inside the porous bed and
 

along the outside wall of the test channel (Tw) and Figure
, 


14 shows the saturation variation through the porous bed
 

as measured by the meters. These curves show the temperature
 

of the liquid at the center of the porous bed to be 218 'F in
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the region preceeding the heater and 223 'F following the
 

heater and remaining almost constant thereafter. The
 

temperature distribution in the complete channel taken during
 

a typical test is shown in Figure 15. The life of a vapor
 

bubble would be greater along the centerline due to the
 

constant temperature and a decrease in the local pressure
 

as the bubble traveled through the flow field. This would
 

account for the central core region where the vapor flow
 

appeared to be very near that of slug type flow. The
 

constant centerline temperature reinforces the assumption
 

used when deriving the expression for the effective thermal
 

conductivity, that is, the heat transfer in the fluid and
 

porous medium is predominantly radial. When the power was
 

suddenly removed from the heaters a clear liquid front could
 

be observed moving slowly up the channel. Behind the front,
 

the saturation was zero. Ahead of the front, the saturation
 

appeared to be the same as it was immediately before turning
 

off the heaters. The elapsed time for the front to travel
 

the length of the channel was approximately one minute for
 

low flowrates. A qualitative explanation of this can be
 

given in terms of cooling of the aluminum channel. The
 

aluminum walls lose-heat to the water first in the lower
 

part of the channel, meanwhile the upper part of the channel
 

walls retain enough heat to maintain vaporization. The
 

cooling of the channel walls progressed upward and took
 

about one minute for vaporization to be completely stopped.
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Another group of tests was run with the Pyrex glass
 

windows replaced by aluminum blanks. Of course, with the
 

aluminum plates attached to the channel, it was not possible
 

to visually observe the flow pattern. The results of a
 

typical test is shown in Figure 16. The significant dif­

ference in the two groups of tests is the difference in the
 

saturation curves. The absence of the glass windows
 

eliminated the low values of saturation which occurred in
 

the first group of tests. The aluminum plates were
 

installed in order that the inside wall temperature would
 

approach constant values. This was approximately accom­

plished as is evident from the curves.
 

The temperature distribution along the length of the
 

channel was about as expected. The centerline temperature
 

increased sharply across the heater coils and dropped
 

linearly approximately 2 'F to the channel exit; This
 

temperature differential was slightly less than that for
 

the-first-group of tests (Pyrex glass plates on the
 

channel). The inside wall temperature of the three inch
 

side increased more rapidly than did that of the two inch
 

side and also reached a higher temperature for a given
 

heater condition.
 

The average saturation increased as the vapor bubbles
 

traveled away from the heater when the glass was replaced
 

by aluminum blanks. The saturation as indicated by the
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meters was about 1.5% greater at meter No. 2 (nine inches
 

from the channel entrance) than it was at meter No. 1
 

(six inches from the channel entrance). The pressure drop
 

between the two meters was 2.8 psi which should allow the
 

vapor volume to increase slightly, however this is offset
 

by condensation tendencies since the average temperature
 

at this section was somewhat below thermodynamic saturation
 

for the existing pressure. The increase in apparent gas
 

saturation could result from the method of determining
 

saturation by light dispersion. With glass windows on the
 

channel, vapor bubbles could be seen as they formed on the
 

heater coils and were swept away by the moving liquid.
 

The bubbles were large enough to enclose one and sometimes
 

two glass beads (3 mm diameter). With the aluminum walls,
 

the entire system was at a higher temperature; therefore
 

the life of a vapor bubble under similar conditions was
 

extended. Even so, as a vapor bubble left the heater
 

surface and began its travel through the porous bed, its
 

diameter approached the pore size. The larger bubbles had
 

to break up into several small bubbles forming additional
 

interfaces which dispersed more light and the saturation
 

meter reacted as if the saturation had increased.
 

