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AN ANALYTICAL DEVELOPMENT OF THE RELATIVE MOTION OF
TWO CLOSE SATELLITES OF AN OBLATE PLANET

ABSTRACT
The purpose of this study is to describe the relative planar motion of two

satellites which are close (- 5 km) in comparison to their respective distances
(- 20,000 km) from the center of an oblate central body. This research was under-
taken to support current studies in orbiting long baseline interferometryy-systems
like, for example, the proposed Radio Astronomy Explorer C & D satellite. The
equations which govern the motion of one of the satellites with respect to the other
were derived from a Lagrangian formulation and neglect the mutual attraction of
the two satellites.

The equations have been expanded to first order in eccentricity of the orbit
of the reference satellite and also to first order in a small parameter which is a
function of the oblateness of the central body. The expansion to first order of
eccentricity is compatible with the intended small eccentricity ( < 0.01) of the
proposed RAE C & D.

The results to first order eccentricity, neglecting oblateness, show that the
motion is almost periodic. When the first order oblateness is included a secular
term appears and the almost periodic behavior becomes superimposed upon a
secular drift. Certain small divisors appear when the oblateness is it:luded; in
particular the rate of change of the argument of perigee appears in the form of
linear combinations with multiples of the mean motion and the modified mean
motion.

.►
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Glossary of Symbols

e. radius vector of the M satellite with respect to the center of mass of
the central body

ro , radius vector of the 0' satellite with respect to the center of mass of
the central body

H
R position vector of M with respect to 0'

a the semi-major axis of the orbit of 0'

L the inclination of the orbit of 0'

v the eccentricity of the orbit of 0'

0 the longitude of the ascending node of the orbit of 0'

w the argument of perigee of 0'

v the true anomaly of 0'

u the sum (w + v )•

w the angular v^:Aocity of 0'

T the kinetic energy of the M satellite

U the potential energy of the M satellite

L the Lagrangian, T-U.

{xo' , yo'' io ,} the velocity components of 0' in the rotating coordinate system.

{FX , FY , Fs } the force components, in the rotating coordinate system, acting or
the M satellite.

µ the gravitational constant of the central body

Re the equatorial radiuL. of the central body

J20 the first non zero coefficient in the spherical harmonic expansion of
the gravity field of the central body
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AN ANALYTICAL DEVELOPME14T OF TIIE RELATIVE MOTION OF
TWO CLOSE SATELLITES OF AN OBLATE PLANET

INTRODUCTION

The solution of the problem of relative motion of two spacecraft has usually
been constructed in the past with rendezvous and docking applications in mind.
Since such applications were usually performed within several revolutions about
the central body it was unnecessary to consider the oblateness of the central body.
In this report the non-spherical nature of the central body is taken into account
because problems of a different nature than those of rendezvous and docking have
received considerable attention over the last few years. In particular, the feasi-
bility of using orbiting long; baseline interferometry systems has been extensi^ ely
studied. Such a system will be orbiting the central body for a few years at least
and it would therefore be advantageous to be able to approximate the accumulative
effects of the oblateness on the motion. Fortunately the intended eccentricity of
such interferometry systems is small, less than 0.01, and therefore an expansion
to the first order of eccentricity will be presented.

The technique used here is rather well known among those working with
perturbation theory althaugh its application to this particular problem is novel.
To be explicit, a double expansion has been used to isolate the first order effects
due to eccentricity from the first order effects due to the presence of an oblate
central body. Furthermore, even though a device first used by Poincare, that of
expanding; the frequency in terms of a small parameters, has 1>: r-,n adopted in this
problem to eliminate mixed secular terms, a small purely secular drift cannot

P
be removed from this first order theory.

A complete derivation of the equations of relative motion has been presented
even though only the case of planar inotion will be considered in this report. The
planar and non-planar motions are mathematically and physically distinct problems
requiring decidedly different techniques for solution. It is felt then that a separate
consideration of the non-planar motion and it's ,,tability characteristics is justifed.

