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Y	 USE OF LOW CONSTANT THRUST
TO ACCOMPLISH ORBITAL TRANSFER

By

Quintin Peaeis-;,r
and

Lester Katz

George C. Marshall Space Flight Center
Huntsville, Alabama

ABSTRACT

A fuel-minimized trajectory is generated, satisfyingsatisfying initial and final
boundary conditions for the problem of a constantly thrusting space vehicle
which is transferred from an initial elliptical orbit around Mars to a circular
orbit: of lower energy. The constant-thrust solution is amenable to electric
ion-propelled spacecraft having an initial elliptical or circular planetocentric
orbit which must then be powered to a circular orbit of desired altitude.
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DEFINITION OF SYMBOLS

	

Sy_l 	Definition

range angle (deg)

r	 radial distance of spacecraft to center of mass of planet (km)

u	 radial velocity (km/sec)

v	 veloetty perpendicular to radial velocity (km/sec)

T	 thrust force (newton)

steering control angle (deg)

a	 radius of Mars (km)

41	 ge gravitational acceleration at surface of Earth
1
,	 (9.80665 x 10-3 km/sect)

	

gm	
gravitational acceleration at surface, of Mars
(3. 837 x 10-3 km/seC2)



V DEFINITION OF SYMBOLS (Concluded)

Symbol Definition
x

m mass at time t (kg) = mo - m (t - to)

^ i first Lagrangian variable (see)

14 Xx second Lagrangian var able (see/km) 
^^

1l

4 IX$ third Lagrangian variable (sect/km)

fourth Lagrangian variable ( sect/km);;

A semimajor axis of starting ellipse (km)

JZ coefficient of the second harmonic of Mar t s potential
function Jz = 0.002001	 ; k
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USE OF LOW CONSTANT THRUST
TO ACCOMPLISH ORBITAL TRANSFER

SUMMARY

A fuel-minimized trajectory is generated, satisfying initial and final
boundary conditions for the problem of a constantly thrusting space vehicle
which is transferred from an initial elliptical orbit around Mars to a. circular
orbit of lower energy. The constant-thrust solution is amenable to electric
ion-propelled spacecraft having an initial elliptical or circular planetocentric
orbit which must then be powered to a circular orbit of desired altitude,

INTRODUCTION

The Advanced Reconnaissance Electric Spacecraft (ARES) is a mission
designed principally to map the neighboring planets of Venus, Mars, and

.	 Jupiter. To map the planets in a minimum length of time, hfgh data transmission
^	 r

rates (on the order of 2 megabits/see) are required, which, in turn, neces-
sitate large quantities of electric power. The on-board power source is already
required to accomplish the mission mapping objective once an orbit is estab-
lished; hence, it appears practicable to use the available electric sower source
for main propulsion to achieve the desired orbit. For car ,graphic purposes,
the most desirable orbits are circular, as opposed to elliptic, because the
problem of changing altitude (and, hence, resolution) as a function of time its
eliminated. In the ARES mission, once the planet is mapped from a high circular:
orbit, the altitude is decreased to a lower circular orbit so that -a higher- reso^
lution map may be made for easy reference to the previous map. The optimal
solution of the equations of motion for a minimum transfer time from one
circular orbit te. another is desired which includes low continuous thrust and
the precessional effects of planetary oblateness. The results of such a solution
for a typical problem are presented in this ,report. However, for purposes of
generality the initial orbit is chosen as an ellipse, as if the spacecraft has been
captured in an initial elliptical orbit and then powered to a circular orbit.
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The Differential Equation System

t

The second order Newton differential equations of motion in plane polar
coordinates are used. Included are the acceleration components from continuous
thrust (T) along and perpendicular to the radius vector:

r` ro e + T cos Q - µ/rd 	i ^ 3 J2 a 
2 (3 sin 	 - i)	 (1,a)M	 2 (r^

d(d̂ ^ = - r	 + T sin	 - µ/r2 [3J2 C r l
2
 sin $ cos 	' ( b)

where the terms involving. J2 within the brackets of ( t) account for the oblate-
ness of Mars [ i, .

