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ABSTRACT

A statistical theory of inelastic neutroa energy spectra for intermediate
excitation energies is developed. The final state of the residual nucleus may

be either discrete or in the continuum. Calculated neutror energy distributions
for aluminum are presented.
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DEFINITION OF SYMBOLS

Primes refer to the final state.

The set of quantum numbers {a, I, i, s, ¢, J, My, 7 } which
specifies the reaction channel.

The set {p, Ep} which labels a pair of particles and their

state of excitation.

The pair of particles.

The center-of-mass Kinetic energy of the pair p.

The energy of excitation of the pair p.

The separation energy of the pair p from the compound system.
The energy released by the reaction.

T'he intrinsic spin of the target. All spins are in units of N,
Planck's constant divided by 27 .

The intrinsic spin of the bombarding particle.

Tie channel spin; s = -I + 1.

The orbital angular momentum of the pair.

The lotal angular momentum; TJ=2+8=120+14+1.

Tae z component of J.

The total parity (the product of { 1)-1 with the intrinsic parities
of the pair «).

Let the decay and production of compound systems for fixea
J and 7 be equal, so that at any time there are N systems

present. Then NG‘:{/TI is the number of decays per second

into the pair o' .



H(X)

iZ

The wave number for the relative motion of the pair « .

The number of states in the continuum with angular momentum
I and excitation energy in dE* at E™ |

The level density for discrete states.

The average cross section with the residual nucleus excited
into the continuum region.

The average cross section for a discrete final state.
If Ep - EC the residual nucleus will be in a discrete state.

If Ep > Ec the residual nucleus will be excited into the

continuum region,

For any X if X < 0 then H(X) - 0. If X > 0 then H(X) 1.
The moment of inertia of the nucleus.

A constant depending upon the given nucleus.

The density of neutron orbits at the Fermi level.

The density of proton orbits at the Fermi level.

The total density of orbits at the Fermi level.

The nuclear ''temperature,' not to be confused with the
"temperature’ in the simple evaporation model.

The Fermi energy; the excitation energy above the completely
degenerate state.

The atomic mass number,

th
The 2 - component of angular momentum of the i~ particle
or hole.

vi



(X) The average value of X.

f( U“) The probability density function of UV

g(JZ) The probability density function of JZ'

m The reduced mass of the pair

Y The real part of the optical model potential

w The imaginary part of the optical model potential

¢ The total wave function

v? The Laplacian

D(U) The nuclear energy level density according to the Fermi
gas model

vii



INTRODUCTION

Space Vehicle Radiation Shielding

Space vehicles are exposed to proton fluxes produced by solar flares,
galactic cosmic sources, and the trapped radiation belts [1]. Proton collisions
with the vehicle produce secondary neutrons which are then involved in sub~-
sequent nuclear reactions. At neutron energies between 8 and 18 MeV about
one half of these secondary neutrons will initiate inelastic neutron scattering
reactions. The energy spectra of these inelastically scattered neutrons is
required .s part of the input for Monte Carlo calculations which predict the
radiation dose rate inside the space vehicle.

Nuclear Reaction Mechanisms for Inelastic Scattering

The first problem of nuclear reaction analysis is to establish the
mechanism of the interaction. The reaction mechanism is determined by the
number of particles which share the energy introduced into the target nucleus.

Nuclear reactions are classified for convenience as direct, intermediate, and
statistical reactions.

If only a few degrees of freedom of the target nucleus are excited, then
the reaction is direct [2]. The momentum transferred to the residual nucleus
is small. This commonly results in angular distributions with large asym-
metric peaks in either the forward or the back angles.

Doorway or intermediate mechanism states are .ormed as additional
nucleons share the energy (3]. The doorway states may either collapse
rapidly to single-particle states or proceed to more complicated configurations.
Reactions which go to completion via energy excitations of intermediate com-
plexity have not received adequate theoretical treatment.

If the complexity of the intermediate state continues to increase, then
ultimately all nucleons in the nucleus share the available energy. Thus a
compound nucleus is formed [4]. The angular distributions resulting from
compound nucleus decay are symmetric about 90° in the center-of-mass system.