An expression for predicting the effective thermal
 

conductivity is given in eq. (28). Due to the geometry and
 

composition of the test channel when containing glass
 

windows, one cannot speak of an overall effective thermal
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conductivity for the entire porous bed, but must consider
 

that portion of the heterogenous system in which the para­

meters influencing the energy transfer can be determined
 

within an acceptable degree of accuracy. For this'reason
 

a local effective thermal conductivity was determined for
 

three sections of the test channel, the two sections con­

taining the Pyrex glass and the middle section which was
 

aluminum. As was explained in a previous section, the two
 

inch sides of the test channel contained one inch diameter
 

Pyrex glass windows for the saturation meter. The heat
 

transfer through these small windows was neglected and the
 

entire side treated as a continuous plate of aluminum.
 

The thermal conductivity calculated for these sections
 

with the large windows in place was found to vary in a
 

random manner such that no comparison could be made with
 

previously published results. After the glass windows were
 

replaced by aluminum blanks, the effective thermal
 

conductivity was calculated and compared to that presented
 

by Weekman and Myers [25] who studied heat transfer of a
 

foreign gas (air) and water flow through porous beds packed
 

with spherical beads. The calculated conductivity was
 

within ± 15% of their values (Figure 17). Their work was
 

performed at flowrates higher than those in this study;
 

however their data were extrapolated to include the region
 

of interest.
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It was noted by Henry [7] that when analyzing flow in
 

a porous medium on the basis of a continuum model, there is
 

an effective heat diffusion coefficient which is many times
 

greater than the composite molecular diffusion coefficient.
 

This is shown to be true if the effective thermal con­

ductivity, eq. (28), is subdivided into components
 

representing the amount contributed by each mode of heat
 

transfer. -For example at one section of the flow channel,
 

the heat transfer by conduction contributed 18%, and the
 

lateral transport 82%.
 

No attempt was made to formulate an analytical expres­

sion to predict-the two-phase pressure gradient for the
 

particular experimental arrangement. One method of approach
 

is to integrate one of Maxwell's relations,
 

(31)
DT v = qWV)T 

between the saturated-liquid and saturated-vapor state,
 

the result being the Clapeyron equation:
 

dP hfg dT
 
P RT32)
 

However in this study, this equation is not applicable,
 

since Maxwell's relation eq. (31) was derived considering
 

a constbnt temperature process. A thorough search of the
 

literature was made, and no expression was found predicting
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the two-phase pressure gradient for non-isothermal flow
 

through porous media of a liquid and its vapor.
 

Lockart and Martinelli [13] and Weekman and Myers [24]
 

presented data for the two-phase pressure gradient in
 

horizontal pipes and packed beds, respectively. However
 

their results were in terms of dimensionless ratios, in
 

which the two-phase pressure gradient divided by the single­

phase liquid pressure gradient was plotted against the
 

single-phase liquid pressure gradient divided by the single­

phase gaseous pressure gradient. Their tests were
 

conducted using a liquid (water) and foreign gas (air)
 

where the above mentioned variables could be measured
 

experimentally. They defined the follwoing dimensionless
 

ratios, 

AP 

P A TP (32) 
1 AP
(ZT) 1 

AP
 
TP(33)
2 TP 2 


g AP
 
g
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x AP (34)
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From these eqs. (32), (33), and (34), is a function of
 
@2 ad2
 
2,and i that is,
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x2 = 
__ (35)
2
 

Therefore, from the data presented, the two-phase pressure
 

gradient could not be calculated, thus no comparison with
 

this data was possible.
 

Weekman and Myers applied Lockart and Martinelli's
 

dimensionless pressure gradients, which were derived for
 

flow through pipes, to flow through porous beds of a
 

liquid and foreign gas, and presented experimental evidence
 

that there exists an acceptable comparison of pressure drop
 

correlation for the two different flow mechanisms.
 

The experimental pressure drop for boiling flow
 

through porous media in the present study was compared with
 

eq. (14). The results were remarkably close as seen from
 

Figure 24. Owens applied eq. (14) to homogeneous two-phase
 

flow of a liquid and its vapor through vertical pipes and
 

ignored the term for pressure drop due to change'in
 

elevation. His data are also shown in Figure 18. It is
 

probable that the static pressure gradient is negligible
 

compared with the total pressure gradient at large liquid
 

mass velocities. Of course, with small liquid velocities
 

and the bed approaching zero saturation, a static pressure
 

correction would have to be applied as was the case in
 

this study.
 