Introduction of the variables u = r' and v = r^ into (1) yields the following
first order differential equation system:

rr (2a)
,;	 rx

k ,r	 a (2b)

' u = ^-- -	 cos	 -
-i	 32 J2	

2 
(3 sin	 -	 )( (2c)r.	 m	 r r

v = -fir + m sing - r 3J2 r
2
sin 0 cos (2d)

1

r ,

	

	 The variable P of set (2) is not associated withany particular differential
e,f ation so it is removed by the definitions:

a

'>'
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r
7.

tan► # = ^ , cos ^	 3-	 , sin ^ ^ X'A

41 	 N 77 7A

where X 3 , X4 are functions of time. Recourse is made to the calculus of varia-
tions to supply the Euler:..Lagrange (E-L) differential equations for X3 and a4
thus linking the steering angle Q to the concept of minimal time. In this example,
the solution satisfying the boundary conditions and the E-L equations yields a
relative minimum, The E_L equations furnish the necessary criteria for a
minimum to exist but are not sufficient to guarantee an absolute minimum,
Another trajectory history might exist that uses less time than Vile example.

The Appendix constitutes a brief exposition of the isoperi.metric problem
solved here. The integral. to be extremalized specializes to the total time of

tt
flight: I _ f dt, f = i via. equation (AI) . The constraining differential

to

equations are:

G	 -f =0 G =u _ v2	 T	 \s
i	 qi	 +^

2
+	 i - 3 J2 a 

(3. sine - i) 	 U
2 (r)

•	 uv	 T	 A`G2 r u = 0, G4 = v +	 -------

	

r	 m ,\I -+ X4

µ	 a2+	 f3J2 r  1 sin cos	 -0
/

The isoperimetric integrand function, equation (A5), becomes



V2

r^ +^

+
2

 J2 _
a 2 

(3 sinZ - i)
r	 2	 Cr/

2
+ ^4 + ry _ m — A	 +	 3 J2 C r in cos

11, —+X,2

Application of the Euler-Lagrange equations (A-9) gives
0
	 2

F	 9 X3	 sin cos 0 + 3 X4 
r^ 

(Cost - sing
80

d :6F
dt a^

2µ, 6
8F	 v

Xi 	 + X3[ -	 + 6J	 (3 sine 	i)
ar	 rr

_ X14 	+ i2
	

sin, 0 cos .0

	

r	 r

a ^
8F ^at ar	 2

i
ED

 - - X2 +X4 r
}

d Jay	
a

dt al p z

s
4



aF	 i 	 +	 u

av 
= - A1 r - 211g r !:
	

4 r

dt 8v / !	 '

The complete differential equation system is:
j

v_
(3a)

r

u (3b)
Aff

—- _u - v2 + T	 = - i - 3 J2 
a 2(3 ein	 - i)^ r^''

(3c)----r	 m r
A

r 2

v _ _ ur + m --- A -- - - 3J2
Cr 	

sin	 cos (3d)

Xi - - 9X3	sin 0 cos 0 + 3 ^j	(Cost	 - si:12 	) (3e)
r r

2

}

h2 =	 ^^ -V+	 s
[ V2

^°`,^	 -
21A	 J2 IA a

+ 6 -'-5"— (3 sing 0 - i)
r	 r

3

uv	 J2 ^^ 2µ

Xa 	 +12 '^3a: sin 0 cos 0 (3f) 
r	 r

r

_	 _	 +	 _.^. 3 
d	

42 T
3g

4 -X,	 212	 +
r	 r ^^ a

r
(3h)

3
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Conditions

Variables
Initial Conditions

and Derived Quantities
Final Conditions

and Derived Quantities

0 0 78 orbits + 195°

r 9212.91 0 332.:15

u 0 0

v 2.6355 1.17/876

t 0 64 days 4.6 hours

M 2950.0 2885.37

g 501.9 x 10"-6 239.7 x 10`1

OF

rt Boundary Conditions

Th(-, curves of Figure i illustrate to scale the elliptic starting orbit and
the final circular orbit. Mars is located at a focus of the ellipse and the center
of the circle. The radius of Mars is 3332.15 km. The semimajor and semi
minor axes of the ellipse are 18 500 km and 16 000 kir. The eccentricity is
0.502; the perihelion distance is 9212.91 km; and the aphelion distance is
27 787.09 km. The radius of the circle is 13.332. 15 km, or at 10 000 km
altitude above the surface of Mars. The initial spacecraft mass is 2950 kg,
and the engine Isp is 3500 sec. The ionic thrust (T) is , 0.4 newton. The

constant time rate of change of mass (rh) is 1. 165 x 10-6 kg/sec. initial and
final conditions and derived quantities are given in Table I.