In 1960 Clohessy and Wiltshire [ 1 1 published a paper concerned with the
relative motion of twoclose satellites. Their development concerned itself with
circular orbits about a spherically symmetric central body. H. S. Iaandon [ 2 ]
extended the results by including second order terms in various components of
the relative distance and relative velocity normalized with respect to orbital
radius and orbital velocity. His work is confined to circular orbits and spherically
symmetric central bodies. In [3] , J. de Vries made a generalization by allowing

1



the nominal orbit to be slightly eccentric. If is work assumes a spherically symme-
tric central body. In [ 41 , Anthony and Sasaki obtz:n an approximate solution of
the equations of relative motion incl.tding linear and quadratic terms in the rela-
tive distance for the case of nearly r.ircular orbits about a spherical central body.
In 151, Euler and Shulman made a slight extension of the work of Anthony and
Sasaki by allo%ing orbits of arbitrary eccentricity. In (6], Schechter and Cole
are concerned with the influence of air drag and oblateness. In their study the ori-
gin is assumed to be located in an infinitely heavy satellite moving in a circular
orbit at an altitude of 100 n miles. The motion of each of the satellites, obtained
by an application of a two variable expansion procedure, is referred to this fictitious
satellite and then, by subtraction, is made relative to each other.

FORMU I.ATION OF THE EgUATIONS OF RELATIVE MOTION

The equations of relative motion will be derived from the Lagrangian formu-
lation where the I agrangian L is represented by the difference between the kinetic
energy T and the potential energy U of a spherically symmetric central body. The
force per unit mass will be denoted by F.

Choose an inertial coordinate system X Y Z where X is in the plane of the
equator of the central body and lies along some fixed direction in space, Y is also
in the plane of the equator ninety degrees ahead of X and Z completes an orthog-
onal coordinate system whose origin is at the center of mass of the central body
(see .Figure 1).

Now consider the motion of one of the two satellites as completely known
relative to this inertial system and define a frame of reference 0', whose origin
is at the center of mass of this satellite, in such a way that x is along the radius
vector to 0', y is in the orbit plane of 0' ninety degrees ahead of x and z is normal
to the orbit plane of 0. The inclination of the orbit of 0' is denoted by L , it's
longitude of the ascending node is fl and the sum of it's true anomaly, v, and
argument of perigee, w, is denoted by u.

The problem now is to formulate the equations of motion of the satellite M
with respect to the moving reference frame 0'. It is easily seen that

^M = r0 + R	 (1)

and that

d rM d ro '	 d R

d 	 d 	 + d 	 (2)

2



7

i

X

W

Figure 1. Geometry

where all terms in (2) are referred tc the inertial coordinate system. Taking
into account that 0' is moving with respect to the fixed inertial system, the deriv-
ative dK /c1 t can be represented as

(d 
l
inertial	 Moving

where 'W,  the angular velocity vector of the moving reference frame 0', is given
by

W . (i cos u + i2cos u sin ^) x

+	 sin 11+Q cos usin C)y

+(u + cos l) i

1



Here the dots indicate derivates with respect t,) time and the symbol " indicates
a unit vector. Note that 4 is expressed in the moving reference frame. A deri-
vation of the components of A) in Lie moving coordinate system is presented in
Appeudix 1.

If the velocity of 0' is resolved along the instmuitwi( ous directions of the
Moving, axes, yielding; the components z o , , yo , 0 io , } , th,!n the kinetic energy T of
the M satellite written in the inertial frame, takes the firm

T ^1	 +o ,	 cf 
R	

_]2

2	 alt	 alt 
Moving

	 (4)

where m is the mass of the M satellite. Carrying out the necessary operations
1	 leads to
t

T 2 (x o, + y2, + io,) + ^ ( x 2 + y 2 + i2)

+Z{(y ws -z y) 2 +(zWx -xW^ ) 2 +( x y_y^x )2)

(5)

+ m {ico 8 (ic — Y W + z "y ) + Y^^ (Y - z x + x W= ) + io (z - x y + Y Wx)}

{ X (- y G = + z y) + y (- z (.,x + x W= ) + z { - x y + y Wx))

The first term in this expression is just the kinetic energy of the moving
origin. The second term is the kinetic energy as would be calculated by an
observes in the 0' frame who thinks J , is fixed. The third term is related to
the moment of inertia about the axis of rotation and may be written simply as
I CO

2  where

T_m [R2_(R w)

2	 (A)2

The fourth term represents the coupling of the motion of 0' to the motion of M
and may be rewritten in the form

m (It (R V) — m (R A)

1



M

where V and A are respectively the velocity and acceleration of 0' . The la: t term
may be written in the form

x [m(yi-Z0) + y [m(zx-xi)] 
+Cs 

[m(xy-yx))

which is recognized as the scalar product of the angular velocity vector and the
apparent angular momentum vector, that is, the angular momentum as would be
calculated by an observer in the 0' frame who thinks 0' is fixed.

