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SUMMITRY

If in radiative equilibrium due to adiabatic expansion a

rising mass of gas becomes warmer than its surroundings, its

motion will continue. Under this condition convection currents

are stable. Therefore, convection currents can be produced only

if the amount of the adiabatic temperature gradient is smaller

than the radiative gradient. The convective heat flex can be com-

puted from the energy balance during convection. It is also pos-

sible to derive the convective flux from the equation of radiative

transfer, which applies to non-equilibrium photon transport pro-

cesses, by substituting convective for the radiative parameters.

LIST OF SYMBOLS
Symbol	 Definition

a	 Radiation density constant
B	 Source function
c	 Velocity of light

c 	 Specific heat at constant pressure per unit mass
cv	Specific heat at constant volume per unit mass
E(r)	 Energy density (energy per unit volume)
g(r)	 Acceleration due to gravity at distance r from

the center
H(r)	 Radiative power flux-density at distance r from

the center
I(r)	 Radiant power per unit area per unit solid

angle at r

j(r)	 Emitted power per unit mass per unit solid
angle at r



LIST OF SYMBOLS (Concluded)

c

Symool Definition
I Mixing length

L(r) Radiant power at the distance r froin the center
P(r) Hydrostatic pressure at the distance r from

the center

P(r)rad Radiation pressure at the distance r from
the center

r Radius from the center of the Sun to some point
of the interior

R* Universal gas constant
S Scale height
T(r) Temperature at the distance r from the center
U Internal energy per unit of convective mass
v Velocity of a stable convective element
7 Ratio of specific heats, cp/cv
6 Angle between the direction of a ray and the axis

of a small cylinder
K Rosseland s K (corrected for induced emission)
µ Mean molecular weight of the Sun's material

p (r) Density at the distance r from the center

a Stefan-Boltzmann constant
T Optical depth

dw Element of solid angle

V Logarithmic gradient, temperature to pressure
Subscripts

ad adiabatic
k convective
rad radiative

Superscript

' prime: refers to convecting element
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I. INTRODUCTION
H'

The physical properties of the Sun are explained by a com-

posite model for which the energy transport mode is radiative in

the core and radiative and convective in the envelope. If the con-

dition of radiative equilibrium is maintained, no unsteady con-

vective mass motions can occur. However, if the conditions for

radiative equilibrium are not fulfilled, perturbed mass and energy
m

transport may result. The basic conditions which affect stability

are stated by the four differential equations for hydrostatic equilib-

rium, conservation of mass, luminosity, and temperature gradient

(convective and radiative). These equations have to be comple-

mented by three constitutive equations in order that the behavior

of the gases may be characterized. The constitutive equations

are the equation of state, the equation for the absorption coefficient,

=	 and the equation for energy generation by nuclear processes.

The temperature gradient has two distinct forms, adiabatic

and radiative. Which form is applicable is determined by whether

the stability condition,

dT	 - (1 - 1 ) T dP
dr	 7 P dr

is met (adiabatic) or is not met (radiative).
By using only the convective energy transport condition,

the entire outer region of the Sun is described by the adiabatic
gradient. This is a rough procedure which yields erroneous re-

sults. Since both radiative and convective fluxes occur in con-

vective equilibrium, both contributions are considered in each of
the two derivations outlined in the next two sections.

r
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U. DERIVATION OF THE CONVECTIVE FLUX
FROM THERMODYNAMIC EQUILIBRIUM

For the calculation of energy transport by radiation and

convection in the convective layer of the Sun, the pure adiabatic

and radiative gradients are supplemented by an overall average

gradient and a gradient describing a turbulent element in sur-

roundings which are otherwise in radiative equilibrium. These

four gradients, negative in the sense of decreasing temperature

with increasing radius r, are in order of decreasing magnitude:

V rad = (dlnT/dlnP) rad for radiative equilibrium

V	 = (dlnT/dlnP)	 actual average gradient at
radius r

	

(dlnT/dlnP)' 	 for an average convective
element

Vad = (dlnT/dlnP) ad for adiabatic changes of state.

If as a result of adiabatic expansion a mass of gas rises

through surroundings which are otherwise in radiative equilibrium,

and if the negative adiabatic temperature gradient of the rising

mass is less than the negative radiative gradient of the surround-

ings, then the rising mass will cool less than the surroundings
and thus be relatively warmer. If expansion exactly compensates

for relative warming, then stable mass motion will continue.

These conditions, adiabatic expansion with temperature gradient

of the rising mass less than the radiative gradient of the surround-

ings, are the necessary and only conditions for generation of stable

convection currents. The gradient relationship can be expressed

in the form:

Vad V'<  V < Vrad-

4



The convective power density H k can be computed by the

following procedure. When a turbulent mass rises a distance Ar,

its temperature drops less rapidly than that of its surroundings

and thus the mass tends to be warmer than its surroundings:

AT = [ (dT/dr)' - (dT/dr)] A r.

(The primed and unprimed terms have the same meaning as in
f

the gradient relationships in the preceding paragraph. )

The convectively transported power density equals:

f'

	 Hk = cp p ATV = cppT(OT/T)v.

(The bars above the symbols indicate mean values over a layer of

thickness dr. )

The formula for hydrostatic pressur L; is determined as

follows:

dP = -g pdr

dlnP = -(gµ /R,T)dr= -dr/S.

