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ABSTRACT 

1 

A mathematical method from random variable theory was used to 
analyze simultaneous variation of engine performance and stage inert weight 
for some typical 2-stage rocket vehicles. This represents an exteawion of 
the conventional sensitivity analysis which is often performed for conceptual 
designs. The study was incomplete in that too few examples were analyzed 
for conclusions to be drawn regarding the usefulness of the approach, but 
mathematical consistency was shown. 
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DEFINITION OF SYMBOLS 

NOMENCLATURE 

g . . . . . . . .  Gravitational acceleration (9. 805 m/sec2) 

I . . . . . . . .  Propulsive spocific impulse, seconds 

M . . . . . . .  Mass, kg 

p (x) . . . . . .  Density function for x 

P (x) . . . . . .  Distribution function for x 

v . . . . . . .  Velocity, m/sec 

y . . . . . . .  Dummy variable 

z . . . . . . .  Dummy variable 

. . . . . . .  h Stage propellant fraction 

p . . . . . . .  Vehicle mass ratio, (mass  fully loaded)/(mass with impulse 
propellant expended) 

I: ....... Mass ratio, M T / M ~  

SUBSCRIPTS 

L . . . . . . .  Payload 

I .. . . . . .  First stage 

2 . . . . . . .  Secondstage 

Where appended to functional relationships (e. g. , g,, g,, etc. ) , numerical 
subscripts do not refer to stages. 



PARAMETRIC SENSITIVITY ANALYSIS 
FOR STAGED PROPULS IVE VEH l CLES 

A mathematical method from random variable theory was used to analyze 
simultaneouo variation of engine performance and stage iner t  weigl~t for some 
typical 2-stage rocket vehicles. This represents  an extension of the conven- 
tional sensitivity analysis which is often performed for conceptual designs. 
The study was incomplete in that too few e x a r n p l e ~  were analyzed for  conclu- 
sions to be drawn regarding the usefulness of the approaqh, but mathematical 
consistency was shown, 

BACKGROUND AND INTRODUCTION 

During preliminary and conceptual design phases s f  studies of flight 
systems,  i t  is common practice to  perform sensitivity analyses to determine 
the effect of variation of system parameters  that cannot be precisely predicted 
in  the course of such ear ly  studies. These sensitivity data  are commonly in 
the form of derivatives such as change in  vehicle gross  weight as a function of 
change in propulsion I of one of the stages,  and change in system gross  

SP 
weight versus the sub-parameters of interest. In a plotted form one can 
readily see,  for example, how much the system gross weight will be affected 
by a 1% variation in  second stage inert  weight. It is of interest  to investigate 
the combined effect of simultaneous variation in more than one parameter. 
For  example: What is the combined effect of uncertainty i n  delivered I and 
iner t  weights i n  a I- o r  2-stage vehicle? SP 

A method that can be used to simulate simultaneous vzriation in cri t ical  
sub-parameters is the treatment of these sub-parameters as random variables. 
This method can be readily employed whenever i t  is possible to express  the 
desired vehicle performance parameters  in  mathematical form. Gross weight- 
to-payload ratio may be  expressed as  a mathematical function of the various 
sub-parameters such that the pertinent parf;ial derivatives may be analytically 
evaluated. This may be done with a elimp12 ideal velocity model of rocket 
vehicle performance, Even this s i m ~  le model will provide valuable insight 
into the likelihood of achieving design goals and into the selection of certain 
parameters ,  such as staging velocity, to minimize the development risk.  



The study reported herein is incomplete in that too few examples were 
analyzed to achieve a good evaluation of the usefulness of the technique. IIow- 
ever, a mathematical approach was formulated using the random variable 
theory, and enough calculations were made on a digital computer to show tihat 
tlie approach is at least mathematically consistent. 

PURPOSE 

The purpose of this internal note is to report on an exploratory in- 
vestigation of a method of analysis for treatment of vehicle performance by 
random variable techniques and to give example results of the analysis for 
representative roclre t propelled vehicles. 

Application of the random variable theory as suggested above requires 
some information about the variables considered to be random. This infor- 
mation is normally in the form of a distribution density function. Such a 
function must be either known or assumed, 

A s  a simple example, suppose that it is desired to determine the density 
function for required mass ratio (initial weight/cutoff weight) , knowing the 
density function for  engine performance in te rms of I The density function 

SP' 
of a random variable is defined as the derivative of the distribution function 
of the variable, which is the probabi1it;y of the variable being smaller than a 
given value, This relation is sketched graphically below, where 

t ..* . .  . . . . . . . . . . . . . . . . . . . . . . . . . .  

A- 
Distribution 
Function 



Where an assumcd funcl:ion p [J] is provided, with an arbi t rary ordinate, 
it must be normalized by the rclation that; follows from the definition of the 
distribution function P [I] and equation ( i): 

There is a distrjbution function for the required mass ratio, p, that 
corresponds to the distribution function for I. For a given value 1' there is 
a corresponding value p ' .  The probability that ,u is grea ter  than p1 is equal 
to the probability that I is smaller than I f ,  i, e. , 

Usually i t  is the density function that is desired. 

