
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



NASA TECHNICAL	 { T

MEMORANDUM

REPORT NO. 73922

FILM DEGRADATION RESULTING FROM MAGNETICALLY
TRAPPED PROTONS IN ATM ORBITS
By John W. Watts
Space Sciences Laboratory

September 16, 1969

h	 ,^, ^n .k dy	 ^ ti

NASA

S

George C. Marshall Space blight Center
Matshall Space Flight Center, Alabama

NPIAM IR75 68
(THRU)(ACCESSION NUMBER)

0(P AGES) (COD )
^-	 RblSFC -Form 3190 (September 1968)	 =	 ^	 --	 3 ! 22 ^^
a (NASA CR OR TMX OR AD NUMBER) (CATEGORY) {
U.

-0- 00ioikik-

I



IN-SSL-N-69-2

Changed to TM X-53922, September 16, 1969

FILM DEGRADATION RESULTING FROM MAGNETICALLY
TRAPPED PROTONS IN ATM ORBITS

By
John W. Watts
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ABSTRACT

Film degradation resulting from trapped ;protons in the ATM orbit is
considered for five films: 103-0, Plus X, Panatomic-X, SWR, and SO-375. The
latest Kodak analysis of the NASA. data is used to determine film densities as a
function of time in a 210 nautical mile (389 kmy, -35°--circular orbit for the
films. Dose rates as a function of orbital altitude, inclination, and shield
thickness are presented that should be useful in determining film degradation in
orbits near the one presented. Film selection is concluded to be the single most
important criteria in minimizing data loss due to radiation damage.
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FILM DEGRADATION RESULTING FROM MAGNETICALLY
TRAPPED PROTONS IN ATM ORBITS

INTRODUCTION
As the mission is presently planned, the ATM Workshop cluster will

be flying in a circular orbit inclined at between 30 0 and 35 0 and at altitudes
between 180 and 220 nautical miles ( 333 and 407 km) . This region is in the
lower fringes of the 'Van Allen radiation belt which consist of magnetically
trapped, high-energy protons and electrons that can damage sensitive photo-
graphic film. An initial investigation [1] showed that most of the radiation dose
received at these altitudes and inclinations is due to protons ( Fig. 1) . Several
films proposed for use on the ATM cluster were radiated with monoenergetic
protons to determine the film response s variation with proton energy.

One set of this irradiated film was brought back to Marshall Space Flight
Center, developed, and analyzed here. Reference 2 describes the rf.;sults for
this batLh of film. Another set of film was sent to Kodak for their analysis.
The results of Kodak's analysis are now available [3] .

There were two major differences in Kodak's treatment of the data. First,
they corrected the response curves for the beam profile. Second, for most of the
films, Kodak determined the response curves by shifting the response curve shape
for 80-KeV X-rays along the dose axis to obtain a best fit to the measured points
for protons. The response curve shape for the films SWR and SO-375 differed from
80-KeV X-ray shape so smooth curves were drawn through the actual data points.

This report uses the Kodak data to reanalyze the radiation problems in
the ATM orbit for five films, Panatomic-X, SWR, 103-0, SO-375, and Plus-X.
It should be useful in the selection of films for future missions.

s By film response we mean the film density as a function of radiation exposux°e.
Film density is defined as minus the logarithm to base tenof the film transmission.
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DETERMINATION OF NET FILM RESPONSE
Kodak's data are in the form of film density versus rad dose in air at

constant proton energies The proton energy spectrum at the location of the
film must be folded in with the film, response as a function of energy to determine
the net response of the film. Reference 4 describes a method for performing
this calculation.

To transform the spectrum exterior to the spacecraft into the spectrum
at the film, the li straight-aheadil approximation with a correction for secondary
induced radiation is used. Basically, the protons are assumed to be unscattered
by the shielding material and to travel straight ahead through the shield, losing
energy according to the stopping power and thickness of the material encountered.
This method, described in detail -in reference 5, has proved fairly accurate when
compared with considerably more sophisticated computations, The free-space
spectra are obtained using the James Vette trapped particle environment [6] in
a computer program [7] which time averages the spectra over several orbits.

A spherically symmetrical geometry is used for ease of comparison and
calculation. Both doses and densities are calculated for a point piece of film. at the
center of a spherical aluminum shell of uniform thickness. Thus the film provides
no shielding for itself.

RESULTS AND CONCLUSIONS

Figures 2 through 6 show film density versus time in orbit for various
shield thicknesses in a 210 nautical mile (389 km) , 35" inclination, circular
orbit. There is a. factor of 20 in radiation sensitivity between the least sensitive
film, SO-375, and the most sensitive film, 103-0. Doubting the shielding , that
surrounds a given piece of film no more than doubles the time required to
achieve the same density. Thus careful film selection is perhaps the most
effective means of minimizing radiation damage in a fixed radiation environment.
Shielding is helpful, but in most cases the amount of additional .shielding required
to be really effective is prohibitively heavy and bulky.