The mean ascent of an arbitrary turbulent element is set equal to

half the mixing length:

Or = dr = 21,
and the final expression for the convective power-density transport

is obtained:

Hk = c p TP v ZS (V V) .	 (1)

III. DERIVATION OF THE CONVECTIVE FLUX
BY THE PHOTON TRANSPORT EQUATION

In order to compute the power density transported by

radiation, Hrad' we apply the "gray spectrum" approximation

5



with Rosseland's coefficient of opacity K	 The source function

is expressed as:

B(T) _	 T4(T).

To express the dependence of B on the optical depth T,

we use the equation of radiative transfer:

L = - 47r r  d(acT')
3TCP	 dr

together with the geometrical relation:

L(r) = 47rrt Hrad'

The expression for optical depth is introduced:

dT = K Pdr,

and the Stefan-Boltzmann constant:

v = ac/4.

These five relationships are combined:

ac dT4 	 4 d1 4	4 dB
Hrad = -	 = - Q	 = -	 a

3 dT	 3 dT	 3 dT '

and the formula for hydrostatic pressure is used:

dT =WP Sd(lnP);

therefore,
16 Q 74

Hrad	 3 TPS O	 (Z)

The convective envelope is a fluid which possesses, in

principle, all possible degrees of freedom. At large Reynolds

numbers, very many of them come into play. The motion then

6



becomes so complicated that simple answers can be given to only

those questions which concern the average behavior of the moving

particles. Therefore, the equilibrium between the different ele-

ments has to be described statistically. As in the kinetic theory

of gases, the interest lies in the statistically most probable dis-

tribution of the elements.

Equation 2 for radiative power transport is derived from

the equation of radiative transfer, which applies to all statistically

controlled photon transport processes. Equation 1 for convective

power transport is also based on statistical premises. The

equation of radiative power transport will be used next as a base

for deriving equations of convective power transport.

The derivation of the equilibrium condition, which takes

the place of Equation 1, is the same as the derivation of Equation 2

except that convective parameters are substituted for the radiative

parameters. The method of Schwarzschild is em^loyed.
The basic equation of radiative transfer, which is valid

at every point within the Sun, has the form:

aI cos 0 - a! sin 0 + K P I - 1 jP = 0.

	

Tra0	 r	 47r

Instead of considering the function I, which represents the

distribution of the radiation in all directions from a point, we

consider the first three moments of this distribution function:

E(r) = c f Idw	 radiant energy density

H(r) = f Icos 0 dw	 radiation power flux-density

	

P ad (r) = cf I cosh 0 dw	 radiation pressure.

f

7



Differential equations for these moments can be obtained
by forming the corresponding mom .-its of the equation of radiative

transfer. The radiative transfer equation is multiplied by powers

of cos 0 and integrated over all directions; then multiplying it

by 1 and cos 0 , respectively, we obtain the first two moments:

dr + = H + cKpE - jp = 0
(3)

dP 
+ 1 (3P -E) + Kp H = 0.dr	 r	 rad	 c

These are two equations for the three radiation functions

E, H, and P. To secure ; definite solution, we have to derive
an additional relation between the moments. At a given point, the

radiation field can be represented by the series:

I = 1  + I 1 cos 0 1  cos2 0 + . . .

As a result of the large absorption coefficient, this series

converges rapidly in the solar interior. Therefore, the series

will be restricted to the first two terms; it cannot be restricted

to the first term only, because the radiation field would then be

isotropic, without any net flux. If the first two terms of the series

are introduced into the moment equations, the following results are

obtained:
E _ 4a Io

c

H= 3r I1

P	 4n I
rad = 3 c o
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therefore,

Prad = E/3.	 (4)

Equations 3 and 4 form the required set of three equations

for the three moments.

The flux density H(r) may be represented in terms of L(r),

the flux through the spherical area of radius r:

H=L/47rr'.

So far the derivation has been identical with that developed

from the radiation equilibrium condition. However, instead of

the Stefan-Boltzmann law being introduced, which is the next step

in the radiative derivation, the analysis proceeds as follows:

In order that the adiabatic equilibrium condition may be
derived the negligible contribution of adiabatic mass expansion is

recognized in defining the emission coefficient for the convecting
mass:

j = Kp ccv r; (c now denotes the
velocity of sound).

Substituting these relations for H and j into the first
Equation 3 yields the simple form:

E = cvpT .	 (5)

Equations 4 and 5 yield the following expression for the

radiation pressure:

Prad = cv p T/3.	 (6)

When Equations 5 and 6 are substituted into the second

of Equations 3, the new expression for power flux-density transport

6
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(convective) is obtained:

H	
ccv dT	 (7)=-,3 =K_ dr

When H is replaced by L/47rr 2 , the basic equilibrium con-
dition is obtained in the form:

47rrZ cc 	 dTL = -	 3K	 dr	 (8)

which is a new expression for the basic condition of convective

equilibrium stated in the Introduction.

According to Equation 5, the total internal energy of the
convecting unit mass equals:

U=cvT,

which yields for the specific heat:

(4T)
au v 

= CV.

Since Equations 1 and 7 are both valid expressions for con-

vective power-density transport, they must be equal to each other.

When the scale height S is set equal to the mixing length f in
Equation 1, the following relation is derived:

3 'YIZpT dr

IV. RESULTS AND CONCLUSIONS

The heat flux in the convective layer of the Sun is derived

by two different methods. The first method is conventional, and

starts with the condition of thermodynamic equilibrium. The

6
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second method is new, and is based upon the photon transport

equation. The two formulas for the same quantity yield a relation

between the temperature gradients occurring in the equations.
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