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ABSTRACT

A mathematical method from random variable theory was used to
analyze simultaneous variation of engine performance and stage inert weight
for some typical 2-stage rocket vehicles. This represents an extension of
the conventional sensitivity analysis which is often performed for conceptual
designs. The study was incomplete in that too few examples were analyzed
for conclusions to be drawn regarding the usefulness of the approach, but
mathematical consistency was shown.
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DEFINITION OF SYMBOLS

NOMENCLATURE

Gravitational acceleration (9. 805 m/sec?)
Propulsive specific impulse, seconds
Mass, kg

Density function for x

Distribution function for x

Velocity, m/sec

Dummy variable

Dummy variable

Stage propellant fraction

Vehicle mass ratio, (mass fully loaded)/ (mass with impulse
propellant expended)

Mass ratio, MT/Mjy,
SUBSCRIPTS

Payload

Total

First stage

Second stage

Where appended to functional relationships (e.g., g;, g, etc.), numerical
subscripts do not refer to stages.

iv



PARAMETRIC SENSITIVITY ANALYSIS
FOR STAGED PROPULSIVE VEHICLES

SUMMARY

A mathematical method from random variable theory was used to analyze
simultaneous variation of engine performance and stage inert weight for some
typical 2-stage rocket vehicles. This represents an extension of the conven-
tional sensitivity analysis which is often performed for conceptual designs.

The study was incomplete in that too few examples were analyzed for conclu-
sions to be drawn regarding the usefulness of the approach, but mathematical
congistency was shown.

BACKGROUND AND INTRODUCTION

During preliminary and conceptual design phases of studies of flight
systems, it is common practice to perform sensitivity analyses to determine
the effect of variation of system parameters that cannot be precisely predicted
in the course of such early studies. These sensitivity data are commonly in
the form of derivatives such as change in vehicle gross weight as a function of
change in propulsion Isp of one of the stages, and change in system gross

weight versus the sub-parameters of interest., In a plotted form one can
readily see, for example, how much the system gross weight will be affected
by a 1% variation in second stage inert weight. It is of interest to investigate
the combined effect of simultaneous variation in more than one parameter.
For example: What is the combined effect of uncertainty in delivered I and
: . , . Sp
inert weights in a 1- or 2-stage vehicle?

A method that can be used to simulate simultaneous variation in critical
sub-parameters is the treatment of these sub-parameters as random variables.
This method can be readily employed whenever it is possible to express the
desired vehicle performance parameters in mathematical form. Gross weight-
to-payload ratio may be expressed as a mathematical function of the various
sub-parameters such that the pertinent partial derivatives may be analytically
evaluated. This may be done with a #imple ideal velocity model of rocket
vehicle performance, Even this simyle model will provide valuable insight
into the likelihood of achieving design goals and into the selection of certain
parameters, such as staging velocity, to minimize the development risk,



The study reported herein is incomplete in that too few examples were
analyzed to achieve a good evaluation of the usefulness of the technique. Iow-
ever, a mathematical approach was formulated using the random variable
theory, and enough calculations were made on a digital computer to show that
the approach is at least mathematically consistent.

PURPOSE

The purpose of this internal note is to report on an exploratory in-
vestigation of a method of analysis for treatment of vehicle performance by
random variable techniques and to give example results of the analysis for
representative rocket propelled vehicles.

Application of the random variable theory as suggested above requires
some information about the variables considered to be random. This infor-
mation is normally in the form of a distribution density function, Such a
function must be either known oxr assumed.

As a simple example, suppose that it is desired to determine the density
function for required mass ratio (initial weight/cutoff weight), knowing the
density function for engine performance in terms of Isp' The density function

of a random variable is defined as the derivative of the distribufion function
of the variable, which is the probability of the variable being smaller than a
given value, This relation is sketched graphically below, where

o [ =221 (1)
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Where an assumed function p [J] is provided, with an arbitrary ordinate,
it must be normalized by the relation that follows from the definition of the
distribution function P [1] and equation (1):

o0
Jyp I dl=Ple] =1 (2)
There is a distribution function for the required mass ratio, u, that
corresponds to the distribution function for I. For a given value I' there is

a corresponding value p'. The probability that 4 is greater than p' is equal
to the probability that I is smaller than I', i, e.,

P [u'] = 1-P[I'] (3)

Usually it is the density function that is desired.

oP [H]
plu] = o u (4)

Substituting from (3),

-oP[1]

Pl =
_-epl]l a1
ol ol

S P [I]'(%it_)ni (5)

The relation between p and I is

AV

S s o (6)

where AV is the ideal AV (disregarding gravity and drag losses).

du  _ -AV AV

o1 gz %P o1 (7




Substituting (7) and (5) allows determination of p [u].