At present only two of these three types are available for treating
inelastic scattering: the direct reaction theory and the compound nucleus or
statistical theory. In this report it is assumed that the inelastic neutron
scattering proceeds via compound nucleus formation.



THE COMPOUND NUCLEUS

A compound nucleus is a metastable system which is formed when an
incident particle is captured by a target nucleus, and the available energy is
shared by all nucleons in the system. If one makes the Bohr [5] assumption
that the compound nucleus is analogous with an equilibrium system in classical
thermodynamicg, then the decay of the compound nucleus should be ...”2pendent
of the mode of creation. This assumption leads to a factorization of the
reaction cross section into two independent elements (assuming a fix:d total
angular momentum) . The first of these is the cross section for the formation
of the metastable compound system, and the second is the probability for sub-
sequent decay through the channel of interest. In this report only the exit
channel containing the inelastically scattered neutron is considered.

If no external magnetic fields are present, a time-reversed state must
also satisfy the equations of motion which govern the decay of the compound
system. This symmetry is expressed mathematically by the reciprocity
theorem [4]. The rc:iprocity theorem in conjunction with the Bohr assump-
tion allows the compound nucleus decay probability to be expressed in terms
of the compound nucleus formation cross section for the inverse reaction.

In the inverse reaction the target is in an excited state and there is 1o way to
experimentally measure the inverse compound nucleus formation cross section.
It is assumed that this cross section is the same as the compound nucleus for-
mation cross section for a target nucleus in the ground state.

These assumptions allow the inelastic neutron cross section to be
expressed in terms of the initial state compound nucleus formation cross
section. The compound nucleus formation cross section is approximated by
the optical model [6] reaction cross section.

For a given excitation energy several states in the compound nucleus
will contribute to the total reaction amplitude. The statistical hypcthesis [7]|
assumes that the interference terms between the different transition amplitudes
cancel.

The compound nucleus decay probability also contains a term which
represents the available final-state phase space. It is normally assumed that
the density of final states of the residual nucleus depends upon the excitation
energy and spin, but is independent of the parity of the state. The energy and
spin dependence are usually separated into independent multiplicative faccors.

L]



The energy dependence is approximated by vsing the Fermi gas model of the
nucleus [ %], and the svin dependence for aultiparticle excited states is approxi=
mated by a Geaussian distribution [ 9],

Thus the inelastic neutron cross section is expressed in terms of func-
tions which are determined by optical model and level density parameters.
The physical implications and validity of the above assumptions will be dis~
cussed in the sections which follow.

THE HAUSER-FESHBACH MODEL

Early evaporation models which were developed by Bethe and Weisskopf
considered only conservation of energy. The Hauser-Feshbach [10] model
presented below includes conservation of total angular momentum and parity.

The incident neutron energies are spread over some small energy
interval. This implies excitation of compound states within a corresponding
energy interval. The statistical assumption states that there are many excited
states in this interval, a.u the widths and energies of the excited states are
randomly distributed within this energy interval. The cross sect. n calculated
is the average over individual resonances in this energy interval.

Let Ea o be the average angle-integrated cross section for transition
from state « to state «'. This cross section is the sum over all partial

. Jm . :
cross sections, LP which conserve angular momentum, J, and parity, = .

7 , = Yo'f (1)
o o -~ oo
Jr

It is assumed that each partial cross section may be factored into two
factors. The first factor is the cross section for the formation of the com=-

pound nucleus, ojgz) , and depends only upon the initial state. The second

factor is the branching ratio, G;IT/ Z G:.r. , and depends only upon the final
state. a'



.aJ:r ' ujn)GJr/\ Jn
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The reciprocity theorem may be used to express the branching ratio
in terms of the compound-nucleus-formation cross section

k2> -dJr . k2 ‘GJ": (3)
(47 aa o a o

From equations (2) and (3) one obtains

2 Jn Jr 9 dm Jrr/‘ Jn
K ol m)c a‘T" G . - Ko@) G %,,Ga"

Equating terms in « gives

a’* 2o 'E)
(8 « C

(4)