Substituting from ( 3 )  , 

The relation between 1.1 and I is 

AT? 
P = exp .-g=j- 

where AV is the ideal AV (disregarding gravity and drag losses). 



* [ rl] d paupnjraqap s~y 
da~s 1Cmu~ur~~e;rd E l~yq slsLl~u~ 8u;~olloj eq3 u? paurnss8 aq T~TM 11 *rl JO 
uo;qaunj Aq~suap ayq ~olcn~ 03 3u~qsa~aqu; aq AE LU 11: 'xe~a~o~ *d jo pEaqsul: 

elqq;rEn uopu~x z sz 1 $u;sn paaaoxd plno3 apppn E 30 s~sAlvuv 



DA and a v  are both zero. - 
aP ac 

(12a) becomes 

P [ Y P C I  = ~p [PI R (1 -c )  
0 y ( i - ~ ) ~  

It is assumed that p [y,g]  = p [ y ]  p [ 6 ] .  

Therefore, p [ k ]  may be found by integrating over y: 

Since y = p this is equivalent to 

1-1 max. 
P 15) = lL min. Py ,  ( P ,  6 )  d~ 

This integral may be performed for a number s f  values in the range of 
5. If it is also desired to get the distribution funct.i.on for g, this may be found 
by 6 

p (L) = , P ( I t )  d b i  ( 16) 
Cmh, 

For a 2-stage vehicle, 5 in equation ( i F i  b e c ~ m e s  g2 and 5 = g1 g2, 
since the second stage is the payload of the first stage. g2 is now a random 
variable defined by equation (16). Analagous to equation (8) , 





The distribution function P [b"J is again found by equation ( I G ) .  

RESULTS 

Explanat ion of Terminology 

For the non-technical reader, ail explanation is in order regarding 
the format of data to be shown. Firs t ,  what is a density function? The 
density function represents something that is not precisely lmown and about 
which there is some uncertainty; it does, h~vever ,  provide information on 
probability. If we have a function whose exact value is not known, and we know 
that there  is a 25% probability that i t s  value is between 3 and 4, we can draw 
a histogram, as shown below, 

If we have more  information a b o ~ t  this function, that f s, if we know 
the probability of its being between 1 and is and 2,  eta. , we can draw a 
histogram showing more detail, as in the following sketch. 



If we divide t:he region into arbitrarily small elements instead of a 
stepped curve, then a continuous curve results, This is a density function. 
If the density function is normalized, any point on the curve represents the 
probability that the value of the function will fall within a unit range about the 
point. For example, consider a density function plotted versus a specific 
impulse obtainable from a rocket engine; a point plotted at a value such as 400 
seconds represents the probability that the Isp obtained will lie between 399.5 

and 400, 5 seconds. The importance of normalization lies in the fact that the 
integral from zero to infinity of a normalized density function is exactly equal 
to i. 

This integral then forins what is h o w n  as the distribution function, The 
distribution function is either constant o r  monotonically increasing and re- 
presents the probability that a random variable will be less  than th.e abscissa 
value against which the distribution is plotted. If at an Isp value of 400 the 

distribution function is equal to 0.4, then the probability is 40% that the Isp 

will be less than 400, and 60% that it will be greater than 400. 

It is convenient for the analyst using this random variable technique 
to male  an tteyeball" estimate of the uncertainties in his sub-parameters in 
the form of density function. These may then be employed to show the effects 
of variations in sub-parameters on overall system performance parameters. 
It is convenient that the analyst should not have to produce a normalized density 
function. An ordinate scale of 0 to 5 is typically convenient, Normalization 
can be readily carried out by the computer, prior to its using the input density 
functions in the calculations. 

Example Calculations 

Camputation of p [ g  ] and P [ f  ] was performed by a digital computer 
routine for certain 2-stage vehicle examples. Inputs were assumed density 
functions for first and second stage Isp and propellant fractions, payload mass,  

and overall impulsive velocity increment for the vehicle, and staging velocity. 
Input density functions were given an arbitrary scale of 0 to 5 and were normali- 
zed by the computer routine. The following examples were given: a lunar 
direct flight and return vehicle, a Saturn-type &stage to orbit expendable 
vehicle, and a reusable space transport vehicle with rocket propulsion. Results 
from the calculations were automatically plotted on the $ 0 2 0  plotter. 



For the lunar direct flight vehicle a single-stage lander and single- 
stage return vehicle staging necessarily occurs at the lunar surface for the 
case shown. The given impulsive velocity increments nre not typical of those 
currently used for lunar mission analysis, but they serve  to illustrate typical 
results  of tizis analysis. Both stages were assumed to have the same engine 
performance. The landing stage is assumed to have a better prcpellr,nt fraction 
because it is larger and because it is not required to be well insulated for 
extended storage of cryogenic propellants. Figures I through 5 give the 
results  for this vehicle. Irregularities in Figure 2 result  from the finite 
difference nature of the numerical integrations employed. 