Analysis of a vehicle could proceed using I as a random variable
instead of . However, it may be interesting to know the density function
of u. It will be assumed in the following analysis that a preliminary step

has determined p [1 ].

The equation for total mass of the second stage of a #-stage vehicle or
the total mass of a single stage vehicle is

M Al

MT/ My, is a function of two random variables, A and u. The density function

for Mp/Mj, may be found as follows:

A dummy variable is introduced: y =pu

Inverse relations are constructed: u=g|( y, _I\E
My,
M
A= By (Y: __T)
M (10)
L
My
My (1-y)

The joint density function pyy [ 4, A] is kmown:

Purn [H,A] =p [n] p[A] (11)
This follows from the assumption that p [u] and p [A] are independent.
For convenience, letting ¢ = Mp/My,, the joint density function P [A]
A A, &
if then found by:
28 98
Py, & (ysg) = P,Lz,,h[gi (y, g),gZ (yig)] ol ou (12)
g1 9%
a¢ 8¢




& (1-y) oy QA

Par (V,8) = py W pA\ ¥ (1-9) op o (12a)
oy 8
8¢ 0%

_0A and py are both zero,

o ot

Oy = 4 (13)
oy

O _ B g Uy | L Ly

ot ot y (1~ y (1-5)*

(12a) becomes

= L U-n | |1 9
ply: €] =p, K] B [y(i-c)] . y_.i(_ix—_g)z (14)

It is assumed that p [y,{] = p[y] p[&].

Therefore, p [{] may be found by integrating over y:

[=.+]

p (5 = [ pyi) dy (15)

Since y = p this is equivalent to

H max,
PO = [ i Pyr g (KsE) dw (15a)
This integral may be performed for a number of values in the range of
¢. If it is also desired to get the distribution function for g, this may be found

by ¢
p ©= [ p () dg (16)
{min,
For a 2-stage vehicle, ¢ in equation (14} becomes {p and £ = &4 &g,
since the second stage is the payload of the first stage. ¢, is now a random
variable defined by equation (16). Analagous to equation (8),



po= .—QZ_AZ_EE__.
I - (T py (17)

Two dummy variables are required:

Yi = M4
Zi = 52 (18)

The same type of inverse relations hold:

B =81 (¥ 21, 8) = ¥4

9= By (¥4 %4, &) Z4

AM=8 (V1 21, 8) = _& (1-yy)

19
y1 (1-¢) 9
The joint density function is now:
Pt My &l = pPlig p [M] P [&] (20)
and the joint density function py - [¥1s 21,8 ]
is then founded by:
Og1 9% 0g
s Zq, = Pui , o, 0 0 d ,
o u, ¢ Y10 20 €] MAG [81: B2o B3] | By By By |54y
’ B8y Ogr Og |
821 821 azi
o8y 98y _0gs
ot 9¢ g
All of the partial derivatives are zero except
o _ M _ g g _ bW
= = and = 22
By 9z ot yi (1- ¢)? (22)
p [¢{] may be found by integrating y, and z;
max, max.
p ey = [% % DBy, by ) du, dgy  (23)

&9 min, {y min,



The distribution function P [¢] is again found by equation (16),

RESULTS

Explanation of Terminology

For the non-technical reader, an explanation is in order regarding
the format of data to be shown. First, what is a density function? The
density function represents something that is not precisely known and about
which there is some uncertainty; it does, hewever, provide information on
probability. If we have a function whose exact value is not known, and we know
that there is a 25% probability that its value is between 3 and 4, we can draw
a histogram, as shown below,

e
o
S

u

1 2 3 4
If we have more information about this function, that is, if we know

the probability of its being between 1 and 1} and 2, etc., we can draw a
histogram showing more detail, as in the following sketch,
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If we divide the region into arbitrarily small elements instead of a
stepped curve, then a continuous curve results, This is a density function.
If the density function is normalized, any point on the curve represents the
probability that the value of the function will fall within a unit range about the
point, For example, consider a densify function plotted versus a specific
impulse obtainable from a rocket engine; a point plotted at a value such as 400
seconds represents the probability that the Isp obtained will lie between 399.5

and 400, 5 seconds, The importance of normalization lies in the fact that the
integral from zero to infinity of a normalized density function is exactly equal
to 1.

This integral then forms what is known as the distribution function. The
distribution function is either constant or monotonically increasing and re-
presents the probability that a random variable will be less than the abscissa

value against which the distribution is plotted. If at an ISp value of 400 the

distribution function is equal to 0.4, then the probability is 40% that the Igy
will be less than 400, and 60% that it will be greater than 400,

It is convenient for the analyst using this random variable technique
to make an "eyeball" estimate of the uncertainties in his sub-parameters in
the form of density function, These may then be employed to show the effects
of variations in sub-parameters on overall system performance parameters.
It is convenient that the analyst should not have to produce a normalized density
function. An ordinate scale of 0 to 5 is typically convenient. Normalization
can be readily carried out by the computer, prior to its using the input density
functions in the calculations.