Each ac(a) is obtained from the optical-model absorption cross
section, o

aa’
o B > ch (cv) (5)
aa &~ ¢
Jr
In terms of the optical-moc.l complex phase shifts 60 { this is
2 \.‘ - DE 2 »
S (N/ka)i"(zl +1)(1 |exp216al “y (6)
where [ is the orbital angular momentum of the interacting particies. For
the partial cross sections one has
Jm
0, (@)

T+i J+S
= (7 (20 + 1)/'k2(2l+1)(2i s 1] ), D (1 - lexp2ié_ %) .

al
S=|i - i 1»-’.1 S|

(7)
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The transmission functions are defined by

T, (@) = 1 - lexp2iéall2. (8)

Thus, from equations (4), (7), and (8), one finds

J \
Ga7r (72 + 1)/(2L+ 1) (2i+1)] ) T, (a) . (9)

l,s

From equation (2),

-dT

: . , \ I A
G nIe )/ (24 ) (24 1) ) T @) |G "/3 Pendd

l,s a”

From equations (1), (9), and (10),

o
o«

'

(m /k) ) (234 1)/(20+ 1) (2i + 1)] )T, (a) ZTP(Q/Z .
J,m s, s,/ o''s""

(11)

Since it is not possible to define the final energy more accurately than
the initial energy, there is an energy interval associated with the final state.
If the compound system is highly excited, then the residual nucleus is likely to
be highly excited also. For a highly excited residuai nucleus the level density
is represented by a continuous density function. However, if the compound
nucleus has a lower excitation energy, then the residual nucleus may be in a
discrete energy state. In general there will be some transitions to continuous
final states and some transitions to discrete final states. The experimentally
measured neutron spectrum is the average cross section times the number of
final states in the energy interval. Thus the energy spectrum of neutrons
emitted from the compound nucleus is

d
- p_(E*,ING° E - * .1 -
N(E ) = p (E*,IG  H(E -E ) + py(E*,15, H(E -E),

(12)

where H is the Heaviside function.



The discrete density of states, Py is unity if dEp, is chosen so small

that only one final discrete state is excited. The continuous density of states,
pC , is taken to be the form

PE* D) = p(E¥)(2l+ 1) exp [- I(I+1)/20%) (13)

The above spin level-density formula predicts too many levels of high
spin at low energies. All levels of high spin at low energies should be excluded
if they are not energetically obtainable by adding rotation energy to the ground
state. If this spin cutoff is included the neutron energy spectrum becomes

N(E
(p,)

2, | \ ) T (E ) [H(E -E ETAX_ g

+ (r/k2) ) g |}, T, (@) ), T,(E ) H(E  ~-E )
aJanll s'ﬁ'ﬂ P P ¢
(14)
B C max
% T (E E, " -E_)dE
| & ofg‘"‘"’" (E ) P (B )

+)Y T, (E.)JE, -E)
l" " "
a"_é"l" P P o

where g5 = (2J+1)/(21+1)(2i+ 1)
= ) _ max _
Bpgpr = L 20+ 1) exp[-T'(I'+ 1)/2K) H{(E 7-E_)

z's'l'

- n2I(I'+ 1)/2K | .
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NUCLEAR LEVEL DENSITY

The inelastic neutron energy spectrum contains a factor which represents
the available final-state phase space. For a two-body reaction, the phase space
factor is determined predominately by the level density in the residual nucleus.

Nuclear level densities exhibit an essentially exponential increase with
excitation energy. This rapid increase may be basically explained as a result
of the addition of many elementary one-particie excitations to form a highly
excited many-particle level. This is a characteristic of the Fermi gas model
which only required that the excitation energy of the level be distributed among
several excited nucleons in a manner consistant with the Pauli principle.

Nuclear level densities are strongly influenced by nuclear shell struc-
ture. In particular, for a fixed excitation energy, the level densities of magic
nuclei are orders of magnitude smaller than the level densities of adjacent
nuclei.