The equations of relative motion expressed in generalized coordina-tes, (q, (^O,
take the form

d 'aL _ aL(	 Fa	 (6)
' i t 

\dq	
aq -

where L = T - U. Allowing q to take the notation x, y, z respectively yields, from
the Lagrangian formulation

x + z o , + 2 ( c y i - ass y ) + z 1'y - y _ +cry i^ I - % yo

(7)

+ y (z x - x wS ) + ^y (Y cix - 
x Y) + 1 a U = Fx

M ax

Y + y 0 1 + 2 (w X x i ) + x CL — Z Cx + Wi xo ' — x * 0

+ 
z 

(x 
y — Y CLx) + W. (Z Y — 

Y 
W.) + 

1 oU _ 
FY

m 7—Y

+zo'+2(^xY— i)+y^Y_ x y+cc^ 0,— YXo,

1 au
+ y (Y Ws	 w^) -:X (z x - x r^s) —	 = Fs

M az

Neglecting for a moment the potential U and the components of force it is
seen that the total acceleration of the M satellite written in the rotating frame
is made up of three terms:

1W
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(i) acceleration relative to the rotating frame; this leads to terms like
x,y,z

(ii) acct leration due to Coriolis effects; this lcadc to terms like

2(yi— ^s y), 2(a=i- x i) and 2( Xy - ,yi)

(iii) acceleration as would be calculated by an observe- fixed with respect
to the rotating reference frame; this leads to te: • ms like

ic o , + (..y i o , _ cis yo ,) + (z y - y ^_) - x w 2 + ^'x (R • c)

Vo l + (669 xu' - x i 0 f) + (x 6^_ - z wx ) - y W2 + 
y (

R • w)

-+(wxyo^— Vio') +(y x—x^y)— z^^ +^Z(R•^)

In order to --ast the equations (7) thru (9) into a form which will yield a first
order theory more readily certain simplifications will be made. To begin X
will be neglected so as to uncouple the planar motion and the non-planar motion.
A constraint on a component of the total rotation of the orbital plane of 0' is
thereby imposed namely, the motion governed by the equation

i cos u+ f sin a sin L

is being neglected. What this means physically is that motion of the orbital plane
of 0' about the radius vector of 0' is being held fixed. Secondly the mutual
attraction of the two satellites is being; neglected. Thirdly it is noted that y must
be indentically zero because the xy-plane must contain, at every instant, the radius
vector and velocity vector of 0' . The preceding comments concerning X and y
reduce the equations of relative motion to the form

X +zo.-2y^=-yw=-w=yo,-xwZ+
	 ax F

x 	(10)M 

	

Y+ y o n +2iw= +x s +0;Z z o , +y W Z +1 3U_ F	 (11)
M ay	 y

	

a+i 
+ 1 =U - F	 (12)

o	
m ^z	

Z

i

6
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The formulation of the equations of motion is almost complete. To finish the
objective certain representations must be used. In particular, the potential U
takes the form

U - - µ	 (13)
r

m

whereµ is the gravitational parameter of the central body and

r2m = (X +X O ^) 2 +y 2 +Z2;

furthermore the components of force per unit mass g lue to the oblateness of a
central body of radius R. take the form

3	 X.FX 

rx = 3 µ .T 20 R22	 0 
(1 _ 3 s i n 2 L sin 2 u)	 (14)

XS

	

FY = 2µJ20 R2 
si	 n ti 

COS " S ' 11
n 2 L	 (15)

"o'

Fz = 3 µJ 20 Reg 
sin 11 s 4n L c os 	 L	

(16)
X
4

10

Since the motion of 0' is being assumed to obey perturbed two body laws, it is
clear that the governing equations in the rotating reference irame are.