Example Calculations

Ceomputation of p [¢ ] and P [¢ ] was performed by a digital computer
routine for certain 2-stage vehicle examples., Inputs were assumed density
functions for first and second stage Isp and propellant fractions, payload mass,

and overall impulsive velocity increment for the vehicle, and staging velocity.
Input density functions were given an arbitrary scale of 0 to 5 and were normali-
zed by the computer routine, The following examples were given: a lunar
direct flight and return vehicle, a Saturn-type 2-stage to orbit expendable
vehicle, and a reusable space transport vehicle with rocket propulsion. Results
from the calculations were automatically plotted on the SC-4020 plotter,



For the lunar direct flight vehicle a single-stage lander and single-
stage return vehicle staging necessarily occurs at the lunar surface for the
case shown, The given impulsive velocity increments are not typical of those
currently used for lunar mission analysis, but they serve to illustrate typical
results of this analysis. Both stages were assuimed to have the same engine
performance, The landing stage is assumed to have a better prcpellent fraction
because it is larger and because it is not required to be well insulated for
extended storage of cryogenic propellants, Figures 1 through 5 give the
results for this vehicle. Irregularities in Figure 2 result from the finite
difference nature of the numerical integrations employed.

The next two examples, where the staging velocity is not fixed by mission
characteristics, were calculated for several staging velocities, This allows
selection of a staging velocity that will give reasunable all-up weights with
minimum sensitivity to uncertainty in inert weights and engine performance.
Accumulated errors in numerical integrations may be noted by the fact that
distribution function curves for these cases do not terminate exactly at 1. 0 as
they should.

The random variable approach is not limited to the relatively simple
cases shown., It could be extended to more than two stages, and variation
in nominal propellant fraction with propellant loading could be incorporated
without much difficulty.
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Lunar Direct Flight Vehicle

One-stage Cryogenic Lander

Return Payload Mass = 5670 Kg
Keturn Idesl Deita V = 2, 75Km/Sec
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DENSITY FUNCTION FOR MASS
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Lunar Direct Flight Vehicle

One-stage Cryogenic Lander

Return Payload Mass = 5670 Kg
Return Ideal Delta V= 2, 75Km/Sec
Landing Ideal Delta V = 3, 697 Km/Sec
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DENSITY FUNCTION FOR MASS
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Lunar Direct Flight Vehicle

One-Stage Cryogenic Lander

Return Payload Mass = 5670 Kg
Return Ideal Delta V = 2, 76Km/Sec
Landing Ideal Delta V= 3,697 Km/Sec
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Saturn-Type Two Stage to Orbit Launch Vehicle

Payload Mass = 1256 Metric Tons
Total Ideal Velocity Increment = 9150 M/Sec
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DENSITY FUNCTION FOR MASS
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Saturn-Type Two-Stage-to~-Nrbit Launch Vehicle

Payload Mass = 125 Metric Tons
Total Ideal Velocity Increment = 9150 M/Sec
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DISTRIBUTION FUNCTION FOR MASS
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Saturn-Type Two Stage to Orbit Launch Vehicle

Payload Mass = 126 Metric Tons
Total Ideal Velocity Increment = 9150 M/Sec
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FIGURE 9




DISTRIBUTION FUNCTION FOR MASS
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Reusable Space Transport, 2 Stage
F-1 First Stage, Hg-3 Second Stage
Payload Mass = 1ii, 35 Metric Tons
Total Ideal Velocity Increment = 8, 85 Km/Sec
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Reusable Space Transport, 2 Stage

F-1 First Stage, Hg-3 Second Stage
Payload Mass = 11, 33 Metric Tons
Total Ideal Velocity Increment = 8, 85 Km/Sec
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DISTRIBUTION FUNCTION FOR MASS

Reusable Space Transport, 2 Stage

F-1 First Stage, Hg-3 Second Stage
Payload Mass = 11, 35 Metric Tons
Total Ideal Velocity Increment = 8, 85 Km/Sec
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DENSITY FUNCTION FOR MASS

Reusable Space Transgport, 2 Stage

¥-1 First Stage, Hg-3 Second Stage
Payload Mass = 11. 35 Metric Tons
Total Ideal Velocity Increment = 8, 85 Km/Sec
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Reusable Space Transport, 2 Stage
F-1 First Stage, Hg-3 Second Stage

Payload Mass = 11. 35 Metric Tons
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