Since-the Weekman and Myers porous media data compare
 

favorably with the Lockhart and Martinelli data for flow
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in horizontal pipesand since data accumulated in the
 

present study compare favorably with Owens data for flow
 

in vertical pipes, it seems reasonable to conclude that a
 

large number of channels in a packed bed function in a
 

manner similar to pipes in two-phase flow.
 

From the study of data acquired during this study
 

several concluding statements may be made concerning the
 

validity of the results presented herein. For predominantly
 

radial transfer the effective thermal conductivity of a
 

heterogeneous system consisting of a porous material,
 

liquid phase, and vapor phase produced by boiling the liquid
 

may be estimated by the following equation,
 

Ke (I - c)ks + [Skv + (1 - S)kl] + yV 0 PlCp1 L (36) 

This equation accounts for heat transfer by conduction in
 

the solid, liquid, and vapor, and a convective term for the
 

radial movement of liquid and vapor caused by the tortuous
 

channels in the randomly packed medium. The effective
 

thermal conductivity calculated from data obtained in the
 

experimental tests compared favorably with results of
 

previous investigators.
 

The saturation of a two-phase mixture can be determined
 

by a measurement of the percentage of light transmitted
 

through the mixture. The saturation at any section in the
 

porous bed was measured by a saturation meter. A separate
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experiment was necessary to calibrate each meter (consisting
 

of a light source and photodiode) such that the current
 

output of a photodiode was an indication of saturation.
 

This method could be very useful in determining either the
 

saturation at a particular section or the average saturation
 

in a two-phase flow field in which the thermodynamic properties
 

could not be measured.
 



APPENDIX A
 
SUPPORTING EXPERIMENT FOR SELECTING
 

LIQUID AND POROUS MEDIUM
 

A. PURPOSE
 

The purpose of this study was to design and test a
 

forerunner to the experimental apparatus that was used in
 

the boiling flow study in order to eliminate unforseen
 

difficulties. At first it was anticipated that a trans­

parent porous bed could be produced such that boiling.
 

flow could Te'sfudied visually. This required selecting a
 

porous material and liquid which had the same index of
 

refraction and could safely be used in an experiment
 

operating at high temperatures. This was designed to be
 

a pre-breadboard set-up for the earth-orbital flight
 

experiment.
 

B. SELECTION OF LIQUID AND POROUS MEDIA
 

At this time it was anticipated that the porous
 

medium would be made by packing Pyrex glass beads into a
 

channel. A fluid survey was conducted in an attempt to
 

find a one component liquid with an index of refraction
 

comparable with Pyrex glass beads and acceptable to be
 

used in a laboratory experiment and space environment.
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Some of the more promising liquids found were glycerine,
 

dichloro butanol, fluoro toluene, and triethylene glycol.
 

After detailed library research, glycerine was initially
 

chosen as the best suited liquid; it is a colorless, viscid
 

liquid without odor and miscible with water in all portions.
 

Glycerine has a boiling point of 554 'F at 14.7 psia, a
 

flash point of 734 'F, specific gravity about 1.2, and its
 

viscosity and surface tension decrease with increased
 

temperature-. A test was conducted at high temperatures to
 

determine in what way glycerine affects different metals,
 

rubber, teflon, and tygon tubing which were used to
 

fabricate the experimental apparatus. It was found that
 

glycerine had little affect on the metals and teflon but
 

-softened -rubber. Also, an attempt was made to determine if
 

boiling over long periods of time affects the index of
 

refraction of glycerine.
 

