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By

Fred D. Wills

ABA 717RACT

The theoretical possibility of eliminating the effects of

Doppler, special relativity, and electromagnetic propagation

through the atmosphere in making measurements of frequency

shifts of two identical atomic oscillators is described. One of

the oscillators is considered to be located on the surface of the

Earth and the other one in synchronous orbit almost directly

above the Earth-based oscillator. The frequency shifts measured

will then arise principally from the pure gravitational field of

the Earth and a rotational effect due to making the measurements

in a uniformly rotating coordinate system. The technique is

referred to as a double Doppler elimination procedure.
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L INTRODUCTION

The purpose of this Note is to elucidate on the su l ject dis-

cussed in a recent Internal Note by Shelton, Edmonson, and Wills
titled "Physics of the Clock Experiment." Detailed consideration

will be given to the double Doppler elimination technique used in

a uniformly rotating coordinaL-. system to measure the absolute

frequency shifts of atomic oscillators caused by a change in poten-

tial in an accelerated force field.

IL THE SPACE-FIXED COORDINATE SYSTEM

Consider a space-fixed coordinate system originating at

the center of mass of the Earth with the z-axis coinciding with

the Earth's axis of rotation (which is assumed to be space fixed).

Let the x-axis be in the equatorial plane, and in particular, let

it be positioned toward the first point of Aries, or vernal equinox

(i. e. , where the Sun crosses the equator in a northerly direction).

Finally, let the y-axis be mutually perpendicular (in a right-handed

sense) to the x and z axes and, of course, in the equatorial plane.

Such a coordinate system remains nearly space fixed relative to

the so called "fixed" stars located "semi-infinitely" away in con-

figuration space.

Such a coordinate system will be used initially to formulate

the physical hypothesis in the description of the experiment in-

volving the atomic clocks. when the description will be shifted

to a uniformly rotating coordinate system rotating about the space



fixed z-axis. The speed of rotation will be considered identical

to the speed of the Earth's rotation, which is assumed to be constant.

Operationally speaking, it will be assumed that the dis-

advantages of using such a space-fixed coordinate system will be

•	 well under the optimum operating efficiency of the atomic oscil-

li.Eors. Some of the well known disadvantages of using such a

reference system are as follows:

1. The effect of geographical "wandering" of the poles

causing small, but perceptible, variations in the latitudes of points

on the Earth.

2. The lunisolar precession due to the pull of the Moon

and Sun on the Earth's equatorial bulge causing the Earth's axis

to describe a cone in space over a period of about 26, 000 years.

3. A nutation or "nodding" of the Earth's axis, superimposed

'he precessional motion, caused by the plane of the Moon's orbit

about the Earth rotating with respect to the ecliptic with a period

of just under 19 years.

4. Planetary precessions due to perturbations from the

other planets on the Earth's orbit.

III. THE CENTRALLY SYMMETRIC GRAVITATIONAL METRIC

Let us neglect the rotational motion of the Earth and con-

sider that it is spherically symmetric and produces a gravitational

field possessing central symmetry. The slight flatness at the poles

is also neglected. Such a field can be produced by any cen-

trally symmetric distribution of matter. Of course, not only the
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distribution, but also the motion of the matter must be centrally
symmetric. Let the center of mass of the Earth be located at the

origin of the space-fixed reference system described in the pre-

vious section. Further hypothesize that the effects of all other
heavenly bodies (Sun, Moon, planets, etc.) cannot be detected by

the measuring accuracy of the atomic oscillators to be considered.