Odd-even effects which are attributed to differences in pairing energies
are also present. At low excitation energies, the odd nuclei often exhibit
several shell model levels, but even nuclei have few levels in this region of
excitation. Above the region of collective excitations, the even nuclei have

many levels which arise from the numerous ways in which unpaired nucleons
can be arranged.

The above effects are most pronounced at low energies and decrease
with increasing excitation. However, these factors do not entirely disappear
and must be considered in any satisfactory theory of nuclear level densities.

Energy Distribution

Models which describe nuclear level densitics must be related to Loth
the Fermi gas model and to the shell model. The odd-even effect indicates an
additional complexity. Newton [8] has considered the nucleus as a Fermi gas
and included shell effects by replacing the density of nucleon orbits at the
Fermi level by the density of nucleon orbits in the shell model. The equivalent
energy of the Fermi gas is obtained by subtracting the pairing energy correc-
tion from the nuclear excitation energy. In this model the level density is

|



1, 1 1
D (U)= C AGZ2 G;Jz (2U + Iili)zexpl-2l1rzGU,x"(i)/2] :
6U \ /2
where 7 (m) and G GN + Gz 5 (15)

Effective values of G for various nuclei have been tabulated by Cameron [11].

Angular Momentum Distribution

Consider a Fermi gas with » excited holes and particles. The proiec=-
tion of the total angular momentum on the ¥£-axis of the system is

I .
\. »
Jz - Jiz ' (16)
1=1
The random variables J1Z AR B Ik Jl " are independent and have the same dis-
s
tribution with standard deviation o # 0.

li
<Jiz> 0
72 2
e = % (17)
Define the arithmetic mean of the ¢ independent random variables as

U = Jz/v. (18)

vV

It immediately follows from the central limit theorem [12] that UV has an
asymptotically normal distribution with mean <Jiz> and standard deviation

a /\rV_ .
II

The normal distribution is defined by

1 (x-(x))z
f(x) = ————————— exp |-

J2r &2 2 {x* (19)



and

exp |- ar . (20!

u? “I
1 p
P— 2 )
'J21r oﬁ v Ul’/l_j

f(U) =

Since f(Ul') dUV = g(JZ)sz it follows that

f(U ) - J?
v i Z 7
L ——— exp E_!— . (21)

Vo
s/ 2 uoz v
'I

g(JZ) =

The density of states of spin I, p(I), is the difierence between the level
density of spin J_ = I and JZ = I+1.

Z
21 + 1) exp [=- 1(I+ 1)/2°
p() = gD g+ ~ LA R/ (22)
2(2mr) "2o8
The parameter o? = ucf} is called a spin cutoff parameter, which must be

determined for a given nucleus. The spin cutoff is a function of the Fermi
energy. However, ¢ is normally taken to be constant, since if it is energy
dependent, the energy integrals and spin sums in the neutron inelastic energy
spectrum cannot be separated.

If p(I) is energy independent, then it predicts the sume ratio of high-
spin states and low=-spin states at all excitation energies. This is incorrect
since high spin states do not appear at low energies. The low-lying levels re
shell model states of low angular momentum. Rotatirnal bands are built upon
these low-lying states, and the rotational energy determines the high-spin
states. The rotational energy is given by

E_ = (n%/2K) (I + 1) . (23)

If this rotational energy is added to the ground state, then Er determines the

energy level at which a high-spin state first appears. This fact is represented
in the neutron inelastic energy spectrum by an energy cutoff which prohibits high
spins at low energies.



Parity Distribution

Single Fermior states have parity (+1) or (-1). The resulting parity
of the system may be determined from elementary probability considerations.
It may be shown that only a small number of negative parity states or a small
number of positive parity states are required to obtain a nearly equal probability
for positive and negative total parity.

THE OPTICAL MODEL

The optical model represents the interaction of a nucleon with the nucleus
in terms of a single-particle complex potential. The real part of the potential
describes the scattering of nucleons; the imaginary part describes absorption.

The Schroedinger equation for neutrons can be written as

viy 4+ -%—',“—[E - (V+iW) ]y = 0.