The next two examples, where the staging velocity is not fixed by mission 
characteristics, were calculated for several staging velocities. This allows 
selection of a staging velociQ that will give reasdnable all-up weights with 
minimum sensitivity to uncertainty in inert  weights and engine performance. 
Accumulated e r r o r s  in numerical integrations may be  noted by the fact that 
distribution function curves for these cases do not terminak exactly at I. 0 as 
they should. 

The random variable approach is not limited to the relatively simple 
cases shown, It could be extended to more than two stages, and variation 
in nornin.al propellant fraction with propellant loading could be incorporated 
without much difficulty. 



Lunar Direct Flight Vehicle 

One-stage Cryogenic Lander 
Return Payload Mass = 5070 Kg 
Iie turn 1dea.l Delta V = 2 , 7 5 ~ m / S e c  
Landing Ideal Delta V = 3.697 ~rn/&c 

438 440 442 444 

Specific Impulse, Sec 

, 6 6  ,68 .70 .72 
Stage Propellant Fraction 

Specific ImpUl se  , Sec 
- 7 6  .78 .80 . 82 

Stage Propellant Fraction 

FIGURE i 



Lunar Direct Flight Vehicle 
Ono-stage Cryogenic Lander 
Return Payload Mass = 5670 Kg 
Return Ideal Delta V= 2.75Km/%c 
Landing Ideal Delta V = 3.697 ~ r n / & c  

FIGURE 2 



Lunar Dfrect Flight Vehicle 

One-Stage Cryogenic Lander 
Return Payload Mass = 5670 Kg 
Return Ideal Delta V = 2.75Km/Sec 
Landing Ideal Delta V = 3.697 ~ r n / ~ e c  



Lunar Direct Flight Veldcle 

One-Stage: Cryogenic Lander 
Return Payload Mass = 5670 Kg 
Return Ideal Delta V = 2.75Km/Sec 
Landing Ideal Delta V = 3.697 ~ m / ~ o c  

FIGURE 4 



Lunar Direct Flight Vehicle 
One-Stago Cryogenic Landor 
Return Payload Mass = 6670 Kg 
Return Ideal Iklta V = 2.75Km/~ec 
Landing Ideal Delta V = 3.697 Km/Sec 

FIGURE 5 



Saturn-Typo Two Stage to Orbit Launch Vehicle 

Payload M a ~ s  = 125 Metric Tons 
Total Ideal Velocity Increment 9150 W ~ e c  

422 424 426 428 

Specific Jmpclse, LB-&c/LB 

2 7 9 2 8 0  281 282 283 284 285 286 

Specific Impulse, LB-Sec/ IE 

.Stage Propellant Fraction 

,9200 .9400 

Stage Propellant Fraction 

FIGURE 6 



Saturn-Type Two-Stago-to-Orbit Launch Vehfclo 

Payload Mass = 125 Metric Tona 
Totnl Ideal Velocity Increment = 9150 M/Sec 

Second Stage Initial Mass, Kg 

FIGURE 7 



Saturn-Type Two Stago to Orbit Launch Vehicle 

Payload Mass = 125 Metric Tons 
Total Ideal Velocity Increment = 9150 WSec 

Second Stage Initial Mass, Kg. 

FIGURE 8 



Snturn-Type Two Stnga to Orbit Launch Vehicle 
Payload Mass = 125 Metric Tons 
Total Ideal Velocity Increment =r 9150 M / k c  

First Stage Initial Mass 

FIGURE 9 



Saturn-Type Two Stage to Orbit Launch Vehicle 

Payload Mass := I 2 5  Metric Tons 
Total Idenl Volacity Increment = 9150 M/-c 

First Stage Initial Mass 

FIGURE 10 



Rouaable Space Transport, 2 Stage 
F-1 First Stage, Hg-3 Second Stage 
Payload Mass = ii, 35 Metric Tons 
Total Ideal Vclocity Increment = 8.85  ~rn/Sec 

Specific Impuls3, L B - s ~ c / L J ~  

Specific Impulse, LB-Sec/ LE3 Stage Propellant Fraction 

Stage Propellant Fraction 

FIGURE 11 



Reusable Space Transport, 2 Stage 

F-i First Stage, Hg-3 Second Stage 
Payload Mass = ii. 33 Metric Tons 
Total Ideal Velooity Increment = 8.85 Km/Sec 

FIGURE 12 



Reusable Space Transport, 2 Stage 

FIGURE 13 



Reusable Space Transport, 2 Stage 

F-1 First Stage, Hg-3 Second Stage 
Payload Mass = ii. 35 Metric Tons 
Total Ideal Velocity Increment = 8.85 Krn/~ec 

First Stage Initial Mass 

FIGURE 14 



Reusable Space Transport ,  2 Stage 

F-i First Stage, Hg-3 Second Stage 
Payload Mass = 11-35 Metric Tons 
Total IderT Velocity Increment = 8.85 Km/Sec 

FIGURE 15 
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