The gravitational metric (K. Schwarzschild, 1916), to terms

of first order in v2 /c2 , is

ds2 = dso + _ (c 2dt2 + dr2 ),	 (1)

where ds is the infinitesimal interval between two events infini-

tesimally close to one another, and ds o is the infinitesimal interval

between two infinitesimally close events in the absence of a cen-

trally symmetric gravitational field, i, e. , the Galilean metric,

dso = c 2dt2 - ( dx2 + dy2 + dz 2).	 (2)

Furthermore,	 2

dr2 = (	 dr)	
(3)r2

where
r = ix + jy + kz,	 (4)

with i, j, and k being the normal unit vectors directed along the

X, y, and z axes, respectively, and

r = Jr 1 .	 ( 5)

Finally,	 _ - GM	 (6)r
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the gravitational potential. G is the universal gravitational con-

stant and M is the mass of the central body, the Earth in this case.

Further, assume that an order of accuracy of v Z/c is sufficient

for the experiment to be performed. The speed of the matter acted

upon by the field is considered to be v. Of course, cis the speed

of propagation of an electromagretic signal in vacuum.

Schwarzschild found this metric from the Einstein equation

of the gravitational field, which is the basic equation of general

relativity theory. This equation relates the curvature properties

of space-time to the energy momentum tensor of matter and field.

In general relativity one further holds that the square of an interval

appears as a quadratic form of general type in the coordinate dif-

ferentials, i.e.,

dst = gik dxl axk ' 	 (7)

where i and k run from 1 to 4 and the Einstein summation conven-

tion is used. For i and k running from 1 to 3, reference is made

only to spatial coordinates. When i and/or k is 4, reference is

made to the time coordinate x4 = ct . The gik are the components

of the metric tensor of the space-time metric and are always

symmetric in the indices i and k, i, e.

gik	 gki '
	 (8)

Clearly, there are only 10 different quantities of gik, in general.

Inthis paper the space-time metric is used rattier than the spatial

metric. Hence, in using Eq. (7), we will always sum i and k from

1 to 4. Note that for the Galilean or inertial metric of Eq. (2),

4
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Cartesian space coordinates xl' ;3 = x, y, z, the time coordinate

x^ ct, and the quantities g ik are

g ii - g zz - g s3 - - 1 ' g a4 - 1' gik - 0 for i # k.

It is a fundamental assumption of physics that the interval squared,

ds l, is an invariant under any type of coordinate system transformation.

IV. EFFECTS OF A UNIFORMLY ROTATING COORDINATE
SYSTEM ON THE GRAVITATIONAL METRIC

A prime system of coordinates that rotates uniformly about

the z-axis with angular speed of rotation w is now introduced

(Figure 1),

z z'

x 

FIGURE 1. UNIFORMLY ROTATING COORDINATE SYSTEM

5



The transformation equations are given by
x = x'(cos w t') - y'(sin wt'), (9)
y = x'(sinwt') + y'(cos wt'), (10)

z = z', (11)

t=t'. (12)

Now, write the inverse transforma ,.,ion as

x'	 = x(cos w t) + y( sin w t), (13)

y'	 =	 - x(sin w t) + y(cos w t), (14)

z'	 = z (15)

(16)

Using the above coordinate transformation the interval squared,

ds2 , of Eq. (1) becomes

ds 2	=	 (dso) 2	+ 2wy'dx'dt' - 2wx'dy'dt' + 	 c z	 (dr')2

+	 2¢'	 w2(R')z	
c 2(dt )2'

where
(R')Z °	 (x') Z + (Y I ) Z . (18)

It is easily shown that

r' = r=	 171	 r'' (19)

hence,
(20)

Also,
.	 2	 _	 (r'	 dr')2(dr') (21)
.	 (r')2

where
•	 A	 A	 Ar' = ix' + jy' + kz' (22)

and
(dso)2	 =	 c t (dt') 2 -	 [(dx' ) ` + (dy') 2 + (dz') Z ] . (23)

6



In making this trans form,-tion it is assumed that it is not necessary

to revert to the gravitational field equations and calculate the grav-

itational metric for the particular rotating coordinate system used.

To be rigorously correct, one should start from the field equations

and calculate the metric for the uniformly rotating coordinate system.