X0 , - x0 , W2 + µ = (Fx ) 0 	 (17)
xo,

d1

1 ^itt (X 2 , W _ (Fy ) 0 ,	 (18)

where (Fx )0 , and (F ) 0 , denote the components of the force on 0' due to oblateness.
In addition, since X is being neglected, y 0 , = x0 , wZ and the angular momentum
of the perturbed motion will be approximated by that of the two body problem.

i



Makin; use of (13) thru (18) and the proceeding comments, the system (10)
thru (12) may be written in the form

	

Xe sin y	 e Cos V^^	 -^.r- 2 Y	 +2y^ 2 	 x
:	 = 1 + e cos t	 _ ? + e COS V	

(19)

= 2 µ J2o R2 5 
(1 - 3 sin e L sin e ti)

x0.

	

y +2zW -2xce2 esinV	 U 2 e COS V

Z 1 +eCosV - y = 1+e Cos v
(20)

3
2 µ 1 20 . e y	 e5- Cos 2 u sin

xo,

z + z r,2	 1	 _ 3
ll

J 	 R2 sin a sin L Cos L	 (21)
1 + e COs V	 2	 20	 . 4^

0

These equations represent the complete formulation of the equations of relative
motion where oblateness of the central body is considered and when the planar
and non-planar motions are uncoupled.

SOLUTION OF EQUATIONS GOVERNING PLANAR MOTION
x

In this section attention will be devoted to the solution of equations (19) and
(20). These equations are coupled linear second order differential equations
containing a small parameter E - 3/2 J20 and are amenable to a solution which
takes the form of a double expansion. in eccentricity and in the small parameter.
As already mentioned the eccentricity is assumed to be small (< 0.01) and

i

	

	 therefore a first order theory will be presented; consequently consideration will
be given to the formal summations

X (t) = xoo (t) + e x 01 (t) + E x 10 (t)	 (22)

Y ( t ) = Yoo (t) + e Y ol (t) + E y1 o (t)	 (23)

which are to be substituted into (19) and (20). To derive the equations which are
satisfied by xoo , x ol ,	 , Y10 it is first necessary to expand w. in terms of e
and E ; thus

8



2	 1 —c' - 1 kb 1 —̂
—
	 e )	 (28)

e

where

ti
^_ 

o 
+	 _ 

1 
+ E o^=

where, in terms of the orbital elements of the rotating origin 0' it is found that

`20 _ n + b cos l	 n	 (25)

W31 1 = 2 n cos v.	 (26)

(Au z is unknown at this point of the development; it's representation, to be obtained
later, will serve the purpose of eliminating certain mixed terms which appear
in the solution of xlo (t). Furthermore the representation

(1 + e cos v) -I - t 2 0 1
CD

 
b I k cos k v	 (27)

2
k Y 1

(24 )

will be u ed in the expansion of the equations of motion. Finally the independent
variable, time, must be introduce by way of the true anomaly. To accomplish
this use is made of the Hansen coefficients which are coefficients in the Fourier
series representation of ( r/a)a exp (i y v) in terms of the mean anomaly, M.
Lanzano [ 71 has carried the expansion to second order of eccentricity; the
expansion to first order is sufficient for this development and is given by

(
( 
r a exp (i yv) = exp i yM - e (a - 2 y) exp (i y + 1) M)a)	 2

-2(a+2y)expi(y -1)M

where

expi yv= cos yv+i;inyv

a, y = 0, i 1, t 2,

(29)

9



The substitution of (22) thru '29) lrto (19) and (20) yields the following system
of equations

xoo - 2 rl yoo = 0
	

(30)

x01 - 2n yol - 4n yoo cos n t 4 211 yoo sin n t - 11 xoo cos n t =0 (31)

x10 - 2 1-1 y 10 - 2 ws v00 =l a 1 n2 xoo 1 - 
2
3 s i n2 ll

a	 /

R \2

+ 2 \ of / 
11 2 xoo sin g L cos (2 w0 + 2 n) t

yoo + 2 n xoo -- 0

	yol + 2 n X01 + 4n z00 cos n t - 211 xoo sin n t - 112 yoo cos n t = 0	 (34)

/R 2

	

y to + 2 n X 10 + 2 c` = xoo 1 a 
J 

rig yoo s i n 2 l cos (2 wo + 2 n) t	 (35)

where the substitutions M = nt and w = wo t have been made.