Since a simple spherical geometry has been used to eliminate the
difficulty of calculating the angular dependence of the flux, extreme caution
should be used in attempting to determine actual film degradation in a. complex
spacecraft from the results presented. Rather, the results should be used to

If ` 	^^	 tv	 C	 '	 1L^F 11' j^
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point out where problem areas exist. For example, if a film is to be stored next
to a spacecraft wall 2, 0 g/cm 2 thick and the spherical shell calculation shows an
unacceptable density for the expected storage period, then an accurate complex
geometry calculation should be performed for the film,

Most of , the problems and uncertainties in the calculation of film degra-
dation due to radiation during an actual mission are in the determination of the
proton energy spectrum at the location of the film. 	 The film may be moved
several times during a flight, and the spectrum at a given point in the spacecraft
is a function of the spacecraft geometry and the orientation and position of the
vehicle in the magnetic field of the earth. 	 For a really accurate computation,
detailed knowledge concerning the movement of film and equipment that might
shield the film is required.	 As a matter of fact, there can be significant
variations- in density between portions of a single roll of film, depending on how
it is exposed.	 Even if the spacecraft geometry and film position are well known,
there are still large uncertainties in the determination of the proton spectrum
exterior to the craft and some difficulty in transforming the exterior spectrum
into a spectrum at the film.

For the orbits of interest, most of the radiation is received in-passes
through the South Atlantic Anomaly, a distortion of the geomagnetic field that
results in high proton fluxes at relatively low altitudes ( Fig. 7).	 In this region

•	 m.ost of the protons are near their mirror points (that is, they are traveling ~4
almost perpendicularly to magnetic field lines). 	 Thus, one would expect the
proton flux to be highly angular dependent.	 Unfortunately, most of the data
'presently available is integrated over all directions and even these data have an
uncertainty factor of two. I

f

Since flights at around 200 nautical miles (370 km) are flying through
1	

A

the lower fringes of the belt, a change in altitude may ,esult in large changes in
the proton flux encountered.	 Figure 8 shows the proton dose as a function of r
altitude in a 35 0 orbit for various shield thicknesses. 	 Changes in orbital incli-
nation also result in dose variations since the belts are not symmetrical. -s
Figure 9 shows the proton dose as a function of orbital inclination at 210 nautical 3
Miles (389 km) altitude for various shield thicknesses. 	 From these two figures 1

one draws the conclusion that low-altitude, low-inclination orbits are preferable
if film degradation is to be minimized. 	 One should remember that the spectra
used in these calculations have been averaged over several orbits. 	 At any specific r
time., dose rates many times higher or lower than these averages may be observed. L

t

•

3
3R

Re a	 WY643..J...v.v

W.,et	
!'	 ^l	 ':j t er	 r	 '"..._,	 x .» ..	

,..
Z.	 wAF

-.	 - ^ u R ..v.. .x?Gr	 ..-.=. —*`-^1...'a.;L ,^	 - rte,•	 -,-_a y.. q̂ _	 w--w._ .^-Fes.:... 	 .,
»d.	 •^	 .,...,.:	 .,+„F.4a^,e*x<.r«.:.....+-.^...,. +.w...-.use-.?w.^..-r.; ali.w..emrr,+?h.,. +xtw^!fY«, 	 ^'k^.r s..., 	 ...
u. 	 ,.. 	 -

:	 ,^	 w.*rn .xxaec+au
+Zwu^.	 ^v^MNw J '§+e(L.	 ^ 	 ^^'Y+a^r^"Ff"i+.'^*R•	 _, ..	

"'^ws•rw	 "•Ci^'s'X

•`l.c'xS"a4u...Y	 _	 ..	 48.n	 -	 __	 . 	 w.._,.,^ ..	 ..... .	 .... .	 r	 ...	 _	 .,_,..,.....,,.....	 H	 w	 _	 -	 _u ..	 _....	 _	
ilk	

.,.	 ......n	 _	 ..,,.......	 _...-.._^

rwrS	 4

-



Di conclusion, radiation problems for film can be minimized in the
following way. Select the least radiation-sensitive film that will still perform
the task required, ( Figure 10 shows a comparison of proton dose sensitivity
for the five fflnis in this report.) Determine the radiation degradation that can
be tolerated without major lose of data, For a rough estimate, see if this
tolerance is met duringthe mission life behind some nominal shield (2 to 5 g/cm 2) .
If the tolerance is exceeded or if the film is to be placed in some eery thinly
shielded area during any major portion of the mission, a more detailed analysis
should be performed considering the time lining of film position and spacecraft
geometry. If the tolerance is st-i ll exceeded, consideration should be given to
placing additional .shielding around thinly shielded locations and relocating the
film to safer positions.
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