The glycerine purchased for the experiment was less
 

than 100% pure with unknown thermal properties. An
 

effort was put forth to determine these properties. A
 

tensiometer test was performed to determine the surface
 

tension as a function of temperature. The results were
 

formulated and found to differ approximately 10% from
 

accepted values published in a report by Union Carbide
 

Corporation, [23]. This discrepancy was probably due to
 

the-impurities-in the tested glycerine.
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A sample of glycerine was heated to 400 'F and
 

boiled by an immersion heater. After boiling for several
 

minutes, the glycerine began to discolor. It was found that
 

glycerine polymerizes and decomposes to some extent at
 

this temperature. To reduce the boiling temperature, the
 

possibility of operating the system at a reduced pressure
 

was investigated. This would eliminate the discoloring
 

problems as well as reduce the power necessary to produce
 

boiling. Although glycerine was initially chosen as the
 

working fluid, the study of triethylene glycol was con­

tinued in hopes of finding a liquid with more desirable
 

properties. It has a refractive index of 1.456, is less
 

viscous and has a lower vapor pressure than glycerine.
 

Tests were also conducted to determine its corrosive
 

properties and only the rubber materials were affected.
 

Triethylene glycol was selected for the liquid to be used
 

in the pre-breadboard experiment.
 

Although a bed of Pyrex beads was tentatively selected
 

as the porous medium, the optical quality of the beads
 

received from local distributors was less than desirable.
 

The matching of the refractive index of triethylene glycol
 

and Pyrex was barely acceptable although the beads had
 

internal distortions. It was thought that these distortions
 

were frozen strains formed in the process of manufacturing.
 

Several unsuccesful attempts were made to relieve these
 

strains by annealing.
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In order to improve the index of refraction match of the
 

liquid and porous medium, a 96% silica, high temperature
 

No. 7900 ground glass from Corning Glass works was
 

investigated. The indices of refraction of the ground
 

glass and triethylene glycol were 1.458 and 1.4578, res­

pectively. A sample of crushed glass was screened to
 

obtain a uniform particle size; particles passing through
 

No. 12 mesh and retained on No. 20 mesh (sizes from 1.410
 

mm to 0.833 mm) were selected. One undesirable character­

istic of the fused silica was that it exhibited a reddish
 

tint when heated to temperatures above 500 0F, which was
 

below the boiling point (529 0F) of triethylene glycol.
 

Further experimentation with the ground glass revealed that
 

a heat treatment process (700 'F for two hours) would
 

turn the glass first brown and then back to neutral. The
 

index of refraction of the ground glass was unaffected by
 

the heating process. The ground glass proved to be unac­

ceptable, and Pyrex glass beads (3 mm diameter) were
 

selected for the porous medium.
 

C. PROPERTIES OF TRIETHYLENE GLYCOL
 

In order to investigate vapor bubbles and heat which
 

is transferred along various solid and liquid paths through
 

a porous medium, it is necessary to have complete knowledge
 

of the heat transfer and thermodynamic characteristics of
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the fluid moving through the medium. It would be very
 

helpful if this type information could be obtained from the
 

literature; however such information is not presently avail­

able for triethylene glycol. Consequently laboratory tests
 

had to be conducted to determine thermodynamic properties
 

and heat characteristics of triethylene glycol. Limited
 

data on vapor pressure, viscosity and surface tension were
 

obtained utilizing a constant temperature bath shown in
 

Figure Y9, The vapor pressure was determined by use of an
 

isoteniscope. The numerical values of vapor pressure were
 

indicated by a Stokes McLeod gage capable of measuring
 

pressures down to one micron of mercury.
 

The viscosity of triethylene glycol at different
 

temperature levels was determined by pumping liquid from
 

the constant temperature bath through a Hoppler Precision
 

Viscosimeter. The viscosity was calculated as a function of
 

the time required for a calibrated glass ball to drop a
 

constant distance through a tube filled with triethylene
 

glycol.
 

Surface tension values were obtained by use of a
 

Cenco tensiometer placed in the constant temperature bath.
 

D. EXPERIMENTAL APPARATUS
 

The parameters to be experimentally determined in this
 

experiment were: pressures at channel entrance and exit;
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temperatures in the reservoir and 4 locations within the
 

porous bed; volumetric and mass flowrates; and bubble shapes
 

and characteristics utilizing photography.
 

The experimental apparatus consisted of a reservoir,
 

pump and motor, heaters with controls, flow meter, pressure
 

gages, thermocouples and temperature recorder, and a
 

channel containing porous beads. A schematic diagram is
 

shown in Figure 20 and pictured in Figure 21.
 