E

1

TABLE I. INITIAL AND FINAL CONDITIONS AND
DERIVED QUANTITIES
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Numerical Integration
The procedure used was a powerful seventh order Runge-Kutta-type meth-

od with automatic step size control developed by Dr. Erwin Fehlberg of the MSFC
Computation Laboratory. A tolerance assuring eight-place accuracy throughout
the history for all variables allowed a minimum step size of 227 sec and a
maximum of 1355 sec. The first orbit required 115 time steps, or about
78 000 sec (21.7 hr) ; the intervals are shown in Figure 1. The 78th orbit
required 45 time steps each of 1085 sec, or about 47 000 sec (13. 1 hr) . The
IBM 7094 computer was used with double precision (16 -digit word length) , and
machine time was 12 minutes for the trajectory ;history.

Remarks

Figures i depicts the trajectory history with motion in a counterclock-
wise direction from the ellipse to the final circle. The first 50 orbits change
the initial ellipse to a circular orbit about 14 700 km alcove the surface of Mars
( Figs. 1A through IF).  The thrust vectors ( small arrows) of Figures i A through
1E never create more than a 900 angle with the longitudinal axis of a nonrotating
spacecraft until the 51st orbit is reached. Orbits 51 through 78 shrink the radius
of the circular orbit to the desired altitude of 10 000 km above the surface of
Mars. The thrust vectors of Figures IF through 1H show continuous braking
action, and they are nearly aligned with the tangent of the y trajectory curve.
The final boundary conditions are met about halfway through the 79th orbit.
There is no evidence of precession as the ellipse is turned into the circle.

Figures 2A through 2D give radius and steering angle as functions of
time. Figure 2C shows the continuous braking effect of the thrust vector that
oscillates about the angle a = 2700.

The effects of oblateness were not significant for this example,. The
total time difference between two comparison runs for J 2 = 0 and J2 = 0. 002001
was slightly over 1000 sec, with about a one degree change in the range angle

i
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CONCLUSIONS

The problem of changing the planetocentric orbit of a long-term, con-
stantly low-thrusting spacecraft from an initial elliptic to a final circular orbit,
so as to obtain a trajectory which requires a minimum of fuel is shown to be
tractable. Tfie effect of the oblateness of the planet Mars, which contributes
perturbations to the equations of motion in the form of harmonics to the gravi-
tational field representation, was shown to be negligible for the case considered.

14



REFERENCES

'	 1.	 Menzel, D. H.: Mathematical Physics. Dover Publications, Inc. ,
New York, 1961.

	2.	 Weinstock, Robert; Calculus of Variations. McGraw-Hill Book Co.
New York, 1952.

S
{

1

t }	 +

1

I
j

s

of

t

I

i

t

,y 

15

y
rri
lj,	 a

i.



r

N 	
PAGE BLANK NOT FILMED.

APPENDIX

The integral

tj
I	 f f (xi , x2, , . , xK x i , x2, ... x , t) dt	 [ 21

r

(A-1)
	to	 K

a is to be extremalized where the functions eligible for the extremalization must
	t	 obey N :5 K differential equations as side conditions. The problem is defined

as isoperimetric.

A set of comparison functions Xi = xi + E 7i ( t) i = i, 2 0 ... K is selected
4

with E an arbitrary parametric variable and ^i (t) 1 _ 1, 2, ... K arbitrary

functions of t subject to the restrictions 77 (to) = 77i41) = 0, i i, 2, ... K.

The integral becomesi

	

S	
t

	

J	 s

i tj	
F

I( E) = f f ( X 1 , X2, ... XK , tJ, 2t2 , ... K, t) dt,
to

and for I( E) to be an extrernum for E = 0 0 it is necessary that I'(0) = 0. Dif-
ferentiation under the integral sign with respect to E produces

{
t	 ax	 ax

"	 [at ax	 of	 K	 of ax	 of	 K
dt

to ^xi a E	 UX^ a E	 axi a E	 aXK e^ e

f
and for E = 0 this becomes

t	
-

	

'.	 I ► (0) w	
1

12afl(
t) + . 	+ of 1] (t)+ 8f 7i(t) + ... + of(t) dtf 	 x,	 ax K	 ax1	 ax	 K`a	 K	 K