However, it can be shown that any deviations are of much higher

order than v 2 /c2 , and out of range of the accuracy of the atomic

oscillators. It is further assumed that the contribution of the Earth's

spin (J. Lense and H. Thirring, 1918) to the gravitational field metric

is also out of the range of accuracy of the atomic oscillators. No

problems arise concerning the synchronization of clocks.

Next, find the relationship between the proper time (the

time read by a clock moving with a given object), which from now

on shall be denoted by T', and the coordinate x 4t . This is done by

considering two infinitesimally separated events occurring at the

same point in space. Then, the interval ds between the two events

is just cdT', where dT' is the proper time interval between the two

everts. The general expression (7) can be written as

(d s)2 = gikdxl^k = 
gikCix dx	

(24)

So s etiing dxi ^ = dx2 ' = dx'' = 0,

(ds)2	 C2 (d T')2	g44(dX41)2 	 (25)

from which

•	 d T' - 	
'g,

C	 dx41	 (26)

Now, suppose one wishes to count a certain number of events,

N', in the prime system - say, the number of ticks of an atomic

7



oscillator - at a particular point. The number of events per unit

proper time is then defined as f', and is given by

f, = dN'	 dN' dx4'	 (27)dT'	 dx4' dT' •

or

f' = 1 dN' 

(tF.	

(28)
c d t' 

	 )4
since

fdx4' = cdt', dT' '={29)
44

Now, define

f^ = dNI
 dd t, ,	 (30)

the fundamental frequency of an event expressed in terms of the
world time, x4' /c. An examination of Eqs. (17) and (23) reveals
that	 i

\i

So, using Eqs. (30) and (31), one writes for Eq. (28)

ft
f	 2	 ^

\	 c	 c

Expanding to first order gives

f' = fo (1 + Wz( ̂ - - Z	 (33)

For the time being, consider two identical atomic oscillators, which
•	 tick with the same fundamental frequency, V , located at

positions 2 and 1 in the prime coordinate system. Then, by Eq. (33),

8
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their frequencies are

f' -
	 i + Wz(R2)z

z	 Zcz

Wz(R I
=)z

f I = ^ 1 +
2 cz

cz

cJ
z	 (34)

^ 
1	

(35)
c

from %a-hich one can easily construct

f	
[(R; )z - (R1 cz 	) 	 + ^1 -^z.

Zc 	1	 c z	 (36)

Now, define

12cz
[(R ',)? -
	 (R:)Z] + 

^l 
z 

^z	
(37)c

Thus, one sees that the proper time is effected by making measure-

ments in a uniformly rotating coordinate system superimposed

upon the gravitational field. If it were possible to make the measure-

ments at fixed points in the space-fixed system, then, obviously, the

dimensionless quantity X would just be X BE ^1 2^2 I . The
C

effect of a uniformly rotating coordinate system varies as the square

of the position vector in the x'y' plane.

V. THE DOUBLE DOPPLER ELIMINATION METHOD

i.et us suppose that we are going to compare the signals of

two identical atomic oscillators: one of the oscillators will be at a fixed
point in the uniformly rotating coordinate system at a tracking
station on the Earth ' s surface close to the equator; the other oscil-

lator will be almost fixed at a point in the uniformly rotating

9



coordinate s\ . stem in synchronous orbit above the tracking station.

The .oscillator in synchronous orbit will not, in general, remain at

a fixed point in the uniformly rotating coordinate system because of its

•	 orbit inclination angle and eccentricity. It is easily observed that if

the orbit inclination and eccentricity are both zero, then the synchro-

nous orbit satellite would remain at a fixed point in the uniformly

rotating coordinate system.