Triethylene glycol was pumped from the reservoir into
 

a 3 1/8 inch I.D. pipe tee and passed either through a bypass
 

valve back into the reservoir or into the system. Entering
 

the system, the liquid passed through a temperature sensing
 

element, into a pipe containing heaters, flow meter and then
 

into the channel containing the porous medium. Upon
 

entering the porous bed the liquid was boiled and the two­

phase mixture traveled through the bed and back into the
 

reservoir.
 

The channel (Figures 22 and 23) was constructed of
 

1/4 inch aluminum plate. The inside cross sectional
 

dimensions were 2 inches by 3 inches by 18 inches. Pyrex
 

plates 2 inches by 1/8 inch by 15 inches were placed in
 

slots 
 on each vertical side of the channel. Internal
 

pressure within the channel pressed the glass plates against
 

a neoprene gasket which was held in place by RTV-106 sili­

cone rubber sealant. The end plates of the channel extended
 

into the porous bed 2 1/2 inches at the entrance and 1 1/2
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inch at the exit, making the porous bed 14 inches in length.
 

A screen on each end plate retained the porous medium. The
 

tubing throughout the system, except for the internal
 

heaters and sensing element, was 1/2 inch O.D. stainless
 

steel connected with Swagelok fittings.
 

Two separate systems of pre-heaters were installed to
 

initially heat the bulk liquid and maintain the system at
 

its working temperature (approximately 500 'F). One heater
 

system consisted of two 800-watt heaters mounted on a 9­

gallon capacity stainless steel reservoir tank. The other
 

employed two 1000-watt immersion heaters silver brazed into
 

a copper tube placed in the flow line. Both systems were
 

controlled by a Thermotrol Temperature Controller Model
 

1053 with a resistance thermometer sensing element Model
 

No. 1080.
 

A Deming internal rotary gear constant displacement
 

pump Model No. 1535 driven by a one horsepower Leland
 

electric motor with variable speed capabilities from 800
 

to 2400 rpm pumped the liquid around the flow circuit.
 

Flowrates were measured by a Potter flowmeter described in
 

a previous section.
 

The heaters used to produce boiling were coiled 20
 

ohm resistance wire. They were mounted on the entrance
 

end plate and controlled with a Magitran silicon solid
 

state power supply Model SL 36-12 capable of providing a
 

continuously adjustable output over a voltage range of
 

0-36 vdc with a maximum current rating of 12 amperes.
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Temperatures were measured with copper-constantan
 

thermocouples at five positions within the system: (1)
 

channel entrance, (2) channel entrance upstream of heater,
 

(3) channel mid-length, (4) channel exit, and (5) tank
 

reservoir. The thermocouples were silver soldered into
 

brass plugs which screwed into the top of the channel
 

and sealed with a high temperature (500 'F) epoxy.
 

Because of the high temperature in the system and the
 

corrosive properties of triethylene glycol a problem of
 

maintaining a pressure seal for the thermocouple leads
 

through the channel wall was encountered. The high temper­

ature epoxy used to seal the thermocouple leads would
 

sustain a limited degree of hotness and exposure to
 

triethylene glycol. Temperatures were recorded with a
 

20-channel Bristol Model 560 wide-strip Dynamaster Pyrometer
 

recording system.
 

Pressure readings were taken at the channel entrance
 

and exit with a Crosby gage and Test gage, respectively.
 

The Crosby gage had a maximum capacity of 30 psi with 1/4
 

psi subdivisions, and the Test gage a maximum capacity of
 

15 psi with 0.05 psi subdivisions.
 

Because the pressurized system operated at high
 

temperatures, several safety precautions were taken during
 

a test such as: a plywood shield placed along one side of
 

the apparatus separated the operator from the apparatus,
 

and an additional plexiglass shield fastened to the top
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of the plywood permitted observation while behind the
 

protection of the shield. The operator wore leather gloves,
 

lab coat, and a welder's helmet with a clear glass view
 

plate to safeguard against burns in the event of failure.
 