The solution is obtained by expanding ¢ in terms of Legendre polynomials.

gi(r) Pl(cos()) .

o
1}

i BN

Then ¢ {,(r) satisfies the equation

dy
1 d 2 £ 2m _ - _ L0 +1) i
;2- ar (r - >+ T‘h [E = (V +iW) | ¢£ ——z—r ¢I = 0.

The general solution of ihis equation which asymptotically approaches the
equation of a free particle is of the form

I

I
v, = C ¥+ Cay,

{ L
The boundary condition at the origin is

lim[rz.'l (r)] = 0.
r-—=0

10



This condition determines the complex phase shifts 6(” which are defined by

11
C - Ty,
— - exp(2i6 ) =En = lim ——
Cz le ! r—0 r¢l
|

The asymptotic expansion is

_ T yl) i TERITA
¢l = Cz%(% 4 ¢l (1 exp(2léal),¢l ’
The first term represents the 1" " term in the incident plane wave expansion.

t
The second term is the ( h-order scattered wave.

The reaction cross section, T is the ratio Na/N’ where l\'a is the net
flux into a large sphere of radius r; as computed from the complete wave

function, and N is the incident plane wave flux.

12 Y u 9 Y* ) 2 .
9 T 2imV f(ar¢ ar V) Tedind dédg
The cross section calculated by the optical model is an average cross
section over an energy region containing many resonance levels. The optical
model is satisfactory when the width of the beam is considerably larger than
the level spacing. Thus, over an energy interval containing many resonances,

[ n dE
- A'E °
Ny, = A E

The average reaction cross section is

G.= g L@+ - T
o {
or
. =XV - In1%) - (In, -
gr_—ki-,T(zun [(1 Inzl) (Inl an)J

11



The second term results from resonance reactions for which np differs
significantly from nl . The first term is the absorption cross section for com-

pound nucleus formation, i.e., the absorption results in formation of a com-

pound system with excitation energy in a region which contains many resonance
levels. Thus

5 = -
S ?:%(2“”“' lnlvz)

Various functional forms have been used to approximate the optical
model potential 6, 11. For incident energies between 5 and 10 MeV, it is
best to work with diffuse boundary potentials. In this case, it is necessary to

use a computer in order to solve the Schroedinger equation and obtain the phase
shifts.

CALCULATIONS

The inelasiic neutron crass section for aluminum for an incident energy
of 5 MeV is compcsed srimarily of wransitions to discrete energy levels. The
results of the computer program ABACUS [12] for an incident energy of 5 MeV
are presented in 2'able I.

As the incident energy increases the transitions are to both discrete
final states and final states in the continuum. Figures 1 and 2 show these
mixed transitions at 9 MeV for 18 and 10 discrete levels, respectively. Figure
3 is the result for an incident energy of 12 MeV.

At higher incident energies the cross section is dominated by transi-
tions to the continuum. Figures 4, 5, and 6 include continuum transitions only.

Figures 1 through 6 are not the neutron energy spectra as represented
by Equation (14), but are a composite of ABACUS and a computer code
developed by R. Snow and M. C. George [13]. The curves are all normalized
to an integrated cross section of 0.8 barns. Some of the options available in
the continuum code are indicated in Figure 7.

12



TABLE I, DISCRETE TRANSITIONS OF INELASTICALLY SCATTERED
NEUTRONS FOR AN INCIDENT ENERGY OF 5 MeV

DISCRETE ENERGY CROSS SECTION
LEVELS (MeV) (BARNS)
0. 542 0.052047
1.013 0.109156
2.212 0.173929
2.731 0.116153
2.976 0.064010
3.010 0.187355
3.674 0.022831
3. 951 0.045302
4.052 0.017250
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FIGURE 1. APPROXIMATELY CALCULATED CONTINUUM ENERGY DISTRIBUTION
AND EIGHTEEN DISCRETE TRANSITIONS FOR INELASTICALLY
SCATTERED NEUTRONS WITH AN INCIDENT ENERGY OF 9 MeV
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FIGURE 4. EXACTLY CALCULATED ENERGY DISTRIBUTION OF INELASTICALLY
SCATTERED NEUTRONS FOR AN INCIDENT ENERGY OF 15 MeV
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