Now, suppose that one translates (statically) to the tracking

station, the origin of the uniformly rotating coordinate system at

the Earth's center of mass. One still maintains a uniformly rotating

coordinate system at the center of mass of the Earth and denotes

the displaced coordinate system at the tracking station by the axes

xt , yt, zt. The axes of the coordinate system at the tracking station

remain parallel and fixed in position_ to the x', y', z' axes in the

uniformly rotating coordinate system. Also, locate an origin of

coordinates at the synchronous orbit satellite and denote the axes

by xs, Ys. z s . These axes are also required to remain parallel

to the x', y', z' axes of the rotating coordinate system. However,

the origin of coordinates at the synchronous orbit satellite will,

in general, move with some relative velocity, vs , in the rotating

coordinate system, and, hence, with the same relative velocity,

Vs , in the coordinate system at the tracking station. The only

situation in which the synchronous orbit satellite has no relative

•	 velocity to the tracking station occurs at both zero eccentricity

and orbit inclination. Figure 2 illustrates the motion of a synchro-

nous orbit satellite characterized by some orbit inclination and

10
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VS

Z
S	 v

FIGURE 2. RELATIVE COORDINATE SYSTEMS OF
TRACKING STATION AND SATELLITE

eccentricity. Note that if the position vector is reversed the

tracking station appears to move with a velocity -v s relative to
the satellite. We denote the angle between the position vector,

rs , of the satellite and the velocity vector, vs , of the satellite as
a, and a is calculated in the usual way from

rs VS

cos a =_ I ( _	 {38}
( rs Vs

Also note that the motion of a nonzero orbit inclination and nonzero

eccentricity synchronous orbit satellite appears to be a "figure

eight" to a ground observer at the tracking station. This "figure

11



eight" would shrink to zero for zero orbit inclination and zero

eccentricity. The relative size of the "figure eight" depends on

the magnitudes of the orbit inclination and eccentricity.

Now that the effects of proper time contraction and expansion

in a gravitational field and a rotating coordinate system have been

calculated, there remains the task of accounting for Doppler and

special relativity effects. Also, the effect of electromagnetic

propagation through a nonuniformly dense atmosphere shall be

considered. To consider the Doppler and special relativity effects

the assumption is made that the coordinate systems at the tracking

station and synchronous orbit satellite are "inertial" to one another

(i, e. , that they do not undergo any accelerated motion relative to

one another that can be detected by the accuracy of the identical

atomic oscillators). In reality, they do not maintain a constant

velocity relative to one another, but it is practical for the purposes

of this report to assume that they do (for it is thought that the effects

thereof are too small to be detected). Now, one proceeds to cal-

culate the Doppler and special relativity effects on this basis, with,

of course, the proper considerations given to the gravitational field

and uniformly rotating coordinate system (calculated in Eq. 37).

Finally, it is assumed that the fractional effect of the propagation

of an electromagnetic wave through a nonuniformly dense medium

can be lumped into a factor designated by P, which may be a function

of several atmospheric variables. However, P is considered ^o be

small enough that terms of the order of P  can be neglected. Now,

define
9 = 1v s I /c .	 (39)

12



First of all, consider the fundamental frequency, fo . of the

atomic oscillator at the tracking station to be broadcast to the

synchronous orbit satellite. The frequency received or observed

at the satellite is
•	 1

f Is fo(1 -X)(1-P)0 - (3 Cos a)(1- s2)a.	 (40)

where (1 - X) represents the decrease in the observed frequency by

virtue of its passage through an accelerated force field; (1 - P)

represents a decrease in the observed frequency by virtue of its

passage through the nonuniformly dense atmosphere; (1 - (3 cos a)i
accounts for the Doppler shift; and (1 - a2)2 represents the time

dilatation factor from special relativity.
F^ 

The terms X, P, 2,

and (32 costa will be taken to be of the same relative order of

magnitude, and any higher powers of these terms will be neglected.

Hence, Eq. (40) is wr4tten as

fs = fo	
I2

(1 -	 cos a -	 (32 - P - X),	 (41)

to the order of accuracy of this experiment.