Upon initiation of the flow system, the triethylene
 

glycol completely filled the porous bed and the visibility
 

through the channel windows was excellent. The heaters
 

were turned on and the temperature of the system increased
 

at a rate of approximately 2 'F per minute. When the system
 

reached 160 'F, a number of bubbles were observed flowing
 

through the porous bed. With an increase in temperature
 

these bubbles exhibited a marked increase in size but
 

began disappearing when the temperature reached 250 'F.
 

They were believed to have been air and water vapor
 

originally dissolved in the triethylene glycol. They prob­

ably were later trapped in some of the higher portions of
 

the flow circuit or escaped from the vented accumulator tank.
 

At approkimately 250 'F, a slight discoloration of
 

the triethylene glycol was observed. Additional discolora­

tion was encountered with increasing temperature until at
 

350 'F the porous bed was opaque. The test was continued
 

until the triethylene glycol acquired a black color at
 

400 'F. At this point a heater connection inside the
 

channel dislodged and the system was shut down. A chemical
 

analysis to determine why the fluid became opaque indicated
 

that the major contaminant was iron along with minor quantities
 

of aluminum, copper and carbon.
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The experience and information accumulated during this
 

design, fabrication, and experimentation proved valuable
 

in further work. The channel design used in the boiling
 

flow experiments was modified to incorporate information
 

gathered in this preliminary experiment. Included in these
 

modifications were thicker viewing windows, rearrangement
 

of porous media retaining screens, and thermocouple place­

ment within the porous bed. Also these led to the decision
 

to use water in the boiling experiments rather than glycerine
 

or triethylene glycol.
 



APPENDIX B
 
SUPPORTING EXPERIMENTS UTILIZING NITROGEN
 

AND A CARGILLE LIQUID
 

The purpose of these experiments was to develop and
 

test a fluid flow system which could be used in the study
 

of two-phase flow of a liquid and foreign gas through
 

porous media in an earth-orbital experiment. This experi­

ment provided background for the boiling experiments and
 

also provided a breadboard setup for the foreign gas
 

earth-orbital experiment.
 

The major components of the system are shown in
 

Figure 24. General operation of the system consisted in
 

pumping liquid from storage tanks (1) with a positive
 

displacement pump (4), filtering the liquid and passing it
 

through a channel (9) packed with flint glass beads. At
 

the same time, nitrogen gas (6) was injected into the
 

channel such that it flowed parallel with the liquid through
 

the bed of glass beads. From the channel this mixture of
 

gas and liquid flowed back to the storage tank and through
 

a screen separator (3) where gas and liquid were separated
 

and the nitrogen released to the atmosphere through a
 

relief valve (2).
 

The liquid used in the experiment was a light hydro­

carbon oil called Cargille Immersion Liquid chosen because
 

of its nonvolatile characteristics and optical properties.
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Two different mixtures of this hydrocarbon were mixed in
 

proportions of 66:34 to produce a liquid whose index of
 

refraction matched that of the flint glass beads making up
 

the porous matrix. This liquid mixture is a clear fluid
 

similar to water in transparency but oily in consistency.
 

Thus, when the beads were immersed in the liquid they
 

formed a transparent porous bed since the indices of
 

refraction of the fluid and glass were matched. Nitrogen
 

was chosen as the foreign gas because of its inertness and
 

insolubility with respect to Cargille Liquid.
 

The following is a detailed description of each
 

component of equipment, and an explanation of its operation
 

with respect to the system. The storage tank served a
 

twofold purpose, first, it acts as a reservoir for the Car­

gille Liquid and second, it provides space for the separatio
 

of nitrogen from the liquid after it passes through the
 

channel. This separation process will be discussed later
 

in further detail. The tank was constructed from 304
 

stainless steel, measuring two feet in diameter, three feet
 

high, and one-fourth inch thick.
 

The fluid was circulated through the flow circuit by
 

a positive displacement Hydraulic Gerotor pump with a
 

capacity of eight gallons per minute at 1750 rpm. The
 

pump was driven by a direct coupled motor rated at 1/3
 

hp and 1750 rpm. A rheostat was connected in series with
 

the field circuit of the motor such that motor speed, and
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therefore flowrate, could be varied. Out of the pump,
 

the liquid was directed through a cartridge filter (5), and
 

then to the channel entrance.
 