The circular orbit, spherical central body contribution to the total first order
solution is governd by equations (30) and (33); the solution is represented as

a
x00 (t) = al sin 2n t + a  cos 2n t + -	 (36)

2n

y oo (t) = a l cos 2n t ,- a 2 sin 21-1 t + a 3	(37)

where a^ j = 0, 1, 2. 3

(32)

(33)

10
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are constants which will be evaluated after the x 10 (t) and y10 (t) solutions are
determined. This solution is almost periodic due to the presence of n cos i in
the expression for the frequency.

Substitution of (36) and (37) into (34) yields the equation

-	 n2 t 8n n
Y01 + 21tx01 =	 2	 a2 sin (2 n_ + n) t

31- 2 - 8n n	 -	 n2 + 8 n n
- — 2	 u2 sin (211 - n) t -	 2	 al cos (2n + n) t (38)

3 1-2 2 — al cos (2n - n) t + n 2 a 3 cos n t + n a 0 sin n t

This equation is integrated once and then substituted into (31); carrying out the
necessary operations leads to the equation for a forced harmonic oscillator
which x01 must satisfy, specifically

x + 4n 2 xol = 4)01 (t)	 (39)

where (D 01 (t) is given in Appendix II. The solution is given by

Xol (t) =,8 01 sin n t +,83X cos n t +,83xs in (2 n + n) t

+ 801 s i n (2 n - n) t + /35 1 cos (2 n + n) t	 (40)

+ p6X cos (2 n - n) t

where the /3 01 j = 1,	 6 are given in Appendix I1. The solution of equation
jX

(38) now follows easily and is given by

y (t) =,3 01 sin nt +,3 01 cos nt +3 01 sin (2n +n) t01	 ly	 2y	 3y

+ 0 01 s.in (2 n - n) t + J3sy cos (2 1-1+ rr) t	 (41)

+ 8 0' cos (2 n - n) t

11



where the 110 1 j = 1, .. , 6 are also to be found in Appendix II. The solutionsjy
xo 1 (t) and y., (t) represent the first order contribution due to the eccentricity
of the orbit of 0'; this contribution is almost periodic.

Attention will now be turned to equations (32) and (35) which govern the depend-
ence of the motion on the small parameter. It is noticed that the equations depend
on the circular orbit spherical central body solutions. It is this dependence
which leads to mixed terms in the solution; that is, terms of' the form

t s i n S t, t cos b t.

Specificantly the term

( 

R 2 _
at/
l n2 X. 	 - 2 s i112

leads to terms which oscillate at the same frequene; as the solution of the homo-
geneous equation. Elimination of these mixed terms will be accomplished by
solving for the small parameter dependence of the angular velocity.

As before (36) and (37) are substituted into (35) which is then integrated once
to yield ylo (t). With an expression for y 10 (t) available it is easy to derive the
equation which governs the xlo motion namely,

X 10 (t) + 4112 x10 (t) _ q)10 (t) (42)

where (D' o (t) is given in Appendix III. It is noticed that q) lo (t) contains two terms
each of which oscillate with a frequency of M. Setting each of the coefficients to
zero to the dependence of (.Z on the small parameter; explicitly

2(Re
/ n (1 - sin  

;J

The solution of (42) is then given by

xlo (t) = 8 1 0 sin 2 (wo +n) t + 810 cos 2 (wo +n)t

+,8 10 sin 2 (wo +n +n)t +/84 o sin 2 (wo +n -n-)t

+ 8 10 cos2 (wo + n + n) t + Q60 cos 2 ( ,wo + n - n) t + 010

(43)

(44)

w: 