Now, suppose that the frequency, Ps , received at the

synchronous orbit satellite, is rebroadcast and observed or re-

ceived at the tracking station as f". Taking into account the various

effects, one writes	 i
f„ = f , ( 1+ X)( 1 -P)(1 -

^2)2	
(42)s	 (1 + Q cos a)

and, expanding,

f” = fs(1 - O cos a + a2 cos t a - 2 (3z P + X).	 (43)

*Refer to appendices A, B, and C for the derivation of the effects
due to the Doppler shift and time dilatation.

13



Substituting from Eq. (41) for fsinto Eq. (43) yields (to the order

of accuracy of our experiment)
f,, 	 fo (1 - 2 gCOS a + 2 0 7COS2 a - Na2 - 2P).	 (44)

Note that in Eq. (44) the "round trip" made by the frequency, f. ,
does not contain the factor X , which accounts for the gravitational

and rotational effects.

Now suppose that the fundamental atomic oscillator fre-

quency, P , is transmitted with the rebroadcasted signal, fs , from

the synchronous orbit satellite. Let the frequency received on the

ground from this signal be designated by f r - One writes for fr

(considering all the previous factors),
i

(1 + X) (1 - P) (I - /32) 2

fr 

f

0(1+ R COS a)	
(45)

and expanding

fr = f , (1 - Q cos a+ R Z Cos 2 a- 2 NZ- P + X).	 (46)

We can feed the frequency, f", into a device at the tracking station

that divides its phase by a factor of 2. After this is done, the

resulting frequency becomes (by utilizing expression 44)

f = P (1 - a cos a + 02 cos t a - 2 ^i P).	 (47)

Comparing fr and f by beating them against one another gives

fr - f = Af = fo X ,	 (48)

where X , as given by Eq. (37), contains only the effects of trans-
mitting a frequency through a gravitational field in a uniformly

rotating coordinate system. Considering the 21-centimeter fre-

quency line of hydrogen and calculating X for a synchronous

14



circular orbit with no inclination angle, one finds A f to be in the

neighborhood of 0. 75 cycles per second. The present capability

in electronic equipment makes this measurement possible to at

least an order of magnitude better than previous gravitational

shift type experiments. Pound and Snider - reported the effects

of gravity on gamma radiation to a measured accuracy of slightly

better than 176  (normalized result of 0. 9990 f 0. 0076). They

measured the recoil-free resonant absorption of the 14. 4-keV

gamma ray in Fe 57 that traveled over a 75 -foot vertical path in the

Jefferson Laboratory at Harvard University. This was an im-

proved version of an earlier experiment by Pound and Rebka in

which an accuracy of only 1076 was achieved.

It should be noted that any effects that may arise due to

aberration on the angle, and uncertainties in position and velocity,

have been assumed or hypothesized to be eliminated by the double

Doppler elimination technique.

Finally, a brief discussion should be given concerning the

factor P (which accounts for atmospheric conditions through which

the electromagnetic signal is propagated). It is hypothesized that

the atmospheric variations will be negligible compared to the 0. 2 of
a second round-trip time of a wavefront from the tracking station

transmitter. But, suppose in the event of nonreciprocal propagation

factors (such as a consistent upward thermal air flow, common

`	 in the tropics), the averaging of the propagation velocity over a

-Physical Review, volume 140, November 8, 1965, pages B788-
B803.

15



two-way path is not the same as the propagation velocity over the
one-way path fron, the satellite to the Earth. If such effects are

significant they can be measured and accounted for by first broad-

casting the signal, f l,) , from the satellite to the tracking station;

and then rebroadcasting the received signal back to the satellite.

After the phase of this signal received at the satellite is divided

by 2, it can be compared with the frequency r z_;eived from the

atomic oscillator at the ground tracking station. The result should

be ju.it the negative of the result of Eq. (48). Any absolute difference in

these results would account for any nonreciprocal propagation factors

in the nonuniformly dense atmosphere.