The channel was constructed of 1/4 inch aluminum
 

plates (inside dimensions 2 inches by 3 1/2 inches) with
 

3/8 inch glass set into the two sides of largest dimensions.
 

Circular glass disks (one inch in diameter and 1/8 inch
 

thick) were set into 4 equally spaced holes along each of
 

the other two, sides of the channel over which were placed
 

photodiodes and opposite to each of them a light source
 

(Figure 25). The channel was packed with 3 mm flint glass
 

beads with an index of refraction which matched that of the
 

liquid, the index being 1.51. Liquid entered the channel
 

through a centrally located opening in the bottom end
 

plate of the channel. Nitrogen was discharged through 8
 

small ports (Figure 26) into the channel from an injector
 

chamber in the bottom end plate which was connected to a
 

3/8 inch O.D. gas line. A check valve was placed in this
 

line to prevent liquid from draining back into the gas line.
 

As nitrogen was injected into the channel, the amount
 

of light incident upon a photodiode was decreased. Hence
 

the amount of gas in the channel at any particular time was
 

proportional to the light intensity reaching the photo­

diode. Therefore the amount of nitrogen present in the
 

porous bed was calibrated in terms of photodiode output
 

current. The schematic of the photodiode-light source
 

circuit is shown in Figure 25.
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The nitrogen introduced into the channel was stored in
 

a high pressure cylinder from which it flowed through a
 

converging-diverging nozzle (Figure 27) such that the
 

nitrogen flowrate could be calibrated using the supply
 

pressure and temperature.
 

The mixture of liquid and nitrogen discharged from the
 

channel was returned to the storage tank which contained
 

a screen separator. The mixture entered the separator
 

beneath the liquid surface. At this point the gas bubbles
 

were filtered from the liquid and escaped through a relief
 

valve while the liquid passed through a screen and remained
 

in the storage tank.
 

Several pieces of equipment and experimental procedures
 

require clarification as to their effectiveness. These
 

include the screen phase separator, gas flow nozzle,
 

liquid flow metering method, back pressure relief valve,
 

and the use of photodiodes to measure bed saturation.
 

The phase separator (Figure 28) was constructed from
 

copper sheet and screen consisting of two concentric cylinders
 

made of copper screen, the inner screen being 40 mesh while
 

the outer screen was 60 mesh soldered to copper end plates.
 

The liquid-nitrogen mixture entered the center cylinder
 

where the nitrogen was trapped as a result of capillary
 

attraction and the liquid passed through. The separator
 

performed remarkably well during all tests. No nitrogen
 

bubbles could be observed entraining into the channel,
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even at high flowrates proving that all of the nitrogen
 

had been separated from the liquid. The large capacity of
 

the storage tank (70.5 gallons) also helped to provide
 

adequate disengaging space and holdup time such that the
 

nitrogen could separate from the liquid by gravity.
 

The speed of the motor driving the pump was calibrated
 

in terms of liquid flowrate as shown by Figure 29. This
 

was accomplished by using a tachometer to measure motor
 

speed and a bucket and stopwatch to obtain the flowrate.
 

One source of error was that the motor speed did not
 

remain constant because of the inefficiency of the variable
 

speed electrical system and the heating of the rheostat used
 

to control the motor speed. In spite of this error, an
 

excellent calibration curve was obtained as indicated by
 

the linearity of the curve. The affect of back pressure
 

or storage tank pressure on liquid flowrate was determined
 

since it was required that the system be pressurized and
 

operated at about 2 psig. As indicated by Figure 30
 

storage tank pressure has negligible affect on liquid
 

flowrate.
 