12



where the Q3 x j = 1, ... 7 are to be found in Appendix III. The substitution of
x, o (t) into the first integral of (35) yields the solution

ylo (t) = 81'si n 2nt +/3zy cos 2nt + 8 10 s in 2 ( wo +:,) t

+ 1j 4y cos 2 ( wo + n) t + As o s i n 2 ( wo + n + n) t

(45)
p10sin2 (w^ +n- ri) t 

+810 
cos 2(wo +n+r.)t

+ 8'0 cos 2 ( wo + n - n) t + /3 1 y t

where the P 1 0 j = 1, ... , 9 are also found in Apperdix III.
JY

Equations (44) and (45) yield the dependence of the motion upon the small
parameter. It is noticed that this motion is dependent upon the secular rate of
change of the true anomaly and that, although the mixed terms have been eliminated,
a purely secular term remains in the yi o contribution. The y, () contribution
then exhibits an almost periodic behavior superimposed upon a secular drift.

The complete first order theory for the case of planar motion is represented
by equations (36), (37), (40), (41), (44) and (45); these representations must be
combined in the way shown in (22) and (23). The constants of integration
a  j = 0, 1, 2, 3 may now be easily evaluated; using x (0), x (0), y (0), y (0) to
denote initial values, it is found that

D2 X (0) - B, y (0)
a o =

Al D2 - B, C2

B 2 Y ( 0 ) - D, X (0)
a l =	

B2 C, A2 D,

A I y (0) - C2 x (0)
a 2 -	

Al 
D2 - 

B 1 
C2

C, x (0) - A 2 Y (0)
a 3  =	 —

B2 C, - A 2 D,

i

13



where A l , B 1 , C I , D^ . A2 , 
B2 , 

C2 , D2 are functions of the eccentricity and the
small parameter and are given explicity in Appendix IV.

CONCLUSION AND COMMENTS

The first order development of the relative motion of two spac coraft exhibits
an almost periodic behavior imposed upon a secular drift. The secular contri-
bution arises when the oblateness of the central body is taken into account; in
particular, when (32) and (35) are considered. The secular term fails to appear
in the lower order contribution x00 (t) and y00 (t), because the components of the
derivative of U are restricted to the first order only; this is justified in light of
the fact that for the application to RAE C & D the ratio of x to x 0  is roughly
104.

The dependence of the angular velocity on the small parameter disappears
when the inclination is 54 °73. At such an inclination the secular contribution
also disappears and the motion becomes strictly almost periodic.

It has been pointed out that the subclass of the total motion which depends
on the small parameter exhibits a dependence upon the secular rate of change
of perigee. This dependence in turn leads to a singularity at an inclination
of 67°8.

The treatment of the out -of-plane motion will be presented in a subsequent
report. Furthermore studies are currently being conducted to obtain numerical
results by comparing the first order analytic theory with the numerical integration
of equations ( 7) and (9); these will be reported shortly. This comparison is
expected to show the effect of the x_ component of the angular velocity, which, as	 01
it is recalled, was neglected to uncouple the planar and non-planar motion.

14
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APPENDIX 1

DERIVATION OF THE COMPONENTS OF -(A*' IN T11E MOVING
COORDINATE SYSTEM

Let two position of the moving frame of reference 0' be determined by the
Euler angles t , ,'i , u and c + d ; , 0 + do and u + du. The increment d; corresponds
to an infinitesimal rotation about the line of nodes ON (see the accompanying
figure)

Z

0
	

Y

'	 u

ti

X	 -	 /N

2	 1

A
n

Figure 2.

Similarly dl^ and du correspond to infintesimal rotations about the OZ and Oz
respectively. The angular velocity Z therefore has the components t , o , u

A

along the axes ON, OZ, and Oz respectively. The decomposition of n , K and k
into the Oxyz system is easily seen to be

16

,	 r



A
A -- x cos u - y sin tj

K- z s i n ti l i n t + y co-, u	 n t + i cos C

k i

and therefore

y
w_ (L c.os ti + it sin u sire C) x

(	 sine + f cos a sin ^'i y

* (u + h cos L ) i

17



APPENDIX II

The forcing function of equation (39) is

mot (t) = X11 s i n (2 n + n) t + ^^I s i n (2 n - n) t

+ ?^3 1 cos (2n +n)t +^4 I cos (2n - n)t +ks i cos n 

+X6 1 sin n 

where

,\01	 =_
n (4n + n) t o + 8n)