The factor X depends only on the position of the tracking

station and the position of the synchronous orbit satellite in the

uniformly rotating coordinate system. It would be interesting to

have the equipment at the tracking station preprogrammed to cal-

culate Af in real time by using tracking data and compare these

data on a real-time chart with the beating of the two signals

together.
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APPENDIX A

TI2v1E DILATATION FACTOR OF SPECIAL RELATIVITY

Consider the two inertial frames of reference of Figure 2 to

be rotated statically through the same angles such that the velocity

n
	 of the satellite system is directed along the x-axi z Designate

the rotated coordinate systems by :;he subscript r (illustrated in

Fig.A-1. The purpose of this rotation is to make the calculation

of time dilatation more easily understood by use of the standard Lorentz

transformation. The resulting time dilatation factor is independent

of the rotation.

FIGURE A-1. ROTATED REFERENCE FRAMES OF
TRACKING STATION AND SATELLITE

17
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If an event is described in the tr system, then the description of
the eve '..	 the sr system can be found by the well known Lorentz

transformation,

xsr = Y (xtr -	 cttr ),	 (A-1)

ysr = ytr ,	 (A-2)

z sr = ztr ,	 (A-3)

t sr - Y (ttr -	 xtr/c)'	 (A-4)

where

and 0 is defined by Eq. (39). On the other hand, if an event is

described in the sr system, then the description of the event in the

tr system can be found by the inverse transformation:

xtr = 'Y (x sr+ Rctsr),	 (A•-6)

Ytr = Ysr ,	 (A 7)

ztr = z sr	 (A-8)

t t r = 'Y(t sr + a xsr /c).	 (A-9)

Now, suppose that a clock is located at the origin of the sr system;

if t srl is the time of the start of one of its "ticks," then the obser-

vation time of this event in the tr system is (by Eq. A-9)

ttri = Ytsri '	 (A-10)

since at the origin xsrl = 0. Let tsrz be the ead of the "tick;"

18



then, similarly, we nave

.	 ttr2	 =	 t, ,: , (A-11)

and

ttrz - ttri	 Y (tsr2 - tsrl).
.; LE

The frequency of the "tick" in the sr system is then defined to be

1
^sr	 (t	 _

sr2	
t 
sri )

(A-13)

and the observed frequency of the "tick" in the tr system to be

Qtro - 	1
(ttr2	 - ttrl )

(A-14)

Then, by inversion of Eq. (A-12) we write

i
sysr =	 Q+sr(1 -	 R 2 ) 2 .^tro (A-15)

Now, on the other hand, suppose that an identical clock is

located at the origin cf the tr system; if ttrl	 is the time of start

of one of its " ticks, " then .he observation time of this event in the

sr system is (by Eq. A-4)

't'	 -	 Yttrl (A-16)

since, at the origin, Ytrl = 0.	 Let ttr2 be the end of the "tick;"

then, similarly, we have

•	 tsrz -	
Y ttrz (A-17)

and
tsr2 - t'srl =	 Y (ttr2 - ttrd

(A-18)

19



Define the frequency of the "tick" in the tr system to be

=	 1
r	 (A-19)

{t	
ttrz - tri}

and the observed frequency of the "tick" in the sr system to be

ro	 (t,	 1 t	 }	 (A-20)
srz	 sri

Then by inversion of Eq. (A-18), one writes

^sro - ^'y r - qtr (1 - ^z ) ?	 (A-21)

Hence, it is concluded that the "tick" of a clock in an inertial frame

moving with constant velocity vs relative to an observer appears

to be shorter to the observer than the "tick" of an identical clock

in his own rest frame. Mote that these results are independent of

the orientation of the two inertial frames of reference, as long as

the frames move with con. tant velocity relative to each other. By

virtue of the clocks being defined to be identical, it is clear that

S1tr = SZsr	 (A -22)

for the situation described.

f
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APP E` DLK B

THE DOPPLER EFFECT

CASE I; Source of Waves in Motion

When a source of waves is in motion through a stationary

medium, the wavelength is changed. The waves sent out in the

direction of motion of the source are shorter, and those in the

opposite '_irection are longer than the waves from the source at

rest. Consider stationary source of wave motion. A wave

emitted from this point after a period t wov'd have a wavelength

but suppose, during one period of time to', the source moves

with speed yr in the direction of propagation of the waves. Then,

the wavelength is shortened by a distance v rt , , and the ne,j+ wave-

length is

If the waves travel with the velocity of light, c, they.