As was mentioned earlier, the nitrogen flowrate was
 

determined by use of a converging-diverging nozzle
 

(Figure 27). Before the nozzle was calibrated, a plot
 

of maximum back pressure for sonic throat conditions versus
 

supply pressure was made to insure that sonic conditions would
 

be maintained in the nozzle throat during all tests. The
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results of this test are shown in Figure 31 and an extension
 

of the curve for a supply pressure of 40 psi to 70 psi
 

is shown in Figure 32. This was the principal operating
 

range of the nozzle as used in this system. The actual
 

calibration was made by setting the supply pressure of the
 

nozzle to a predetermined value and allowing the nozzle to
 

exhaust into a large cylindrical plastic bag. By recording
 

the supply pressure, time required to fill the bag to
 

atmospheric pressure, temperature, and measuring the volume
 

of the bag, a plot of nozzle supply pressure versus gas
 

flowrate in cubic feet per minute was obtained (Figure 33).
 

The experimental apparatus for this calibration is shown
 

in Figure 34. Thus the gas flowrate was varied by adjusting
 

the control valve on the inlet side of the nozzle. The
 

calibration curve is linear as indicated by Figure 33.
 

This method of calibration proved to be quite accurate due
 

to the large amount of time required to fill the plastic
 

bag. The only problem was in determining the exact moment
 

the bag was filled to atmospheric pressure. To determine
 

this, an inclined water manometer was used and proved to be
 

adequate as long as the angle of inclination was small, thus
 

making its response very sensitive. Determining the exact
 

volume of the bag was also an important point since it was
 

found that the bag stretched if over inflated.
 

As stated before, a relief valve was placed on the
 

storage tank to maintain a constant pressure. The one used
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in this experiment was an A, W. Cash type BQ diaphram relief
 

valve with pressure range from 0 to 15 psi. The valve
 

4id not maintain a constant pressure for all nitrogen
 

flowrates but regulated deviations in the tank pressure
 

within 1 psi. Since the system was not critically
 

dependent on this pressure, the valve worked very well for
 

this purpose.
 

Saturation meters were used to measure saturation in
 

these experiments. Since Cargille liquid was used as the
 

liquid phase and nitrogen as the gaseous phase, the meters
 

had to be calibrated. The calibration procedure is the same
 

as used in the boiling experiment. To calibrate the
 

photodiode current against the amount of liquid displaced
 

by the nitrogen, the channel containing the porous bed
 

was placed on a Toledo balance scale and balanced such that
 

the scale indicator read the full scale reading of 2.0 lb.
 

Since the channel had the inlet and exit hoses connected,
 

the stiffness of these had to be considered. The correction
 

factor for the hose stiffness was found by placing a known
 

weight on the balance and taking a reading from the scale
 

indicator. The difference in indicator reading and actual
 

weight was then used as the correction factor. The plot
 

of correction factor versus the scale reading is shown in
 

Figure 35. It was observed that the correction factor did
 

not vary in the same manner with increasing weight as
 

decreasing weight, as shown by the hysteresis effect of
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Figure 35. An average of these two values was taken and
 

plotted between the two curves and used as the correction
 

factor. The motor was then adjusted to a constant speed
 

and the balance set such that the scale indicated 2.0 lb.
 

This was done for each liquid flowrate to eliminate the
 

affect of momentum on the indicator reading. The
 

photodiode current with clear liquid flowing through the
 

channel was set at 0.40 pa. Nitrogen was introduced into
 

the channel and the scale indicator position read. The
 

initial reading minus the scale indicator reading with
 

two-phase flow plus the correction factor gave the amount
 

of liquid displaced by the nitrogen in the channel. The
 

calibration curves at motor speeds of 400 to 600 rpm are
 

shown in Figure 36.
 

It should be noted that the low pressure at which
 

the nitrogen was introduced caused channeling, i.e., the
 

nitrogen bubbles tended to adhere to the inside walls of
 

the channel, which caused some error in the calibration.
 

In an effort to prevent this, a small baffle plate was
 

placed above the channel entrance, however, this proved to
 

be ineffective. Other contributing errors could have been
 

the weight of the nitrogen in the exit hose, and the incon­

sistency of the motor speed due to heating of the rheostat.
 

It was concluded from this experiment that it is
 

feasible to determine the saturation in a porous matrix
 

through which a two-phase mixture is flowing by measuring
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the amount of light dispersed by the porous matrix and
 

two-phase mixture. The procedure for calibrating the
 

meters used in the boiling experiment was refined as a result
 

of findings in this experiment.
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