I
-

2(21
a

+n)	 I

I	 =/\o n (4 n - n) (3 n - 8 n)
2 -2(2n

a 1-n)

,\0I	 _ (4n- n + n) (n + 8n)
3 2(2 11 +

a
n)	

2

/\01 n(41-1-n) (3n-8n)a
a

2 (2n-n)	 2

	

,kS I - n 	 n) ao
2n

n 2^6I = 	 n) a3
n

The coefficients appeaz'--g in equation (40) are

	

x0l	
1\01

	

1 _ _ 6	 '801	 2,30

 lx	 4 n 2 - n2	
4x 

n (4 n - n)

18



ar

	

xol	 xol

	

ljol	 s	 ,301	 3

	

3x	 4 n 2 - n2	
Sx - n (4 n + n)

	

Xol	 kol

Q01 _ _	 1	 /301 -	 4

	

3x	 n(4ri +n)	 6x - n(4n -n)

The coefficients appearing in equation (41) are

13 01 =	 ^^
ao 01

2 
^5

1y _
n

—
n

+

4
I

n2 _ n2/

n n
2 Xo l

01Q _ -
_  -t

- 6
2y n n 3 4 n^ _ n2

X801 _ 1
-of4n ^3 + 8n n

a
_n2

3y 4n +2n n(4n+ti) 2 n + n	 2

'801 1 3 n 2 - 8 n n 4n dal
a	 _

4y
-

4 n 2 
_

2	 n(4n-n)

X 01 __ 1 4 n kI n2 + 8 n n asy
4 n+ 2 n n (4 n+ n)

_

n + n	 l

/301 _- 1 3n 2 - fin n 4n^2 1

a6y 4n -2n 2 r-n
-

1	 n(4n-n

i
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APPENDIX 111

The forcing function of equation (42) is

fi to ( t) = Xlo sin 2 n t + Xlo cos 21-1 t + ,\3 o sin 2 (wo + n) t

+^ 10 cos 2(w° +n)t +00 sin2(wo +n+n)t

+^,6 o sin 2 (wo +n -n)t + ,\l o cos 2 (w0 +n +n)t

+k8° cos 2 (wo + n - n)t +x
10

where

r/ 2

R-) n2 II - 3
2 

sine
a	

) - 8 11 A) a1
\	 J

[(Rl2

=	 e
J 

2 1 - 3 s i n 2

	

Z	 - 8 n = a 
2a 

n	
2C	 ^	 ^

r.	 P 2	 _
n

	

10	 n2 s in 2 L	 a

	

3	 a	 (w + n) 30

	

R 2	 a
X10 _ 3 ` n 2 s i n 2 C	

0

	

4	 4 a	 n/

R^1 2 	3(wo +n) +5ri

	

X50=	
a /

^— I n 2 s i n 2	 -	 a 1

4 (w0 +n +n)

R 2	 - 3 (w° + n) + 5 n-
^60	

e I n2 s i n 2	 -	 cz 1

a/	 4(wo+n n)

R12	 3(w
0
 +n) +5r,

X10 -	
e1 

n 2 s i n 2 t	 -	 a2

	

7	 a	 4(w0+11+n)
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i

Rc2	 3(wo +n) -5n ]
X80 ^J n2 s i n2 L 	_	 a 2

a	 4(w0+n _n)

l2X90	

4 C

R
ac/ r^ 1- 2 s i rl 2 l ao

	

C	 2

The coefficients appearing in equation (44) are

X10
3

4 [n2 - (w0 + n )2]

,10
4

4 [n2 - (w0 + n)2]

1̂  10
f310 = - -	 S

3x	 4 (
wo + n) [2 r-I + ( wo + n)1

X10
^10 _	 6

4x	 4 ( wo + n) [ 2 n - (w0 + n)]

k10

10 ---	 7	 -5x - 4 (
w'0 + n) [ 2 n_ + ( wo + n)]

'810 _
6x

4 (wo + n) [ 2 n - (wo + n)]

(R 
112

X10-	 1-\ae/	
1-^sin 2 	a7x	

0.(	 )
16 n

The coefficients appearing in equation (45) are

ti
cv

	