= C - vrt' = t1(c - vr),	 (B-2)

or
X = V c c yr
	 (B-3)

If, on the other hand, during one period of time q the source moves

with speed yr in the direction opposite to the direction of propagation

'	 of the waves, the wavelength is lengthened by a distance v rto, and

the new wavelength is

_ ^' + vrto = )L
I 

; c + vr`,	
(B-4)C J
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Equations (B-3) and (B-4) combine to form

VrX = XI 1 t 	
}	 (B-5)

the positive sign referring to the case in which the source is moving

in the opposite direction from the waves and vice versa.

Suppose an observer locates the source of waves with a

position vector r. Further imagine that the source of waves

travels with some arbitrary velocity vs . Let a be the angle

between the position vector i and the velocity vectorvs . Then

compute cos a by
r vS

COS a - I 
T) IVSI	

,	 (B-6)

which enables one to write

f V  = 17S I cos a. 	 (B-?)

With the aid of Eq. (B-7), we write for Eq. (B-5),

X = X' (1 + 0 cos a).	 (B-$)

The velocity of the waves is not changed by the motion of the source.

We define the frequency

Si' _ c,
	 (B-9)

and write

SZ =	 =	 c 	 (B-10)
Jt'(1+ 9 Cos a)

or

;B-11)
1 + 9 cos a

for the new frequency received by an observer at rest with a source

in motion with freq^iency SZ'.
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I

CASE II: Observer of Waves in Motion

A change of frequency is encountered when the source is

at rest, but the observer moves toward or away from the source.
r

Let the source send out a train of waves such that S2' is the

frequency of the waves emitted from the source with some wave-

length X1 related together by

X' a = c,	 (B-12)

where c is the velocity of light. Let an observer move toward the

source with speed vr . Then the observer sees

V S2 = c + vr .	 (B-13)

If the observer moves away from the source with speed yr then

the observer sees

;' S2 = c - yr .	 (B-14)

Combining Eqs. (B-13) and (B-14) gives

S2 = c 
f 
yr = S2'(1 t vr ) .	 (B-15)

X	 c

Similar to Case I, the observer is considered to be located with a

position vector r and the observer moves with velocity v s . Then

the same Eq (B-6) results for cos a , and Eq. (B-7) can be utilized

for t yr . Hence for Eq. (B-15), one writes

Q = S2' (1 - P cos a),	 (B-16)

as the new frequency received by an observer in motion with a

source at rest with frequency S2'.
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APPENDIX C

EFFECTS OF BOTH TIME DILATATION AND DOPPLER

•

	

	 By using the results of Eqs, (A-21) and Eq. (B-16) one writes

the following expression for the combined effects of the time dilatation

of special relativity and Doppler for the case where the observer is

in motion with respect to a source at rest:
i

(1 - cos a) (1 - ^3 Z ) 2 .	 (C-lw

One must multiply the frequency of the source at rest by this factor

in order to compute the frequency received by the observer in motion

due only to the effects of time dilatation and Doppler.

By using the results of Eqs. (A-15) and (B-11) we write the

following expression for the combined effects of the time dilatation

of special relativity and Doppler for the case where the source is

in motion with respect to an observer at rest:
i

{1 -(3Z)2	 (C-2)
(1 +	 cos a)

One must multiply the frequency of the source in motion by this

factor in order to compute the frequency received by an observer

at rest due only to the effects of time dilatation and Doppler.
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