= 0'
(A-2)

	

t	 i7

s

i

	

r	 y



s

a

N of the arbitrary functions 17i(t) i i, 2 0 ... K are dependent because of the

N differential equations of constraint
R

Gj(Xi, X2, ... XK, X1, ^Z, ... XK, t) 	 0	 j	 1, 2, ... N R

Each of these N equations is differentiated with respect to E and multiplied by
a Lagrangian variable to give

A (t) -	 ax, + ... + ^ 
ax

, 	 + L- j ax, +... +	 axK 	0j	 axi a E	 ax 	 a E	 ax, a E	 ax a E
K

j=1,2,...N

and, for e = 0, this becomes

f
aG. aG. aG. aG.

xj (t)
8 

r^ 1 (t) +.. ,. + a 'q (t) + -	 r^K(t) +... + —^ ^K(t) =0
K axZ axK

= i t 2,	 ... N (A-3)

The equations of (A -3) do not disturb the numerical value of the integrand 	 ?.
of (A-2) , so they may be added to it to form

t1 [Lf	 N	 aG.	
of	

N	 aG.

to	 ax1 j=1 J	 aX i 	 ax 	 j=1 J	 axK K

^	 N	 aG.
f

E)
	 +

G . ?	 a ,	 j=1	 ail

aG,̂  
+	 + L ^. ( t)

Of

	
---^- ^1K (t) dt - 0	 (A-4)	 {

axK j=1 J 8xK	
M

1$	 -

W	 _.

klf

1

i
n



OF

A new integrand function is defined to be

A

^t

4	 ^

F =f +^ X(t)G'
J =1 3

which when differentiated partially with respect to x i and xi i = 1, 2, ... K
gives

(A-5)

N	 aG	 N	 aG

IT, - ax +^ t) ex
=
 of +	 ( t)

i	 i	 j=1	 ax.
	

ax. i	 J=1	
IN

i	 1 9 2,... K	 j = 1 9 2,... iii

The right side of these equations is identical to the bracketed terms of (A-4)
so that

L'( 0) =	 t1 aF 
^1i( t) + ., . + BF 17 (t)f ax 1 	 ax K

a	 to	 K

Y

i A

aF 
ni( t> + ... + fir,	 (t)	 dt = 0	 (A-6)

ai l 	axK K

Integration by parts on the right half of the iintegrand of (A-6) is performed
using the formula

	

t	 t	
ti	

j

	

i	 i

f u. dvi _ U. vi - f v: d u.i	 i 	 i
to	 t6	 to

*^	
r

t	 }

r
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u =
8F

i

	

	
dvi = 41 ( t) dt

axi
i-1, 2, ... K

du =d aF

	

i	 v. - 71 ( t)
axi	 1	 i

ti	 t,
BF	 ti	 ti

uivi -	 l7i (t)	 f vi dui = f ni(t) d /BF	 dt
axi 	to	 to	 8xi

ar	 to	 to

Equation (A-6) becomes ti

aF	 BF

aXI

	

	Kax

	

K	 to

^;	
t i

+ f	 aF	 d aF )	
+

0	 1	 axi

f	
aF` _ d	 aF

+	
A

ax	 dt^1(t)	 dt	 o	 (A -7 )

K rajKK

	

Th f' t .	 f A 7)	 be	 f h	 tt.	 (t _	 t)_t	 e irs term o (	 is zero cause o t e res L %; ions I l i o)	 ) i(i - 0
y	 i = 1,2, ... K so that (A.-7) becomes

ti a.F	 d 6

axi	 K

F	 8 F	 d (81F
I'M	 f	 ax _ dt	 i(t) + "	 ax 	 dt

r^ K(t) dt o
i	 to	 aK r

f

( A -8)
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The Lagrangian variables X (t) 	 1,2,	 N can be algebraically

assigned to insure that the coefficients of the first N terms of (A-8) will
vanish. (The K - N terms can be unconditionally brought to zero because
77 1 (t) i = N+ 1 0 N + 2 9 ... K are independent and arbitrary.) The Euler-

Lagrange differential equations of (A-8)

8F.	 d ( IF	 0 1 1, 2,.	 N	 (A-9)ax i	 dt

provide the differential equations for the Lagrangian variables.

I.
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