Q 10	 Z CL,

	

Iy	 n	 `

P10
Ix

Q10
2x

X10
8

IF
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ti

10 = _2 a
2y	 n	 1

,810 _ _	
n 

(w0 + n)-1 X
 
10

3y	 4
4 [ n 2 - ( w° + 11) 2]

2 (w + n) 2 - 112

4 n [il l - (w° + n)2]

n (w + n)-1

	
(R)2

0Sy =	 °-̂ ^0 + 1 _ n2 s i n2	
a

l	 2
4(w°+n +n)(2n+w0+n)	 2 a	 4(w0+n +n)2

2

	

^310 	
NO + n) -1 	 R 

11

	

6y	 -	 -	
x8°	

2 ^ae/ n
2 s X1 2 I1

4(w° +ri .-n) (2n-w° -.n)

(12

4 (w0 + n - 102

n(w0 +n) -1	1 Re g	 a1
Qty = -	 _	 ^S° - - 1 — I n 2 s i n2 L

4(w° +n +n) (2 - +w° + )	 2 a	 4(w° +n +r,)2

n ( w0 + n ) - 1	 j R e 2	 1

^ 10	 x6°	 a n2 s i
n ' t	

- 2
4(w° +n-n) (2n-w° -n)	 2	 4(w° +n- n)

ti
Q9y = .. 2 - a0.

n
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APPENDIX IV

Coefficients appearing in the constants of integration are

2
Al _ 1- - e n 4 n- n + E 3 C R e	 n	

s i 11 2 l
2 n	 2 r' 4 11 2 - n2	 16 a	 11 _ (w0 + r1)2

1 R^ 2
+ 16\ a/ (n)_I 

(I _
 3 s i 11 2 c
2	 )

B	 1 
+ e rl 4112 +n1-1 - 8112

1	 n 4 112 _ 112

/R P 2	 n2	 3(w.+n)-5 11	 ri3(wo+n)+5
+E	 -	 — sine

\a	 16 ( w
o +n) (wo +n-n) [211- ( wo +n)	 ( w

o +n+n)(2n+ wo +.n) '

ti

C	 1 +e n 8 r 2 -nn -16 n 2	 ^`:
+ E

?n (21-1+n)(2n-n)	 n

1 Re 2 n 2 sin 2 L	 1	 1

8 aI	 -- 2
(w0 + n + n) 2 (w0 + n - n)

1 R^2 - sin2	 3 ( wo + n) n+ 5 112

16(T-l ')	 wo + n	 (w0 + n + ri) 2 (2 n + wo + n)

3(wo +n)n-5112

(wo + n - 11) 2 [ 2 n - (w0 + n))

- 2 4 n - n	 R^ 2 n2 sin2	 112 - 2 ( w0 + n)211
11 1 -1_e—	 -E

r^2	 2	 a /	 2	 -2	 24 n- - n	 (w0 + n)	 4 [n - ( w0 + n)

-2

A2-211+e 211
n

1 Re g 11 2 Sin2	 3(w0 +n) +5n	 3(w\0+n) -511

8 a/	 w + n	 -	 n0	 n + w0 + n	 2 11 (wo + )
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2
'	 B2_	 r 2 ri g (ri - n)	 1 R^	 j-13 s i n 2 t

f
— 2 	 2	 +	 2 a /	 —4n -n	 n2 -( w0 +n)2

	

2	 ^-
C	

-_ 
r n (n - n) -	 3 

RP)	
n2 s i n 2	 °:

2	 E	 I	 + —
4 n 2 - n2	 8 a' ri g - ( w0 + n) 2 	 11

•

D =-2n-e
211 2

2	
rr

2

+ E -2 cv = +2
(R l
\.9

n3 S i r1 2 L

n 2 - ( w0 + n)2

1 R. 12 n 3 sin  L	 3(w0 +n) +5n

{ 8 \a /	 w + n	 -	 -o	 I(wo+n+n)(2n +w0 +r1)

3 (w0 +n)-5 1-1 	 11
(w0 + n	 (2 ri - (wo + r>)JJ

n

a

I

F
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